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Abstract: Inference for the stochastic blockmodel is currently of burgeon-
ing interest in the statistical community, as well as in various application
domains as diverse as social networks, citation networks, brain connectivity
networks (connectomics), etc. Recent theoretical developments have shown
that spectral embedding of graphs yields tractable distributional results;
in particular, a random dot product latent position graph formulation of
the stochastic blockmodel informs a mixture of normal distributions for
the adjacency spectral embedding. We employ this new theory to provide
an empirical Bayes methodology for estimation of block memberships of
vertices in a random graph drawn from the stochastic blockmodel, and
demonstrate its practical utility. The posterior inference is conducted using
a Metropolis-within-Gibbs algorithm. The theory and methods are illus-
trated through Monte Carlo simulation studies, both within the stochastic
blockmodel and beyond, and experimental results on a Wikipedia graph
are presented.
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1. Introduction

The stochastic blockmodel (SBM) is a generative model for network data in-
troduced in Holland et al. (1983). The SBM is a member of the general class
of latent position random graph models introduced in Hoff et al. (2002). These
models have been used in various application domains as diverse as social net-
works (vertices may represent people with edges indicating social interaction),
citation networks (who cites whom), connectomics (brain connectivity networks;
vertices may represent neurons with edges indicating axon-synapse-dendrite con-
nections, or vertices may represent brain regions with edges indicating connec-
tivity between regions), and many others. For comprehensive reviews of statis-
tical models and applications, see Fienberg (2010); Goldenberg et al. (2010);
Fienberg (2012). In general, statistical inference on graphs is becoming essential
in many areas of science, engineering, and business.

The SBM supposes that each of n vertices is assigned to one of K blocks. The
probability of an edge between two vertices depends only on their respective
block memberships, and the presence of edges are conditionally independent
given block memberships. By letting τi denote the block to which vertex i is
assigned, a K ×K matrix B is defined as the probability matrix such that the
entry Bτi,τj is the probability of an edge between vertices i and j. The block
proportions are represented by a K-dimensional probability vector ρ. Given an
SBM graph, estimating the block memberships of vertices is an obvious and
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important task. Many approaches have been developed for estimation of vertex
block memberships, including likelihood maximization (Bickel and Chen, 2009;
Choi et al., 2012; Celisse et al., 2012; Bickel et al., 2013), maximization of
modularity (Newman, 2006), spectral techniques (Rohe et al., 2011; Sussman
et al., 2012; Fishkind et al., 2013), and Bayesian methods (Snijders and Nowicki,
1997; Nowicki and Snijders, 2001; Handcock et al., 2007; Airoldi et al., 2008).

Latent position models for random graphs provide a framework in which
graph structure is parametrized by a latent vector associated with each vertex.
In particular, this paper considers the special case of the latent position model
known as the random dot product graph model (RDPG), introduced in Nickel
(2006) and Young and Scheinerman (2007). In the RDPG, each vertex is associ-
ated with a latent vector, and the presence or absence of edges are independent
Bernoulli random variables, conditional on these latent vectors. The probability
of an edge between two vertices is given by the dot product of the corresponding
latent vectors. An SBM can be defined in terms of an RDPG model for which
all vertices that belong to the same block share a common latent vector.

When analyzing RDPGs, the first step is often to estimate the latent po-
sitions, and these estimated latent positions can then be used for subsequent
analysis. Obtaining accurate estimates of the latent positions will consequently
give rise to accurate inference (Sussman et al., 2014), as the latent vectors
determine the distribution of the random graph.

Sussman et al. (2012) describes a method for estimating the latent positions
in an RDPG using a truncated eigen-decomposition of the adjacency matrix.

Athreya et al. (2015) proves that for an RDPG, the latent positions esti-
mated using adjacency spectral graph embedding converge in distribution to
a multivariate Gaussian mixture. This suggests that we may consider the esti-
mated latent positions of a K-block SBM as (approximately) an independent
and identically distributed sample from a mixture of K multivariate Gaussians.

In this paper, we demonstrate the utility of an estimate of this multivari-
ate Gaussian mixture as an empirical prior distribution in a Bayesian inference
methodology for estimating block memberships in an SBM graph, as it quantifies
residual uncertainty in the model parameters after adjacency spectral embed-
ding.

This paper is organized as follows. In Section 2, we formally present the
SBM as an RDPG model and describe how the theorem of Athreya et al. (2015)
motivates our mixture of Gaussians empirical prior. We then present our empir-
ical Bayes methodology for estimating block memberships in the SBM, and the
Markov chain Monte Carlo (MCMC) algorithm that implements the Bayesian
solution. In Section 4, we present simulation studies and an experimental analy-
sis demonstrating the performance of our empirical Bayes methodology. Finally,
Section 5 discusses further extensions and provides a concluding summary.

2. Background

Network data on n vertices may be represented as an adjacency matrix A ∈
{0, 1}n×n. We consider simple graphs, so that A is symmetric (undirected edges
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imply Aij = Aji for all i, j), hollow (no self-loops implies Aii = 0 for all i),
and binary (no multi-edges or weights implies Aij ∈ {0, 1} for all i, j). For our
random graphs, the vertex set is fixed; it is the edge set that is random.

Let X ⊂ R
d be a set such that x, y ∈ X implies 〈x, y〉 ∈ [0, 1], let Xi

iid∼ F on
X , and write X = [X1| . . . |Xn]

� ∈ R
n×d.

Definition 1 (Random Dot Product Graph). A random graph G with adja-
cency matrix A is said to be a random dot product graph (RDPG) if

P[A|X] =
∏
i<j

〈Xi, Xj〉Aij (1− 〈Xi, Xj〉)1−Aij .

Thus, in the RDPG model, each vertex i is associated with a latent vec-

tor Xi. Furthermore, conditioned on the latent positions X, the edges Aij
ind∼

Bern(〈Xi, Xj〉).
For an RDPG, we also define the n× n edge probability matrix P = XXT ;

P is symmetric and positive semidefinite and has rank at most d. Hence, P
has a spectral decomposition given by P = [UP |ŨP ][SP ⊕ S̃P ][UP |ŨP ]

T where

[UP |ŨP ] ∈ R
n×n, and UP ∈ R

n×d has orthonormal columns, and SP ∈ R
d×d is

diagonal matrix with non-negative non-increasing entries along the diagonal. It

follows that there exists an orthonormal Wn ∈ R
d×d such that UPS

1/2
P = XWn.

