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Abstract: A key question in modern statistics is how to make fast and re-
liable inferences for complex, high-dimensional data. While there has been
much interest in sparse techniques, current methods do not generalize well
to data with nonlinear structure. In this work, we present an orthogonal
series estimator for predictors that are complex aggregate objects, such
as natural images, galaxy spectra, trajectories, and movies. Our series ap-
proach ties together ideas from manifold learning, kernel machine learning,
and Fourier methods. We expand the unknown regression on the data in
terms of the eigenfunctions of a kernel-based operator, and we take ad-
vantage of orthogonality of the basis with respect to the underlying data
distribution, P , to speed up computations and tuning of parameters. If the
kernel is appropriately chosen, then the eigenfunctions adapt to the intrin-
sic geometry and dimension of the data. We provide theoretical guarantees
for a radial kernel with varying bandwidth, and we relate smoothness of the
regression function with respect to P to sparsity in the eigenbasis. Finally,
using simulated and real-world data, we systematically compare the per-
formance of the spectral series approach with classical kernel smoothing,
k-nearest neighbors regression, kernel ridge regression, and state-of-the-art
manifold and local regression methods.
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1. Introduction

A challenging problem in modern statistics is how to handle complex, high-
dimensional data. Sparsity has emerged as a major tool for making efficient in-
ferences and predictions for multidimensional data. Generally speaking, sparsity
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refers to a situation where the data, despite their apparent high dimensionality,
are highly redundant with a low intrinsic dimensionality. In our paper, we use
the term “sparse structure” to refer to cases where the underlying distribution
P places most of its mass on a subset X of Rd of small Lebesgue measure. This
scenario includes, but is not limited to, Riemannian submanifolds of Rd, and
high-density clusters separated by low-density regions. In applications of inter-
est, observable data often have (complex) sparse structure due to the nature of
the underlying physical systems. For example, in astronomy, raw galaxy spectra
are of dimension equal to the number of wavelength measurements d, but in-
spection of a sample of such spectra will reveal clear, low-dimensional features
and structure resulting from the shared physical system that generated these
galaxies. While the real dimensionality of data is much smaller than d, the chal-
lenge remains to exploit this when predicting, for example, the age, composition,
and star formation history of a galaxy.

In its simplest form, low-dimensional structure is apparent in the original
coordinate system. Indeed, in regression, much research on “large p, small n”
problems concerns variable selection and the problem of recovering a “sparse”
coefficient vector (i.e., a vector with mostly zeros) with respect to the given
variables. Such approaches include, for example, lasso-type regularization [55],
the Dantzig selector [10], and RODEO [32]. There are also various extensions
that incorporate lower-order interactions and groupings of covariates [61, 65, 41]
but, like lasso-type estimators, they are not directly applicable to the more
intricate structures observed in, e.g., natural images, spectra, and hurricane
tracks.

At the same time, there has been a growing interest in statistical methods that
explicitly consider geometric structure in the data themselves. Most traditional
dimension-reducing regression techniques, e.g., principal component regression
(PCR; [30]) partial least squares (PLS; [59]) and sparse coding [39], are based
on linear data transformations and enforce sparsity (with respect to the L1 or
L2 norm) of the regression in a rotated space. More recently, several authors
[8, 2, 11] have studied local polynomial regression methods on non-linear man-
ifolds. For example, Aswani et al. [2] propose a geometry-based regularization
scheme that estimates the local covariance matrix at a point and then penal-
izes regression coefficients perpendicular to the estimated manifold direction. In
the same spirit, Cheng and Wu [11] suggest first reducing the dimensionality to
the estimated intrinsic dimension of the manifold, and then applying local lin-
ear regression to a tangent plane estimate. Local regression and manifold-based
methods tend to perform well when there is a clear submanifold but these ap-
proaches are not practical in higher dimensions or when the local dimension
varies from point to point in the sample space. Hence, existing nonparametric
models still suffer when estimating unknown functions (e.g., density and regres-
sion functions) on complex objects x ∈ X ⊂ �d, where d is large.

Much statistical research has revolved around adapting classical methods,
such as linear, kernel-weighted, and additive models to high dimensions. On the
other hand, statisticians have paid little attention to the potential of orthogonal
series approaches. In low dimensions, orthogonal series is a powerful nonpara-
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metric technique for estimating densities and regression functions. Such methods
are fast to implement with easily interpretable results, they have sharp optimal-
ity properties, and a wide variety of bases allows the data analyst to model
multiscale structure and any challenging shape of the target function [17]. As a
result, Fourier series approaches have dominated research in signal processing
and mathematical physics. This success, however, has not translated to more
powerful nonparametric tools in dimensions of the order of d ∼ 100 or 1000;
in fact, extensions via tensor products (as well as more sophisticated adaptive
grid or triangulation methods; see [35] and references within) quickly become
unpractical in dimensions d > 3.

In this work, we will build on ideas from harmonic analysis and spectral
methods to construct nonparametric methods for estimating unknown functions
in high-dimensional spaces with non-standard data objects (such as images,
spectra, and distributions) that possess sparse nonlinear structure. We derive
a Fourier-like basis {ψj(x)}j∈N

of L2(X ) that adapts to the intrinsic geometry
of the underlying data distribution P , and which is orthonormal with respect
to P rather than the Lebesgue measure of the ambient space. The empirical
basis functions are then used to estimate functions on complex data x ∈ X ;
such as, for example, the regression function r(x) = E(Y |X = x) of a response
variable Y on an object x. Because of the adaptiveness of the basis, there is no
need for high-dimensional tensor products. Moreover, we take advantage of the
orthogonality property of the basis for fast computation and model selection.
We refer to our approach as spectral series as it is based on spectral methods (in
particular, diffusion maps [14, 12, 33] and spectral connectivity analysis [34])
and Fourier series. Sections 2.1–2.3 describe the main idea of the series method
in a regression setting.

Our work generalizes and ties together ideas in classical smoothing, kernel
machine learning [48, 49, 15], support vector machines (SVMs; [53]) and man-
ifold regularization [6] without the many restrictive assumptions (fixed kernel,
exact manifold, infinite unlabeled data and so on) seen in other works. There
is a large literature on SVMs and kernel machine learning that use similar ap-
proximation spaces as us, but it is unclear whether and how those procedures
adapt to the structure of the data distribution. Generally, there is a discrep-
ancy between theoretical work on SVMs, which assume a fixed RKHS (e.g., a
fixed kernel bandwidth), and applied SVM work, where the RKHS is chosen in
a data-dependent way (by, e.g., decreasing the kernel bandwidth εn for larger
sample sizes n). Indeed, issues concerning the choice of tuning parameters, and
their relation to the data distribution P , are considered to be open problems in
the mainstream RKHS literature. The manifold regularization work by Belkin
et al. [6] addresses adaptivity to sparse structure but under restrictive assump-
tions, such as the existence of a well-defined submanifold and the presence of
infinite unlabeled data.

Another key difference between our work and kernel machine learning is that
we explicitly compute the eigenfunctions of a kernel-based operator and then
use an orthogonal series approach to nonparametric curve estimation. Neither
SVMs nor manifold regularizers exploit orthogonality relative to P . In our pa-
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Fig 1. Embedding or so-called “eigenmap” of the Isomap face data using the first two non-
trivial eigenvectors of the Gaussian diffusion kernel. The eigenvectors capture the pose Y and
other continuous variations of an image x fairly well, and the regression E(Y |x) appears to
vary smoothly in sample space.

per, we point out the advantages of an orthogonal series approach in terms of
computational efficiency (such as fast cross-validation and tuning of parame-
ters), visualization, and interpretation. SVMs can sometimes have a “black box
feel,” whereas the spectral series method allows the user to directly link the
data-driven Fourier-like eigenfunctions to the function of interest and the sam-
ple space. Indeed, there is a dual interpretation of the computed eigenfunctions:
(i) They define new coordinates of the data which are useful for nonlinear dimen-
sionality reduction, manifold learning, and data visualization. (ii) They form an
orthogonal Hilbert basis for functions on the data and are a means to nonpara-
metric curve estimation via the classical orthogonal series method, even when
there is no clearly defined manifold structure. There is a large body of work in
the machine learning literature addressing the first perspective; see, e.g., Lapla-
cian maps [3], Hessian maps [16], diffusion maps [14], Euclidean Commute Time
maps [45], and spectral clustering [50]. In this paper, we are mainly concerned
with the second view, i.e., that of estimating unknown functions on complex
data objects and understanding the statistical properties of such estimators.

Figure 1, for example, shows a 2D visualization of the Isomap face data us-
ing the eigenvectors of a renormalized Gaussian kernel as coordinates (Eq. 4).
Assume we want to estimate the pose Y of the faces. How does one solve a re-
gression problem where the predictor x is an entire image? Traditional methods
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do not cope well with this task while our spectral series approach (Eq. 1 with
estimated eigenfunctions as a basis) can use complex aggregate objects x (e.g.,
images, spectra, trajectories, and text data) as predictors, without an explicit
dimension reduction step. Note that the eigenvectors capture the pose Y and
other continuous variations of an image x fairly well, and that the regression
E(Y |x) appears to vary smoothly in sample space. We will return to the face
pose estimation problem in Sec. 6.1. We will also discuss the theoretical prop-
erties of a spectral series estimator of the regression function f(x) = E(Y |x) in
Sec. 5, including the connection between smoothness and efficient estimators.

Our paper has the following aims:

(i) Unifying. To generalize and connect ideas in kernel machine learning, man-
ifold learning, spectral methods and classical smoothing, without the many
restrictive assumptions (fixed kernel, exact manifold, infinite unlabeled
data, low dimension) seen in other works.

(ii) Theoretical. To present new theoretical results in the limit of the kernel
bandwidth εn → 0 that shed light on why RKHS/SVM methods often
are so successful for complex data with sparse structure (Theorem 14 and
Corollary 16), and to link smoothness of the regression with respect to P
to the approximation error of spectral series (Theorem 10).

(iii) Experimental. To systematically compare the statistical as well as the com-
putational performance of spectral series and other methods using simu-
lated and real-world data. Competing estimators include classical kernel
smoothing, k-nearest neighbors (kNN) regression, regularization in RKHS,
and recent state-of-the-art manifold and local regression methods. We ask
questions such as: Do the methods scale well with increasing dimension d
and increasing sample size n? What is the estimated loss and what is the
computational time?

The paper is organized as follows. In Sec. 2, we describe the construction of
the spectral series method, including details on how to estimate relevant quan-
tities from empirical data and how to tune model parameters. Sec. 3 discusses
the connection to related work in machine learning and statistics. In Sections 4
and 5, we discuss the choice of kernel, and provide theoretical guarantees on
the spectral series method. Finally, in Sec. 6, we compare the performance of
spectral series and other nonparametric estimators for a wide variety of data
sets.

