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of Wigner matrices without Gaussian tails
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Abstract

We prove a large deviations principle for the largest eigenvalue of Wigner matrices
without Gaussian tails, that is, the distribution tails of the diagonal entriesP(|X1,1| > t)

and off-diagonal entries P(|X1,2| > t) behave like e−bt
α

and e−at
α

respectively, for
some a, b ∈ (0,+∞) and α ∈ (0, 2). The large deviations principle is of speed Nα/2,
and with a good rate function depending only on the distribution tail of the entries.
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1 Introduction and main result

The study of large deviations in the context of random Hermitian matrices dates
back to 1997, with the work of Ben Arous and Guionnet. In [2], they proved a large
deviations principle for the empirical measure of β-ensembles associated with a quadratic
potential, with speed N2 and an explicit rate function. This result answers the question
of the large deviations of the empirical spectral measure of the classical random matrix
ensembles, GOE, GUE, and GSE, since their eigenvalues form a β-ensemble associated
with a quadratic potential for β = 1, 2 and 4 respectively. In [1, p.81], this result has
been extended by the same authors, for β-ensembles associated with a potential V
growing at infinity faster than log |x|, which include unitary invariant or orthogonally
invariant models of random matrices. It has been shown in [18] that the restriction on
the growth of the potential could been lifted, so that one can also consider potentials with
logarithmic growth. The large deviations results of the empirical spectral measure of
the classical random matrix ensembles rely heavily on the knowledge of the distribution
of the eigenvalues, and its interpretation as a β-ensemble.

In the setting of the so-called Wigner deformed ensemble, the large deviations of the
empirical spectral measure were studied, first in [10] and then in [17], in which a large
deviations principle was established for the empirical spectral measure of the sum of
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Large deviations of the largest eigenvalue of Wigner matrices

Gaussian Wigner matrix and a deterministic Hermitian matrix. For this model, as one
cannot compute the joint law of the eigenvalues, the proof relies on the Gaussian nature
of the entries and uses Dyson Brownian motion and stochastic calculus.

Regarding the large deviations of the extreme eigenvalues of Wigner matrices, the
first result was proved in [5] in the case of the GOE and then extended in [1, p.83]
for β-ensembles, under an extra assumption on the partition function of the Gibbs
measure. The large deviations principle is of speed N , and with an explicit rate function.
The large deviations of the extreme eigenvalues of deformed Wigner ensembles have
also been studied. In [19], the author investigates the case of a GOE (respectively
GUE) matrix perturbed by a rank one deterministic symmetric (respectively Hermitian)
matrix. Then in [6], the large deviations for the joint law of the extreme eigenvalues of
a deterministic real diagonal matrix perturbed with a low rank Hermitian matrix with
delocalized eigenvectors are studied extensively.

Yet, all those large deviations results rely either on the computation of the joint law of
the eigenvalues or on the Gaussian nature of the entries. In [9], Bordenave and Caputo
gave a large deviations principle for the empirical spectral measure of Wigner matrices
with coefficients without Gaussian tail, a case where there is no explicit computation of
the joint law of the eigenvalues. Recently, this result has been extended in the case of
Wishart matrices in [15].

Still, in the setting of Wigner’s matrices which coefficients have a sub-Gaussian
tail but are not Gaussian, the existence of a large deviation principle for the empirical
distribution of eigenvalues or the largest eigenvalue is still an open problem.

1.1 Main result

The aim of this paper is to derive a large deviations principle for the largest eigenvalue
of Wigner matrices under the same statistical assumptions as in [9], together with an
additional technical assumption.

Let (Xi,j)i<j be independent and identically distributed (i.i.d) complex-valued random
variables, such thatE(X1,2) = 0, E|X1,2|2 = 1, and let (Xi,i)i≥1 be i.i.d real-valued random
variables.

Let X(N) be the N ×N Hermitian matrix with up-diagonal entries (Xi,j)1≤i≤j≤N . We
call such a sequence (X(N))N∈N, a Wigner matrix. In the following, we will drop the N
and write X instead of X(N).

Consider now the normalized random matrix XN = X/
√
N . Let λi denote the

eigenvalues of XN , with λ1 ≤ λ2 ≤ ... ≤ λN . We define µXN the empirical spectral
measure of XN by,

µXN =
1

N

N∑
i=1

δλi .