This introduces obvious non-identifiability since XWn generates the same distri-
bution over adjacency matrices (i.e. (XWn) · (XWn)

� = XX�). As such, with-
out loss of generality, we consider uncentered principal components (UPCA) of

X, X̃, such that X̃ = UpS
1/2
P . Letting UA ∈ R

n×d and SA ∈ R
d×d be the adja-

cency matrix versions of UP and SP , the adjacency spectral graph embedding

(ASGE) of A to dimension d is given by X̂ = UAS
1/2
A .

The SBM can be formally defined as an RDPG for which all vertices that be-
long to the same block share a common latent vector, according to the following
definition.

Definition 2 ((Positive Semidefinite) Stochastic Blockmodel). An RDPG can
be parameterized as an SBM with K blocks if the number of distinct rows
in X is K. That is, let the probability mass function f associated with the
distribution F of the latent positions Xi be given by the mixture of point masses
f =

∑
k ρkδνk

, where the probability vector ρ ∈ (0, 1)K satisfies
∑K

k=1 ρk = 1
and the distinct latent positions are represented by ν = [ν1| · · · |νK ]� ∈ R

K×d.
Thus the standard definition of the SBM with parameters ρ and B = νν� is

seen to be an RDPG with Xi
iid∼

∑
k ρkδνk

.

Additionally, for identifiability purposes, we impose the constraint that the
block probability matrix B have distinct rows; that is, Bk,· �= Bk′,· for all k �= k′.

In this setting, the block memberships τ1, . . . , τn|K, ρ
iid∼ Discrete([K], ρ) such

that τi = τj if and only if Xi = Xj . Let Nk be the number of vertices such that
τi = k; we will condition on Nk = nk throughout. Given a graph generated
according to the SBM, our goal is to assign vertices to their correct blocks.
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To date, Bayesian approaches for estimating block memberships in the SBM
have typically involved a specification of the prior on the block probability ma-
trix B = νν�; the beta distribution (which includes the uniform distribution as
a special case) is often chosen as the prior (Snijders and Nowicki, 1997; Nowicki
and Snijders, 2001). Facilitated by our re-casting of the SBM as an RDPG and
motivated by recent theoretical advances described in Section 3.1 below, we will
instead derive an empirical prior for the latent positions ν themselves.

3. Model

This section presents the models and algorithms we will use to investigate the
utility of the empirical Bayes methodology for estimating block memberships in
an SBM graph as detailed in Section 3.1 and referred to as ASGE.

For comparison purposes, in Sections 3.2 and 3.3 we construct an alternative
Flat and two benchmark models, as outlined below. Note that all four models are
named after their respective prior distributions used for the latent positions ν.

• Flat – an alternative to the proposed empirical Bayes prior distribution
for ν. Since in the absence of the ASGE theory a natural choice for the
prior on ν is the uniform distribution on the parameter space.

• Exact – a primary benchmark model where all model parameters, except
the block membership vector τ , are assumed known.

• Gold – a secondary benchmark model where ν and τ are the unknown
parameters; the gold standard mixture of Gaussians prior distribution for
ν takes its hyperparameters to be the true latent positions and theoretical
limiting covariances motivated by the distributional results from Athreya
et al. (2015) presented in Section 3.1.

3.1. The empirical Bayes with ASGE prior model (“ASGE”)

Recently, Athreya et al. (2015) proved that for an RDPG the latent positions
estimated using adjacency spectral graph embedding converge in distribution
to a multivariate Gaussian mixture. We can express this more formally in a
central limit theorem (CLT) for the scaled differences between the estimated
and true latent positions of the RDPG graph, as well as a corollary to motivate
our empirical Bayes prior (henceforth denoted ASGE ).

Theorem 3 (Athreya et al. (2015)). Let G be an RDPG with d-dimensional

latent positions X1, . . . , Xn
iid∼ F , and assume distinct eigenvalues for the second

moment matrix of F . Let X̃ ∈ R
n×d be the UPCA of X so that the columns of

X̃ are orthogonal, and let X̂ be the estimate for X. Let N (0,Σ) represent the
cumulative distribution function for the multivariate normal, with mean 0 and
covariance matrix Σ. Then for each row X̃i of X̃ and X̂i of X̂,

√
n(X̃i − X̂i)

L→
∫

N (0,Σ(x))dF (x)
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where the integral denotes a mixture of the covariance matrices and, with the
second moment matrix Δ = E[X1X

�
1 ],

Σ(x) = Δ−1
E[XjX

�
j (x�Xj − (x�Xj)

2)]Δ−1.

The special case of the SBM gives rise to the following corollary.

Corollary 4. In the setting of Theorem 3, suppose G is an SBM with K blocks.
Then, if we condition on Xi = νk, we obtain

P

(√
n
(
X̂i − νk

)
≤ z

∣∣∣∣Xi = νk

)
→Φ(z,Σk) (1)

where Σk = Σ(νk) with Σ(·) is as in Theorem 3.

Note that the distribution F of the latent positions X remains unchanged,
as n → ∞.

This gives rise to the mixture of normals approximation X̂1, · · · , X̂n
iid∼∑

k ρkϕk for the estimated latent positions obtained from the adjacency spectral
embedding. That is, based on these recent theoretical results, we can consider
the estimated latent positions as (approximately) an independent and identi-
cally distributed sample from a mixture of multivariate Gaussians.

A similar Bayesian method for latent position clustering of network data is
proposed in Handcock et al. (2007). Their latent position cluster model is an
extension of Hoff et al. (2002), wherein all the key features of network data are
incorporated simultaneously – namely clustering, transitivity (the probability
that the adjacent vertices of a vertex having a connection), and homophily on
attributes (the tendency of vertices with similar features to possess a higher
probability of presenting an edge). The latent position cluster model is similar
to our model, but they use the logistic function instead of the dot product as
their link function.

