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Abstract: Scoring functions are used to evaluate and compare partially
probabilistic forecasts. We investigate the use of rank-sum functions such as
empirical Area Under the Curve (AUC), a widely used measure of classifi-
cation performance, as a scoring function for the prediction of probabilities
of a set of binary outcomes. It is shown that the AUC is not generally a
proper scoring function, that is, under certain circumstances it is possible
to improve on the expected AUC by modifying the quoted probabilities
from their true values. However with some restrictions, or with certain
modifications, it can be made proper.
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1. Introduction

Predicting the outcome of a vector of binary variates is a common problem
across a variety of application domains, such as fraud detection, credit risk eval-
uation, medical diagnostics and weather forecasting. Such forecasts typically
carry some information describing the uncertainty of the forecaster, such as as-
signing explicit probabilities or some other numerical value to each variable that
allows the variables to be ranked in order of relative probability of occurrence.

This note investigates numerical measures for evaluating and comparing the
accuracy of such forecasts. Although such measures have always been important
for comparing algorithms, their role has become increasingly important with the
popularity of prediction competitions, where it is necessary to precisely quantify
the accuracy of various predictions. In particular, we extend the framework of
scoring functions, developed by Gneiting [6], which maps the prediction and sub-
sequent observation to a single real number, the score, representing the reward
to the forecaster. The aim of the forecaster is then to maximise this reward.

Scoring functions can be viewed as extensions of scoring rules (section 2.1),
which require that the forecast be fully probabilistic, providing a full joint prob-
ability distribution over the set of all possible outcomes, which can be infeasible
and unnecessary in many situations. Scoring functions (section 2.2) on the other
hand can make use of partial probabilistic information such as marginal distri-
butions, or rankings of expected values. One desirable feature of both scoring
rules and scoring functions is that they be proper : that the forecaster always has
the incentive to be honest, in that the forecast which maximises their expected
score matches their true belief.

The central contribution of this note is on a class of scoring functions termed
rank-sum functions (section 3), the most well-known of which is the area under
the curve (AUC), the curve in question being the receiver operating charac-
teristic (ROC). The ROC and AUC describe the usefulness of the forecast in
terms of its ability to discriminate between positive and negative outcomes. We
note that we specifically interested in the empirical AUC, and not the theoreti-
cal quantity that is perhaps more often studied: this distinction is explained in
detail in section 3.1.

The main results (section 3.2) identify sufficient conditions for rank-sum scor-
ing functions to be proper for evaluating the accuracy of forecasts of the marginal
probabilities of a sequence of binary forecasts. In general, the AUC is not of this
class, and two counterexamples are provided of cases in which the AUC is not a
proper scoring function, in that there exist distributions under which the fore-
caster might improve their expected score by quoting probabilities different than
their true belief.

We consider various ways in which the framework can be extended (section 4),
such as a sequential setting (section 4.1), and the case where the forecaster is
required to provide a mapping that indirectly makes predictions from an as-yet
unobserved covariate (section 4.2). Finally, we discuss some open questions and
possible future research directions (section 5).
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2. Scoring of forecasts for binary outcomes

2.1. Scoring rules

Consider the setting where one is eliciting forecasts about some future outcome
Y that takes values in an outcome space Y . A probabilistic forecast is a distri-
bution Q for Y that describes the forecasters uncertainty of Y . We define F to
be a family of distributions over Y that are under consideration.

After the actual outcome Y = y is observed, the reward to the forecaster is
determined by a scoring rule [7], a function S : Y × F → R, that maps the
quoted Q and observed outcome y to a real number S(y,Q) termed the score.
We take scoring rules to be positively oriented, that is the score represents the
reward to the forecaster, who therefore aims to maximise this quantity. In a
decision theoretic context, the negation of the score can be considered a loss
function. Mathematically, the problem can be precisely phrased in the form of
a game between a Forecaster and Nature [4].