2. Orthogonal series regression

2.1. General formulation

In low dimensions, orthogonal series has proved to be a powerful technique for
nonparametric curve estimation [17]. In higher dimensions, there is the question
of whether one can find an appropriate basis and actually construct a series esti-
mator that performs well. The general set-up of an orthogonal series regression
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is otherwise simple: Let X1, . . . , Xn be an iid sample from a distribution P with
compact support X ⊂ R

d. Suppose we have a real-valued response

Yi = f(Xi) + εi,

where f is an unknown function, and εi denotes iid random noise with mean
zero and variance σ2. Our goal is to estimate the regression function f(x) =
E(Y |X = x) in situations where d is large and the data have sparse (i.e., low-
dimensional) structure.

Let {ψj}j∈N be an orthonormal basis of some appropriate Hilbert space H
with inner product 〈·, ·〉H and norm ‖ · ‖H. We consider estimators of the form

f̂(x) =
J∑

j=0

β̂jψ̂j(x), (1)

where J is a smoothing parameter, and ψ̂j and β̂j , in the general case, are
data-based estimators of the basis functions ψj and the expansion coefficients
βj = 〈f, ψj〉H.

2.2. What basis?

A challenging problem is how to choose a good basis. The standard approach
in nonparametric curve estimation is to choose a fixed known basis {ψj}j∈N

for, say, L2([0, 1]), such as a Fourier or wavelet basis. There is then no need
to estimate basis functions. In theory, such an approach can be extended to,
eg., L2([0, 1]d) by a tensor product,1 but tensor-product bases, as well as more
sophisticated adaptive grid or triangulation methods (see [35] and references
within), quickly become unusable for even as few as d = 5 dimensions.

What basis should one then choose when the dimension d is large, say,
d ∼ 1000? Ideally, the basis should be able to adapt to the underlying struc-
ture of the data distribution. This means: The basis should be orthogonal with
respective to the distribution P that generates the data, as opposed to the stan-
dard Lebesgue measure of the ambient space; the basis vectors should be con-
centrated around high-density regions where most of the “action” takes place;
and the performance of the final series estimator should depend on the intrinsic
rather than the ambient dimension of the data. In what follows, we present a
spectral series approach where the unknown function is expanded into the es-
timated eigenfunctions of a kernel-based integral operator. As we shall see, the
proposed estimator has many of the properties listed above.

1Traditional orthogonal series estimators require d−1 tensor products in Rd. For instance,
if d = 2, then it is common to choose a basis of the form

{ψi,j(x) = ψi(x1)ψj(x2) : i, j ∈ N} ,

where x = (x1, x2), and {ψi(x1)}i and {ψj(x2)}j are bases for functions in L2(R).
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2.3. Construction of adaptive basis

Our starting point is a symmetric and positive semi-definite (psd) so-called
Mercer kernel k : X × X → R. These kernels include covariance functions and
polynomial kernels, but we are in this work primarily interested in local, radially

symmetric kernels kε(x, y) = g
(

‖x−y‖√
ε

)
,2 where ε is a parameter that defines

the scale of the analysis, and the elements k(x, y) are positive and bounded for
all x, y ∈ X . To simplify the theory, we renormalize the kernel according to

aε(x, y) =
kε(x, y)

pε(x)
, (2)

where pε(x) =
∫
X kε(x, y)dP (y). This normalization is common in spectral clus-

tering because it yields eigenvectors that act as indicator functions of connected
components [57, Section 3.2]. The same normalization is also implicit in tradi-
tional Nadaraya-Watson kernel smoothers, which compute the local average at

a point x by weighting surrounding points xi by
kε(x,xi)∑
i kε(x,xi)

.

We will refer to aε(x, y) in Eq. 2 as the diffusion kernel. The term “diffu-
sion” stems from a random walks view over the sample space [36, 34]: One
imagines a Markov chain on X with transition kernel Ωε(x,A) = P(x → A) =∫
A
aε(x, y)dP (y). Starting at x, this chain moves to points y close to x, giving

preference to points with high density p(y). The chain essentially encodes the
“connectivity” of the sample space relative to p, and it has a unique stationary
distribution Sε given by

Sε(A) =

∫
A
pε(x)dP (x)∫

X pε(x)dP (x)
,

where Sε(A) →
∫
A

p(x)dP (x)∫
X p(x)dP (x)

as ε → 0. For finite ε, the stationary distribution

Sε is a smoothed version of P .
In our regression setting, we seek solutions from a Hilbert space associated

with the kernel aε. Following [34], we define a “diffusion operator” Aε — which
maps a function f to a new function Aεf — according to

Aεf(x) =

∫
X
aε(x, y)f(y)dP (y), for x ∈ X . (3)

The operator Aε has a discrete set of non-negative eigenvalues λε,0 = 1 ≥ λε,1 ≥
. . . ≥ 0 with associated eigenfunctions ψε,0, ψε,1, . . ., which we for convenience
normalize to have unit norm. These eigenfunctions have two very useful prop-
erties: First, they are orthogonal with respect to the density-weighted L2 inner
product

〈f, g〉ε =
∫
X
f(x)g(x)dSε(x);

2Depending on the application, one can replace the Euclidean distance ‖x − y‖ with a
dissimilarity measure d(x, y) that better reflects the distance between two data objects x and y.
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that is,
〈ψε,i, ψε,j〉ε = δi,j .

Second, they also form a set of oscillatory functions which are concentrated
around high-density regions. By construction, ψε,0 is a constant function, and
the higher-order eigenfunctions are increasingly oscillatory. Generally speaking,
ψε,j is the smoothest function relative to P , subject to being orthogonal to ψε,i

for i < j.
Interpretation. The diffusion operator Aε and its eigenfunctions contain

information about the connectivity structure of the sample space. There are
two ways one can view the eigenfunctions ψε,0, ψε,1, ψε,2, . . .:

(i) The eigenfunctions define new coordinates of the data. If the data x rep-
resent high-dimensional complex objects, there is often no simple way of
ordering the data. However, by a so-called “eigenmap”

x �→ (ψε,1(x), ψε,2(x), . . . , ψε,J (x)), (4)

one can transform the data into an embedded space where points that
are highly connected are mapped close to each other [33]. The eigenmap
can be used for data visualization as in Fig. 1 and Fig. 6. If we choose
J < d, then we are effectively reducing the dimensionality of the problem
by mapping the data from Rd to RJ .

(ii) The eigenfunctions form a Hilbert basis for functions on the data. More
specifically, the set ψε,0, ψε,1, . . . is an orthogonal basis of L2(X , P ). The
value of this result is that we can express most physical quantities that
vary as a function of the data as a series expansion of the form f(x) =∑∞

j=0 βε,jψε,j(x).

In this work, we study the second point of view and its implications on non-
parametric estimation in high dimensions.

2.4. Estimating the regression function from data

In practice, of course, we need to estimate the basis {ψε,j}j and the projections
{βε,j}j from data. In this section, we describe the details.

Given X1, . . . , Xn, we compute a row-stochastic matrix Aε, where

Aε(i, j) =
kε(Xi, Xj)∑n
l=1 kε(Xi, Xl)

(5)

for i, j = 1, . . . , n. The elements Aε(i, j) can be interpreted as transition prob-
abilities Aε(i, j) = P(xi → xj) for a Markov chain over the data points (i.e.,
this is the discrete analogue of Eq. 2 and a diffusion over X ). Let p̂ε(x) =
1
n

∑n
j=1 kε(x,Xj). The Markov chain has a unique stationary measure given by

(ŝε(X1), . . . , ŝε(Xn)), where the ith element

ŝε(Xi) =
p̂ε(Xi)∑n
j=1 p̂ε(Xj)

(6)

is a kernel-smoothed density estimate at the ith observation.
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To estimate the eigenfunctions ψε,1, . . . , ψε,J of the continuous diffusion op-
erator Aε in Eq. 3, we first calculate the eigenvalues λA

ε,1, . . . , λ
A

ε,J and the asso-

ciated (orthogonal) eigenvectors ψ̃A
ε,1, . . . , ψ̃

A

ε,J of the symmetrized kernel matrix

Ãε, where

Ãε(i, j) =
kε(Xi, Xj)√∑

l

kε(Xi, Xl)
√∑

l

kε(Xl, Xj)
. (7)

We normalize the eigenvectors so that 1
n

n∑
i=1

ψ̃A
ε,j(i)ψ̃

A

ε,k(i) = δj,k, and define the

new vectors

ψA

ε,j(i) =
ψ̃A
ε,j(i)√
ŝε(Xi)

for i = 1, . . . , n and j = 1, . . . , J . By construction, it holds that the λA
ε,j ’s and

ψA
ε,j ’s are eigenvalues and right eigenvectors of the Markov matrix Aε:

Aεψ
A

ε,j = λA

ε,jψ
A

ε,j (8)

where
1

n

n∑
i=1

ψA

ε,j(i)ψ
A

ε,k(i)ŝε(Xi) = δj,k. (9)

Note that the n-dimensional vector ψA
ε,j can be regarded as estimates of ψε,j(x)

at the observed values X1, . . . , Xn. In other words, let

λ̂ε,j ≡ λA

ε,j and ψ̂ε,j(Xi) ≡ ψA

ε,j(i) (10)

for i = 1, . . . , n. We estimate the function ψε,j(x) at values of x not correspond-
ing to one of the Xi’s using the so-called Nyström method. The idea is to first
rearrange the eigenfunction-eigenvalue equation λε,jψε,j = Aεψε,j as

ψε,j(x) =
Aεψε,j

λε,j
=

1

λε,j

∫
X

kε(x, y)∫
X kε(x, y)dP (y)

ψε,j(y)dP (y),

and use the kernel-smoothed estimate

ψ̂ε,j(x) =
1

λ̂ε,j

n∑
i=1

kε(x,Xi)∑n
l=1 kε(x,Xl)

ψ̂ε,j(Xi). (11)

for λ̂ε,j > 0.
Our final regression estimator is defined by Eq. 1 with the estimated eigen-

vectors in Eq. 11 and expansion coefficients computed according to

β̂ε,j =
1

n

n∑
i=1

Yiψ̂ε,j(Xi)ŝε(Xi). (12)
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Remark 1 (Semi-Supervised Learning, SSL). The spectral series frame-
work naturally extends to semi-supervised learning (SSL) [64] where in addition
to the “labeled” sample (X1, Y1), . . . , (Xn, Yn) there are additional “unlabeled”
data; i.e., data Xn+1, . . . , Xn+m where the covariates Xi but not the labels Yi

are known. Typically m 
 n, as collecting data often is less costly than labeling
them. By including unlabeled examples (drawn from the same distribution PX)
into the kernel matrix Aε, we can improve our estimates of λε,j, ψε,j and Sε.
The summation in Equations 9 and 11 will then be over all n+m observations,
while Eq. 12 remains the same as before. See e.g. [38, 62] for SSL with Laplacian
eigenmaps in the limit of infinite unlabeled data, i.e., in the limit m → ∞.