We know by Wigner’s theorem (see [25], [1, Theorem 2.1.21, 2.21], [3, Theorem 2.5]),
that

µXN  
N→+∞

σsc a.s,

where  denotes the weak convergence and where σsc denotes the semicircular law
which is defined by,

σsc(dt) = 1t∈[−2,2]
1

2π

√
4− t2dx.

Furthermore, assuming that E|X1,1|2 < +∞ and E|X1,2|4 < +∞, we know from [14], [4],
and [3, Theorem 5.1], that

λN −→
N→+∞

2 a.s.

EJP 21 (2016), paper 32.
Page 2/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4146
http://www.imstat.org/ejp/


Large deviations of the largest eigenvalue of Wigner matrices

We recall that a sequence of random variables (Zn)n∈N taking value in some topologi-
cal space X equipped with the Borel σ-field B, follows a large deviations principle (LDP)
with speed υ : N→ N, and rate function J : X → [0,+∞], if J is lower semicontinuous, υ
increases to infinity and for all B ∈ B,

− inf
B◦

J ≤ lim inf
n→+∞

1

υ(n)
logP (Zn ∈ B) ≤ lim sup

n→+∞

1

υ(n)
logP (Zn ∈ B) ≤ − inf

B
J,

where B◦ denotes the interior of B and B the closure of B. We recall that J is lower
semicontinuous if its t-level sets {x ∈ X : J(x) ≤ t} are closed, for any t ∈ [0,+∞).
Furthermore, if all the level sets are compact, then we say that J is a good rate function.

In the following, we make the following assumptions.

Assumptions 1.1. Let X be a Wigner matrix. In the case where X1,2 is a complex
random variable, <(X1,2) and =(X1,2) are independent. There exist α ∈ (0, 2) and
a, b ∈ (0,+∞) such that,

lim
t→+∞

−t−α logP (|X1,1| > t) = b, (1.1)

lim
t→+∞

−t−α logP (|X1,2| > t) = a.

Moreover, we assume that there are two probability measures on S1, υ1 and υ2, and
t0 > 0, such that for all t ≥ t0 and any measurable subset U of S1,

P (X1,1/|X1,1| ∈ U, |X1,1| ≥ t) = υ1(U)P (|X1,1| ≥ t) ,

P (X1,2/|X1,2| ∈ U, |X1,2| ≥ t) = υ2(U)P (|X1,2| ≥ t) .

In other words, this means that for all indices i, j, the absolute value and the angle of
Xi,j are independent for large values of |Xi,j |.
Remark 1.2. The assumption on the independence of the real and imaginary parts of
the off-diagonal entries is purely technical. We only make this assumption in order to use
the estimates in [22] on the entries of the resolvent, in the proof of an isotropic property
of the semi-circular law in Theorem 6.10. Moreover, this assumption is not needed in [9].

Under these assumptions, it has been proven in [9] that the empirical spectral
measure of the normalized matrix XN follows a large deviations principle with respect
to the weak topology. The LDP is with speed N1+α/2, and good rate function I defined
for all µ ∈M1(R), whereM1(R) denotes the set of probability measures on R, by

I(µ) =

{
Φ(ν) if µ = σsc � ν for some ν ∈M1(R),

+∞ otherwise,

where � denotes the free convolution, and where Φ is a good rate function (see [9] for
further details).

In the following, for any Hermitian matrix Y , we will denote by λY its largest
eigenvalue. We will prove in this paper the following large deviations result.

Theorem 1.3. Under assumptions (1.1), the sequence (λXN )N∈N follows a large devia-
tions principle with speed Nα/2, and good rate function defined for all x ∈ R, by

J(x) =


cGσsc(x)−α if x > 2,

0 if x = 2,

+∞ if x < 2,
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Large deviations of the largest eigenvalue of Wigner matrices

where c is a constant depending only on α, a and b, and where Gσsc denotes the Stieltjes
transform of the semicircular law, namely

∀z ∈ C \ (−2, 2), Gσsc(z) =

∫
dσsc(t)

z − t
, (1.2)

with

σsc(dt) = 1t∈[−2,2]
1

2π

√
4− t2dt.

Moreover, we will prove that the constant c in Theorem 1.3, can be computed explicitly
in certain cases, in particular when the entries are real random variables. We refer the
reader to the Section 8 for further details.