For any P ∈ F , the expected score is EP [S(Y,Q)], where Y is generated
from P . A scoring rule S is defined to be proper if an optimal strategy for the
forecaster is to quote a distribution that matches their actual uncertainty, that
is, if for all Q,P ∈ F ,

EP [S(Y,Q)] ≤ EP [S(Y, P )]. (2.1)

Additionally, S is termed strictly proper if this is the only optimal strategy, i.e.
(2.1) is an equality only if Q = P . Proper scoring rules for discrete variables have
been extensively studied [e.g. 4]; common examples include the Brier, spherical
and the log scores.

In this note, we will consider the outcome space to be a vector of binary
variables,

Y = (Y1, . . . , Yn) ∈ Y = {0, 1}n.

In this case, the distribution Q takes values on Δ2n−1, the (2
n− 1)-dimensional

unit simplex. If the family F is the set of all such distributions, then for large
values of n this can place a large burden in terms of time and resources in
constructing, communicating and evaluating the score of the forecast. This mo-
tivates a more flexible framework.

2.2. Scoring functions

Gneiting [6] introduced the concept of a scoring function for evaluating point
forecasts. We now show how this idea can be extended to a more general setting,
of what we term partially probabilistic forecasts, which aims to capture some of
the uncertainty.

Suppose that instead of supplying a full probability distribution Q from a
family F , we require forecaster to quote an element from an arbitrary set Z,
which we will term the prediction space. Then a scoring function is a mapping
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of the form s : Y ×Z → R (Gneiting [6] considered only the case where Z = Y ,
though much of that work extends directly to the more general setting).

The price of this generality is that we now need an additional object to specify
the aspects of the forecasters uncertainty that we want to capture. This can be
described by a (statistical) functional, a possibly set-valued function, T : F → Z
or T : F → ℘Z, where ℘Z denotes the power set of Z.

A scoring function s is then said to be T -proper (Gneiting [6] uses the term
consistent) if for all P ∈ F , and all u ∈ Z,

EP [s(Y, u)] ≤ EP [s(Y, T (P ))] (2.2)

for Z-valued functional T , or for a set-valued functional T ,

EP [s(Y, u)] ≤ EP [s(Y, t)] for all t ∈ T (P ). (2.3)

Furthermore, we can define s to be strictly T -proper if equality holds only if
u = T (P ) or u ∈ T (P ), respectively. Note that the condition in (2.3) implies
that for any T -proper scoring function s of a set-valued functional, the expected
score EP [s(Y, t)] must be constant for all t ∈ T (P ).

The functional can be interpreted as a summary of a full probabilistic forecast.
Indeed, there is a strong link between scoring functions and scoring rules, in that
a functional and (strictly) proper scoring function defines a (strictly) proper
scoring rule [6, Theorem 3].

Our central focus is on two specific classes of functionals for distributions on
Y = {0, 1}n.

2.2.1. Marginal scoring

Definition 1. The marginal functional M maps a joint distribution to the
marginal probabilities of each element of Y ,

M(P ) = EP [Y ] =
(
P [Y1 = 1], . . . , P [Yn = 1]

)
.

This functional reduces the (2n − 1)-dimensional distribution space to the n-
dimensional prediction space Z = [0, 1]n.

We can easily construct scoring functions for the marginal functional as func-
tions of scoring rules for the individual elements of Y .

Theorem 1. Let Si : {0, 1} × [0, 1] → R be a scoring rule for a single binary
outcome, such as the logarithmic, quadratic or Brier score. Then the scoring
function

s(y,m) =

n∑
i=1

Si(yi,mi)

is (strictly) M -proper if each of the Si are (strictly) proper.

Proof. Each Si can be maximised independently by choosing mi = E[Yi].



384 S. Byrne

2.2.2. Rank scoring

Recall that a total preorder is a transitive and reflexive relation � such that for
any pair i, j, at least one of i � j or j � i. Given such a �, we can define i ∼ j
as the symmetric relation i � j and i � j and i ≺ j as the asymmetric relation
i �� j (which due to totality, implies i � j). Note � also implies a total ordering
of the equivalence classes under ∼.