2.5. Loss function and tuning of parameters

We measure the performance of an estimator f̂(x) via the L2 loss function

L(f, f̂) =

∫
X

(
f(x)− f̂(x)

)2
dP (x). (13)

To choose tuning parameters (such as the kernel bandwidth ε and the number of
basis functions J), we split the data into a training and a validation set. For each
choice of ε and a sufficiently large constant Jmax, we use the training set and
Eqs. 11–12 to estimate the eigenvectors ψε,1, . . . , ψε,Jmax and the expansion co-
efficients βε,0, . . . , βε,Jmax . We then use the validation set (X ′

1, Y
′
1), . . . , (X

′
n, Y

′
n)

to compute the estimated loss

L̂(f, f̂) =
1

n

n∑
i=1

(
Y ′
i − f̂(X ′

i)
)2

=
1

n

n∑
i=1

(
Y ′
i −

J∑
j=0

β̂ε,jψ̂ε,j(X
′
i)

)2

(14)

for different values of J ≤ Jmax. We choose the (ε, J)-model with the lowest
estimated loss on the validation set.

The computation for fixed ε and different J is very fast. Due to orthogonality
of the basis, the estimates β̂ε,j and ψ̂ε,j depend on ε but not on J .

2.6. Scalability

The spectral series estimator is faster than most traditional approaches in high
dimensions. Once the kernel matrix has been constructed, the eigendecomposi-
tion takes the same amount of time for all values of d.

In terms of scalability for large data sets, one can dramatically reduce the
computational cost by implementing fast approximate eigendecompositions. For
example, the Randomized SVD by Halko et al. [23] cuts down the cost from
O(n3) to roughly O(n2) with little impact on statistical performance (see Fig. 9).
According to Halko et al., these randomized methods are especially well-suited
for parallel implementation, which is a topic we will explore in future work.
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3. Connection to other work

3.1. Linear regression with transformed data

One can view our series model as a (weighted) linear regression after a data
transformation Z = Ψ(X), where Ψ = (ψ1, . . . , ψJ) are the first J eigenvectors
of the diffusion operator Aε. By increasing J , the dimension of the feature space,
we achieve more flexible, fully nonparametric representations. Decreasing J adds
more structure to the regression, as dictated by the eigenstructure of the data.

Eq. 12 is similar to a weighted least squares (WLS) solution to a linear
regression in (Z1, Y1), . . . , (Zn, Yn) but with an efficient orthogonal series imple-
mentation and no issues with collinear variables. Define the n× (J + 1) matrix
of predictors,

Z =

⎛⎜⎜⎜⎝
1 ψ1(X1) · · · ψJ(X1)
1 ψ1(X2) · · · ψJ(X2)
...

...
. . .

...
1 ψ1(Xn) · · · ψJ(Xn)

⎞⎟⎟⎟⎠ , (15)

and introduce the weight matrix

W =

⎛⎜⎜⎜⎝
s(X1) 0 · · · 0

0 s(X2) · · · 0
...

...
. . .

...
0 0 · · · s(Xn)

⎞⎟⎟⎟⎠ , (16)

where Ψj and s are estimated from data (Equations 6 and 10). Suppose that
Y = Zβ+e, where Y = (Y1, . . . , Yn)

T , β = (β1, . . . , βJ)
T , and the random vector

e = (ε1, . . . , εn)
T represents the errors. By minimizing the weighted residual sum

of squares
RSS(β) = (Y − Zβ)TW(Y − Zβ), (17)

we arrive at the WLS estimator

β̂ = (ZT
WZ)−1(ZT

WY ) =
1

n
Z
T
WY, (18)

where the matrix W puts more weight on observations in high-density regions.
This expression is equivalent to Eq. 12.

Note that thanks to the orthogonality property Z
T
WZ = nI, model search

and model selection are feasible even for complex models with very large J .
This is in clear contrast with standard multiple regression where one needs to
recompute the β̂j estimates for each model with a different J , invert the matrix
ZTWZ, and potentially deal with inputs (columns of the design matrix Z) that
are linearly dependent.

Remark 2 (Heteroscedasticity). More generally, let σ(x) be a non-negative
function rather than a constant, and let εi be iid realizations of a random variable
ε with zero mean and unit variance. Consider the regression model Yi = f(Xi)+
σ(Xi)εi. We can handle heteroscedastic errors by applying the same framework
as above to a rescaled regression function g(x) = f(x)/σ(x).
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3.2. Kernel machine learning and regularization in RKHS

Kernel-based regularization methods use similar approximation spaces as us. In
kernel machine learning [49, 15], one often considers the variational problem

min
f∈Hk

[
1

n

n∑
i=1

L(yi, f(xi)) + γ‖f‖2Hk

]
, (19)

where L(yi, f(xi)) is a convex loss function, γ > 0 is a penalty parameter,
and Hk is the Reproducing Kernel Hilbert Space (RKHS) associated with a
symmetric positive semi-definite kernel k.3 Penalizing the RKHS norm ‖ · ‖Hk

imposes smoothness conditions on possible solutions. Now suppose that

k(x, y) =
∞∑
j=0

λjφj(x)φj(y),

where the RKHS inner product is related to the L2-inner product according to
〈φi, φj〉Hk

= 1
λi
〈φi, φj〉L2(X ,P ) =

1
λi
δi,j . Eq. 19 is then equivalent to considering

eigen-expansions

f(x) =

∞∑
j=0

βjφj(x),

and seeking solutions to minf∈Br

1
n

∑n
i=1 L(yi, f(xi)), where the hypothesis

space
Br = {f ∈ Hk : ‖f‖Hk

≤ r} (20)

is a ball of the RKHS Hk with radius r, and the RKHS norm is given by

‖f‖Hk
=
(∑∞

j=0

β2
j

λj

)1/2
.

Here are some key observations:
(i) The above setting is similar to ours. The regularization in Eq. 19 differ-

entially shrinks contributions from higher-order terms with small λj values. In
spectral series, we use a projection (i.e., a basis subset selection) method, but
the empirical performance is usually similar.

(ii) There are some algorithmic differences, as well as differences in how the
two regression estimators are analyzed and interpreted. In our theoretical work,
we consider Gaussian kernels with flexible variances; that is, we choose the
approximation spaces in a data-dependent way (cf. multi-kernel regularization
schemes for SVMs [60]) so that the estimator can adapt to sparse structure and
the intrinsic dimension of the data. Most theoretical work in kernel machine
learning assume a fixed RKHS.

(iii) There are also other differences. Support Vector Machines [53] and other
kernel-based regularization methods (such as splines, ridge regression and radial

3To every continuous, symmetric, and positive semi-definite kernel k : X × X → R is
associated a unique RKHS Hk [1]. This RKHS is defined to be the closure of the linear span
of the set of functions {k(x, ·) : x ∈ X} with the inner product satisfying the reproducing
property 〈k(x, ·), f〉Hk

= f(x) for all x ∈ X , f ∈ Hk.
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basis functions) never explicitly compute the eigenvectors of the kernel. Instead,
these methods rely on the classical Representer Theorem [58] which states that
the solution to Eq. 19 is a finite expansion of the form f(x) =

∑n
i=1 αik(xi, x).

The original infinite-dimensional variational problem is then reduced to a finite-
dimensional optimization of the coefficients αi. In a naive least-squares imple-
mentation, however, one has to recompute these coefficients for each choice of
the penalty parameter γ, which can make cross-validation cumbersome. In our
spectral series approach, we take advantage of the orthogonality of the basis for
fast model selection and computation of the βj parameters. As in spectral clus-
tering, we also use eigenvectors to organize and visualize data that can otherwise
be hard to interpret.

3.3. Manifold regularization and semi-supervised learning

Our spectral series method is closely related to Laplacian-based regularization:
In [6], Belkin et al. extend the kernel-based regularization framework to incor-
porate additional information about the geometric structure of the marginal
PX . Their idea is to add a data-dependent penalty term to Eq. 19 that controls
the complexity as measured by the geometry of the distribution. Suppose that
one is given labeled data (X1, Y1), . . . , (Xn, Yn) ∼ PX,Y as well as unlabeled
data Xn+1, . . . , Xn+m ∼ PX , where in general m 
 n. (The limit m → ∞
corresponds to having full knowledge of PX .) Under the assumption that the
support of PX is a compact submanifold of Rd, the authors propose minimizing
a graph-Laplacian regularized least squares function

min
f∈Hk

⎡⎣ 1

n

n∑
i=1

L(yi, f(xi)) + γA‖f‖2Hk
+

γI
n+m

n+m∑
i,j=1

(f(xi)− f(xj))
2Wi,j

⎤⎦ ,

(21)
where Wi,j are the edge weights in the graph, and the last Laplacian penalty
term favors functions f for which f(xi) is close to f(xj) when xi and xj are
connected with large weights.

Note that the eigenbasis of our row-stochastic matrix Aε minimizes the dis-
tortion

∑
i,j(f(xi) − f(xj))

2Wi,j in Eq. 21 if you regard the entries of Aε as
the weights Wi,j [3]. Indeed, the eigenvector ψε,j minimizes the term subject to
being orthogonal to ψε,i for i < j. Hence, including a Laplacian penalty term
is comparable to truncating the eigenbasis expansion in spectral series. More-
over, the semi-supervised regularization in Eq. 21 is similar to a semi-supervised
version of our spectral series approach, where we first use both labeled and un-
labeled data and a kernel with bandwidth εm+n to compute the eigenbasis, and
then extend the eigenfunctions according to Eq. 11 via a (potentially wider) ker-
nel with bandwidth hn. The main downside of the Laplacian-based framework
above is that it is hard to analyze theoretically. As with other kernel-based regu-
larizers, the method also does not explicitly exploit eigenvectors and orthogonal
bases.
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Fig 2. Uniform distribution U(-1,1). Eigenfunctions of a third-order polynomial kernel, left,
and of an (un-normalized) Gaussian kernel, right. The latter eigenfunctions form an orthog-
onal Fourier-like basis concentrated on the support of the data distribution.

4. Choice of kernel

In the RKHS literature, there is a long list of commonly used kernels. These

include, e.g., the Gaussian kernel k(x, y) = exp
(
−‖x−y‖2

4ε

)
, polynomial kernels

k(x, y) = (〈x, y〉 + 1)q [56], and the thin-plate spline kernel k(x, y) = ‖x −
y‖2 log(‖x − y‖2) [21]. In our numerical experiments (Sec. 6), we will consider
both Gaussian and polynomial kernels, but throughout the rest of the paper,
we will primarily work with the (row-normalized) Gaussian kernel. There are
several reasons for this choice:

(i) The Gaussian kernel can be interpreted as the heat kernel in a manifold
setting [3, 22]. We will take advantage of this connection in the theoretical
analysis of the spectral series estimator (Sec. 5).