Our theory gives rise to a method for obtaining an empirical prior for ν
using the adjacency spectral embedding. Given the estimated latent positions
X̂1, . . . , X̂n obtained via the spectral embedding of the adjacency matrix A, the
next step is to cluster these X̂i using Gaussian mixture models (GMM). There
are a wealth of methods available for this task; we employ the model-based clus-
tering of Fraley and Raftery (2002) via the R package MCLUST which implements
an Expectation-Maximization (EM) algorithm for maximum likelihood param-
eter estimation. This mixture estimate, in the context of Corollary 4, quantifies
our uncertainty about ν, suggesting its role as an empirical Bayes prior distri-
bution. That is, our empirical Bayes prior distribution for ν is expressed as

f(ν|{μ̂k}, {Σ̂k}) ∝ IS(ν)
K∏

k=1

Nd(νk|μ̂k, Σ̂k) (2)

where Nd(νk|μ̂k, Σ̂k) is the density function of a multivariate normal distri-

bution with mean μ̂k and covariance matrix Σ̂k denoting standard maximum
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Algorithm 1 Empirical Bayes estimation using the adjacency spectral embed-
ding empirical prior
1: Given graph G
2: Obtain adjacency spectral embedding X̂
3: Obtain empirical prior via GMM of X̂
4: Sample from the posterior via Metropolis–Hasting–within–Gibbs (see Algorithm 2 below)

likelihood estimates (via Expectation-Maximization algorithm) based on the

estimated latent positions X̂i and the indicator IS(ν) enforces homophily and
block identifiability constraints for the SBM via

S = {ν ∈ R
K×d : 0 ≤ 〈νi, νj〉 ≤ 〈νi, νi〉 ≤ 1 ∀i, j ∈ [K] and

〈νi, νi〉 ≥ 〈νj , νj〉 ∀i > j}.

Algorithm 1 provides steps for obtaining the empirical Bayes prior using the
ASGE and GMM.

In the setting of Corollary 4, for an adjacency matrix A, the likelihood for
the block membership vector τ ∈ [K]n and the latent positions ν ∈ R

K×d is
given by

f(A | τ, ν) =
∏
i<j

〈ντi , ντj 〉Aij (1− 〈ντi , ντj 〉)1−Aij . (3)

This is the case where the block memberships τ , the latent positions ν, and
the block membership probabilities ρ are assumed unknown. Thus, our empirical
posterior distribution for the unknown quantities is given by

f(τ, ν, ρ | A) ∝ f(A | τ, ν)f(τ | ρ)f(ρ | θ)f(ν | {μ̂k}, {Σ̂k}),

where a multinomial distribution is posited as a prior distribution on τ with
the hyperparameter ρ, chosen to follow a Dirichlet distribution with parameters
θk = 1 for all k ∈ K in the unit simplex ΔK , and a multivariate normal prior on
ν as expressed in Eqn 2. To summarize, the prior distributions on the unknown
quantities τ , ν, and ρ are

τ | ρ ∼ Multinomial(ρ),

ρ ∼ Dirichlet(θ),

ν | {μ̂k}, {Σ̂k} ∼ IS(ν)
K∏

k=1

Nd(νk | μ̂k, Σ̂k).

By choosing a conjugate Dirichlet prior for ρ, we can marginalize the posterior
distribution over ρ as follows:

f(τ, ν|A) =
∫
ΔK

f(τ, ν, ρ|A)dρ

∝ f(A|τ, ν)f(ν|{μ̂k}, {Σ̂k})
∫
ΔK

f(τ |ρ)f(ρ|θ)dρ.
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Let T = (T1, . . . , TK) denote the block assignment counts, where Tk =∑n
i=1 I{k}(τ̂i). Then the resulting prior distribution is given by

f(τ |θ) =
∫
ΔK

f(τ |ρ)f(ρ|θ)dρ =
Γ(

∑K
k=1 θk)∏K

k=1 Γ(θk)

∫
ΔK

(
n∏

i=1

ρτi

)(
K∏

k=1

ρθk−1
k

)
dρ

=
Γ(

∑K
k=1 θk)∏K

k=1 Γ(θk)

∫
ΔK

K∏
k=1

ρθk+Tk−1
k︸ ︷︷ ︸

∝Dirichlet(θ+T )

dρ

=
Γ(

∑K
k=1 θk)∏K

k=1 Γ(θk)

∏K
k=1 Γ(θk + Tk)

Γ(n+
∑K

k=1 θk)
,

which follows a Multinomial-Dirichlet distribution with parameters θ and n.
Therefore, the marginal posterior distribution can be expressed as

f(τ, ν|A) ∝ f(A|τ, ν)f(τ |θ)f(ν|{μ̂k}, {Σ̂k})

∝ f(A|τ, ν)
[

K∏
k=1

Γ(θk + Tk)

]
f(ν|{μ̂k}, {Σ̂k}).

We can sample from the marginal posterior distribution for τ and ν via
Metropolis–Hasting–within–Gibbs sampling. A standard Gibbs sampling update
is employed to sample the posterior of τ , which can be updated sequentially. The
idea behind this method is to first posit a full conditional posterior distribution
of τ . Let τ−i = τ \ τi denote the block memberships for all but vertex i. Then,
conditioning on τ−i, we have

f(τi|τ−i, A, ν, θ) ∝
∏
j �=i

〈ντi , ντj 〉Aij (1− 〈ντi , ντj 〉)1−Aij

[
K∏

k=1

Γ(θk + Tk)

]
. (4)

Hence, the posterior distribution for τi ∼ Multinomial(ρ∗i ) where

ρ∗i,k =
Γ(θk + Tk)

∏
j �=i〈νk, ντj 〉Aij (1− 〈νk, ντj 〉)1−Aij∑K

k′=1 Γ(θk′ + Tk′)
∏

j �=i〈νk′ , ντj 〉Aij (1− 〈νk′ , ντj 〉)1−Aij

. (5)

The procedure consists of visiting each τi for i = 1, . . . , n and executing
Algorithm 2. We initialize τ with τ (0) = τ̂ , the block assignment vector obtained
from GMM clustering of the estimated latent positions X̂. For the Metropolis
sampler for ν, the prior distribution f(ν|{μ̂k}, {Σ̂k}) as expressed in Eqn (2)
will be employed as the proposal distribution. We generate a proposed state
ν̃ ∼ f(ν|{μ̂k}, {Σ̂k}) with the acceptance probability defined as

min

{
f(A|τ, ν̃)
f(A|τ, ν) , 1

}
,

where νk in the denominator denotes the current state. The initialization of ν
is ν(0)|{μ̂k}, {Σ̂k} ∼ f(ν|{μ̂k}, {Σ̂k}).