Define Ξn to be the set of total preorders on the set of indices I = {1, . . . , n},
then any vector v ∈ R

n induces an element of �v∈ Ξn by

i � j ⇔ vi ≤ vj .

Definition 2. The exact rank functional R : F → Ξn maps a joint distribution
to the total preorder induced by the marginal functional M .

The exact rank functional can also be characterised in terms of pairwise
comparisons.

Proposition 2. Let �= R(P ) for some distribution P on Y. Then

i � j ⇔ P [Yi > Yj ] ≤ P [Yi < Yj ].

Proof. By adding P [Yi = 1, Yj = 1] to both sides, we have that

P [Yi = 1, Yj = 0] ≤ P [Yi = 0, Yj = 1] ⇔ P [Yi = 1] ≤ P [Yj = 1]

In the case where all the elements of M(P ) are unique, R(P ) is a total order.
We define Ωn ⊆ Ξn to be the set of all total orders on I.

Note that the exact rank functional requires that ties (E[Yi] = E[Yj ]) be
identified exactly. We define a weaker notion under which the ties can be ignored.
A relation �′ is contained in a relation � if �′⊆�, that is, if i �′ j implies that
i � j.

Definition 3. The weak rank functional R∗ : F → ℘Ξn is the set-valued
functional that maps a probability distribution to the set of total preorders
contained in the exact rank functional:

R∗(P ) = {�∈ Ξn :�⊆ R(P )}.

As a result, if all elements of M(P ) are unique, then R∗(P ) = {R(P )}, and
conversely if all the elements of M(P ) are equal, then R∗(P ) = Ξn.

Given an R∗-proper scoring function s, we can construct a M -proper scoring
function s′, via s′(y,m) = s(y,�m). Of course, such a scoring function can
never be strictly M -proper, as �m is preserved under any monotonic increasing
transformation.

An advantage of rank-based scoring functions is that they allow the use of
more abstract measures of propensity other than probability, and make it pos-
sible to compare forecasts generated by a wide variety of algorithms, whose
outputs need not necessarily have a direct probabilistic interpretation. The
downside is that we lose the ability to say anything about the calibration of
the forecaster.
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3. Rank-sum scoring functions

We now consider a particular class of rank-based scoring functions. For any
total preorder �, we define its rank vector ρ : Ξn → R

n to be the net number
of elements that precede each element,

ρi(�) =

n∑
j=1

1j�i − 1j�i

We will consider the class rank-sum scoring functions, of the form

s(y,�) = g(y) +

n∑
i=1

σi(y)ρi(�). (3.1)

for some functions g and σ = (σi)i=1,...,n

Example 1 (Wilcoxon–Mann–Whitney u). The most well-known example of
such a function is the Wilcoxon–Mann–Whitney u, commonly used as a non-
parametric test statistic for comparing magnitude of two random variables. It is
defined as the number of times observations where yi = 0 precede observations
where yi = 1, with ties counting as half

u(y,�) =
∑

i:yi=0

∑
j:yj=1

1i≺j +
1
21i∼j . (3.2)

The term inside the summation is equal to 1
2 [1 + 1i�j − 1i�j ], and so

u(y,�) = 1
2n0(y)n1(y) +

1
2

n∑
i,j=1

yi(1− yj)(1i�j − 1i�j).

where n1(y) =
∑n

i=1 yi, and n0(y) = n − n1(y). By symmetry, we have that∑
i,j(1i�j − 1i�j) = 0, and hence,

u(y,�) = 1
2n0(y)n1(y) +

1
2

n∑
i=1

yiρi(�).

For a fixed y, u will take values on the half-integers 0, 1
2 , 1, . . . , n0(y)n1(y).

Example 2 (Area under the curve). The receiver operating characteristic (ROC)
describes the trade-off of sensitivity and specificity (or type I and type II error)
of a preorder, and is calculated by plotting the true positive rate against the
false positive rate that would be obtained by taking different elements of the
preorder as the cutoff.