(ii) The eigenfunctions of the Gaussian kernel are simultaneously concentrated
in time (i.e., space) and frequency, and are particularly well-suited for
estimating functions that are smooth with respect to a low-dimensional
data distribution.

The following two examples illustrate some of the differences in the eigenbases
of Gaussian and polynomial kernels:

Example 3. Suppose that P is a uniform distribution U(−1, 1) on the real
line. Fig. 2, left, shows the eigenfunctions of a third-order polynomial kernel
k(x, y) = (〈x, y〉+1)3. These functions are smooth but have large values outside
the support of P . Contrast this eigenbasis with the eigenfunctions in Fig. 2, right,
of a Gaussian kernel. The latter functions are concentrated on the support of P
and are orthogonal on (−1, 1) as well as on (−∞,∞).

Example 4. Consider data around a noisy spiral:{
x(u) =

√
u cos(

√
u) + εx

y(u) =
√
u sin(

√
u) + εy,
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Fig 3. Spiral data. Contour plots of the fourth eigenvector of a third-order polynomial kernel
(left) and the fourth eigenvector of a Gaussian diffusion kernel (right). The latter eigenvector
is localized and varies smoothly along the spiral direction.

where u is a uniform random variable, and εx and εy are normally distributed
random variables. The eigenfunctions of a polynomial kernel do not adapt well
to the underlying distribution of the data. Fig. 3, left, for example, is a contour
plot of the Nyström extension of the fourth empirical eigenvector of a third-order
polynomial kernel. In contrast, the eigenfunctions of a Gaussian diffusion kernel
vary smoothly along the spiral direction, forming a Fourier-like basis with or-
thogonal eigenfunctions that concentrate around high-density regions; see Fig. 3,
right.

In high dimensions, Gaussian extensions can be seen as a generalization of
prolate spheroidal wave functions [13]. Prolates were originally introduced by
Slepian and Pollack as the solution to the problem of simultaneously and opti-
mally concentrating a function and its Fourier content (see [52] for a fascinating
recount of this development in Fourier analysis and modeling). The band-limited
functions that maximize their energy content within a space domain X ⊂ R

n

are extensions of the eigenfunctions of the integral operator of a Bessel kernel
restricted to X [13, Section 3.1]. In high dimensions, Bessel and Gaussian kernels
are equivalent [47], suggesting that the eigenfunctions of the Gaussian kernel are
nearly optimal.

However, although Gaussian kernels have many advantages, they may not
always be the best choice in practice. Ultimately, this is determined by the
application and by what the best measure of similarity between two data points
would be. Our framework suggests a principled way of selecting the best kernel
for regression: Among a set of reasonable candidate kernels, choose the estimator
with the smallest empirical loss according to Eq. 14. We will, for example, use
this approach in Sec. 6 to choose the optimal degree q for a set of polynomial
kernels of the form k(x, y) = (〈x, y〉+ 1)q.
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Fig 4. Projection onto spiral direction (t =
√
u) of the eigenvectors of the symmetric graph

Laplacian, left, and of the Gaussian diffusion kernel, right. The latter estimates are less
noisy.

Normalization of local kernels. In the RKHS literature, it is standard to
work with “unnormalized” kernels. In spectral clustering [57], on the other hand,
researchers often use the “stochastic” and “symmetric” normalization schemes
in Eq. 5 and Eq. 7, respectively. We have found (Sec. 6) that the exact normal-
ization often has little effect on the performance in regression. Nevertheless, we
choose to use the row-stochastic kernel for reasons of interpretation and analy-
sis: First, the limit of the bandwidth ε → 0 is well-defined, and there is a series
of works on the convergence of the graph Laplacian to the Laplace-Beltrami
operator on Riemannian manifolds [12, 5, 25, 51, 20]. Fourier functions origi-
nate from solving a Laplace eigenvalue problem on a bounded domain; hence,
the eigenfunctions of the diffusion operator can be seen as a generalization of
Fourier series to manifolds.

Moreover, the row-stochastic kernel yields less variable empirical functions
than the unnormalized or symmetric forms. As an illustration, consider the
noisy spiral data in Example 4. Fig. 4 shows the estimated projections onto
the spiral direction of the eigenfunctions of the symmetric and the stochastic
forms; see the left and right plots, respectively. The eigenfunctions are clearly
smoother in the latter case. By construction, the empirical eigenfunctions of the
symmetric operator are orthogonal with respect to the empirical distribution P̂n,
whereas the estimated eigenfunctions of the stochastic operator are orthogonal
with respect to the smoothed data distribution Ŝε. The kernel bandwidth εn
defines the scale of the analysis.

5. Theory

In this section, we derive theoretical bounds on the loss (Eq. 13) of a series
regression estimator with a radial kernel for a standard fixed RKHS setting
(Theorem 13), as well as a setting where the kernel bandwidth εn varies with
the sample size n (Theorem 14). We also further elaborate on the connection
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between spectral series and Fourier analysis by generalizing the well-known link
between Sobolev differentiable signals and the approximation error in a Fourier
basis.

Using the same notation as before, let

f(x) =

∞∑
j=0

βε,jψε,j(x), fε,J (x) =
∑J

j=0 βε,jψε,j(x),

f̂ε,J (x) =
∑J

j=0 β̂ε,jψ̂ε,j(x),

where βε,j =
∫
X f(x)ψε,j(x)dSε(x) and β̂ε,j = 1

n

∑n
i=1 Yiψ̂ε,j(Xi)ŝε(Xi). We

write

|f(x)− f̂ε,J(x)|2 ≤ 2|f(x)− fε,J(x)|2 + 2|fε,J(x)− f̂ε,J (x)|2,

and refer to the two terms as “bias” and “variance”. Hence, we define the inte-
grated bias and variance

Lbias =

∫
X
|f(x)− fε,J (x)|2dP (x),

and

Lvar =

∫
X
|fε,J(x)− f̂ε,J (x)|2dP (x),

and bound the two components separately. Our assumptions are:

(A1) P has compact support X and bounded density 0 < a ≤ p(x) ≤ b < ∞,
∀x ∈ X .

(A2) The weights are positive and bounded; that is, ∀x, y ∈ X ,

0 < m ≤ kε(x, y) ≤ M,

where m and M are constants that do not depend on ε.

(A3) The psd operator Aε has nondegenerate eigenvalues; i.e.,

1 ≡ λε,0 > λε,1 > λε,2 > . . . λε,J > 0.

(A4) For all 0 ≤ j ≤ J and X ∼ P , there exists some constant C < ∞ (not
depending on n) such that

E
[
|ϕ̂ε,j(X)− ϕε,j(X)|2

]
< C,

where ϕε,j(x) = ψε,j(x)sε(x) and ϕ̂ε,j(x) = ψ̂ε,j(x)ŝε(x).

Without loss of generality, we assume that the eigenfunctions ψε,j are esti-

mated using an unlabeled sample X̃1, . . . , X̃n that is drawn independently from
the data used to estimate the coefficients βε,j . This is to simplify the proofs and
can always be achieved by splitting the data in two sets.
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5.1. Bias

A key point is that the approximation error of the regression depends on the
smoothness of f relative to P . Here we present two different calculations of the
bias based on two related notions of smoothness. The first notion is standard
in the kernel literature and is based on RKHS norms. The second notion is
based on our diffusion framework and can be seen as a generalization of Sobolev
differentiability.

Method 1: Smoothness measured by RKHS norm.

Let ãε(x, y) =
kε(x,y)√

pε(x)
√

pε(y)
, where ε is a strictly positive number. Under previ-

ous assumptions, this kernel is symmetric and psd with a unique RKHS which
we denote by Hε. A standard way to measure smoothness of a function f in
a RKHS Hε is through the RKHS norm ‖f‖Hε (see, e.g., [37]). One can then
define function classes

Hε,M = {f ∈ Hε : ‖f‖Hε ≤ M},

where M is a positive number dependent on ε.

Proposition 5. Assume f ∈ Hε,M , where ε > 0. Then,

Lbias = O(Mλε,J ).

For fixed ε, Hε,M contains “smoother” functions for smaller values of M .

Method 2: Smoothness measured by diffusion operator.

Alternatively, let

Gε =
Aε − I

ε
, (22)

where I is the identity. The operator Gε has the same eigenvectors ψε,j as the

differential operator Aε. Its eigenvalues are given by −ν2ε,j =
λε,j−1

ε , where λε,j

are the eigenvalues of Aε. Define the functional

Jε(f) = −〈Gεf, f〉ε (23)

which maps a function f ∈ L2(X , P ) into a non-negative real number. For
small ε, Jε(f) measures the variability of the function f with respect to the
distribution P . The expression is a variation of the graph Laplacian regu-
larizers popular in semi-supervised learning [63]. In fact, a Taylor expansion
yields Gεf = −�f + ∇p

p · ∇f + O(ε) where ∇ is the gradient operator and

� = −
∑d

j=1
∂2

∂x2
j
is the psd Laplace operator in R

d. In kernel regression smooth-

ing, the extra term ∇p
p ·∇f is considered an undesirable extra bias, called design
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bias. In classical regression, it is removed by using local linear smoothing [18],
which is asymptotically equivalent to replacing the original kernel kε(x, y) by

the bias-corrected kernel k∗ε(x, y) =
kε(x,y)

pε(x)pε(y)
[12].

The following result bounds the approximation error of an orthogonal series
expansion of f . The bound is consistent with Theorem 2 in [62], which applies
to the more restrictive setting of SSL with infinite unlabeled data and ε → 0.
Our result holds for all ε and J and does not assume unlimited data.

Proposition 6. For f ∈ L2(X , P ),∫
X
|f(x)− fε,J (x)|2dSε(x) ≤ Jε(f)

ν2ε,J+1

(24)

Lbias = O

(
Jε(f)

ν2ε,J+1

)
,

where −ν2ε,J+1 is the (J + 1)th eigenvalue of Gε.

Smoothness and sparsity

In the limit ε → 0, we have several interesting results, including a generalization
of the classical connection between Sobolev differentiability and the error decay
of Fourier approximations [35, Section 9.1.2] to a setting with adaptive bases and
high-dimensional data. We denote the quantities derived from the bias-corrected
kernel k∗ε by A∗

ε, G
∗
ε , J ∗

ε and so forth.

Definition 7 (Smoothness relative to P). A function f is smooth relative
to P if ∫

X
‖∇f(x)‖2dS(x) ≤ c2 < ∞,

where S(A) =
∫
A

p(x)dP (x)∫
p(x)dP (x)

is the stationary distribution of the random walk on

the data as ε → 0. The smaller the value of c, the smoother the function.