Empirical Bayes estimation for the stochastic blockmodel 769

Algorithm 2 Metropolis–Hasting–within–Gibbs sampling for the block mem-
bership vector τ and the latent positions ν1, · · · , νK
1: At iteration h;
2: for i = 1 to n do
3: Compute ρ∗i (τ

(h)
1 , . . . , τ

(h)
i−1, τ

(h−1)
i+1 , τ

(h−1)
n ) as in Eqn (5)

4: Set τ
(h)
i = k with probability ρ∗i,k

5: end for
6: Generate ν̃ ∼ IS(ν)

∏K
k=1 Nd(νk | μ̂k, Σ̂k)

7: Compute the acceptance probability π(ν̃) = min{1, f(A|τ(h),ν̃)

f(A|τ(h),ν(h−1))
}

8: Set

ν(h) =

{
ν̃ with probability π(ν̃)

ν(h−1) with probability 1− π(ν̃)

3.2. The alternative “Flat” model

In the event that no special prior information is available, a natural choice of
prior is the uniform distribution on the parameter space. This results in the
formulation of the Flat model as an alternative to an empirical Bayes prior
distribution for ν discussed in the previous section. We consider a flat prior
distribution on the constraint set S, where the marginal posterior distribution
for τ and ν is given by

f(τ, ν|A) ∝ f(A|τ, ν)f(τ |θ)f(ν)

∝ f(A|τ, ν)
[

K∏
k=1

Γ(θk + Tk)

]
IS(ν).

The Gibbs sampler for τ is identical to the procedure presented in Section 3.1. As
for the Metropolis sampler for the latent positions ν, the flat prior distribution
is used as the proposal. However, we initialize ν by generating it from the prior
distribution of ν as ASGE, i.e. f(ν|{μ̂k}, {Σ̂k}).

3.3. Comparison benchmarks

“Exact”

This is our primary benchmark where the latent positions ν and the block
membership probabilities ρ are assumed known. Thus, the posterior distribution
for the block memberships τ is given by

f(τ |A, ν, ρ) ∝ f(A|τ, ν)f(τ |ρ)

=

n∏
i=1

ρτi
∏
i<j

〈ντi , ντj 〉Aij (1− 〈ντi , ντj 〉)1−Aij .
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We can draw inferences about τ based on the posterior f(τ |A, ν, ρ) via an Exact
Gibbs sampler using its full-conditional distribution,

f(τi|τ−i, A, ν, ρ) ∝ ρτi
∏
j �=i

〈ντi , ντj 〉Aij (1− 〈ντi , ντj 〉)1−Aij , (6)

which is the multinomial(ρ∗i ) density where

ρ∗i,k =
ρk

∏
j �=i〈νk, ντj 〉Aij (1− 〈νk, ντj 〉)1−Aij∑K

k′=1 ρk′
∏

j �=i〈νk′ , ντj 〉Aij (1− 〈νk′ , ντj 〉)1−Aij

. (7)

Hence, for our Exact Gibbs sampler, once a vertex is selected, the exact calcu-
lation of ρ(i) and sample τi from the Multinomial(ρ(i)) can easily be obtained.

Initialization of τ will be τ
(0)
1 , . . . , τ

(0)
n |ρ iid∼ Multinomial(ρ).

“Gold”

For our secondary benchmark, we assume ρ is known and that both ν and τ are
unknown. Here we describe what we call the Gold standard prior distribution.

Let the true value for the latent positions be represented by ν∗. Based
on Corollary 4, we can suppose that the prior distribution for νk follows a
(truncated) multivariate Gaussian centered at ν∗k and with covariance matrix
Σ∗

k = (1/n)Σk given by the theoretical limiting distribution for the adjacency

spectral embedding X̂ presented in Eqn (1) (i.e. ν|{ν∗k}, {Σ∗
k} ∼ Nd (νk|ν∗k ,Σ∗

k)).

This corresponds to the approximate distribution of X̂i if we condition on τi = k.
This gold standard prior can be thought of as an oracle; however, in practice
the theoretical ν∗ and Σ∗

k are not available.
Inference for τ and ν is based on the posterior distribution, f(τ, ν|A, ρ),

estimated by samples obtained from a Gibbs sampler for τ and an Indepen-
dent Metropolis sampler for ν. Thus, the posterior distribution for the unknown
quantities is given by

f(τ, ν|A, ρ) ∝ f(A|τ, ν)f(τ |ρ)f(ν|{ν∗k}, {Σ∗
k})

=

⎡⎣ n∏
i=1

ρτi
∏
i<j

〈ντi , ντj 〉Aij (1− 〈ντi , ντj 〉)1−Aij

⎤⎦ f(ν|{ν∗k}, {Σ∗
k}),

In this case, the Gibbs sampler for τ will be identical to that for Exact except
the initial state τ (0) will be given by τ̂ , the block assignment vector obtained
from GMM as explained in Section 3.1. Similar to the ASGE model, the prior
distribution f(ν|{ν∗k}, {Σ∗

k}) will be employed as the proposal distribution for
the Metropolis sampler for ν.

Table 1 provides a summary of our Bayesian modeling schemes. The adja-
cency spectral graph embedding theory suggests that we might expect increas-
ingly better performance as we go from Flat to ASGE to Gold to Exact. (As
a teaser, we hint here that we will indeed see precisely this progression, in Sec-
tion 4.)
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Table 1

Bayesian Sampling Schemes

Models Exact Gold ASGE Flat
Parameters

Gibbs
τi Prior τi|ρ ∼ τi|ρ ∼ T |θ ∼ T |θ ∼

Multinomial(ρ) Multinomial(ρ) Multinomial− Multinomial−
Dirichlet(θ, n) Dirichlet(θ, n)

Initial Point τi|ρ ∼ τ̂ τ̂ τ̂
Multinomial(ρ)

Independent
Metropo-
lis
Hasting

νk Prior − νk|ν∗k ,Σ∗
k ∼ νk|μ̂k, Σ̂k ∼ νk ∼

N (ν∗k ,Σ
∗
k) N (μ̂k, Σ̂k) U(S)

Initial point − ν
(0)
k |ν∗k ,Σ∗

k ∼ ν
(0)
k |μ̂k, Σ̂k ∼ ν

(0)
k | ∼

N (ν∗k ,Σ
∗
k) N (μ̂k, Σ̂k) N (μ̂k, Σ̂k)

Proposal − ν̃k|ν∗k ,Σ∗
k ∼ ν̃k|μ̂k, Σ̂k ∼ ν̃k ∼

N (ν∗k ,Σ
∗
k) N (μ̂k, Σ̂k) U(S)

4. Performance comparisons

We illustrate the performance of our ASGE model via various Monte Carlo
simulation experiments and one real data experiment. Specifically, we consider
in Section 4.1 a K = 2 SBM, in Section 4.2 a generalization of this K = 2 SBM
to a more general RDPG, in Section 4.3 a K = 3 SBM, and in Section 4.4 a
three-class Wikipedia graph example. We demonstrate the utility of the ASGE
model for estimating vertex block assignments via comparison to competing
methods.