It can be described as the parametric curve on [0, 1]× [0, 1], starting at (1, 1),
then linearly connecting the points⎛

⎝ ∑
j:yj=0

1j�i

n0(y)
,
∑

j:yj=1

1j�i

n1(y)

⎞
⎠ , (3.3)

for each equivalence class i under ∼, in the order of ≺.
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The area under the curve (AUC) is then the total area under this curve, which
will take values on [0, 1]. It is well-established [e.g. 9] that this is in fact equal
to the Wilcoxon–Mann–Whitney u, standardised by dividing by n0(y)n1(y).

Note that if the outcomes are identical (i.e. y = 0 or 1), then the ROC and
AUC are not properly defined. For convenience, we can define the AUC to be
1/2 in both these cases, however the choice of this constant does not affect any
of the results other than Theorem 3.

As a result, we can write

AUC(y,�)= 1
2 + 1

2

n∑
i=1

αi(y)ρi(�) where αi(y)=

⎧⎨
⎩

yi
n0(y)n1(y)

n1(y) �= 0, n,

0 otherwise.

Also related is the Gini coefficient, g(y,�) = 2AUC(y,�) − 1, which is twice
the net area of the ROC above the diagonal, and takes values on [−1, 1].

3.1. Relation to theoretical AUC

Although the AUC has been widely explored in the literature, much of this work
[e.g. 1, 3, 8, 5] focuses on a related but distinct quantity, which we will term the
theoretical AUC.

Let θ be a joint distribution for a random pair (Xi, Yi), where Xi, taking
values in some set X·, is termed the covariate or feature, and Yi is a single
binary response. For some mapping f : X·→ R, we define the conditional CDFs
Fy(z) = θ[f(Xi) < z | Yi = y]. Then the theoretical ROC replaces the empirical
quantities of (3.3) with their theoretical equivalents,(

1− F0(z), 1− F1(z)
)
, z ∈ R

which again, describes a curve over [0, 1]× [0, 1]. Similarly, the theoretical AUC,
denoted tAUC(θ, f), is the area under this curve.

The theoretical AUC can be rewritten as the conditional expectation [e.g. 3,
Proposition B.2],

tAUC(θ, f) = E

[
1f(X1)>f(X2) +

1
21f(X1)=f(X2) | Y1 = 1, Y2 = 0

]
, (3.4)

where the expectation is with respect to the product measure of θ × θ for
[(X1, Y1), (X2, Y2)].

The relationship between the empirical and theoretical AUCs is well-establish-
ed, though for completeness we clarify the usual presentation [e.g. 1, Lemma 2].

Theorem 3. Let the pairs (X1, Y1), . . . , (Xn, Yn) be independent and identically
distributed as θ, then the expected empirical AUC,

E[AUC(Y,�f(X))] = (1− πn
0 − πn

1 ) tAUC(θ, f) +
1
2 (π

n
0 + πn

1 )

where πc = θ(Yi = c).



Empirical AUC for evaluating probabilistic forecasts 387

Proof. For any vector y �= 0,1, the expectation of (3.2) conditional on Y = y
gives an expression of the form of (3.4), and hence E[AUC(Y,�f(X)) | Y = y] =
tAUC(θ, f).

We emphasise several key differences between the empirical and theoretical
AUC. Firstly, the theoretical AUC is a function of the mapping f from Xi that
is used to induce a ranking on Yi (confusingly, this is itself referred to as a
“scoring function” in the literature).

Another distinction is that the distribution θ is now a hypothetical sampling
model for a single pair (Xi, Yi), whereas the previous distribution P describes
the forecasters uncertainty for a set (Y1, . . . , Yn). We emphasise that these are
distinct concepts: whereas the i.i.d. assumption is typically reasonable in a sam-
pling context, it is extremely unrealistic for describing uncertainty, in that it
would imply that there is absolutely no information to be gained about Yn from
the other Y1, . . . , Yn−1.