Observe that the rate function is infinite on (−∞, 2). Indeed, in order to make a
deviation of the top eigenvalue at the left of 2, we need to force the support of the
empirical spectral measure to be in (−∞, 2− ε), for some ε > 0. But this event has an
infinite cost at the exponential scale Nα/2 since the empirical spectral measure follows a
large deviation principle with speed N1+α/2 according to [9]. As illustrated in figure 1,
drawn in the case α = 1, this rate function is discontinuous at 2. As we will show, the
deviations of the top eigenvalue are given by finite rank perturbations of a Wigner matrix.
It is well-known that finite rank perturbations of Wigner matrices show a threshold
phenomenon with respect to the strength of the perturbation (see for example [21], [13]
[23], [7], [16] for further details), which the rate function seems to reflect through the
discontinuity at 2. This picture may also mean that there is a more subtle behavior of
the largest eigenvalue in the right neighborhood of 2, which is still to be understood.

Figure 1: Graph of the rate function J

Acknowledgments. I would like to thank Alice Guionnet for welcoming me at MIT
during April and May 2014, where I was able to put into shape this paper. I feel very
grateful to have had this opportunity to work with Alice Guionnet and for the time and
availability she offered me. I also would like to thank MIT for its hospitality and all the
people who made my time over there so enjoyable. Finally I would like to thank my
supervisor Charles Bordenave for his inspiring advice and the attention he gave to this
paper.

2 Heuristics

We will show that one can obtain the lower bound of the LDP by finite rank per-
turbation. For simplicity, let us assume that the Xi,j ’s are exponential variables with

EJP 21 (2016), paper 32.
Page 4/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4146
http://www.imstat.org/ejp/


Large deviations of the largest eigenvalue of Wigner matrices

parameter 1. Thus, the matrix X satisfies the assumptions (1.1) with α = 1, and a = b = 1.
In this case, Proposition 8.1 shows that the constant c in Theorem 1.3 is 1.

Let x > 2 and θ = 1/Gσsc(x). As Gσsc(x) ∈ (0, 1] for all x ∈ [2,+∞), we have θ > 1. By
independence of the entries, we have

P (λXN ' x) & P
(
λX′N+θe1e∗1

' x
)
P

(
X1,1√
N
' θ
)
, (2.1)

with X ′N = XN − X1,1√
N
e1e
∗
1, and e1 the first coordinate vector of CN . Since θ > 1, we have

according to [23],
λXN+θe1e∗1

−→
N→+∞

G−1σsc (1/θ) in probability.

Using Weyl’s inequality (see in the Appendix Lemma 9.2) and recalling that we chose
x = G−1σsc (1/θ), we get

P
(
λX′N+θe1e∗1

' x
)
−→

N→+∞
1. (2.2)

But X1,1 has exponential law with parameter 1, thus

P

(
X1,1√
N
' θ
)
' e−θ

√
N . (2.3)

Putting together (2.1), (2.2) and (2.3), we get,

P (λXN ' x) & e−Gσsc (x)
−1
√
N .

which is the lower bound expected by Theorem 1.3 and Proposition 8.1, for α = 1 and
a = b = 1. Note that we could also have used a deformation of the type(

0 θ

θ 0

)
,

to get the lower bound of the LDP.

3 Outline of proof

The strategy of the proof will closely follow the one of the LDP for the empirical
spectral measure derived in [9].

Following [9], we start by cutting the entries of XN according to their size. We
decompose XN in the following way. Fix some d > 0 such that dα > 1, and let ε > 0. We
write,

XN = A+Bε + Cε +Dε, (3.1)

with, for all i, j ∈ {1, ..., N},

Ai,j = 1|Xi,j |∞≤(logN)d
Xi,j√
N
, Bεi,j = 1(logN)d<|Xi,j |∞<εN1/2

Xi,j√
N
,

Cεi,j = 1εN1/2≤|Xi,j |∞≤ε−1N1/2

Xi,j√
N
, Dε

i,j = 1ε−1N1/2<|Xi,j |∞
Xi,j√
N
,

where |z|∞ = max(|<(z)|, |=(z)|) for all complex numbers z.
Our first step will be to prove some concentration inequalities in Section 4, which we

will use throughout this paper, and in particular to prove the exponential tightness of
(λXN )N∈N in Section 5.

Then, in Section 6, we will focus on trying to identify which parts in the decompo-
sition of XN significantly contribute to create deviations of the largest eigenvalue. We
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start by showing in Section 6.1, that we can neglect the contributions of Bε and Dε,
corresponding to the intermediate and large entries respectively, in the deviations of
λXN . Then in Section 6.2, we prove that we can replace A by a Hermitian matrix HN ,
with entries bounded by (logN)d/

√
N , and independent from Cε.