Throughout our performance analysis, we generate posterior samples of τ and
ν for a large number of iterations for two parallel Markov chains. The percentage
of misassigned vertices per iteration is calculated and used to compute Gelman-
Rubin statistics to check convergence of the chains. The posterior inference for τ
is based on iterations after convergence. Performance is evaluated by calculating
the vertex block assignment error. This procedure is repeated multiple times to
obtain estimates of the error rates.

4.1. A simulation example with K = 2

Consider the SBM parameterized by

B =

(
0.42 0.42
0.42 0.5

)
and ρ = (0.6, 0.4). (8)

The block proportion vector ρ indicates that each vertex will be in block
1 with probability ρ1 = 0.6 and in block 2 with probability ρ2 = 0.4. Edge
probabilities are determined by the entries of B, independent and a function
of only the vertex block memberships. This model can be parameterized as an
RDPG in R

2 where the distribution F of the latent positions is a mixture of
point masses positioned at ν1 ≈ (0.5489, 0.3446) with prior probability 0.6 and
ν2 ≈ (0.3984, 0.5842) with prior probability 0.4.
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Fig 1. Scatter plot of the estimated latent positions X̂i for one Monte Carlo replicate with
n = 1000 for the K = 2 SBM considered in Section 4.1. In the left panel, the colors denote the
true block memberships for the corresponding vertices in the SBM, while the symbols denote
the cluster memberships given by the GMM. In the right panel, the colors represents whether
the vertices are correctly or incorrectly classified by the ASGE model. The ellipses represent
the 95% level curves of the estimated GMM (black) and the theoretical GMM (green). Note
that misclassification occurs where the clusters are overlapping.

For each n ∈ {100, 250, 500, 750, 1000}, we generate random graphs according
to the SBM with parameters as provided in Eqn (8). For each graph G, the
spectral decomposition of the corresponding adjacency matrix A provides the
estimated latent positions X̂.

Subsequently, GMM is used to cluster the embedded vertices, the result of
which (estimated block memberships τ̂ derived from the individual mixture com-
ponent membership probabilities from the estimated Gaussian mixture model)
is then reported as GMM performance as well as employed as the initial point in
the Gibbs step for updating τ . The mixture component means μ̂k and variances
Σ̂k determine our empirical Bayes ASGE prior for the latent positions ν. The
GMM estimate of block proportion vector ρ̂ in place of a conjugate Dirichlet
prior on ρ was considered, but no substantial performance improvements were
realized. To avoid the model selection quagmire we assume d = 2 and K = 2
are known in this experiment.

Figure 1 presents a scatter plot of the estimated latent positions X̂i for one
Monte Carlo replicate with n = 1000. The colors denote the true block mem-
berships for the corresponding vertices in the SBM. The symbols denote the
cluster memberships given by the GMM. The ellipses represent the 95% level
curves of the estimated GMM (black) and the theoretical GMM (green). Re-
sults comparing with the alternative Flat, benchmark models, and GMM are
presented in Figure 2. As expected, the error decreases for all models as the
number of vertices n increases. As previously explained in Section 3, Exact and
Gold formulated in this study are perceived as benchmarks; it is expected that
these models will show the best performance – for Exact, all the parameters
are assumed known apart from the block memberships τ , while in the case of
the Gold model, although the latent positions ν and τ are unknown parame-
ters, their prior distributions were taken from the true latent positions and the
theoretical limiting covariances.
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Fig 2. Comparison of vertex block assignment methodologies for the K = 2 SBM considered
in Section 4.1. Shaded areas represent standard errors. The plot indicates that utilizing a
multivariate Gaussian mixture estimate for the estimated latent positions as an empirical
Bayes prior (ASGE) can yield substantial improvement over both the GMM vertex assignment
and the Bayesian method with a Flat prior. See text for details and analysis.

Fig 3. Comparison of classification error for GMM and ASGE in the sparse simulation
setting. Shaded areas denote standard errors. The plot suggests that we obtain similar com-
parative results, with analogous ASGE superiority, in a sparse simulation setting.

The main message from Figure 2 is that our empirical Bayes model, ASGE,
is vastly superior to that of both the alternative Flat model and GMM (the
sign test p-value for the paired Monte Carlo replicates is less than 10−10 for
both comparisons for all n) and nearly achieves Gold/Exact performance by
n = 1000. As an aside, we note that when we put a flat prior directly on B, we
obtain results indistinguishable from our Flat model on the latent positions.

A version of Theorem 3 for sparse random dot product graphs is given in Suss-
man (2014), and suggests an empirical Bayes prior for use in sparse graphs. A
thorough investigation of comparative performance in this case is beyond the
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scope of this manuscript, but we have provided illustrative results in Figure 3
for the sparse graphs analogous to the setting presented in Eqn (8). For the
same values of n, we generate sparse random graphs from the following SBM:

B =

(
0.42 0.2
0.2 0.5

)
· 1√

n
and ρ = (0.6, 0.4).

For clarity, the plot includes only ASGE and GMM. Note that similar per-
formance gains are obtained, with analogous ASGE superiority, in the sparse
simulation setting (although absolute performance is of course degraded).

4.2. A Dirichlet mixture RDPG generalization

Here we generalize the simulation setting presented in Section 4.1 above to the
case where the latent position vectors are distributed according to a mixture of
Dirichlets as opposed to the SBM’s mixture of point masses. That is, we consider

Xi
iid∼

∑
k ρkDirichlet(r ·νk). Note that the SBM model presented in Section 4.1

is equivalent to the limit of this mixture of Dirichlets model as r → ∞.
For n = 500, we report illustrative results using r = 100, for comparison with

the SBM results from Section 4.1. Specifically, we obtain mean error rates of
0.4194, 0.2865, and 0.3705 for Flat, ASGE, and GMM, respectively; the corre-
sponding results for the SBM, from Figure 2, are 0.3456, 0.2510, and 0.3910.
Thus we see that, while the performance is slightly degraded, our empirical
Bayes approach works well in this RDPG generalization of Section 4.1’s SBM.
This demonstrates robustness of our method to violation of the SBM assump-
tion.

