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Abstract

We prove that any rooted stationary random graph satisfying a growth condition
and having positive entropy almost surely admits an infinite dimensional space of
bounded harmonic functions. Applications to random infinite planar triangulations
and Delaunay graphs are given.
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1 Introduction

A stationary random graph is a random rooted graph whose distribution is invariant
under re-rooting by a simple random walk. This notion was made explicit by Benjamini
and Curien in [5] motivated by several examples, including the Uniform Infinite Pla-
nar Triangulation/Quadrangulation (UIPT/Q), and previously defined notions such as
unimodular random graphs.

In said work they develop the basic entropy theory for stationary random graphs,
analogous to the well known theory for random walks on finitely generated groups, see
[15]. In particular, they define an entropy and prove that if it is zero then the random
graph almost surely satisfies the Liouville property (i.e. bounded harmonic functions
are constant). The converse implication, that positive entropy implies the existence of
non-constant bounded harmonic functions, was posed as a question, see [5, Remark 3.7].

In this work we answer this question in the afirmative under an additional condition
on the stationary random graph. The hypothesis is the following (see Lemma 5.1):

The expectation of the number of elements of the ball of radius
n grows at most exponentially.

(1)

Our main result is the following (see Theorem 6.2).
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Zero entropy and the Liouville property

Theorem 1.1 (Main Theorem). An ergodic stationary random graph satisfying condition
(1) above, has zero entropy if and only if it satisfies the Liouville property almost surely.
Furthermore, if such a graph has positive entropy, then almost surely it admits an infinite
dimensional space of bounded harmonic functions.

Recent work of Benjamini, Paquette, and Pfeffer implies that the space of bounded
harmonic functions on a stationary random graph must be either infinite or one dimen-
sional (see [6]). This yields an alternate proof of the second part of the above theorem
(using the first part).

From the direct implication, which was already proved in their paper, Benjamini and
Curien proved that the Uniform Infinite Planar Quadrangulation almost surely satisfies
the Liouville property. With the extension given by our result above, it is possible to
deduce that certain stationary random graphs admit many bounded harmonic functions.
We will discuss in Section 7 a few such examples, like the κ-Markovian infinite planar
triangulations, introduced recently by Curien in [9], and the Hyperbolic Poisson-Delaunay
graph.

An important difficulty in applying the above theorem is the lack of general criteria
for establishing that a stationary random graph has at most exponential volume growth,
even when the distribution of the degree of the root is known to be well behaved. In
most cases where the growth of a stationary graph is known (e.g. the Uniform Infinite
Planar Quadrangulation, or the Hyperbolic Poisson-Delaunay graph) it seems to have
been established by ad-hoc, and some times very intricate, arguments. Thus, the authors
consider the following question to be important:

Question 1.2. Given a stationary random graph such that the degree of the root is well
behaved. Under what conditions can one deduce that the graph has at most exponential
volume growth?

To the best of the author’s knowledge there is no widely applicable answer to the
above question available in the literature. We discuss two relevant partial results in
Section 7.2. First, we give an example, due to Asaf Nachmias, of a stationary random
graph with super-exponential growth such that the degree of the root has finite mean, and
in fact is comparable to a Poisson variable. The example also has the special property
that the degree of the root determines the entire graph up to rooted isomorphism.
Second, we prove that for unimodular graphs whose root has finite expectation, if the
number of elements at distance n from the root is asymptotically independent from the
degree of the root, then the graph has at most exponential growth (see Lemma 7.4).

Our proof of the Main Theorem involves a corollary of Derriennic’s zero-two law, a
sharp criterion for equivalence of the tail and invariant events of a Markov chain (see
Corollary 3.2), and a “looping” argument which allows us to avoid parity problems (see
Figure 1). In order to show that our results are valid for graphs with unbounded degree,
we improve the inequalities between the linear drift and entropy from [5, Proposition
3.6] with essentially the same proof (see Lemma 5.1). To show that positive entropy
implies that the space of bounded harmonic functions is infinite dimensional, we relate
the dimension of this space to the mutual information between the first m steps of a
random walk and its tail behavior (see Lemma 4.1).

This occupies the first few sections of the paper. In section 7 we discuss examples
and applications of the main theorem to several examples, many of which were already
known.

2 Tail and invariant events

In this section we introduce the terminology and notation to be used in the rest of
the article. Throughout this article we use the word “graph” as a synonym for connected
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Zero entropy and the Liouville property

locally finite (i.e. each vertex has finite degree) undirected graph. If X is a graph, we
denote by V (X) the set of vertices of X and by E(X) the set of edges. We allow multiple
edges and loops.

Consider for any graph X, the path space Ω whose elements are sequences ω =

(x0, x1, . . .) of vertices with the property that xn is a neighbor of xn+1 for all n ≥ 0.
The space Ω when endowed with the topology of coordinate-wise convergence is a
Polish space. We define the one step transition probability p(x, y) between two vertices
x, y ∈ V (X) by

p(x, y) =
number of edges connecting x to y

deg(x)
,

where edges connecting x to x are only counted once in the denominator. The n-th step
transition probability pn(x, y) is defined by

pn(x, y) =
∑

x1,...,xn−1

p(x, x1)p(x1, x2) · · · p(xn−1, y).

For each x ∈ V (X), the distribution of the simple random walk starting at x is the unique
Borel probability Px on Ω which satisfies

Px(x0 = x, x1 = a1, . . . , xn = an) = p(x, a1)p(a1, a2) · · · p(an−1, an)

for all sequences a1, . . . , an ∈ V (X). A simple random walk on X is a V (X) valued
random process xn, indexed on n = 0, 1, . . ., whose distribution is of the form∑

x∈V (X)

µ(x)Px,

where the initial distribution of the walk µ is a probability on V (X).
For each n, let Fn be the σ-algebra on Ω generated by xn, xn+1, . . .. The tail σ algebra

F∞ is defined by
F∞ =

⋂
n

Fn,

while the invariant σ-algebra is defined by

F inv = {A ∈ F∞ : ω = (x0, x1, . . .) ∈ A if and only if ω′ = (x1, x2, . . .) ∈ A}.

Suppose xn is a simple random walk on X whose distribution we denote by P. We
say that the tail and invariant σ-algebras are equivalent with respect to xn if for each
A ∈ F∞, there exists B ∈ F inv such that P(A4B) = 0, where 4 denotes symmetric
difference.

Remark 2.1. Consider a graph consisting of a single edge which joins two distinct
vertices x and y. This is a simple example where F∞ and F inv are not equivalent. All
invariant events are trivial. However, the tail event of being at x for all large enough
even times is not invariant and has intermediate probability if the initial distribution
gives positive mass to both vertices.

3 The zero-two law

In this section we discuss the criterion for equivalence of tail and invariant events
proved by Derriennic. For this purpose, define for each vertex x in a graph X, the
quantities

αn(X,x) =
∑

y∈V (X)

|pn+1(x, y)− pn(x, y)|,
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Zero entropy and the Liouville property

and let
α∞(X,x) = lim

n→+∞
αn(X,x).

We restate [10, Théorème 3] in our context.

Theorem 3.1 (Derriennic). Let X be a graph. For each x ∈ V (X), the limit α∞(X,x)

exists and one has
sup
x∈X

α∞(X,x) = 0 or 2.

Furthermore, the above supremum is 0 if and only if F∞ and F inv are equivalent for all
simple random walks on X.

We will need the following consequence of Derrienic’s result for which an independent
proof may be found in [19, Theorem 14.18]. Hence, what follows does not depend on the
full statement of Derrienic’s 0-2 law.

Corollary 3.2. If X is a graph such that p(x, x) ≥ 1/2 for all x ∈ V (X), then F∞ and
F inv are equivalent for every simple random walk on X.