Additionally, although the negation of tAUC(θ, f) can still be interpreted as a
loss function in the standard decision-theoretic sense (e.g. for deriving minimax
procedures), tAUC(θ, f) cannot be used as a scoring function as θ is typically
never observed directly.

3.2. Proper rank-sum scoring functions

To determine the propriety of such scoring functions, we utilise the following
key lemma.

Lemma 4. For any fixed vector v ∈ R
n, the quantity

n∑
i=1

viρi(�) (3.5)

is maximised over �∈ Ξn if and only if � is contained in �(v), the preorder
induced by v.

Proof. Firstly, note that if we were to consider only total orders �∈ Ωn, then
the statement is a direct result of the rearrangement inequality. For any total
preorder �∈ Ξn, define A(�) to be the set of total orders contained in �, that
is A(�) = R∗(�) ∩ Ωn. Then for any i, j, by symmetry we have that

1i�j =
1

|A(�)|
∑

�′∈A(�)

1i�′j .

Therefore ρ(�) is the average of all ρ(�′) for �′∈ A(�). It follows then that
(3.5) is is maximised if and only if all such �′ are themselves contained �(v),
which in turn implies that � itself is contained in �(v).

This then leads to our main result.
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Theorem 5. A rank-sum scoring function s of the form in (3.1) is strictly R∗-
proper if and only if �Pσ, the preorder induced by EP [σi(Y )], is an element of
R∗(P ) for all P ∈ F .

Proof. By the linearity of expectation, we have that

EP [s(Y,�)] = EP [g(Y )] +

n∑
i=1

EP [σi(Y )]ρi(�).

By Lemma 4, this can be maximised by any � contained in �Pσ. These are all
elements of R∗(P ) if and only if �Pσ itself is in R∗(P ).

Consequently, the Wilcoxon–Mann–Whitney u function is a strictlyR∗-proper
scoring function, however the same cannot be said of the AUC.

Example 3. Define the distribution P on (Y1, Y2, Y3, Y4) with the following
non-zero probabilities:

P (1, 1, 0, 0) = 1
2 , P (0, 0, 1, 0) = 7

16 , P (0, 0, 0, 1) = 1
16 .

Then defining α as in Example 2, we have that

E[Y ] =
(
1
2 ,

1
2 ,

7
16 ,

1
16

)
and E[α(Y )] =

(
1
8 ,

1
8 ,

7
48 ,

1
48

)
.

Define �P and �α as the preorders induced by E[Y ] and E[α(Y )], respectively.
Then ρ(�P ) = (2, 2,−1,−3) and ρ(�α) = (0, 0, 3,−3), with expected AUCs

E[AUC(Y,�P )] =
31
48 < E[AUC(Y,�α)] =

33
48 .

This rather contrived example is illustrative of how the problem arises, namely
the denominator of α can alter the relative importance of certain outcomes. Nev-
ertheless, there exist certain families F under which AUC is indeed proper.

Theorem 6. If the number of positive outcomes n1(Y ) is almost surely constant
for all P ∈ F , then AUC is a strictly R∗-proper scoring function.

Proof. If n1(Y ) = r almost surely, then EP [αi(Y )] = EP [Yi]/
(
(n− r)r

)
.

This justifies the use of AUC as a scoring function in cases where the fore-
caster is informed of the number of positive outcomes beforehand. This means
that the forecaster is able to use this information to rule out extreme tail
events that might otherwise have provided a windfall score. For example, in
the IJCNN Social Network Challenge by Kaggle (https://www.kaggle.com/c/
socialNetwork) competitors were required to estimate 8960 binary outcomes
(corresponding to presence/absence of an edge), of which they were informed
that exactly half were positive.