4.3. A simulation example with K = 3

Our final simulation study considers the K = 3 SBM parameterized by

B =

⎛⎝ 0.6 0.4 0.4
0.4 0.6 0.4
0.4 0.4 0.6

⎞⎠ and ρ = (1/3, 1/3, 1/3). (9)

In a same manner as Section 4.1, the model is parameterized as an RDPG in
R

3 where the distribution of the latent positions is a mixture of point masses po-
sitioned at ν1 ≈ (0.68, 0.20,−0.30), ν2 ≈ (0.68,−0.36,−0.02), ν3 ≈ (0.68, 0.16,
0.33) with equal probabilities. In this experiment, we assume that d = 3 and
K = 3 are known.

Table 2 displays error rate estimates for this case, with n = 150 and n = 300.
In both cases, the ASGE model yields results vastly superior to the Flat model;
e.g., for n = 300 the mean error rate for Flat is approximately 11% compared to
a mean error rate for ASGE of approximately 1%. Based on the paired samples,
the sign test p-value is less than 10−10 for both values of n. While the results
of GMM appear competitive to the results of our empirical Bayes with ASGE
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Table 2

Error rate estimates for the K = 3 SBM considered in Section 4.3

n = 150 n = 300

L̂(Flat) mean 0.3288 0.1137
95% CI [0.3207,0.3369] [0.1004,0.1270]
median 0.3600 0.0133

L̂(ASGE) mean 0.1359 0.0107
95% CI [0.1277,0.1440] [0.0069,0.0145]
median 0.0733 0.0033

L̂(GMM) mean 0.1438 0.0110
95% CI [0.1396,0.1480] [0.0104,0.0116]
median 0.1267 0.0100

Fig 4. Histogram (500 Monte Carlo replicates) of the differential number of errors made by
ASGE and GMM for the K = 3 SBM considered in Section 4.3, with n = 300, indicating
the superiority of ASGE over GMM. For most graphs, emprical Bayes with ASGE prior
performs as well as or better than GMM – the sign test for this paired sample yields p ≈ 0.

prior in terms of mean and median error rate, the paired analysis shows again
that the ASGE prior is superior, as seen by sign test p-values < 10−10 for both
values of n.

From Table 2, we see that for n = 300, empirical Bayes with ASGE prior
has a mean error rate of 1 percent (3 errors per graph) and a median error rate
of 1/3 percent (1 error per graph), while GMM has a mean and median error
rate of 1 percent. As an illustration, Figure 4 presents the histogram of the
differential number of errors made by the ASGE model and GMM for n = 300.
The histogram shows that for most graphs, empirical Bayes with ASGE prior
performs as well as or better than GMM. (NB: In the histogram presented
in Figure 4, twelve outliers in which ASGE performed particularly poorly are
censored at a value of 10; we believe these outliers are due to chain convergence
issues.)
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4.4. Wiki experiment

In this section we analyze an application of our methodology to the Wikipedia
graph. The vertices of this graph represent Wikipedia article pages and there
is an edge between two vertices if either of the associated pages hyperlinks to
the other. The full data set consists of 1382 vertices – the induced subgraph
generated from the two-hop neighborhood of the page “Algebraic Geometry.”
Each vertex is categorized by hand into one of six classes – People, Places,
Dates, Things, Math, and Categories – based on the content of the associated
article. (The adjacency matrix and the true class labels for this data set are
available at http://www.cis.jhu.edu/~parky/Data/data.html.)

We analyze a subset of this data set corresponding to the K = 3 classes
People, Places, and Dates, labeled here as Class 1, 2 and 3, respectively. After
excluding three isolated vertices in the induced subgraph generated by these
three classes, we have a connected graph with a total of m = 828 vertices; the
class-conditional sample sizes are m1 = 368, m2 = 269, and m3 = 191. Figure 5
presents one rendering of this graph (obtained via one of the standard force-
directed graph layout methods, using the command layout.drl in the igraph
R package); Figure 6 presents the adjacency matrix; Figure 7 presents the pairs
plot for the adjacency spectral embedding of this graph into R

3. (In all figures,
we use red for Class 1, green for Class 2 and blue for Class 3.) Figures 5, 6, and
7 indicate clearly that this Wikipedia graph is not a pristine SBM – real data
will never be; nonetheless, we proceed undaunted.

We illustrate our empirical Bayes methodology, following Algorithm 1, via
a bootstrap experiment. We generate bootstrap resamples from the adjacency
spectral embedding X̂ depicted in Figure 7, with n = 300 (n1 = n2 = n3 = 100).

This yields X̂(b) for each bootstrap resample b = 1, . . . , 200. It is important to
note that we regenerate an RDPG based on the sampled latent positions, and
proceed from this graph with our full empirical Bayes analysis, for each resample.
This provides for valid inference conditional on the X̂ – that is, this bootstrap
procedure is justified for confidence intervals assuming the true latent positions
are X̂, and provides for unconditional inference only asymptotically as X̂ → X.

As before, GMM is used to cluster the (embedded) vertices and obtain block

label estimates τ̂ and mixture component means μ̂k and variances Σ̂k for each
cluster k of the estimated latent positions X̂(b). The clustering result from GMM
for one resample is presented in Figure 8. (We choose d = 3 for the adjacency
spectral embedding dimension because a common and reasonable choice is to
use d = K, which choice is justified in the SBM case (Fishkind et al., 2013).)
The GMM clustering provides the empirical prior and starting point for our
Metropolis–Hasting–within–Gibbs sampling (Algorithm 2) using the subgraph

of the full Wikipedia graph induced by X̂(b). (NB: For this Wikipedia experi-
ment, the assumption of homophily is clearly violated; as a result, the constraint
set used here is given by S = {ν ∈ RK×d : ∀i, j ∈ [K], 0 ≤ 〈νi, νj〉 ≤ 1}.)

Classification results for this experiment are depicted via boxplots in Fig-
ure 9. We see from the boxplots that using the adjacency spectral empirical

http://www.cis.jhu.edu/~parky/Data/data.html
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Fig 5. Our Wikipedia graph, with m = 828 vertices: m1 = 368 for Class 1 = People = red;
m2 = 269 for Class 2 = Places = green; m3 = 191 for Class 3 = Dates = blue.

Fig 6. The adjacency matrix for our Wikipedia graph.

Fig 7. The adjacency spectral embedding for our Wikipedia graph.
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Fig 8. Illustrative empirical prior for one bootstrap resample (n = 300) for our Wikipedia
experiment; colors represent true classes, K = 3 estimated Gaussians are depicted with level
curves, and symbols represent GMM cluster memberships.