Proof. For each x ∈ V (X), we calculate

αn(X,x) =
∑
y

|pn+1(x, y)− pn(x, y)| =
∑
y

|
∑
z

pn−1(x, z)(p2(z, y)− p(z, y))|

≤
∑
z

pn−1(x, z)
∑
y

|p2(z, y)− p(z, y)| =
∑
z

pn−1(x, z)α1(X, z).

On the other hand one has p2(z, z) ≥ 1/4 and p(z, z) ≥ 1/2, so in particular

α1(X, z) ≤ 2− 1/4,

for all z ∈ Z.
This implies α∞(X,x) ≤ 2 − 1/4 for all x ∈ V (X), so by Theorem 3.1, the tail and

invariant σ-algebras are equivalent for all simple random walks on X, as claimed.

4 Mutual information

The mutual information between two random variables is a non-negative (possibly
infinite) number which quantifies the dependence relationship between them. In particu-
lar, the mutual information is zero if and only if the variables are independent, and is
maximized when both variables coincide.

In this section we consider the mutual information between the first m steps of a
simple random walk and all steps after time n, as well as the mutual information between
the first m steps and the tail behavior of the simple random walk on a graph X. We
review the basic properties relating these quantities to the space of bounded harmonic
functions on the graph (see in particular [8],[11], and [16]). This will be useful later in
our study of entropy of stationary random graphs.

Fix a graph X, a root vertex x ∈ V (X), and recall that Ω denotes the space of paths
(x0, x1, . . .) in X. Denote by Fn the σ-algebra generated by (x0, . . . , xn) for each n.

Let P̂x be the distribution of two identical copies of a simple random walk starting at
x in X, while Px×Px denotes the distribution of two independent random walks starting
at x. Note that both probabilities are defined on Ω× Ω but the former is supported on
the diagonal, while the latter is not (save trivial examples).

Let ϕ be the convex function given by ϕ(t) = t log(t) and ϕ(0) = 0. For m < n ≤ ∞,
the mutual information between Fm and Fn is defined by

Inm(X,x) = sup

{∑
i

ϕ

(
P̂x(Ai)

(Px × Px)(Ai)

)
(Px × Px)(Ai)

}
,
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where the supremum is over all finite partitions of Ω × Ω whose sets Ai belong to
σ(Fm × Fn). It follows from the convexitiy of ϕ, that Inm(X,x) is always defined and
non-negative, and equals zero if and only if P̂x and Px × Px coincide on σ(Fm ×Fn).

Recall that a function f : V (X)→ R is said to be harmonic if

f(y) =
∑

z∈V (X)

p(y, z)f(z)

for all y ∈ V (X). A graph is said to satisfy the Liouville property if and only if all its
bounded harmonic functions are constant. The following result shows that, under mild
hypothesis, the mutual information I∞m (X,x) is directly related to the dimension of the
space of bounded harmonic functions on the graph X.

Lemma 4.1. Let (X,x) be a rooted graph such that F inv and F∞ are equivalent for the
simple random walk starting at x. Then X satisfies the Liouville property if and only if
I∞m (X,x) = 0 for all m. Furthermore, if the space of bounded harmonic functions on X is
finite dimensional and of dimension d, then I∞m (X,x) ≤ log(d) for all m.

Proof. By [8, Theorem 2], the bounded harmonic functions on X are in bijection with
bounded shift invariant measurable functions on the space of paths Ω considered modulo
modifications on Px-null sets. Since F inv and F∞ are equivalent, this implies that X
satisfies the Liouville property if and only if F∞ is trivial.

If F∞ is trivial, then Fm is independent from F∞ for each m, so I∞m (X,x) = 0

as claimed. In the other direction, if I∞m (X,x) = 0 for all m, then Fm and F∞ are
independent. Since one can approximate any tail event by events in Fm (for m large),
we obtain that each tail event is independent from itself. This implies that F∞ is trivial
as claimed.

Suppose now that the space of bounded harmonic functions on X has dimension
d. By Blackwell’s result above, there is a partition B1, . . . , Bd of Ω into disjoint tail
events which are atoms in F∞. By Dobrushin’s Theorem (see [14, Lemma 7.3]), one may
calculate I∞m as the supremum over all partitions of σ(Fm × F∞) of the form Ai × Bj ,
where A1, . . . , An ∈ Fm. For any such partition, one has

∑
i,j

ϕ

(
P̂x(Ai ×Bj)

Px × Px(Ai ×Bj)

)
Px × Px(Ai ×Bj)

=
∑
i,j

ϕ

(
Px(Ai ∩Bj)
Px(Ai)Px(Bj)

)
Px(Ai)Px(Bj)

= −
d∑
j=1

Px(Bj) log (Bj) +
∑
i,j

ϕ

(
Px(Ai ∩Bj)
Px(Ai)

)
Px(Ai)

≤ log(d) +

n∑
i=1

log

 d∑
j=1

Px(Ai ∩Bj)2

Px(Ai)2

Px(Ai)

≤ log(d),

where we use the fact that
∑
j p

2
j < 1 if

∑
j pj = 1 (in our case pj = Px(Ai ∩Bj)/Px(Ai)).

By taking supremum, one obtains I∞m (X,x) ≤ log(d) as claimed.

The following Lemma gives a concrete formula for the mutual information Inm(X,x)

in terms of the transition probabilities of the random walk. It will be used later on when
we consider the asymptotic entropy of random walks on stationary random graphs.

Lemma 4.2. Let (X,x) be a rooted graph. Then the following holds:
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1. For each finite m < n, one has

Inm(X,x) =
∑

y,z∈V (X)

log

(
pn−m(y, z)

pn(x, z)

)
pm(x, y)pn−m(y, z).

2. For each m, the function n 7→ Inm(X,x) is non-increasing and converges to I∞m (X,x)

when n→ +∞.

Proof. By Dobrushin’s Theorem (see [14, Lemma 7.3]), one may take the supremum in
the definition of Inm(X,x) over partitions in a generating set of σ(Fm ×Fn). The subsets
of Ω × Ω consisting of pairs of paths ((xi), (yi)) satisfying x0 = a1, . . . , xm = am, yn =

an, . . . , yN = aN for fixed ai and N > n, generate the necessary σ-algebra, and hence,
we may take the supremum over partitions into sets of this form.

For any fixed N > n > m, consider the partition {Aj} into sets as above, where
a1, . . . , am, an, . . . , aN range over all of V (X). Because of the Markov property one
obtains the same result for all N in the following calculation

∑
j

ϕ

(
P̂x(Aj)

(Px × Px)(Aj)

)
(Px × Px)(Aj) =

∑
an,am

log

(
pn−m(am, an)

pn(x, an)

)
pm(x, am)pn−m(am, an).

This implies the first claim by taking supremum. Since Inm(X,x) is calculated as a supre-
mum over a set of partitions which decreases with n, n 7→ Inm(X,x) is non-increasing,
and the limit

L = lim
n→+∞

Inm(X,x)

exists. It is no smaller than I∞m (X,x). Notice that the formula for Inm(X,x) implies that
Im+1
m (X,x) is finite, and hence so is L.

To simplify notation, fix m and set Gm = σ(Fm × Fn) for each m < n ≤ ∞. By the
Gelfand-Yaglom-Perez Theorem ([24, Theorem 2.4.2] or [14, Lemma 7.4]), one has

Inm(X,x) =

∫
Ω×Ω

ϕ(fn)d(Px × Px),

for all n (including n =∞) where fn is the Radon-Nikodym derivative of P̂x restricted to
Gn relative to Px × Px restricted to the same σ-algebra.