Lemma 8. For functions f ∈ C3(X ) whose gradients vanish at the boundary,

lim
ε→0

J ∗
ε (f) =

∫
X
‖∇f(x)‖2dS(x).

This is similar to the convergence of the (un-normalized) graph Laplacian reg-
ularizer to the density-dependent smoothness functional

∫
X ‖∇f(x)‖2p2(x)dx [9].

Next we will see that smoothness relative to P (Definition 7) and sparsity
(with respect to the L2 norm) in the eigenbasis of the diffusion operator (Defi-
nition 9 below) are really the same thing. As a result, we can link smoothness
and sparsity to the rate of the error decay of the eigenbasis approximation.
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Definition 9 (Sparsity in B). A set of real numbers θ1, θ2, . . . lies in a Sobolev
ellipsoid Θ(s, c) if

∑∞
j=1 j

2sθ2(j) ≤ c2 for some number s > 1/2. For a given basis

B = {ψ1, ψ2, . . .}, let

WB(s, c) =

{
f =

∑
j

βjψj : β1, β2, . . . ∈ Θ(s, c)

}

where s > 1/2. Functions in WB(s, c) are sparse in B. The larger the value of
s, the sparser the representation.

Theorem 10. Assume that B = {ψ1, ψ2, . . .} are the eigenvectors of � with
eigenvalues ν2j = O(j2s) for some s > 1/2. Let fJ(x) =

∑
j≤J βjψj(x). Then,

the following two statements are equivalent:

1.
∫
X ‖∇f(x)‖2dS(x) ≤ c2 (smoothness relative to P)

2. f ∈ WB(s, c) (sparsity in B).

Furthermore, sparsity in B (or smoothness relative to P) implies∫
X
|f(x)− fJ(x)|2dS(x) = o

(
1

J2s

)
.

The rate s of the error decay depends on the dimension of the data. We will
address this issue in Sec. 5.3.

5.2. Variance

The matrix Aε (defined in Eq. 5) can be viewed as a perturbation of the integral
operator Aε due to finite sampling. To estimate the variance, we bound the
difference ψε,j − ψ̂ε,j , where ψε,j are the eigenvectors of Aε, and ψ̂ε,j are the
Nyström extensions (Eq. 11) of the eigenvectors of Aε. We adopt a strategy
from Rosasco et al. [44], which is to introduce two new integral operators that
are related to Aε and Aε but both act on an auxiliary4 RKHS H of smooth
functions (see Appendix A.2 for details). As before, we write εn to indicate that
we let the kernel bandwidth ε depend on the sample size n.

Proposition 11. Let εn → 0 and nε
d/2
n / log(1/εn) → ∞ as n → 0. Under

assumptions (A1)–(A4) and ∀ 0 ≤ j ≤ J ,

‖ψε,j − ψ̂ε,j‖L2(X ,P ) = OP

(
γn
δε,j

)
,

where γn =
√

log(1/εn)

nε
d/2
n

and δε,j = λε,j − λε,j+1.

4This auxiliary space only enters the intermediate derivations and plays no role in the error
analysis of the algorithm itself.
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Proposition 12. Let εn → 0 and nε
d/2
n / log(1/εn) → ∞. Under (A1)-(A4)

and for f ∈ L2(X , P ), it holds that

Lvar = J

(
OP

(
1

n

)
+OP

(
γ2
n

Δ2
ε,J

))
.

where Δε,J = min0≤j≤J (λε,j − λε,j+1).

5.3. Total loss

Fixed kernel

In kernel machine learning, it is standard to assume a fixed RKHS Hk, e.g.,
with norm ‖ · ‖Hk

and a fixed kernel k with a bandwidth ε not dependent on
n. From Propositions 5 and 12 and under assumptions (A1)-(A4), we then have
the following result:

Theorem 13. Assume f ∈ Hk with finite norm; i.e., ‖f‖Hk
≤ M for some

constant M < ∞. Then,

L(f, f̂) = O(λε,J ) + JOP

(
1

n

)
+ JOP

(
1

nΔ2
ε,J

)
, (25)

where Δε,J = min0≤j≤J (λε,j − λε,j+1).

The problem is that Hk, M , and the eigenvalues λε,j , all depend on ε. This
dependence is complicated and poorly understood. Hence, in what follows, we
will instead of the RKHS norm use an alternative measure of smoothness based
on the diffusion operator (Method 2 in Sec. 5.1). This simplifies the theory
and will allow us to analyze the dependence of the series estimator on tuning
parameters and sparse structure.

Kernel with decreasing bandwidth

Consider now a Gaussian kernel kε with a bandwidth εn that decreases with
increasing n. From Propositions 6 and 12 and under assumptions (A1)-(A4), we
have the following results:

Theorem 14. Let εn → 0 and nε
d/2
n / log(1/εn) → ∞ as n → ∞. Then, for

f ∈ L2(X , P ),

L(f, f̂) = O

(
Jε(f)

ν2ε,J+1

)
+ JOP

(
1

n

)
+ JOP

(
γ2
n

Δ2
ε,J

)
, (26)

where Jε(f) = −〈Gεf, f〉ε, ν2ε,J+1 is the (J + 1)th eigenvalue of −Gε, γn =√
log(1/εn)

nε
d/2
n

, and Δε,J = min0≤j≤J(λε,j − λε,j+1).
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Corollary 15. Assume that f ∈ C3
b (X ) and that the kernel k = k∗ε is corrected

for bias. Then, for εn → 0 and nε
d/2
n / log(1/εn) → ∞,

L(f, f̂) =
J (f)O(1) +O(εn)

ν2J+1

+ JOP

(
1

n

)
+ JOP

(
γ2
n

εnΔ2
J

)
, (27)

where ν2J+1 is the (J + 1)th eigenvalue of �, J (f) =
∫
X ‖∇f(x)‖2dS(x), and

ΔJ = min0≤j≤J(ν
2
j+1 − ν2j ).

Some comments on these results: The first term in Eqs. 25–27 corresponds
to the approximation error of the estimator and decays with J . The second and
third terms correspond to the variance. Note that the variance term JOP

(
1
n

)
is the same as the variance of a traditional orthogonal series estimator in one
dimension only; in d dimensions, the variance term for a traditional tensor prod-
uct basis is OP

(
1
n

)∏d
i=1 Ji where Ji is the number of components in the ith

direction [17]. Hence, there is a considerable gain in using an adaptive bias, but

we incur an additional variance term JOP

(
γ2
n

εnΔ2
J

)
from estimating the basis.5

If we balance the two ε-terms in Eq. 27, we get a bandwidth of εn �
(1/n)2/(d+4). With this choice of εn and by ignoring terms of lower order, the
rate becomes

L(f, f̂) = O

(
J (f)

ν2J+1

)
+

J

Δ2
J

OP

(
logn

n

) 2
d+4

. (28)

Finally, if we apply the results in [12, 19, 20, 44] to general Riemannian manifolds
(see, for example, [26, 40, 7] for kernel density estimation on manifolds), and
use that the eigenvalues of the Laplace-Beltrami operator on an r-dimensional
Riemannian manifold are ν2j ∼ j2/r [46], we obtain the following corollary:

Corollary 16. Suppose the support of the data is on a compact C∞ submanifold
of Rd with intrinsic dimension r, and suppose that f is smooth relative to P
(Definition 7). Under the assumptions of Theorem 14 and Corollary 15, we
obtain the rate

L(f, f̂) = O

(
1

J2/r

)
+ J2(1− 1

r )OP

(
logn

n

) 2
r+4

.

It is then optimal to take J � (n/ log n)
1

r+4 , in which case the upper bound
becomes (

logn

n

) 2
(r+4)r

.

We make the following observations for a spectral series estimator with flex-
ible kernel bandwidth:

5In an SSL setting (Remark 1), this extra estimation error vanishes in the limit of infinite
unlabeled data.
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(i) Adaptiveness to Low-Dimensional Structure. If the data in R
d has

intrinsic dimension r � d, then the rate n−1/O(r2) above is a significant
improvement of the minimax rate n−1/O(d) for a nonparametric regressor
in Rd. Our estimator automatically adapts to sparse structure and does
not require the knowledge of r or an estimated r in practice. The optimal
error rate is achieved when the smoothing parameters J and ε are properly
selected for the given r, and the amount of smoothing is in practice chosen
by cross-validation as in Sec. 2.5.

(ii) Minimax Optimality. In a semi-supervised learning setting, the estima-
tion error of the basis vanishes in the limit of infinite unlabeled data. The
loss then reduces to

L(f, f̂) = O

(
1

J2/r

)
+ JOP

(
1

n

)
, (29)

which is minimized by taking J � nr/(r+2). At the minimum, we achieve
the rate

1

n
2

2+r

,

the minimax rate for a nonparametric estimator of Sobolev smoothness
β = 1 in R

D, where D = r. The latter result is also, up to a logarithmic
term, in agreement with [62].

6. Numerical examples

Finally, we use data with complex dependencies to compare the spectral series
approach with classical kernel smoothing, k-nearest neighbors (kNN) regression,
regularization in RKHS, and recent state-of-the-art manifold and local regres-
sion methods.

In our experiments, we split the data into three sets for training, valida-
tion, and testing, respectively. For the manifold regression estimators from
Aswani et al. [2] and Cheng et al. [11], we use the authors’ codes with built-
in cross-validation. For all other estimators, we tune parameters according to
Sec. 2.5. To assess the final models, we compute the estimated loss L̂ and stan-
dard error on the test data.6

6.1. Estimating pose using images of faces

In our first example, we consider images of artificial faces from the Isomap
database [54].7 There are a total of n = 698 64× 64 gray-scale images rendered
with different orientation and lighting directions. Fig. 1 shows a visualization of
these data where we use the first two non-trivial eigenvectors of the Gaussian

6The estimated standard error of L̂ is s/
√
n, where s2 is the empirical variance of (Yi −

f̂(Xi))
2 on the test set.

7www.isomap.stanford.edu/datasets.html

www.isomap.stanford.edu/datasets.html
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diffusion kernel as coordinates (i.e., Eq. 4 with the approximate eigenvectors
from Eq. 11).

Our goal is to estimate the horizontal left-right pose of each face. We compare
several different approaches to regression:

(i) As a baseline, we choose the classical Nadaraya-Watson estimator with a
Gaussian smoothing kernel (NW ) and the k-nearest neighbors regression esti-
mator (kNN ). The latter estimator is known to be minimax optimal with respect
to local intrinsic dimension [31].

(ii) For the spectral series method (Series), we implement the Gaussian kernel
(Series-radial) and polynomial kernels k(x, y) = (〈x, y〉+1)q of different degrees
q. We treat q as a tuning parameter and we denote the polynomial kernel with
the smallest estimated loss by Series-polyBest. Note that choosing q = 1 (Series-
poly1 ) is equivalent to a linear regression on eigenvectors computed with PCA.