From the LDP of the empirical spectral measure of XN of speed N1+α/2 proved in
[9], we deduce in Proposition 6.4 that the deviations at the left of 2 have an infinite cost
at the scale Nα/2. Therefore, we only need to focus on the deviations of the largest
eigenvalue of HN + Cε at the right of 2. As in many papers on finite rank deformations
of Wigner matrices (see [7] for exemple), we see the largest eigenvalue of HN + Cε,
provided it is not in the spectrum of HN , as the largest zero of the function,

fN (x) = det (MN (x)) , with MN (x) = Ik − (θi〈ui, (x−HN )−1uj〉)1≤i,j≤k,

where k is the rank of Cε, θ1, ..., θk are the non-zero eigenvalues of Cε in non-decreasing
order, and u1, ..., uk are orthonormal eigenvectors of Cε associated to θ1, ..., θk.

As we will see, this method is made efficient in the study of the deviations of λHN+Cε

at the right of 2 by two main facts. Firstly, as we show in Proposition 6.6, the spectrum
of HN can be considered at the exponential scale Nα/2 nearly as contained in (−∞, 2].
Secondly, as shown in Lemma 5.7, Cε is a sparse matrix so that its rank can be considered
at the exponential scale Nα/2 as bounded.

In Section 6.3, we focus on showing that the function fN is exponentially equivalent
to a certain limit function f , defined for any x > 2 by,

f(x) =

k∏
i=1

(1− θiGσsc(x)) .

To this end, we show in Proposition 6.9, using concentration inequalities, that at the
exponential scale Nα/2, and uniformly in x in a compact subset of (2,+∞),

MN (x) ' Ik − (θi〈ui,E (x−HN )
−1
uj〉)1≤i,j≤k. (3.2)

Next, in Theorem 6.10, we prove an isotropic property of the semi-circular law using the
estimates in [22] of the entries of the resolvent of Wigner matrices. This allows us to
deduce in Proposition 6.11 that

MN (x) ' Ik −



θ1Gσsc(x) 0 0

0

0

0 0 θkGσsc(x)


,

where we denote by Gσsc(x) the resolvent of the semi-circular law. Using the fact that
the spectral radius of Cε can be considered as bounded as shown in Lemma 5.5, and
using the uniform continuity of the determinant on compact sets of Hk(C), we get, as
stated in Theorem 6.7, uniformly in x in any compact subset contained in (2,+∞),

fN (x) ' f(x), with f(x) =

k∏
i=1

(1− θiGσsc(x)) .

In Section 6.5, we show that provided λHN+Cε is greater that 2, and that λCε is greater
than 1, the largest zero of fN , namely λHN+Cε , is exponentially equivalent to the largest
zero of f , denoted by µN,ε. Easy computations show that

µN,ε = G−1σsc (1/λCε) .
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Despite the fact that fN and f are holomorphic functions, we cannot use Rouché’s
theorem to deduce that their zeros are close since we only know that they are close on
compact subsets of (2,+∞). We use here a trick a bit similar to the one used in [7, p.
513], which will allow us to make do with this uniform closeness between fN and f on
compact subsets of (2,+∞). We perturb the spectrum of Cε so that its largest eigenvalue
is simple and bounded away from its second largest eigenvalue by some γ > 0. Classical
intermediate values theorem then shows that any continuous function close to f on all
compact subsets contained in (2,+∞), admits a zero in (2,+∞), and that its largest
zero is close to the largest zeros of f . Since f remains in a compact set of continuous
functions, we can prove a uniform continuity property for the “largest zero function” in
Lemma 6.14. In Proposition 6.13, we deduce that the largest zero of fN and of f are
exponentially equivalent at the scale Nα/2. This allows us to conclude in Theorem 6.12
that (µN,ε)N∈N,ε>0, are an exponentially good approximations of λXN (in the sense of
[12, Definition 4.2.10]).