By the reverse martingale convergence theorem (see [12, pg. 483]), one has that
fn → f∞ pointwise when n → +∞. Hence, ϕ(fn) converges to ϕ(f∞) and it suffices
to show that these functions are uniformly integrable to establish that lim Inm(X,x) =

I∞m (X,x).
Since fn = E(fm|Gn), and the conditional expectation is relative to Px × Px, one

obtains by Jensen’s inequality that

e−1 ≤ ϕ(fn) = ϕ(E(fm|Gn)) ≤ E(ϕ(fm)|Gn)),

for all finite n. By the reverse martingale convergence theorem, the right-hand side
converges in L1 to E(ϕ(fm)|G∞)), and therefore, the family ϕ(fn) is uniformly integrable
as claimed. It follows that lim

n→+∞
Inm(X,x) = I∞m (X,x) which concludes the proof.

5 Linear drift and entropy of random graphs

Consider the topological space whose points represent all isomorphism classes of
rooted graphs. A sequence of rooted graphs in this space converges if and only if the
isomorphism type of the ball of each fixed radius around the root is eventually constant.
The resulting space is separable and its topology comes from a complete metric.
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Furthermore, one can construct a larger space consisting of rooted graphs with a
path starting at the root. Given a random graph (X,x), one can find a random element of
the space of graphs with paths (X,x, (x0, x1, . . .)) such that the conditional distribution
of (x0, x1, . . .) given (X,x) is that of a simple random walk on (X,x) starting at x. We call
(X,x, (x0, x1, . . .)) a simple random walk on (X,x). Sometimes we omit (X,x) and just
write xn.

A random graph (X,x) is called stationary if it has the same distribution as (X,x1)

where xn is a simple random walk on (X,x). A stationary random graph is ergodic if the
distribution of the simple random walk on it is an ergodic invariant measure for the shift
transformation

(X,x, (x0, x1, x2, . . .)) 7→ (X,x1, (x1, x2, . . .)).

Let xn be the simple random walk on an ergodic stationary random graph (X,x). By
Kingman’s subadditive ergodic theorem, the limit

`(X,x) = lim
n→+∞

d(x0, xn)

n

exists almost surely and in mean. Here d(x0, xn) denotes the graph distance on the graph
(X,x) between x0 and xn. We call `(X,x) the linear drift of the simple random walk on
(X,x). One obtains trivially that 0 ≤ `(X,x) ≤ 1.

Another important quantity associated to the random walk xn is its entropy. It is
defined as the limit

h(X,x) = lim
n→+∞

− 1

n
log(pn(x0, xn))

which exists almost surely and in L1 (again by Kingman’s theorem) under the condition

−E(log(p(x0, x1)) ≤ E(log(deg(x))) < +∞.

Under a mild assumption on the growth of the random graph one can conclude that
h(X,x) = 0 if and only if `(X,x) = 0. The following proof is almost the same as that of
[5, Proposition 3.6], which itself follows closely preceding results, see the references
preceding [19, Theorem 13.31]. In the following statement, |Br(x)| denotes the number
of elements in the set of vertices at distance r or less from x.

Lemma 5.1. Let (X,x) be an ergodic stationary random graph satisfying the following
assumption

v(X,x) = lim inf
r→+∞

r−1E (log |Br(x)|) < +∞. (5.1)

Then h(X,x) is finite and satisfies the following inequalities

1

2
`(X,x)2 ≤ h(X,x) ≤ `(X,x)v(X,x).

Proof. By the Carne-Varopoulos inequalities (see [19, Theorem 13.4]), one obtains

pr(x0, xr) ≤ 2

(
deg(xr)

deg(x0)

) 1
2

e−
d(x0,xr)2

2r , for all r.

Taking − log and diving by r one obtains

−1

r
log(2)− 1

2r
log(deg(xr)) +

1

2r
log(deg(x0)) +

d(x0, xr)
2

2r2
≤ −1

r
log(pr(x0, xr)), for all r.

Notice that E(log deg(x)) < +∞ by assumption (5.1), and therefore deg(xr)/r → 0

almost surely by Birkhoff’s theorem. Hence taking limit in the above inequality one
obtains

1

2
`(X,x)2 ≤ h(X,x),

as claimed.
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For the upper bound, we use the observation that the function

(p1, . . . , pr) 7→
∑

pi log(1/pi)

is maximized over all p1, . . . , pr ≥ 0, with p1 + · · ·+ pr = 1, when all the pi are equal to
1/r. This yields (see also the proof of [5, Proposition 3.6]) that

−
∑
y

pr(x, y) log(pr(x, y)) ≤ (1− pr) log
∣∣B(`+ε)r(x)

∣∣+ pr log |Br(x)| ,

for all ε > 0. Here ` = `(X,x), and pr = P(d(x0, xr) ≥ (`+ ε)r) goes to 0 when r → +∞.
Dividing by r and taking expectation we have

−1

r
E

(∑
y

pr(x, y) log(pr(x, y))

)
≤ (1− pr)

1

r
E
(
log
∣∣B(`+ε)r(x)

∣∣)+ pr
1

r
E (log |Br(x)|) .

Taking the inferior limit (at this point we use again assumption (5.1)),

h(X,x) ≤ (`+ ε)v(X,x).

Finally, letting ε go to zero, yields the desired upper bound for h(X,x).

6 Bounded harmonic functions and entropy of random graphs

It was shown in [5, Theorem 3.2] that h(X,x) = 0 if and only if almost surely F∞
is trivial for the simple random walk starting at the root of (X,x). It follows that if
h(X,x) = 0, then X almost surely satisfies the Liouville property. The question of
whether the converse always holds was posed in the same paper, see [5, Remark 3.7].
We will settle this question under mild additional hypothesis.

We will show that if (X,x) is an ergodic stationary random graph with positive entropy,
then almost surely the space of bounded harmonic functions on X is infinite dimensional.
In particular, the graph obtained by taking the disjoint union of two copies of Cayley
graph of Z3 and adding an edge joining them cannot occur with positive probability
for any stationary random graph since its space of bounded harmonic functions has
dimension 2. Also, any graph with transitive isomorphism group must either satisfy the
Liouville property or have an infinite dimensional space of bounded harmonic functions.

To begin we express the entropy h(X,x) of a stationary random graph as the average
mutual information between the first step and the tail of the corresponding simple
random walk.

Lemma 6.1. Let (X,x) be an ergodic stationary random graph with finite entropy. Then
for each m, one has

h(X,x) = E

(
1

m
I∞m (X,x)

)
.

Proof. By Lemma 4.2, Inm(X,x) is non-increasing and converges to I∞m (X,x) when n→
+∞. Hence,

E(I∞m (X,x)) = lim
n→+∞

E(Inm(X,x)).

Using the formula from Lemma 4.2 and stationarity, one obtains

E(Inm(X,x)) = E

 ∑
y,z∈X

log

(
pn−m(y, z)

pn(x, z)

)
pm(x, y)pn−m(y, z)


= E

(
log

(
pn−m(xm, xn)

pn(x0, xn)

))
= −E (log (pn(x0, xn))) + E

(
log
(
pn−m(xm, xn)

))
= −E (log (pn(x0, xn))) + E

(
log
(
pn−m(x0, xn−m)

))
.
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Letting Hn = −E(log(pn(x0, xn)), one has obtained that Hn − Hn−m converges mono-
tonely. Since 1

nHn converges to h(X,x), the limit must be mh(X,x) (take the telescoping
sum over n = km for k ∈ N). This concludes the proof.

We can now prove our main theorem.

Theorem 6.2. Let (X,x) be an ergodic stationary random graph satisfying the assump-
tion (5.1) of Lemma 5.1. Then h(X,x) = 0 if and only if almost surely X satisfies the
Liouville property. Furthermore, if h(X,x) > 0, then almost surely the space of bounded
harmonic functions on X is infinite dimensional.