(iii) We also implement the RKHS method in Sec. 3.2 for the same set of ker-
nels as Series. For a squared-error loss, Eq. 19 reduces to an infinite-dimensional,
generalized ridge regression problem [24, Section 5.8.2]. Hence, we use the term
kernel ridge regression (KRR) and denote the estimators by KRR-radial and
KRR-poly.

(iv) The last group of estimators include recent manifold and local regression
methods [2, 11]8: locOLS is a local ordinary least squares, locRR is a local ridge
regression, locEN is a local elastic net, locPLS is a local partial least squares,
locPCR is a local principal components regression, NEDE is the nonparamet-
ric exterior derivative estimator, NALEDE is the nonparametric adaptive lasso
exterior derivative estimator, NEDEP is the nonparametric exterior derivative
estimator for the “large p, small n” case, and NALEDEP is the nonparametric
adaptive lasso exterior derivative estimator for the “large p, small n” case. The
last 4 regression estimators (NEDE, NALEDE, NEDEP, NALEDP) pose the
regression as a least-squares problem with a term that penalizes for the regres-
sion vector lying in directions perpendicular to an estimated manifold; see [2] for
details. In our comparison, we also include MALLER [11] which first estimates
the local dimension of the data and then performs local linear regression on a
tangent plane estimate.

Manifold and local regression methods, unlike Series, quickly become com-
putationally intractable in high dimensions. Hence, to be able to compare the
different methods, we follow Aswani et al. [2] and rescale the Isomap images
from from 64× 64 down to 7× 7 pixels in size. This reduces the number of co-
variates from d = 4096 to d = 49. In other words, we regress the left-right pose
Y (our response) on the rescaled image X ∈ R

49 (our predictor). We use 50%
of the data for training, 25% for validation and 25% for testing. All covariates
are normalized to have mean 0 and standard deviation 1.

Table 1 and Fig. 5 summarize the results of the final (cross-validated) es-
timators. The approaches that have best performance are Series-radial and
KRR-radial. As expected, Series and KRR estimators yield similar losses. A

8For code, go to www.eecs.berkeley.edu/~aaswani/EDE_Code.zip and http://www.math.

princeton.edu/~hauwu/regression.zip.

www.eecs.berkeley.edu/~aaswani/EDE_Code.zip
http://www.math.princeton.edu/~hauwu/regression.zip
http://www.math.princeton.edu/~hauwu/regression.zip
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Table 1

Estimated loss for Isomap face data

Method Loss (SE)
NW 1.71 (0.23)
kNN 1.74 (0.21)

Series-poly1 2.96 (0.40)
Series-polyBest (q=2) 0.22 (0.04)

Series-radial 0.16 (0.04)
KRR-poly1 2.95 (0.41)

KRR-polyBest (q=2) 0.22 (0.05)
KRR-radial 0.15 (0.04)

Method Loss (SE)
locOLS 0.65 (0.17)
locRR 0.46 (0.16)
locEN 0.47 (0.16)
locPLS 0.65 (0.21)
locPCR 0.95 (0.20)
NEDE 0.44 (0.14)

NALEDE 0.46 (0.14)
NEDEP 0.81 (0.31)

NALEDEP 0.85 (0.33)
MALLER 0.24 (0.06)

Fig 5. Estimated loss of estimators for Isomap face data; see Table 1. For visibility, we
have divided the estimators into three groups: classical NW kernel and kNN smoothers (left),
Series/RKHS-type estimators (center), and manifold regression estimators, such as NEDE
and MALLER (right). Bars represent standard errors.

first-order polynomial kernel, i.e., a global principal component regression with
Series- or KRR-poly1, performs worse than NW and kNN. Higher-order poly-
nomial kernels (with degree q = 2 resulting in the smallest loss) as well as the
manifold and local regression estimators (in particularly, NEDE and MALLER)
improve the NW and kNN results but Series-radial and KRR-radial are still
the best choices in terms of statistical and computational performance.

6.2. Estimating redshift using SDSS galaxy spectra

In the following (high-dimensional) example, we predict the redshift of galaxies
from high-resolution measurements of their emission spectra. Our initial data
sample consists of galaxy spectra from ten arbitrarily chosen spectroscopic plates
of SDSS DR6.9 We preprocess and remove spectra according to the three cuts

9http://www.sdss.org/dr6/algorithms/redshift_type.html

http://www.sdss.org/dr6/algorithms/redshift_type.html
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Fig 6. Left: Example of a SDSS galaxy spectrum. Right: Embedding of a sample of SDSS
galaxy spectra using the first three non-trivial eigenvectors of the Gaussian diffusion kernel
as coordinates; the color codes for the true redshift.

described in [42]. The final sample consists of n = 2812 high-resolution spectra
with flux measurements at d = 3501 wavelengths. We renormalize each spectra
so that it has unit norm. Our goal is to predict a galaxy’s redshift Y where
the predictor is an entire spectrum x ∈ R3501. Fig. 6a shows an example of
a SDSS spectrum. Fig. 6b shows a low-dimensional visualization of the full
data set when using the first few vectors of the diffusion basis as coordinates.
Each point in the plot represents a galaxy, and the color codes for the SDSS
spectroscopic redshift. The redshift (the response Y ) appears to vary smoothly
with the eigencoordinates.

For the regression, we use 50% of the data for training, 25% for validation
and 25% for testing. Due to the high dimension of the predictor (d = 3501),
we are unable to implement the computationally intensive manifold and local
regression estimators from [2]. Table 2 and Fig. 7 summarize the results for the
other approaches to regression. Series and KRR are essentially equivalent in
terms of performance, and as before, the radial kernel (Series-radial and KRR-
radial) yields the smallest estimated loss. For these data, a linear dimensionality
reduction with PCA (series-poly1 ) improves upon the NW and kNN regression
results. MALLER and higher-order polynomials (with degrees 5 and 6) perform
better than PCA, but Series-radial still has the smallest estimated loss. More-
over, MALLER is much slower than Series: the former estimator takes 34 min-
utes on a 2.70GHz Intel Core i7-4800MQ, whereas Series with cross-validation
takes less than a minute.

6.3. Scalability

Increasing dimension

In terms of computational speed, the spectral series estimator has a clear com-
petitive edge in high dimensions relative local regression procedures and a least-
squares (LS) implementation of Eq. 19 that does not take advantage of orthogo-
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Table 2

Estimated loss for redshift prediction using SDSS galaxy spectra

Method Loss (SE) ×10−5

NW 6.13 (1.47)
kNN 6.37 (1.52)

Series-poly1 5.13 (0.47)
Series-polyBest (q=5) 3.22 (0.32)

Series-radial 2.77 (0.33)
KRR-poly1 5.01 (0.49)

KRR-polyBest (q=6) 3.05 (0.33)
KRR-radial 2.84 (0.33)

Method Loss (SE)
locOLS –
locRR –
locEN –
locPLS –
locPCR –
NEDE –

NALEDE –
NEDEP –

NALEDEP –
MALLER 3.11 (0.38)

Fig 7. Estimated loss of different estimators for redshift prediction; see Table 2. Bars represent
standard errors. For visibility, we have divided the estimators into 3 groups: classical NW
kernel and kNN smoothers (left), Series/RKHS-type estimators (center), and the manifold
regression estimator MALLER (right). Bars represent standard errors.

nal bases (see, e.g., [4, p. 215] for a LS implementation of SSL learning on man-
ifolds). We illustrate the differences with a one-dimensional manifold embedded
in d dimensions. Let Y |x ∼ N(θ(x), 0.5), where the points x = (x1, . . . , xd)
lie on a unit circle in R

d, and θ(x) is the angle corresponding to the posi-
tion of x. For simplicity, we simulate data uniformly on the circle; i.e., we let
θ(x) ∼ Unif(0, 2π).

Figure 8 summarizes the results. In terms of estimated loss (left panel), Series
performs better than MALLER, and it has a statistical performance similar
to the least-squares implementation of kernel ridge regression (KRR-LS ). As
predicted by the theory, the loss of Series does not depend on the ambient
dimension d. Moreover, the computational time of Series is nearly constant as a
function of the dimension d (right panel). KRR-LS is slower than Series,10 and

10Cross-validation of Series is fast due to the orthogonality of the basis. If we compute
the expansion coefficients β̂ε,j (Eq. 12) for all j ≤ Jmax, then we do not need to recompute
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Fig 8. Increasing the dimension (number of variables) d for a circle embedded in Rd. Esti-
mated loss (left) and computational time (right) as a function of the dimension d for different
regression estimators.

Fig 9. Increasing the size of the training set for redshift prediction using SDSS galaxy spectra.
Estimated loss (left) and computational time (right) as a function of the sample size for dif-
ferent regression estimators. Note that Randomized SVD (Series RSVD) dramatically reduces
the computational time, see right, for large sample sizes with little impact on the statistical
performance, see left.

MALLER becomes computationally intractable as d increases. For d = 2500 and
n = 2000, each fit with MALLER takes an average of 354 seconds (6 minutes)
on an Intel i7-4800MQ CPU 2.70GHz processor, compared to 72 seconds for
Series.

Increasing sample size

Here we revisit the redshift prediction problem in Sec. 6.2 using galaxy spectra
from SDSS DR 12.11 We increase the size of the training set for a fixed number
of 1000 validation spectra and 1000 test spectra. Fig. 9 indicates massive pay-
offs in implementing Randomized SVD (Series RSVD) for large data sets; see

these coefficients for other models with the same kernel and J ≤ Jmax components in the
series expansion. The least squares implementation of Eq. 19, on the other hand, requires
recomputing the expansion coefficients for each choice of the smoothing parameter J .

11http://www.sdss.org/dr12/

http://www.sdss.org/dr12/
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discussion in Sec. 2.6. Even without parallelization, we are able to cut down the
computational time with a factor of 15 (right panel) with almost no decrease in
statistical performance (left panel). The run time for SVD and KRR-LS when
the sample size n=11200 (and the dimension d = 3431) is about 5 hours on an
Intel i7-4800MQ CPU 2.70GHz processor. With Randomized SVD, the same
regression takes about 20 minutes.

7. Discussion

Our spectral series method can handle complex high-dimensional data objects in
many settings where traditional nonparametric methods either perform poorly
or are computationally intractable. The series method offers a compression of
the data in terms of Fourier coefficients; it is computationally efficient (with
regards to the dimension and size of the sample), and it returns orthogonal
basis functions that adapt to low-dimensional structure in the data distribution.
As a result, there is no need for cumbersome tensor products in high dimensions.