Fig 9. Boxplot of classification errors for our Wikipedia experiment.

prior does yield statistically significant improvement; indeed, our paired sample
analysis yields sign test p-values less than 10−10 for both ASGE vs Flat and
ASGE vs GMM. Notably, ASGE and Flat differ by 9.35% in average, which is
approximately 28 different classifications per graph. Despite similar predictions,
ASGE improves Flat.

We have shown that using the empirical ASGE prior has improved perfor-
mance compared to the Flat prior and GMM on this Wikipedia dataset. How-
ever, Figure 9 also indicates that ASGE performance on this data set, while
representing a statistically significant improvement, might seem not very good
in absolute terms: the mean probability of misclassification over bootstrap re-
samples is L̂ ≈ 0.456 for ASGE versus L̂ ≈ 0.476 for both Flat and GMM. That
is, empirical Bayes using the adjacency spectral prior provides a statistically
significant but perhaps unimpressive 2% improvement in the error rate. (Note
that chance performance is L = 2/3.) Given that the Bayes optimal probability
of misclassification L∗ is unknown, we consider infφ∈C L(φ) where C denotes the
class of all classifiers based on class-conditional Gaussians. This yields an error
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rate of approximately 0.401. Note that this analysis assumes that a training
set of n = 300 labeled exemplars is available, which training information is not
available in our empirical Bayes setting. Nonetheless, we see that our empirical
Bayes methodology using the ASGE prior improves more than 25% of the way
from the Flat and GMM performance to this (presumably unattainable) stan-
dard. As a final point, we note that a k-nearest neighbor classifier (again, with
a training set of n = 300 labeled exemplars) yields an error rate of approxi-
mately 0.338, indicating that the assumption of class-conditional Gaussians was
unwarranted. (Indeed, this is clear from Figure 7.) That our ASGE provides
significant performance improvement despite the fact that our real Wikipedia
data set so dramatically violates the stochastic block model assumptions is a
convincing demonstration of the robustness of the methodology.

5. Conclusion

In this paper we have formulated an empirical Bayes estimation approach for
block membership assignment. Our methodology is motivated by recent theo-
retical advances regarding the distribution of the adjaceny spectral embedding
of random dot product and SBM graphs. To apply our model, we derived a
Metropolis-within-Gibbs algorithm for block membership and latent position
posterior inference.

Our simulation experiments demonstrate that the ASGE model consistently
outperforms the GMM clustering used as our emprical prior as well as the alter-
native Flat prior model – notably, even in our Dirichlet mixture RDPG model
wherein the SBM assumption is violated. For the Wikipedia graph, our ASGE
model again performs admirably, even though this real data set is far from an
SBM. Our results focus on demonstrating the utility of the Athreya et al. (2015)
limit theorem for an SBM in providing an empirical Bayes prior as a mixture
of Gaussians. Although there are myriad non-adjacency spectral embedding ap-
proaches, for ease of comparison we instead consider different Bayes samplers.
One promising comparison for future investigation involves profile likelihood
methods, which can potentially produce estimates akin to our maximum likeli-
hood mixture estimates.

We considered only simple graphs; extension to directed and weighted graphs
is of both theoretical and practical interest.

To avoid the model selection quagmire, we have assumed throughout that
the number of blocks K and the dimension of the latent positions d are known.
Model selection is in general a difficult problem; however, automatic determi-
nation of both the dimension d for a truncated eigen-decomposition and the
complexity K for a Gaussian mixture model estimate are important practical
problems and thus have received enormous attention in both the theoretical
and applied literature. For our case, Fishkind et al. (2013) demonstrates that
the SBM embedding dimension d can be successfully estimated, and Fraley and
Raftery (2002) provides one common approach to estimating the number of
Gaussian mixture components K. We note that d = K is justified for the ad-
jacency spectral embedding dimension of an SBM, as increasing d beyond the
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true latent position dimension adds variance without a concomitant reduction in
bias. It may be productive to investigate simultaneous model selection method-
ologies for d and K. Moreover, robustness of the empirical Bayes methodology
to misspecification of d and K is also of great practical importance.

In the dense regime, raw spectral embedding even without the empirical
Bayes augmentation does provide strongly consistent classification and cluster-
ing (Lyzinski et al., 2014; Sussman et al., 2012). However, this does not rule out
the possibility of substantial performance gains for finite sample sizes. It is these
finite sample performance gains that are the main topic of this work, and that
we have demonstrated conclusively. We note that while Sussman (2014) provides
a non-dense version of the CLT, briefly discussed in this paper, both theoret-
ical and methodological issues remain in developing its utility for generating
an empirical prior. This is of considerable interest and thus a more comprehen-
sive understanding of the CLT for non-dense RDPGs is a priority for ongoing
research.

Additionally, we computed Gelman-Rubin statistics based on the percentage
of misclassified vertices per iteration to check convergence of the MCMC chains.
For large number of vertices n, where perfect classification is obtainable, this
diagnostic will fail; however for cases of interest (in general, and specifically in
this work) in which perfect classification is beyond reasonable expectation and
empirical Bayes improves performance, this diagnostic is viable.

Finally, we note that we have made heavy use of the dot product kernel. Tang
et al. (2013) provides some useful results for the case of a latent position model
with unknown kernel, but we see extending our empirical Bayes methodology
to this case as a formidable challenge. Recent results on the SBM as a universal
approximation to general latent position graphs (Airoldi et al., 2013; Olhede
and Wolfe, 2013) suggest, however, that this challenge, once surmounted, may
provide a simple consistent framework for empirical Bayes inference on general
graphs.

In conclusion, adopting an empirical Bayes approach for estimating block
memberships in a stochastic blockmodel, using an empirical prior obtained from
a Gaussian mixture model estimate for the adjacency spectral embeddings, can
significantly improve block assignment performance.

Acknowledgments

This work was supported in part by the National Security Science and En-
gineering Faculty Fellowship program, the Johns Hopkins University Human
Language Technology Center of Excellence, the XDATA program of the De-
fense Advanced Research Projects Agency, and the Erskine Fellowship program
at the University of Canterbury, Christchurch, New Zealand.

References

Airoldi, E., D. Blei, S. Fienberg, and E. Xing (2008). Mixed membership
stochastic blockmodels. Journal of Machine Learning Research. 9, 1981–2014.