Proof. By Lemma 6.1, for each m, one has

h(X,x) = E

(
1

m
I∞m (X,x)

)
.

Hence, if h(X,x) = 0, then almost surely one has I∞m (X,x) = 0 for all n. By Lemma 4.1,
this implies that (X,x) satisfies the Liouville property almost surely as claimed.

Assume now that h(X,x) > 0. Notice that by Lemma 5.1, the linear drift of the random
walk on (X,x) is positive. We consider a stationary random graph (X ′, x) obtained from
(X,x) by adding deg(y) edges connecting each vertex y to itself (see Figure 1). The
simple random walk on this new random graph differs from the old one by a geometric
waiting time with expectation 2. In particular, the linear drift of the simple random walk
on (X ′, x) is also positive. By Lemma 5.1, this implies h(X ′, x) > 0.

Using Lemma 6.1 as above, one obtains

mh(X ′, x) = E(I∞m (X ′, x)),

so that
P (I∞m (X ′, x) ≥ mh(X ′, x)) > 0.

Notice that (X ′, x) almost surely satisfies the hypothesis of Lemma 3.2, so that F inv and
F∞ are equivalent. Therefore, we may apply Lemma 4.1 and obtain from the inequality
above (choosing m so that mh(X ′, x) > log(d)) that for each d, the probability that (X ′, x)

admits more than d linearly independent bounded harmonic functions is positive. Since
the space of bounded harmonic functions remains unchanged by adding deg(y) loops
at each vertex, one obtains that for each d, the probability that (X,x) admits at least d

Figure 1: The stationary distribution m(x) = deg(x)/
∑

deg(y) of a finite graph does not
change when one adds deg(x) loops at each vertex x. For general stationary random
graphs this process does not affect stationarity.
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linearly independent bounded harmonic functions is positive. Because (X,x) is ergodic,
almost surely the space of bounded harmonic functions on (X,x) is infinite dimensional.
This concludes the proof.

7 Applications

7.1 Random bridges on a tree

As an application of Theorem 6.2 we will construct a stationary random graph whose
random walk has positive linear drift. It follows that almost surely the graph admits an
infinite dimensional space of bounded harmonic functions, a property which, to the best
of our knowledge, is not easily established by other means.

Our random graph is a simplified variant of the Stochastic Hyperbolic Infinite Quad-
rangulation, see [4, Section 6.3]. The difference is that we label edges with only +1 and
−1 (never 0) and we join the vertex at a corner to the first corner such that the sum
along edges is 0 (instead of −1 as in the SHIQ, see Figure 2).

This last modification implies that our random graph is regular, while the SHIQ almost
surely has vertices with arbitrarily large degree. However, our graph is non-planar, and
the new edges connect points which are arbitrarly far away on the tree. In particular,
the graph is not quasi-isometric to the tree. Hence, even though our graph is transient,
having the regular tree as a subgraph [21], the existence of non-constant bounded
harmonic functions does not follow from [7]. In principle the graph might be almost
planar, i.e. admit a quasi-monomorphism onto a planar graph, we conjecture that this is
not the case. We now give the details of the construction.

To begin, take a regular degree three tree T0 with some fixed root x. We consider
this graph embedded in the plane without self crossings so that there is an order (say
clockwise) among the three edges sharing each vertex. We define a corner as the angular
sector between two consecutive edges. There is a partial order on the set of corners
which is given by the clockwise contour of the graph.

A graph (T, x) rooted at x is constructed as follows: A random label +1 or −1 is
chosen with probability 1/2 independently for each edge of T0. For each vertex y and
each corner at y, we add an edge joining y to the vertex z of the first corner in the partial
order such that the sum of labels along the shortest path from y to z is equal to 0. It
follows that the random graph (T, x) is almost surely regular with all vertices of degree 9.

+1

+1

-1

-1

-1

+1

-1

+1

-1

Figure 2: The ball of radius two centered at x in a realization of the random graph (T, x).
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In particular, the assumption (5.1) of Lemma 5.1 is trivially satisfied.

We first show that (T, x) is stationary. We do so by showing that it is unimodular,
which implies stationarity since (T, x) is regular (see below).

Recall that a random rooted graph (X,x) is said to be unimodular if for every function
F , going from the space of isomorphism classes of graphs with two ordered roots to
[0,+∞), one has

E

 ∑
y∈V (X)

F (X,x, y)

 = E

 ∑
y∈V (X)

F (X, y, x)

 .

If a random rooted graph (X,x) defined on some probability space (Ω,F ,P) is unimodular
and E(deg(x)) < +∞, then X is stationary with respect to the probability measure Q
defined by

dQ

dP
(X,x) =

deg(x)

EP(deg(x))
. (7.1)

See for example [5, Section 2.2]. Since P and Q are absolutely continuous, the almost
sure properties of (X,x) coincide with that of a stationary random graph.

Lemma 7.1. The random graph (T, x) just constructed is stationary.

Proof. Suppose L is a random labeling of the sides of the ternary tree. Given a vertex y
in the tree T0, let T (L, x, y) denote the isometry class, in the space of graphs with two
ordered roots, of the graph T obtained from the labeling L with two ordered roots at x
and y respectively.

The claim is that for every function F , going from the space of isomorphism classes
of graphs with two ordered roots to [0,+∞), one has

E

 ∑
y∈V (T0)

F (T (L, x, y))

 = E

 ∑
y∈V (T0)

F (T (L, y, x))

 .

Notice that since the vertices of T are deterministic, it suffices to show that for each
fixed y one has

E (F (T (L, x, y))) = E (F (T (L, y, x))) . (7.2)

To see this, we assume that the underlying ternary tree T0 has been embedded into
the Hyperbolic plane in such a way that all edges have the same length and meet at each
vertex forming 120◦ angles.

Under this assumption the hyperbolic central symmetry with respect to the midpoint
of any edge leaves the graph invariant and hence uniquely determines an isomorphism
of the tree. Any such symmetry acts on a labeling L in the obvious way.

Assume now that y is a neighbor of x in the ternary tree and let σ be the hyperbolic
central symmetry with respect to the midpoint of the edge joining x to y. Notice that the
graph T (L, y, x) is isomorphic to T (σ∗L, x, y), where σ∗L is the labeling L rotated using
σ. Since σ∗L has the same distribution as L, this establishes (7.2) as claimed.

The general case follows by changing the labeling using the composition σ1 ◦ · · · ◦ σn,
where the σi are the central symmetries with respect to the midpoints of the edges in
the shortest path joining x to y.

We now verify that the simple random walk on (T, x) has positive linear drift.

Lemma 7.2. The simple random walk on (T, x) has positive linear drift.
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Proof. Since T is regular with degree 9, has the same vertex set as the tree T0, and
contains T0 as a subgraph, then X satisfies the strong isoperimetric inequality with a
deterministic isoperimetric constant. Hence by [26, Theorem 1.1] (see also [13]) there
exists a constant ε > 0 such that

lim inf
n→+∞

d(x, xn)

n
≥ ε

almost surely.

Notice that the distribution of (T, x) has compact support. Hence it can be written
as the average of ergodic distributions by Choquet’s theorem. For almost all of these
ergodic distributions, it follows from the previous lemma that the linear drift of the
random walk is positive. Hence, by Theorem 6.2, almost every graph admits an infinite
dimensional space of bounded harmonic function. We conclude that the dimension of the
space of bounded harmonic functions on (T, x) is infinite dimensional almost surely, as
claimed.