Then, in Section 7, we prove that (µN,ε)N∈N satisfies a LDP for each ε > 0, and we
deduce a LDP for (λXN )N∈N. The key of the proof is Proposition 5.7, which allows us to
assume that the matrix Cε has only a finite number of non-zero entries at the exponential
scale Nα/2. With this observation, the problem can be reduced to a finite-dimensional
one. We define Ẽr to be the set of equivalence classes of infinite Hermitian matrices with
at most r non-zero entries, under the action of permutation matrices. In Proposition 7.1,
we establish a LDP for Cε, when seen as an element of Ẽr, with respect to the topology
given by the distance

∀Ã, B̃ ∈ Ẽr, d̃
(
Ã, B̃

)
= min
σ,σ′∈S

max
i,j

∣∣Bσ(i),σ(j) −Aσ′(i),σ′(j)∣∣ ,
where A and B representatives of Ã and B̃ respectively, and where S = ∪n∈NSn is the
union of the symmetric groups. The map which associates to any matrix of Ẽr, its largest
eigenvalue is continuous with respect to d̃, and allows us to apply a contraction principle
to get the large deviations principle for (µN,ε)N∈N, which is stated in Proposition 7.3.
We finally deduce a LDP for (λXN )N∈N in Theorem 7.4, with rate function

J(x) =


cGσsc(x)−α if x > 2,

0 if x = 2,

+∞ if x < 2,

where

c = inf

b
+∞∑
i=1

|Ai,i|α + a
∑
i 6=j

|Ai,j |α : λA = 1, A ∈ D

 , (3.3)

and

D =

{
A ∈ ∪n≥1Hn(C) : ∀i ≤ j, Ai,j = 0 or

Ai,j
|Ai,j |

∈ supp(νi,j)

}
,

where νi,j = ν1 if i = j, and ν2 if i < j, and where supp(νi,j) denotes the support of the
measure νi,j .

In Section 8, we show that we can compute explicitly in certain cases the constant c
appearing in the rate function J . In particular, in the case where the entries of XN are
real, or when α ∈ (0, 1], Proposition 8.1 computes completely the constant c.

The optimization problem (3.3) exhibits two different behaviors, when α ∈ (0, 1] and
when α ∈ (1, 2). When α ∈ (0, 1], the infimum is achieved for matrices of sizes 1 or 2,
and can computed for any choice of ν1 and ν2. When α ∈ (1, 2), the picture is more
complicated, and one cannot say much without some assumptions on the supports of ν1
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and ν2. In particular, one can observe that when b > a
2 and 1 ∈ supp(ν1) ∩ supp(ν2), the

infimum can be achieved for a matrix of size arbitrary large, when α gets arbitrary close
to 2.

Moreover, the knowledge of the minimizers of (3.3) is useful to derive the lower
bound of the LDP. Indeed, it indicates which finite rank deformation one has to choose to
get the lower bound on the deviations of λXN , as explained in Section 2.

4 Concentration inequalities

Throughout the rest of this paper, we fix a constant κ > 0, such that for all t large
enough,

P (|X1,1| > t) ∨ P (|X1,2| > t) ≤ e−κt
α

. (4.1)

With a slight adaptation of the concentration inequality from [20, p. 239], for the
largest eigenvalue of a random symmetric matrix with bounded entries, we get the
following proposition.

Proposition 4.1. Let H be a random Hermitian matrix with entries bounded by a
constantK > 0, such that (Hi,j)i≤j are independent variables and let C be a deterministic
Hermitian matrix. For all t > 0,

P (|λH+C − E(λH+C)| > t) ≤ 2 exp

(
− t2

32K2

)
.

We state now a second concentration inequality we will use later in order to prove an
isotropic-like property of the semi-circle law.

Proposition 4.2. Let u be a unit vector of CN , and µ ∈ R. Let H be a random Hermitian
matrix of size N , such that the entries (Hi,j)1≤i≤j≤N are independent and bounded by
K > 0. We denote by C, the set of Hermitian matrices X of size N , with top eigenvalue
λX strictly less that µ. Let also x ∈ (µ,+∞).

(i). The function fu : C → R defined by

fu (X) = 〈u, (x−X)
−1
u〉,

is convex and 1/(x− µ)2-Lipschitz with respect to the Hilbert-Schmidt norm || ||HS .
(ii). fu admits a convex extension to HN (C), denoted f̃u which is 1/(x− µ)2-Lipschitz

with respect to the Hilbert-Schmidt norm.
Moreover, for all x > µ, and all t > 0,

P
(∣∣∣f̃u(H)− E

(
f̃u(H)

)∣∣∣ > t
)
≤ 2 exp

(
− (x− µ)4t2

32K2

)
.