Theorem 7. If the Yi’s are mutually independent under all P ∈ F , then AUC
is a strictly R∗-proper scoring function.

https://www.kaggle.com/c/socialNetwork
https://www.kaggle.com/c/socialNetwork
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Proof. Note that if yi �= yj , then n1(y) = 1 + n
¬(i,j)
1 (y), where n

¬(i,j)
1 (y) =∑

k �=i,j yk, and similarly for n0. Then

αi(y)− αj(y) =
yi − yj

n0(y)n1(y)
=

yi − yj

[1 + n
¬(i,j)
0 (y)][1 + n

¬(i,j)
1 (y)]

,

since if yi = yj , the numerator is zero. Then by mutual independence,

E[αi(Y )]− E[αj(Y )] = (E[Yi]− E[Yj ])E

[
1

[1 + n
¬(i,j)
0 (Y )][1 + n

¬(i,j)
1 (Y )]

]
.

As the latter expectation is strictly positive, it follows that E[αi(Y )] ≤ E[αj(Y )]
if and only if E[Yi] ≤ E[Yj ].

As noted in section 3.1, mutual independence is a somewhat unrealistic con-
dition for scoring functions. Nevertheless, it can be useful when combined with
the following result.

Theorem 8. Let F consist of distributions P such that there is a latent variable
Z whereby

(i) for almost all Z, EP [Y | Z] induces the same preordering as EP [α(Y ) | Z],
and

(ii) this preordering is the same for almost all Z,

then AUC is a strictly proper scoring function for R∗.

Proof. Condition (i) implies that

EP [Yi − Yj | Z] ≥ 0 ⇔ EP [αi(Y )− αj(Y ) | Z] ≥ 0,

and by condition (ii) then,

EP [E[Yi − Yj | Z]] = EP [Yi − Yj ] ≥ 0 ⇔ EP [αi(Y )− αj(Y )] ≥ 0.

This provides a means for showing AUC is proper in more general contexts,
by combining it with one of the previous two theorems to satisfy condition (i).
For example, if θ is a parameter in a Bayesian model, conditional on which the
outcomes are independent (e.g. a logistic regression model), then AUC is proper
for the predictive distributions if (ii) holds.

However these conditions can fail if there is significant uncertainty in the
ordering of the outcomes, which may arise in problems such as out-of-sample
prediction.

Example 4. Suppose that there are two candidate models, A and B, each
weighted with probability 1/2, and the forecaster is to rank 100 outcomes, of
which 10 have a particular feature U present. Suppose that the forecast proba-
bilities are

E[Yi | Ui, A] = 0.4 E[Yi | ¬Ui, A] = 0.5

E[Yi | Ui, B] = 0.95 E[Yi | ¬Ui, B] = 0.9,
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and that outcomes are independent within each model. Then the resulting
marginal probabilities are

E[Yi | Ui] = 0.675 E[Yi | ¬Ui] = 0.7

However using the induced ranking will result in an expected AUC of 0.496,
whereas the opposite ranking will give an expected AUC of 0.504 (see supple-
mentary material [2]).

This example is admittedly rather extreme in the difference between the
candidate models. The fact that such lengths were required suggests that there
may exist some additional weak yet realistic condition under which AUC is
indeed proper.

4. Extensions

4.1. Sequential scoring

We have also only considered the batch prediction setting where the forecaster
is required to provide the preordering for all Y before any outcomes have been
observed. One alternative is a sequential framework, where at each point in
time the forecaster is required to provide a forecast for Yt+1, having already
observed Y1, . . . , Yt. In the ranking case, this requires the forecaster to provide
a total preorder �t+1 on It+1 that is compatible with the one �t provided
on It. Unfortunately, rank-sum scoring functions are essentially useless in this
setting.

Example 5. Let s be any rank-sum scoring rule of the form in (3.1), where
σi(y) = σj(y) if yi = yj , and σi(y) ≥ σj(y) if yi > yj (both u and the AUC
satisfy this property). Then in the sequential setting, it is possible to maintain
an optimal score by choosing �t+1 such that

i ≺t+1 t+ 1 ≺t+1 j for all i, j ≤ t: Yi = 0 and Yj = 1.

By a straightforward application of induction, it is easy to see that such a
sequence exists, and that it will maintain this “perfect separation”, in that all
i where Yi = 1 will always be ranked above all j where Yj = 0. Therefore, by
Lemma 4, this will result in the largest possible score (i.e. an AUC of 1): note
that unlike the previous sections, we refer to actual score, not just the expected
score.