7.2 Volume growth and Canopy trees

The main limitation of Theorem 6.2 is that there is no general method to verify the
growth hypothesis needed on the graph. In fact, in this section we will show that there
exist recurrent, and hence Liouville, stationary random graphs with super-exponential
volume growth. The example was communicated to the authors by Elliot Paquette who
attributed it to Asaf Nachmias.

Given a sequence of natural numbers a1, a2, . . . construct a tree as follows:

1. Begin with a single “level-1” vertex joined to a1 “level-0” vertices and call the
resulting tree T1.

2. Join a single (new) “level-2” vertex to the “level-1” vertices of a2 copies of T1 to
obtain the tree T2.

3. For each n ≥ 3 join a single “level-n” vertex to the “level-(n − 1)” vertices of an
copies of Tn−1 to obtain Tn.

We call the unrooted tree obtained as the union of all Tn the “Canopy tree” determined
by the sequence a1, a2, . . .. Notice that the isomorphism group of such a tree preserves
and acts transitively on the set of level-n vertices for each n.

In the case where the sequence an is constant and equal to 2, we obtain the Canopy
tree as defined by Aizenman and Warzen in [1]. One obtains a stationary random graph
by rooting the graph randomly at a level-0 vertex with probability 1/4, and at a level-n
vertex with probability 3/2n+2 for each n ≥ 1. This is a nice example of a recurrent
graph, in particular Liouville, with exponential volume growth. The ball of radius 2n

contains at least 2n and no more than 32n+1 vertices.
On the other hand, if all an are equal to 1 one obtains a single vertex at each level

and there is no way of choosing a random root in a such a way that the resulting random
graph is stationary. The following lemma shows that in general one may construct a
stationary graph from a Canopy tree if the sequence an does not contain too many ones.

Lemma 7.3. The Canopy tree determined by a sequence a1, a2, . . . admits a random root
such that the resulting graph is stationary if and only if∑ 1

a1a2 · · · an
< +∞.

Proof. Consider the Markov chain on 0, 1, . . . with probability of going from 0 to 1 equal
to 1, probability 1/(ak + 1) of going from k to k + 1 for each k ≥ 1, and probability
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ak/(ak + 1) of going from k to k − 1 for each k ≥ 1. There is a random root on the given
Canopy tree such that the resulting random graph is stationary if and only if there is a
stationary probability for the aforementioned Markov chain.

If the above series converges, then defining p0 = 1/S and pk = (ak + 1)/(Sa1 · · · ak)

for each k ≥ 1, where

S = 1 + (a1 + 1)/a1 + (a2 + 1)/(a1a2) + (a3 + 1)/(a1a2a3) + · · · ,

one obtains a stationary probability for the Markov chain.
For the converse direction, assume that there is a stationary probability for the chain.

Then the expected value mk of the hitting time at 0 for the chain started at k is finite and
non-negative for all k ≥ 1. The mk satisfy the recurrence relation

mk = akmk−1/(ak + 1) +mk+1/(ak + 1) + 1,

or equivalently
mk+1 −mk = ak(mk −mk−1)− (ak + 1).

Setting ∆k = mk+1 −mk, one obtains, using the general solution for a first order linear
recurrence, that

∆n =

(
n−1∏
k=1

ak

)(
∆1 −

n−1∑
k=1

(ak + 1)/(a1 · · · ak)

)
.

Since mk ≥ 0 for all k, one must have that the finite sum in the formula for ∆k is bounded
by ∆1 (which must be positive) for all n. In particular, one obtains

∑
1/(a1 · · · an) < +∞

as claimed.

The Canopy tree determined by the sequence an = n satisfies the hypothesis of the
above lemma, and therefore can be turned in to a stationary random graph by adding the
appropriate random root. One can verify that the ball of radius 2n centered at any vertex
of the tree contains at least n! vertices and therefore the graph has super-exponential
volume growth. On the other hand, the graph is recurrent and therefore Liouville.

In the previous example the degree of the root is k + 1 with probability (k + 1)e−1/k!

for each k, and has finite expectation. This example is also interesting in that the degree
of the root determines the isomorphism class of the graph completely. In particular,
the degree of the root and the number of elements at distance r are highly dependent
random variables even for large r. We will now show that in a unimodular graph where
the degree of the root is well behaved and the number of elements of the sphere of
radius r is “reasonably independent” from the degree of the root, one can prove that
there is finite exponential growth.

Lemma 7.4. Let (X,x) be a unimodular random graph such that E(deg(x)) < +∞ and
there exists a constant C such that

E (deg(x)|Sr(x)|) ≤ C E(|Sr(x)|) (7.3)

for all r, where |Sr(y)| denotes the number of elements at distance r from the vertex y of
X. Then v(X,x) < +∞.

Proof. Let Br(y) be the graph ball of radius r centered at y ∈ V (X) and Sr(y) be the
respective sphere. By the triangle inequality

|Br+1(x)| ≤ |Br(x)|+
∑

y∈Sr(x)

deg(y) = |Br(x)|+
∑

y∈V (X)

1d(x,y)=r deg(y).
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Consider the function
F (X,x, y) = 1d(x,y)=r deg(y).

Then

E

 ∑
y∈V (X)

1d(x,y)=r deg(y)

 = E

 ∑
y∈V (X)

F (X,x, y)

 = E

 ∑
y∈V (X)

F (X, y, x)


= E

 ∑
y∈V (X)

1d(x,y)=r deg(x)

 = E [deg(x)|Sr(x)|]

≤ C E|Sr(x)|,

by our assumption. Therefore

E |Br+1(x)| ≤ E |Br(x)|+ CE|Sr(x)| ≤ (1 + C)E|Br(x)|.

This implies that v(X,x) ≤ 1 + C. Recall that (X,x) is stationary with respect to the
probability measure Q defined in (7.1). Notice that condition (7.3) then implies that
vQ(X,x) (i.e. the volume growth relative to the probability measure Q) is also finite.

7.3 Augmented Galton-Watson tree

We will now illustrate how Theorem 6.2 implies a known result about harmonic
functions on Galton-Watson trees.

Consider two independent Galton-Watson trees T1 and T2 with the same offspring
distribution {pk : k ≥ 0}. That is, pk is the probability that a vertex has k children. We
assume that p0 = 0 and the offspring distribution has finite mean and variance. The
Augmented Galton-Watson tree is constructed by joining the roots of T1 and T2 with a
single edge and rooting the resulting graph at the root of T1.

It has been shown in [20] that under the above conditions the Augmented Galton-
Watson is a stationary random graph and that the simple random walk on it escapes with
positive speed given by

` =
∑
k

pk(k − 1)/(k + 1).

Since the offspring distribution has finite mean and variance, the resulting random
graph has finite exponential volume growth. See for example [19, Chapter 12]. Hence
one may apply Theorem 6.2 to obtain that almost surely the Augmented Galton-Watson
tree admits an infinite dimensional space of bounded harmonic functions.

7.4 Hyperbolic κ-Markovian triangulations

In a recent work [9] N. Curien has introduced a one parameter family of random
infinite triangulations of the plane which generalize the Uniform Infinite Planar Tri-
angulation (UIPT) [3]. These are called κ-Markovian planar triangulations where the
parameter κ ∈ (0, κ0]. The critical parameter κ0 = 2/27 corresponds to the UIPT, while
for κ < κ0 the triangulations are hyperbolic in flavor.