Empirical Bayes estimation for the stochastic blockmodel 781

Airoldi, E. M., T. B. Costa, and S. H. Chan (2013). Stochastic blockmodel
approximation of a graphon: Theory and consistent estimation. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger (Eds.), Advances
in Neural Information Processing Systems 26, pp. 692–700.

Athreya, A., C. Priebe, M. Tang, V. Lyzinski, D. Marchette, and
D. Sussman (2015). A limit theorem for scaled eigenvectors of random dot
product graphs. Sankhya A.

Bickel, P. and A. Chen (2009). A nonparametric view of network models
and Newman–Girvan and other modularities. Proceedings of the National
Academy of Sciences 106 (50), 21068–21073.

Bickel, P., D. Choi, X. Chang, and H. Zhang (2013). Asymptotic normal-
ity of maximum likelihood and its variational approximation for stochastic
blockmodels. The Annals of Statistics 41 (4), 1922–1943. MR3127853

Celisse, A., J.-J. Daudin, and L. Pierre (2012). Consistency of maximum-
likelihood and variational estimators in the stochastic block model. Electronic
Journal of Statistics 6, 1847–1899. MR2988467

Choi, D. S., P. J. Wolfe, and E. M. Airoldi (2012). Stochastic blockmodels
with a growing number of classes. Biometrika 99 (2), 273–284. MR2931253

Fienberg, S. E. (2010). Introduction to papers on the modeling and analysis
of network data. Ann. Appl. Statist 4, 1–4. MR2758081

Fienberg, S. E. (2012). A brief history of statistical models for network anal-
ysis and open challenges. Journal of Computational and Graphical Statis-
tics 21 (4), 825–839. MR3005799

Fishkind, D. E., D. L. Sussman, M. Tang, J. T. Vogelstein, and C. E.

Priebe (2013). Consistent adjacency-spectral partitioning for the stochastic
block model when the model parameters are unknown. SIAM Journal on
Matrix Analysis and Applications 34 (1), 23–39. MR3032990

Fraley, C. and A. E. Raftery (2002). Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Associ-
ation 97, 611–631. MR1951635

Goldenberg, A., A. X. Zheng, S. E. Fienberg, and E. M. Airoldi (2010).
A survey of statistical network models. Foundations and Trends in Machine
Learning 2 (2), 129–233.

Handcock, M., A. Raftery, and J. Tantrum (2007). Model-based clus-
tering for social networks. Journal of the Royal Statistical Society. Series A
(Statistics in Society) 170 (2), pp. 301–354. MR2364300

Hoff, P., A. Raftery, and M. Handcock (2002). Latent space approaches
to social network analysis. Journal of the american Statistical associa-
tion 97 (460), 1090–1098. MR1951262

Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). Stochastic block-
models: First steps. Social Networks 5 (2), 109–137. MR0718088

Lyzinski, V., D. Sussman, M. Tang, A. Athreya, and C. Priebe (2014).
Perfect clustering for stochastic blockmodel graphs via adjacency spectral
embedding. Electronic Journal of Statistics. MR3299126

Newman, M. E. (2006). Modularity and community structure in networks.
Proceedings of the National Academy of Sciences 103 (23), 8577–8582.

http://www.ams.org/mathscinet-getitem?mr=3127853
http://www.ams.org/mathscinet-getitem?mr=2988467
http://www.ams.org/mathscinet-getitem?mr=2931253
http://www.ams.org/mathscinet-getitem?mr=2758081
http://www.ams.org/mathscinet-getitem?mr=3005799
http://www.ams.org/mathscinet-getitem?mr=3032990
http://www.ams.org/mathscinet-getitem?mr=1951635
http://www.ams.org/mathscinet-getitem?mr=2364300
http://www.ams.org/mathscinet-getitem?mr=1951262
http://www.ams.org/mathscinet-getitem?mr=0718088
http://www.ams.org/mathscinet-getitem?mr=3299126


782 S. Suwan et al.

Nickel, C. (2006). Random dot product graphs: A model for social networks.
Ph. D. thesis, Johns Hopkins University. MR2710154

Nowicki, K. and T. Snijders (2001). Estimation and prediction for stochastic
blockstructures. Journal of the American Statistical Association 96 (455), pp.
1077–1087. MR1947255

Olhede, S. C. and P. J. Wolfe (2013). Network histograms and universality
of blockmodel approximation. arXiv preprint arXiv:1312.5306.

Rohe, K., S. Chatterjee, andB. Yu (2011). Spectral clustering and the high-
dimensional stochastic blockmodel. The Annals of Statistics 39 (4), 1878–
1915. MR2893856

Snijders, T. and K. Nowicki (1997). Estimation and prediction for stochas-
tic blockmodels for graphs with latent block structure. Journal of Classifica-
tion 14 (1), 75–100. MR1449742

Sussman, D. L. (2014). Foundations of Adjacency Spectral Embedding. Ph. D.
thesis, Johns Hopkins University.

Sussman, D. L., M. Tang, D. E. Fishkind, and C. E. Priebe (2012). A con-
sistent adjacency spectral embedding for stochastic blockmodel graphs. Jour-
nal of the American Statistical Association 107 (499), 1119–1128. MR3010899

Sussman, D. L., M. Tang, and C. E. Priebe (2014). Consistent latent posi-
tion estimation and vertex classification for random dot product graphs. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on 36 (1), 48–57.

Tang, M., D. L. Sussman, and C. E. Priebe (2013). Universally consis-
tent vertex classification for latent positions graphs. The Annals of Statis-
tics 41 (3), 1406–1430. MR3113816

Young, S. and E. Scheinerman (2007). Random dot product graph mod-
els for social networks. Algorithms and models for the web-graph, 138–149.
MR2504912

http://www.ams.org/mathscinet-getitem?mr=2710154
http://www.ams.org/mathscinet-getitem?mr=1947255
http://www.arxiv.org/1312.5306
http://www.ams.org/mathscinet-getitem?mr=2893856
http://www.ams.org/mathscinet-getitem?mr=1449742
http://www.ams.org/mathscinet-getitem?mr=3010899
http://www.ams.org/mathscinet-getitem?mr=3113816
http://www.ams.org/mathscinet-getitem?mr=2504912

	Introduction
	Background
	Model
	The empirical Bayes with ASGE prior model (``ASGE'')
	The alternative ``Flat'' model
	Comparison benchmarks

	Performance comparisons
	A simulation example with K = 2
	A Dirichlet mixture RDPG generalization
	A simulation example with K = 3
	Wiki experiment

	Conclusion
	Acknowledgments
	References