Our work shows that for a Gaussian kernel with a flexible bandwidth, the
computed eigenfunctions form a Fourier-like orthogonal basis for expressing
smoothness relative to the underlying data distribution. More precisely, if a
function is smooth with respect to the data distribution, then it is sparse in the
eigenbasis with respect to the L2 norm, and vice versa (Theorem 10). Indeed,
in the limit of the sample size n → ∞, spectral series with a Gaussian kernel
can be seen as a generalization of Fourier series to high dimensions and sparse
structure (Sec. 4).

The two main theorems 13 and 14 provide theoretical bounds on the loss
of the final regression estimator for a standard fixed RKHS setting as well as
a setting where the kernel bandwidth varies with the sample size n. We show
that spectral series regression with a Gaussian kernel is adaptive to intrinsic
dimension when the bandwidth εn → 0 (Corollary 16). In the case of a subman-
ifold with dimension r embedded in R

d, the convergence rate of the estimator
depends on the manifold dimension r rather than the ambient dimension d.
The adaption occurs automatically and does not involve manifold estimation.
Unlike [8], there is also no need to estimate the dimension of the manifold. We
have found that unless the goal is manifold estimation, there is little advantage
in using manifold and local linear regression methods. Such methods quickly be-
come computationally intractable in high dimensions without a prior dimension
reduction. On the other hand, the computational speed of spectral series does
not depend on the ambient or intrinsic dimension of the data. Moreover, it is un-
clear how manifold-based methods behave in more complex settings where there
is sparse structure (e.g., high-density regions and clusters) but no well-defined
submanifold.

Because of the close connection between spectral series and SVMs, we expect
that our new findings (regarding adaptiveness, choice of kernel and the band-
width) will apply to kernel-based regularized empirical risk minimizers as well.
Indeed, our empirical results (Tables 1 and 2) confirm that the performance
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of KRR using a Gaussian kernel with a flexible bandwidth is similar to that
of spectral series regression. This suggests that one can exploit the advantages
of spectral series in terms of interpretation, visualization, and analysis without
any real down-sides. In the process of analyzing the performance of the spectral
series estimator, we shed light on the empirical success of SVMs for sparse data,
and we unify ideas from Fourier analysis, kernel machine learning and spectral
clustering.

Future work includes deriving tighter bounds for the convergence rate of
spectral series and kernel-based empirical regularizers. We believe that our es-
timated rates are on the conservative side as our derivations assume that the
eigenvectors need to be accurately estimated. Empirical experiments, however,
indicate that spectral series with approximate eigenvectors already outperform
the k-nearest neighbor estimator which is minimax optimal with respect to local
intrinsic dimension [31]. In separate papers [27, 28], we will discuss extensions
of spectral series to estimating other unknown functions (e.g., conditional den-
sities, density ratios and likelihoods) for high-dimensional complex data and
distributions. Another interesting research question is whether one can further
improve the performance of spectral series approaches by adaptive basis selec-
tion and nonlinear estimators that threshold the series expansion coefficients
|β̂j | as in wavelet thresholding [35].

In the online supplementary materials ([29]), we include sample R code for the
spectral series estimator. This code has however not been optimized for speed,
as we will leave the large-scale deployment on parallel platforms to future work.

Appendix A: Proofs for bounds on the regression estimator

We start by stating some useful lemmas.

Lemma 17. [12, Proposition 3] For f ∈ C3(X ) and x ∈ X \ ∂X ,

− lim
ε→0

G∗
ε = �.

If X is a compact C∞ submanifold of Rd, then � is the psd Laplace-Beltrami

operator of X defined by �f(x) = −
∑r

j=1
∂2f
∂s2j

(x), where (s1, . . . , sr) are the

normal coordinates of the tangent plane at x.

Lemma 18. ∀x ∈ X ,
a

b
≤ sε(x) ≤

b

a

Proof. ∀x ∈ X ,

infx∈X pε(x)

supx∈X pε(x)
≤ sε(x) ≤

supx∈X pε(x)

infx∈X pε(x)
,

where a
∫
Xkε(x, y)dy ≤ pε(x) ≤ b

∫
Xkε(x, y)dy.
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Lemma 19. For f ∈ L2(X , P ),

Lbias ≤
b

a

∑
j>J

|βε,j |2.

Proof. From the orthogonality property of the basis functions ψj , we have that∫
X
|f(x)− fε,J (x)|2dSε(x) =

∑
j>J

|βε,j |2.

The result follows from Lemma 18.

Lemma 20. Under the same assumptions as in Proposition 11, it holds that

‖ϕε,j − ϕ̂ε,j‖L2(X ,P ) = OP

(
γn
δε,j

)
,

where γn =
√

log(1/εn)

nε
d/2
n

and δε,j = λε,j − λε,j+1.

Proof. From [19], supx |p̂ε(x)− pε(x)| = OP (γn). Hence,

sup
x

|ŝε(x)− sε(x)| = OP (γn).

By using Proposition 11, we conclude that∫
X
|ψ̂ε,j(x)|2dP (x) ≤ 2

∫
X
|ψ̂ε,j(x)− ψε,j(x)|2dP (x) + 2

∫
X
|ψε,j(x)|2dP (x)

= OP

(
γ2
n

δ2ε,j

)
+ C,

where C is a constant. Write

|ϕε,j(x)− ϕ̂ε,j(x)|2 = |ψε,j(x)sε(x)− ψ̂ε,j(x)ŝε(x)|2

≤ 2|ψε,j(x)− ψ̂ε,j(x)|2|sε(x)|2 + 2|sε(x)− ŝε(x)|2|ψ̂ε,j(x)|2.

Hence,

‖ϕε,j − ϕ̂ε,j‖2L2(X ,P ) ≤ 2 sup
x

|sε(x)|2 ‖ψ̂ε,j − ψε,j‖2L2(X ,P )

+ 2 sup
x

|ŝε(x)− sε(x)|2 ‖ψ̂ε,j‖2L2(X ,P )

= OP

(
γ2
n

δ2ε,j

)
+OP (γ

2
n)

(
OP

(
γ2
n

δ2ε,j

)
+ C

)

= OP

(
γ2
n

δ2ε,j

)
.
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Lemma 21. ∀ 0 ≤ j ≤ J , it holds that∣∣∣∣∣ 1n
n∑

i=1

Yi(ϕ̂ε,j(Xi)−ϕε,j(Xi))−
∫
X
f(x)(ϕ̂ε,j(x)−ϕε,j(x))dP (x)

∣∣∣∣∣=OP

(
1√
n

)
.

Proof. Let S = 1
n

∑n
i=1 Yi(ϕ̂ε,j(Xi) − ϕε,j(Xi)) and I =

∫
X f(x)(ϕ̂ε,j(x) −

ϕε,j(x))dP (x). According to Chebyshev’s inequality, for any M > 0,

P

(
|S − I| ≥ M | X̃1, . . . , X̃n

)
≤

V

(
S − I|X̃1, . . . , X̃n

)
M2

≤
V

(
Y1(ϕ̂ε,j(X1)− ϕε,j(X1)) | X̃1, . . . , X̃n

)
nM2

.

Hence, for any M > 0,

P (|S − I| ≥ M) ≤ V (Y1(ϕ̂ε,j(X1)− ϕε,j(X1)))

nM2

≤ σ

nM2

(
E|ϕ̂ε,j(X1)− ϕε,j(X1)|2

)1/2
,

where we in the last inequality apply the Cauchy-Schwarz inequality. Under
assumption (A4), we conclude the result of the lemma.

A.1. Bias

Proof of Proposition 5. Let ψ̃ε,0, ψ̃ε,1, . . . be the eigenfunctions of the sym-

metric operator Ãε(f)(x) =
∫
X ãε(x, y)f(y)dP (y). It follows from Mercer’s the-

orem that

Hε,M =

⎧⎨⎩f =
∑
j

γε,jψ̃ε,j :
∑
j

|γε,j |2
λε,j

≤ M

⎫⎬⎭ .

If f ∈ Hε,M , then we can bound the bias with respect to the eigenbasis ψ̃:∑
j>J

|γε,j |2 ≤ λε,J

∑
j>J

|γε,j |2
λε,j

≤ λε,J

∑
j

|γε,j |2
λε,j

≤ Mλε,J .

By construction,

γε,j =

∫
X
f(x)ψ̃ε,j(x)dP (x)

and

βε,j =

∫
X
f(x)ψε,j(x)dSε(x) =

∫
X
f(x)ψ̃ε,j(x)

√
sε(x)dP (x) ≤

√
b

a
|γε,j |.

Thus,
∑

j>J |βε,j |2 ≤ b
a

∑
j>J |γε,j |2 = O(Mλε,J ). The result follows from

Lemma 19.
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Proof of Proposition 6. Note that Jε(f) =
∑

j ν
2
ε,j |βε,j |2. Hence,

Jε(f)

ν2ε,J+1

=
∑
j

ν2ε,j
ν2ε,J+1

|βε,j |2 ≥
∑
j>J

ν2ε,j
ν2ε,J+1

|βε,j |2 ≥
∫
X
|f(x)− fε,J(x)|2dSε(x).

The last result follows from Lemma 19.

Proof of Lemma 8. By Green’s first identity∫
X
f ∇2fdS(x) +

∫
X
∇f · ∇fdS(x) =

∮
∂X

f(n · ∇f)dS(x) = 0,

where n is the normal direction to the boundary ∂X , and the last surface integral
vanishes due to the Neumann boundary condition. It follows from Lemma 17
that

lim
ε→0

J ∗
ε (f) = − lim

ε→0

∫
X
f(x)G∗

εf(x)dSε(x)

=

∫
X
f(x)�f(x)dS(x) =

∫
X
‖∇f(x)‖2dS(x).

Proof of Theorem 10. We have that

c2 ≥
∫
X
‖∇f(x)‖2dS(x) =

∫
X
f(x)�f(x)dS(x) =

∑
j

ν2j β
2
j ,

where ν2j = O(j2s). Hence, f ∈ WB(s, c) and by Theorem 9.1 in [35], ‖f−fJ‖2 =

o(J−2s).