It is shown in [9], that in the hyperbolic regime (κ < κ0) these triangulations are
almost surely non-Liouville, have anchored expansion and positive linear drift. The proof
of the non-Liouville property relies on the planarity of the triangulations and the fact
that almost surely they do not possess the intersection property. In this section, we
apply Theorem 6.2 to provide an alternative proof of the non-Liouville property, and in
fact that (when κ < κ0) the κ-Markovian triangulation almost surely admits an infinite
dimensional space of bounded harmonic functions.
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We fix κ ∈ (0, κ0) for the rest of this section. The κ-Markovian infinite planar
triangulation T is a random rooted type II triangulation of the plane. We refer the reader
to [3, Section 1.2] for the precise definitions. It is defined by the following property:
there exists a sequence {Cp}p≥2 of positive numbers, which depends on κ, such that if τ
is a finite rooted triangulation of the p-gon, then

P(τ ⊂ T ) = Cpκ
|τ |,

where |τ | is the number of vertices of τ . Here τ ⊂ T means that T is obtained from τ

with coinciding roots, by filling its hole with a necessary unique infinite triangulation of
the p-gon. By [9, Section 3.1] T is stationary and ergodic.

Theorem 7.5. Let κ ∈ (0, κ0). The κ-Markovian triangulation T almost surely admits an
infinite dimensional space of bounded harmonic functions.

For any r ≥ 1, let Br(o) denote the sub-triangulation of T consisting of all the triangles
which are incident to a vertex at distance less than or equal to r−1 from the root. Notice
that since T is one-ended, the complement of Br(o) has only one infinite connected
component. Let Br(o) be the hull of Br(o) obtained by filling-in all the finite components
of its complement. By [9, Theorem 2], the exponential rate growth of Br(o) is known:
there exists a constant λ > 1 and a random variable V ∈ (0,+∞), which depend only on
κ, such that

λ−r
∣∣Br(o)∣∣ a.s.−→

r→+∞
V.

In order to apply Theorem 6.2, we need to control the expected number of elements of
the balls.

Lemma 7.6. There exists a constant C, which depends only on κ, such that

E (|Br(o)|) ≤ Cr

for all r ∈ N.

The proof is based on an algorithmic device, called the peeling process, that allows to
construct T as a sequence of growing finite triangulations {Tn}n≥0, see [2]. The process
starts by declaring T0 to be one of the triangles that are incident to the root of T . At each
step, Tn is a finite triangulation whose boundary ∂Tn consists of a simple closed curve.
Suppose Tn is constructed, and enumerate the boundary vertices ∂Tn = {x1, . . . , xp},
where p = |∂Tn| is the perimeter of Tn.

There is a triangle in T \ Tn incident to the edge {x1, xp}. If we call the third vertex
of this triangle y, there are two possibilities for the location of y: either y is a new vertex,
or y = xi for some i ∈ {2, . . . , p− 1}. The probabilities of these events are given by

P (y /∈ ∂Tn) =
κCp+1

Cp
, P (y = xi) =

Cp−i+1Zi
Cp

.

Here Zi is the partition function associated to the Boltzmann distribution on triangu-
lations of the i-gon: if we denote by Ti the set of all finite triangulations of the i-gon,
then

Zi =
∑
τ∈Ti

κ|τ |−i,

and for any τ ∈ Ti, the probability of τ is given by κ|τ |−i/Zi. An explicit formula for Zi
is known, see for example [25, Section 3.3], but we will not need it here. To complete
the construction of Tn+1, one fills the hole created in the case when y = xi with a
independent Boltzmann triangulation τ of the i-gon.

This process depends on the choice of an edge to peel at each step. One way to
chose the edge to peel is given by the “peeling by layers” algorithm: at step n, peel the
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right-most edge of ∂Tn which belongs to the triangle just revealed. Using this algorithm,
every vertex of ∂Tn will be eventually in the interior of Tm for some big enough m ≥ n,
and so T =

⋃
n≥0 Tn.

We are interested in the Markov chain

(Pn, Vn) = (|∂Tn|, |Tn|) , n ≥ 0.

We will use the notation ∆Xn = Xn+1 −Xn for the increments of a sequence of random
variables. The distribution of the increment ∆Pn is given by

P (∆Pn = 1|Pn = p) =
κCp+1

Cp
, and P (∆Pn = −i|Pn = p) = 2

Cp−iZi+1

Cp
,

where the factor of 2 is because there are two ways of attaching a triangle to Tn
with vertices x1, xp and xi+1. When p is large, these probabilities converge to a limit
distribution. In fact, by [9, Lemma 4], if we let α ∈ (2/3, 1) be given by 2κ = α2(1− α),
then the following limit exists

lim
p→+∞

βpCp = cα ∈ (0,+∞),

where β = κ/α. The limit distribution is therefore given by

q1 = α and q−i = 2βiZi+1 for i ≥ 1.

Consider (Xn)n≥0 a random walk on the integers, started at 2, with independent incre-
ments following the distribution {q1, q−i i ≥ 1}. In [25, Lema 4.2] it is shown that this
random walk has positive drift given by the expected value of the increments.

Conditionally on (Xn)n≥0, define (Yn)n≥0 so that ∆Yn are independent and distributed
as the number of internal vertices of a Boltzmann triangulation of the (−∆Xn + 1)-gon (if
∆Xn = 1, let ∆Yn = 1 by convention). More precisely, the distribution of ∆Yn is given by

P(∆Yn = k) =

q1 +
∑
i≥1 q−i

∣∣∣T (1)
i+1

∣∣∣ κ
Zi+1

, if k = 1∑
i≥1 q−i

∣∣∣T (k)
i+1

∣∣∣ κk

Zi+1
, if k ≥ 2,

where T (k)
i+1 denotes the set of all triangulations of the (i+ 1)-gon with k internal vertices.

The exact value of |Ti+1| is known, see for example [3, Theroem 2.1], but we will not use
it here.

In the proof of Lemma 7.6 we will need the following fact which is a consequence
of moderate deviations estimates. From now on if f and g are non-negative real valued
functions defined on a set A, we will write f . g if there exists a constant C, such that
f(a) ≤ Cg(a) for all a ∈ A.

Lemma 7.7. Let (ξn)n≥1 be a sequence of independent identically distributed random
variables, such that E

(
et|ξ1|

)
<∞ for some t > 0. Denote by µ = E(ξ1), and let τ ∈ N be

any random variable. Then, for all ε > 0, there exists a constant C such that

E

∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣ ≤ C E(τ1/2+ε).

Proof. From [18, Lemma 1.12], for any ε > 0 we have P (An) ≤ C1e
−n1/2+ε

for all n ≥ 1,
where

An =

{∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣ > n1/2+ε

}
.
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Here, the multiplicative constant depends on ε. Consider η(ω) = max{n : ω ∈ An}. By
Borel-Cantelli’s lemma, η is finite almost surely, and in fact

P (η ≥ k) = P

⋃
n≥k

An

 .
∑
n≥k

e−n
1/2+ε

. k1/2+εe−k
1/2+ε

, (7.4)

We first compute the expectation on the event {τ = n}:

E

(∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣1{τ=n}

)
=
∑
k≥0

E

(∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣1{τ=n}1{η=k}

)

≤ n1/2+εP (τ = n) +
∑
k≥n

E

(∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣1{τ=n}1{η=k}

)

By the Cauchy-Schwarz inequality, the second term in the right-hand side of the last
inequality is bounded from above by

n1/2Var(ξ1)1/2
∑
k≥n

P (τ = n, η = k)
1/2 . n1/2

∑
k≥n

k1/2+εe−k
1/2+ε

1/2

,

where the las inequality follows from (7.4). Bounding from above the last sum, we finally
obtain the estimate

E

(∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣1{τ=n}

)
≤ n1/2+εP (τ = n) + γn,

where γn is a summable sequence. Summing over all the possible values for τ we get
the desired inequality.