In other words, it is possible to construct an optimal procedure with abso-
lutely no information whatsoever about the process of Yt, and consequently the
the scoring function cannot be proper for any reasonable functional. This prob-
lem will persist in the analogous mapping problem, where the forecaster is free
to choose the mapping ft : X·→ R at each iteration.
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4.2. Scoring functions for mappings

In many forecasting settings, each variable Yi has a corresponding covariate
or feature Xi taking values in some measurable space X·, which can be used
to inform the prediction. In the case where the forecaster is able to observe
the covariates directly, we can assume any relevant information is taken into
account, and thus no additional consideration is required.

However we can also consider the setting in which the forecaster does not
observe the covariates, but is instead required to provide some sort of mapping
from the covariate space X = (X·)n to the original prediction space Z for Y
(we use the term mapping so as to distinguish from scoring functions). In other
words, the forecaster is required to make a prediction in the mapping prediction
space

�Z = {f : X → Z}.
Furthermore, any scoring function s : Y ×Z → R has a corresponding mapping
form �s : (X × Y) × �Z → R which is simply s evaluated using the mapping
applied to the observed covariates,

�s
(
(x, y), f

)
= s

(
Y, f(X)

)
.

Similarly, given any statistical functional T : F → Z, we can define the corre-
sponding mapping functional �T : FXY → �Z as the mapping of the conditional
expectation

�T (PXY )(x) = T (PY |X=x),

where PY |X=x denotes the conditional distribution of Y given X = x under P .
That is, the optimal mapping should map each x ∈ X to the optimal prediction
under the conditional distribution PY |X=x.

Theorem 9. Let s be a T -proper scoring function for a family F , then �s is a
�T -proper scoring function for FXY if for each PXY ∈ FXY , there exists a family
of conditional distributions {PY |X=x}x which is a subset of F .

Proof. The expected mapping score is

E

[
�s
(
(x, y), f

)]
= E

[
E

[
s
(
Y, f(X)

)
| X

]]
.

The inner expectation can be maximised for each value of X ∈ X by choosing
f(x) = argmaxz E[s(Y, z) | X], which, as s is T -proper, will be (an element of)
T (PY |X=x).

However we typically don’t want to consider all possible mappings f : X →
Z. Instead, we typically are only interested in mappings that can be applied
coordinate-wise,

f(x) =
(
f·(x1), . . . , f·(xn)

)
, where f· : X·→ R.

In other words, we constrain the mapping such that the forecast for each Yi de-
pends only on its corresponding covariate Xi, and require that this mapping be
the same for all i. Of course, we also need to constrain the family of distributions
to ensure that the marginal mapping is coordinate-wise.
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Theorem 10. Let �F be the set of distributions for (X,Y ) such that

(i) Yi are conditionally independent of X given Xi, and
(ii) the distribution of Yi | Xi is the same for all i.

Then for any M -proper scoring function s for a family F , �s is a �M -proper
scoring function for the set of coordinate-wise mappings if the conditional dis-
tributions PY |X=x are in F .

Proof. By (i) we have that E[Yi | X = x] = E[Yi | Xi = xi], and by (ii) it
follows that this quantity is the same for all i. Therefore the mapping f(x) =
�M(PY |X=x) is coordinate-wise, which by Theorem 9, implies that �s is �M -proper.

Consequently �u, the mapping form of u is �M -proper for any �F satisfying (i)

and (ii). For AUC to be �M -proper, additional conditions are required, such as
mutual independence of elements of Y conditional on X.

5. Discussion

We have shown that AUC is not generally a proper scoring function. However
our counterexamples, Examples 3 and 4, both exhibit quite extreme depen-
dence between outcomes. Therefore, we conjecture that it might be possible to
establish a more relaxed criteria for establishing propriety of AUC, for example,
bounds on correlation or other measures of dependence.
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