A.2. Variance

LetH be an auxiliary RKHS of smooth functions; we use the term “auxiliary”
to denote that the space only enters the intermediate derivations and plays no
role in the error analysis of the algorithm itself. We define the two integral
operators AH, ÂH : H → H where

AHf(x) =

∫
kε(x, y)〈f,K(·, y)〉HdP (y)∫

kε(x, y)dP (y)
=

∫
aε(x, y)〈f,K(·, y)〉H dP (y)

ÂHf(x) =

∑n
i=1 kε(x,Xi)〈f,K(·, Xi)〉H∑n

i=1 kε(x,Xi)
=

∫
âε(x, y)〈f,K(·, y)〉H dP̂n(y),

and K is the reproducing kernel of H. Define the operator norm ‖A‖H =
supf∈H ‖Af‖H/‖f‖H where ‖f‖2H = 〈f, f〉H. Now suppose the weight func-
tion kε is sufficiently smooth with respect to H (Assumption 1 in [44]); this
condition is for example satisfied by a Gaussian kernel on a compact support
X . By Propositions 13.3 and 14.3 in [44], we can then relate the functions ψε,j
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and ψ̂ε,j , respectively, to the eigenfunctions uε,j and ûε,j of AH and ÂH. We
have that

‖ψε,j − ψ̂ε,j‖L2(X ,P ) = C1‖uε,j − ûε,j‖L2(X ,P ) ≤ C2‖uε,j − ûε,j‖H (30)

for some constants C1 and C2. According to Theorem 6 in [43] for eigenprojec-
tions of positive compact operators, it holds that

‖uε,j − ûε,j‖H ≤ ‖AH − ÂH‖H
δε,j

, (31)

where δε,j is proportional to the eigengap λε,j−λε,j+1. As a result, we can bound

the difference ‖ψε,j − ψ̂ε,j‖L2(X ,P ) by controlling the deviation ‖AH − ÂH‖H.
We choose the auxiliary RKHS H to be a Sobolev space with a sufficiently

high degree of smoothness (see below for details). Let Hs denote the Sobolev
space of order s with vanishing gradients at the boundary; that is, let

Hs = {f ∈ L2(X ) | Dαf ∈ L2(X ) ∀|α| ≤ s, Dαf |∂X = 0 ∀|α| = 1},

where Dαf is the weak partial derivative of f with respect to the multi-index
α, and L2(X ) is the space of square integrable functions with respect to the
Lebesgue measure. Let C3

b (X ) be the set of uniformly bounded, three times dif-
ferentiable functions with uniformly bounded derivatives whose gradients van-
ish at the boundary. Now consider H ⊂ Hs and choose s large enough so that
Dαf ∈ C3

b (X ) for all f ∈ H and |α| = s. Under assumptions (A1)-(A4), we
derive the following result:

Lemma 22. Let εn → 0 and nε
d/2
n / log(1/εn) → ∞. Then ‖AH − ÂH‖H =

OP (γn), where γn =
√

log(1/εn)

nε
d/2
n

.

Proof. Uniformly, for all f ∈ C3
b (X ), and all x in the support of P ,

|Aεf(x)− Âεf(x)| ≤ |Aεf(x)− Ãεf(x)|+ |Ãεf(x)− Âεf(x)|

where Ãεf(x) =
∫
âε(x, y)f(y)dP (y). From [19],

sup
x

|p̂ε(x)− pε(x)|
|p̂ε(x)pε(x)|

= OP (γn).

Hence,

|Aεf(x)− Ãεf(x)| ≤ |p̂ε(x)− pε(x)|
|p̂ε(x)pε(x)|

∫
|f(y)|kε(x, y)dP (y)

= OP (γn)

∫
|f(y)|kε(x, y)dP (y)

= OP (γn).

Next, we bound Ãεf(x)− Âεf(x). We have

Ãεf(x)− Âεf(x) =

∫
f(y)âε(x, y)(dP̂n(y)− dP (y))
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=
1

p(x) + oP (1)

∫
f(y)kε(x, y)(dP̂n(y)− dP (y)).

Now, expand f(y) = f(x) + rn(y) where rn(y) = (y − x)T∇f(uy) and uy is
between y and x. So,∫

f(y)kε(x, y)(dP̂n(y)− dP (y))

= f(x)

∫
kε(x, y)(dP̂n(y)− dP (y)) +

∫
rn(y)kε(x, y)(dP̂n(y)− dP (y)).

By an application of Talagrand’s inequality to each term, as in Theorem 5.1 of
[20], we have ∫

f(y)kε(x, y)(dP̂n(y)− dP (y)) = OP (γn).

Thus, supf∈C3
b (X ) ‖Âεf −Aεf‖∞ = OP (γn).

The Sobolev space H is a Hilbert space with respect to the scalar product

〈f, g〉H = 〈f, g〉L2(X ) +
∑
|α|=s

〈Dαf,Dαg〉L2(X ).

We have that

sup
f∈H:‖f‖H=1

‖Âεf −Aεf‖2H ≤ sup
f∈H

∑
|α|≤s

‖Dα(Âεf −Aεf)‖2L2(X )

=
∑
|α|≤s

sup
f∈H

‖ÂεD
αf −AεD

αf‖2L2(X )

≤
∑
|α|≤s

sup
f∈C3

b (X )

‖Âεf −Aεf‖2L2(X )

≤ C sup
f∈C3

b (X )

‖Âεf −Aεf‖2∞.

for some constant C. Hence,

sup
f∈H

‖Âεf −Aεf‖H
‖f‖H

= sup
f∈H,‖f‖H=1

‖Âεf −Aεf‖H

≤ C ′ sup
f∈C3

b (X )

‖Âεf −Aεf‖∞ = OP (γn).

Proof of Proposition 11. From Eqs. 30-31, we have that

‖ψε,j − ψ̂ε,j‖L2(X ,P ) ≤ C
‖AH − ÂH‖H
λε,j − λε,j+1

for some constant C that does not depend on n. The result follows from Lem-
ma 22.



458 A. B. Lee and R. Izbicki

Lemma 23. ∀0 ≤ j ≤ J ,

|β̂ε,j − βε,j |2 = OP

(
1

n

)
+OP

(
γ2
n

δ2ε,j

)
.

Proof. Note that ψε,j(x)sε(x) = ϕε,j(x) and

β̂ε,j =
1

n

n∑
i=1

Yiψ̂ε,j(Xi)ŝε(Xi)

=
1

n

n∑
i=1

Yiϕε,j(Xi) +
1

n

n∑
i=1

Yi (ϕ̂ε,j(Xi)− ϕε,j(Xi))

= βε,j +OP

(
1√
n

)
+

1

n

n∑
i=1

Yi (ϕ̂ε,j(Xi)− ϕε,j(Xi)) .

Let S = 1
n

∑n
i=1 Yi (ϕ̂ε,j(Xi)− ϕε,j(Xi)) and I =

∫
X f(x)(ϕ̂ε,j(x) −

ϕε,j(x))dP (x). We conclude that

1

2
|β̂ε,j − βε,j |2 ≤ OP

(
1

n

)
+ |S − I|2 + |I|2

≤ OP

(
1

n

)
+|S − I|2+

(∫
X
|f(x)|2dP (x)

)
‖ϕε,j − ϕ̂ε,j‖2L2(X ,P )

= OP

(
1

n

)
+OP

(
γ2
n

δ2ε,j

)
, (32)

where the second inequality follows from the Cauchy-Schwarz inequality, and
the last equality is due to Lemmas 21 and 20.

Proof of Proposition 12. Let f̃ε,J(x) =
∑J

j=0 βε,jψ̂ε,j(x). Write

|fε,J(Xi)− f̂ε,J (Xi)|2 = |fε,J (Xi)− f̃ε,J (Xi) + f̃ε,J (Xi)− f̂ε,J (Xi)|2

≤ 2|fε,J(Xi)− f̃ε,J (Xi)|2 + 2|f̃ε,J(Xi)− f̂ε,J(Xi)|2.
We bound the contribution to Lvar from each of these two terms separately:

By using Cauchy’s inequality and Proposition 11, we have that∫
X
|fε,J (x)− f̃ε,J (x)|2dP (x) =

∫
X

∣∣∣∣∣∣
J∑

j=0

βε,j(ψε,j(x)− ψ̂ε,j(x))

∣∣∣∣∣∣
2

dP (x)

≤

⎛⎝ J∑
j=0

|βε,j |2
⎞⎠ ·

J∑
j=0

(∫
X
|ψε,j(x)− ψ̂ε,j(x)|2dP (x)

)
= J OP

(
γ2
n

Δ2
ε,J

)
.

By construction, it holds that 1
n

∑
i ψ̂ε,j(X̃i)ψ̂ε,�(X̃i)ŝε(X̃i) = δj,�. Further-

more,∫
X
ψ̂ε,j(x)ψ̂ε,�(x)dŜε(x) =

1

n

∑
i

ψ̂ε,j(Xi)ψ̂ε,�(Xi)ŝε(Xi) +OP

(
1√
n

)
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=
1

n

∑
i

ψ̂ε,j(X̃i)ψ̂ε,�(X̃i)ŝε(X̃i) +OP

(
1√
n

)
= δj,� +OP

(
1√
n

)
.

for a sample X1, . . . , Xn drawn independently from X̃1, . . . , X̃n. Finally, from
the orthogonality property of the ψ̂ε,j ’s together with Lemmas 23 and 18, it
follows that∫

X
|f̃ε,J(x)− f̂ε,J (x)|2dP (x)

=

∫
X

1

ŝε(x)

∣∣∣∣∣∣
J∑

j=0

(βε,j − β̂ε,j)ψ̂ε,j(x)
√

ŝε(x)

∣∣∣∣∣∣
2

dP (x)

=

∫
X

1

ŝε(x)

⎛⎝ J∑
j=0

(βε,j − β̂ε,j)
2ψ̂2

ε,j(x)dŜε(x)

⎞⎠
+

∫
X

1

ŝε(x)

⎛⎝ J∑
j=0

J∑
�=0,��=j

(βε,j − β̂ε,j)(βε,� − β̂ε,�)ψ̂ε,j(x)ψ̂ε,�(x)dŜε(x)

⎞⎠
≤ b

a

J∑
j=0

(βε,j − β̂ε,j)
2

(∫
X
ψ̂2
ε,j(x)dŜε(x)

)

+
b

a

J∑
j=0

J∑
�=0,��=j

(βε,j − β̂ε,j)(βε,� − β̂ε,�)

(∫
X
ψ̂ε,j(x)ψ̂ε,�(x)dŜε(x)

)

=
b

a

J∑
j=0

(βε,j − β̂ε,j)
2

(
1 +OP

(
1√
n

))

+
b

a

J∑
j=0

J∑
�=0,��=j

(βε,j − β̂ε,j)(βε,� − β̂ε,�) OP

(
1√
n

)

= J

(
OP

(
1

n

)
+OP

(
γ2
n

Δ2
ε,J

))
.

The result follows.

Acknowledgments

We are grateful to Ronald R. Coifman, Stéphane Lafon, and Larry Wasserman
for the original discussions that led to this work. We would also like to thank
Peter Freeman, Cosma Shalizi and Ryan Tibshirani for insightful comments on
an earlier manuscript. This work was partially supported by the Estella Loomis
McCandless Professorship, Conselho Nacional de Desenvolvimento Cient́ıfico e



460 A. B. Lee and R. Izbicki

Tecnológico (grant 200959/2010-7), Fundação de Amparo à Pesquisa do Estado
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