Proof of Lemma 7.6. For r ≥ 1, let τr be the first time when all the vertices of ∂Tn are
at distance at least r from the root. Then Br(o) = Tτr , and in particular Vτr =

∣∣Br(o)∣∣.
Notice that the increments ∆Pn are bounded from above by 1, so for all r we have
Pτr ≤ τr. First we need the following estimate which is proved in [2, Lemma 4.2]:

∃ a, b > 0 such that P (∆τr ≥ k|Pτr = p) ≤ e−bk for all p and k > ap.

From this it follows that for all p:

E (∆τr|Pτr = p) ≤
ap∑
k=0

kP (∆τr = k|Pτr = p) +
∑
k>ap

ke−bk ≤ ap+
∑
k>ap

ke−bk,

which implies

E (∆τr) . E (Pτr ) . E (τr) .

We have shown that there exists a constant C so that E (τr) ≤ Cr for all r ≥ 1.
The key point in what follows is that (Pn, Vn) is equal in distribution to (Xn, Yn)

conditioned on the event {Xi ≥ 2,∀i ≥ 0} which has positive probability, see [9, Section
2]. Denote by γ > 0 the probability of this event, then E (Vτr ) ≤ γ−1E(Yτr ).

We first show that the distribution of the increments ∆Yn have an exponential tail.
Let k ≥ 2, then

P (∆Yn = k) = κk
∑
i≥1

βi
∣∣∣T (k)
i+1

∣∣∣ .
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Notice that β is a monotone function of κ, so if we take κ < κ′ < κ0, the corresponding
β′ satisfies β < β′ < β0 = 1/9. Therefore

P (∆Yn = k) = κk
∑
i≥1

βi
∣∣∣T (k)
i+1

∣∣∣ ≤ ( κ
κ′

)k (κ′)k
∑
i≥1

(β′)i
∣∣∣T (k)
i+1

∣∣∣
 ≤ ( κ

κ′

)k
.

In particular, we are in the hypotheses of Lemma 7.7. Let µ = E (∆Y1), then for any
ε > 0, there exists a constant C such that

E (Yτr ) ≤ µE (τr) + C E
(
τ1/2+ε

)
.

Fix ε ∈ (0, 1/2), then by Jensen’s inequality we obtain E (Yτr ) . E(τr). This finishes the
proof of the lemma.

7.5 Poisson Delaunay random graphs

In this section we denote by M either the d-dimensional Euclidean space Rd, or the
d-dimensional hyperbolic space Hd. In the latter case, we use the Poincaré ball model
where in polar coordinates the metric is given by

ds2 = dr2 + sinh(r)2dθ2,

where dθ2 is the standard metric on the sphere Sd−1. In both cases we write dx for the
volume element on M .

Let Π be a homogeneous Poisson point process of intensity one on M . That is, Π is a
random discrete set of points on M with the following properties:

1. the number of points in any Borel set A is a Poisson random variable whose
expected value is the volume of A;

2. for any two disjoint Borel sets A and B, the corresponding Poisson random variables
are independent.

We refer to [17] for an introduction to point processes. We chose the intensity to be
one only for simplicity, but the arguments given here go through for the general case of
constant intensity with out significant changes.

We set o = 0 ∈M , and consider the Delaunay graph associated to the discrete set

Πo = Π ∪ {o}.

That is, we consider the random rooted graph X with root o and vertex set Πo such
that two vertices x, y ∈ X are joined by a single undirected edge if, and only if, there
exists a ball with x and y on its boundary and whose interior contains no points of Πo.
The resulting random graph is almost surely the dual graph of a tessellation of M into
simplices known as the Voronoi tessellation. See Figure 3 for a realization in R2.

The main goal of this section is to prove the following

Theorem 7.8.

1. The Euclidean Poisson-Delaunay random graph is almost surely Liouville for all d.

2. The Hyperbolic Poisson-Delaunay random graph almost surely admits an infinite
dimensional space of bounded harmonic functions for d = 2.

We will first establish that the growth assumption (5.1) on Lemma 5.1 is satisfied.
The main tool we will use is Slivnyak’s formula, see [22, Proposition 4.1.1.], which we
will now restate for the reader’s convenience.
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Figure 3: An approximate Poisson-Delaunay triangulation. This is the Delaunay triangu-
lation associated to a set of independent uniform points in [−1, 1]2 ⊂ R2 and rooted at
the origin. As the number of points increases the resulting random graph approximates
the Poisson-Delaunay random graph in distribution.

Lemma 7.9 (Slivnyak’s formula). Let Π be a Poisson process on M with intensity 1. For
every measurable function f : Mn × D → [0,+∞), where D is the space of discrete
subsets of M , one has

E

 ∑
x1,...,xn∈Π

f
(
x1, . . . , xn,Π

) =

∫
Mn

E
[
f
(
y1, . . . , yn,Π ∪ {y1, . . . , yn}

)]
dy1 · · · dyn.

We will now prove that in the Euclidean case the Poisson-Delaunay graph grows
sub-exponentially.

Lemma 7.10. Let d ≥ 1, and X be the Poisson-Delaunay graph rooted at o = 0 ∈ Rd.
For each r ∈ N, we denote by Br(o) the ball of radius r centered at o in X. Then:

1. Almost surely |Br(o)| = O(rd logd r) when r → +∞, and

2. E(deg(o)) < +∞ and EQ|Br(o)| = O(rd logd r) when r → +∞.

Recall that Q is the probability measure defined in (7.1). In particular, X has polynomial
volume growth and vQ(X, o) = 0.

Proof. We will prove 2. The first assertion follows from the proof by applying Borel-
Cantelli’s Lemma. Let Π be the Poisson point process in Rd with intensity 1, and define
LΠ(x) to be the Euclidean distance between x and its farthest neighbor in the Delaunay
graph of Π ∪ {x}.

The proof relies on the following exponential bound for the tail of LΠ(x): there is a
positive constant c such that

P (LΠ(x) > s) . e−cs, (7.5)

for all s > 0. See for example [22, 23].
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Let us denote by BMr (o) the Euclidean ball of radius r centered at o. Let {sr}r≥0 be a
monotone sequence of non-negative numbers, with r0 = 0, to be chosen later and define
Sr = s1 + · · · sr−1. Applying (7.5), we will bound from above the probability that there
exists an edge in the Delaunay graph X, of Euclidean length at least sr, starting at a
point of BMSr (o).

Recall that D denotes the space of discrete subsets of Rd, and consider the function
f : D ×Rd → R given by

f(Z, z) = 1Z∩BMSr (o)(z)1{LZ(z)>sr}, Z ∈ D and z ∈ Rd.

By Slyvniak’s formula, we have

P
(
∃ x ∈ Πo ∩BMSr (o) : LΠo(x) > sr

)
≤ E

[∑
x∈Πo

f(Πo, x)

]

=

∫
Rd
E [f(Πo ∪ {y}, y)] dy

=

∫
BMSr (o)

P (LΠo(y) > sr) dy

≤
∫

BMSr (o)

P (LΠ(y) > sr) dy

. Sdr e
−csr ,

Notice that the same upper bound holds if we add more points to Π instead of adding
just the point o. Suppose now that {sr} is chosen so that

∞∑
k=1

∑
r≥k

Sdr e
−csr <∞.

Consider the sequence of events

Ar =
{
Z ∈ D : ∃ z ∈ Z ∩BMSr (o) s.t. LZ(z) > sr

}
,

and define K(Z) = max{r : Z ∈ Ar}. Then {K ≥ k} =
⋃
r≥k Ar, and therefore

E(K) ≤
∞∑
k=1

∑
r≥k

P(Ar) .
∞∑
k=1

∑
r≥k

Sdr e
−csr <∞.

The event {K = k} is{
Z ∈ D : ∃ x ∈ Z ∩BMSk(o) with LZ(x) > sk and LZ(z) ≤ sr ∀z ∈ Z ∩BMSr (o) ∀r > k

}
.

Suppose that Πo satisfies K(Πo) = k. This implies that for any r ≥ k and any point
x ∈ Πo \ BSr−1

, the distance in the graph X between o and x is at least r − k. In other
words, we have

Br(o) ⊂ BMSr+K(Πo)
(o).

Decompose the second moment of |Br(o)| according to the values of K,

E|Br(o)|2 =

∞∑
k=1

E
[
|Br(o)|21{K(Πo)=k}

]
.
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Then, we obtain the upper bound

E |Br(o)|2 ≤
∞∑
k=1

E

[∣∣∣Πo ∩BMSr+k(o)
∣∣∣2 1{K(Πo)=k}

]
.

Let g : D ×Rd → R be the function

g(Z, z) = 1Z∩BMSr+k (o)(z)1{K(Z)=k}.

By Slyvniak’s formula again, we get

E
[∣∣∣Πo ∩BMSr+k(o)

∣∣∣2 1{K(Πo)=k}

]
=E

 ∑
x1,x2∈Πo

g(Πo, x1)g(Πo, x2)


=

∫
(Rd)2

E
[
g(Πo ∪ {y1, y2}, y1)g(Πo ∪ {y1, y2}, y2)

]
d(y1, y2)

=

∫
BMSr+k

(o)2

P
[
1{K(Πo∪{y1,y2})=k}

]
d(y1, y2)

.S2d
r+k

∑
m≥k

Sdme
−csm

The last inequality follows from

P(K(Πo ∪ {y1, y2}) ≥ k) .
∑
m≥k

Sdme
−csm .

Therefore, we obtain

E|Br(o)|2 .
∞∑
k=1

S2d
r+k

∑
m≥k

Sdme
−csm .

We set sr = α
c log r, for some fixed α > 3d+ 2, so that

Sr =
α

c
log((r − 1)!) ≤ α

c
r log r.

Notice that there Sr+k . SrSk. On the other hand, we have

∑
m≥k

Sdme
−csm ≤ αd

cd

∑
m≥k

logdm

mα−d .
logd k

kα−d−1
.

From this, we get

∞∑
k=1

S2d
r+k

∑
m≥k

Sdme
−csm . S2d

r

∑
k≥1

log3d(k)

kα−(3d+1)
= O(S2d

r ).

This gives the upper bound E|Br(o)|2 = O(S2d
r ). By definition, we have

EQ|Br(o)| = E [deg(o)|Br(o)|] ≤
(
Edeg(o)2

)1/2 (
E|Br(o)|2

)1/2
= O(Sdr ),

where the last step follows from Cauchy-Schwarz inequality. This concludes the proof of
2.

In order to estimate the growth of the Hyperbolic Poisson-Delaunay graph we use a
result proved in [6].

EJP 21 (2016), paper 55.
Page 21/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4650
http://www.imstat.org/ejp/


Zero entropy and the Liouville property

Lemma 7.11. Let X be the Poisson-Delaunay graph rooted at o = 0 ∈ Hd. For each
r ∈ N, we denote by Br(o) the ball of radius r centered at o in X. Then E(deg(o)) < +∞
and there exists a constant L such that

EQ|Br(o)| = O(eLr) when r → +∞.

In particular,

vQ(X, o) = lim inf
r→∞

1

r
EQ log |Br(o)| < +∞.

Proof. For r > 0, let BMr (o) be the hyperbolic ball of radius r centered at o = 0 ∈ Hd. By
[6, Proposition 4.1], the following estimate holds: there are constants δ > 0 and L0 > 0

such that for any L ≥ L0

P
(
Br(o) 6⊂ BMLr(o)

)
≤ e−cr,

where c = eδL. We fix L ≥ L0 such that 2L < c. Consider K(Πo) = max{r : Br(o) 6⊂
BMLr(o)}. Then, using the previous estimate, we obtain

P(K ≥ k) ≤
∑
r≥k

e−cr . e−ck,

We decompose the expectation according to the values of K,

E|Br(o)|2 =

∞∑
k=1

E
[
|Br(o)|21{K=k}

]
≤

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
+

∞∑
k=r

E
[
|Bk+1(o)|21{K=k}

]
≤

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
+

∞∑
k=r

E

[∣∣∣Πo ∩BML(k+1)(o)
∣∣∣2 1{K=k}

]
We first bound from above the second term of the right hand side. As before, let
g : D ×Hd → R be the function

g(Z, z) = 1Z∩BM
L(k+1)

(o)(z)1{K(Z)=k}.

By Slyvniak’s formula

E

[∣∣∣Πo ∩BML(k+1)(o)
∣∣∣2 1{K=k}

]
=

∫
BM
L(k+1)

(o)2

P(K(Πo ∪ {y1, y2}) = k)d(y1, y2)

. e2L(k+1)e−ck . e(2L−c)(k+1)

This implies that

∞∑
k=r

E

[∣∣∣Πo ∩BML(k+1)(o)
∣∣∣2 1{K=k}

]
.
∑
k≥r

e(2L−c)(k+1) = Cr,

and Cr → 0 when r →∞.
For the first term, we have

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
≤ E

[∣∣Πo ∩BMLr(o)
∣∣2] . e2Lr.

In summary, we obtained

E|Br(o)|2 . e2Lr + Cr = O(e2Lr).

The proof concludes as in the previous lemma by applying the Cauchy-Schwarz inequality.
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We now establish unimodularity of the Poisson-Delaunay graphs in both the Euclidean
and Hyperbolic case using Slivnyak’s formula. The proof also applies to the more general
case when M is a symmetric space. A different proof of the same result is given in [6].

Lemma 7.12. The Poisson-Delaunay graph rooted at o = 0 ∈M is unimodular.

Proof. Given a discrete subset D of M and two points x, y ∈ D, let π(D,x, y) be the
Delaunay graph associated to D with two ordered root vertices corresponding to x and
y. The codomain of π is the space of isomorphism classes of graphs with two roots.

Recall that Π is a Poisson point process with intensity 1. The aim is to show that the
Delaunay graph associated to Πo rooted at o is unimodular. From Slivnyak’s formula, we
obtain for any measurable function on the space of graphs with two roots:

E

(∑
x∈Πo

F (π(Πo, o, x))

)
=

∫
M

E (F (π(Π ∪ {o, y}, o, y))) dy.

For each y ∈ M , the expected value in the integral on the right-hand side can be
written as

E (F (π(Π ∪ {o, y}, o, y))) = E (F (π(Π′ ∪ {o, y}, o, y)))

where Π′ is obtained from Π by symmetry with respect to the midpoint of the geodesic
segment [o, y]. The equality follows because the distribution of Π is invariant under
isometries of M .

Next notice that π(Π′ ∪ {o, y}, o, y) = π(Π ∪ {o, y}, y, o), that is, the two graphs are
isomorphic with an isomorphism which preserves the ordered basepoints. Hence,
applying Slivnyak’s formula again, we obtain

E

(∑
x∈Π

F (π(Π, o, x))

)
= E

(∑
x∈Π

F (π(Π, x, o))

)
,

so that the Poisson-Delaunay graph is unimodular as claimed.

The first part of Theorem 7.8 follows directly from Lemma 7.10, Theorem 6.2 and
Lemma 5.1, since in that case vQ(X, o) = 0. In the second part, by [6, Theorem 1. 1
and Theorem 1. 4], the random walk on the 2-dimensional Hyperbolic Delaunay graph
has positive linear drift, so we can conclude as before using Lemma 7.11. As far as
the authors are aware there there are no results on the speed of the random walk on
Hyperbolic Poisson-Delaunay graphs of dimension d > 2 in the literature.
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