Proof. (i). Let x > µ. From [8, p.117], we know that t 7→ 1/t is operator convex on
(0,+∞). Consequently, t 7→ (x− t)−1 is operator convex on (−∞, x), and in particular on
(−∞, µ). It means that the mapping fu, defined on C by,

fu(X) = 〈u, (x−X)
−1
u〉,

is convex. Since x > µ, we have for all X, Y in C,

|fu(X)− fu(Y )| =
∣∣∣〈u,( (x−X)

−1 − (x− Y )
−1
)
u〉
∣∣∣

=
∣∣∣〈u, (x−X)

−1
(X − Y ) (x− Y )

−1
u〉
∣∣∣

≤ 1

(x− µ)2
||X − Y ||HS .
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Thus, fu is convex and 1/(x− µ)2-Lipschitz.
(ii). Since fu is differentiable, we can write for all X ∈ C

fu(X) = sup
Y ∈C

(fu(Y ) + 〈∇fu(Y ), (X − Y )〉) ,

where 〈 , 〉 denotes the canonical Hermitian product on the space of Hermitian matrices
of size N , denoted HN (C). Let f̃u be defined for all X ∈ HN (C) by

f̃u(X) = sup
Y ∈C

(fu(Y ) + 〈∇fu(Y ), (X − Y )〉) .

For all X ∈ HN (C), f̃u(X) < +∞, since for all Y ∈ C,

||∇fu(Y )||HS ≤
1

(x− µ)2
.

As a supremum of affine functions, f̃u is convex and by the property above it is also
1/(x− µ)2-Lipschitz.

We show now that f̃u satisfies a bounded differences inequality in quadratic mean, in
the sense of [20, p.249] (see in the Appendix Lemma 9.4) on the product space HN (C) of
Hermitian matrices with entries bounded by K. Let H and H ′ be two Hermitian matrices
with entries bounded by K. Let ζ(H) be a sub-differential of f̃u at the point H. Then we
have,

f̃u(H)− f̃u(H ′) ≤ 〈ζ(H), (H −H ′)〉

≤
∑

1≤i≤j≤N

1Hi,j 6=H′i,j4K |ζ(H)i,j | ,

where ζ(H)i,j denote the (i, j) coordinate of ζ(H). Since f̃u is 1/(x − µ)2-Lipschitz we
have,

||ζ(H)||HS ≤
1

(x− µ)2
.

Using Lemma 9.4 in the Appendix, it follows that for all t > 0,

P
(∣∣∣f̃u(H)− E

(
f̃u(H)

)∣∣∣ > t
)
≤ 2 exp

(
− (x− µ)4t2

32K2

)
.

5 Exponential tightness

The goal of this section is to prove that (λXN )N∈N is exponentially tight at the
exponential scale Nα/2. More precisely, we will prove the following.

Proposition 5.1.

lim
t→+∞

lim sup
N→+∞

1

Nα/2
logP (λXN > t) = −∞.

Proof. According to Weyl’s inequality (see Lemma 9.2 in the Appendix) we have,

λXN ≤ λA + λBε + λCε + λDε ,

where A, Bε, Cε, and Dε are as in (3.1). Therefore

P (λXN > 4t) ≤ P (λA > t) + P (λBε > t)

+ P (λCε > t) + P (λDε > t) . (5.1)

We are going to estimate at the exponential scale Nα/2 the probability of each of the
events {λA > t}, {λBε > t}, {λCε > t}, and {λDε > t}.

From the assumption (1.1) on the tail distributions of the entries, we get the following
lemma, which we state without proof.
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Lemma 5.2. For t > 0,

E
(
1|X1,1|>t|X1,1|2

)
∨ E

(
1|X1,2|>t|X1,2|2

)
= O

(
e−

κ
2 t
α
)
,

with κ > 0 as in (4.1).

We focus first on the event {λA > t}. Applying the result of Proposition 4.1, we get
the following corollary.

Corollary 5.3. For all t > 0,

lim
N→+∞

1

Nα/2
logP (|λA − 2| > t) = −∞, (5.2)

where A is as in (3.1).

Proof. If we apply Proposition 4.1 to A, with K = (logN)d√
N

we get for any t > 0,

P (|λA − E (λA)| > t/2) ≤ 2 exp

(
− t2N

128(logN)2d

)
.

Since α < 2, we have

lim sup
N→+∞

1

Nα/2
logP (|λA − E (λA) | > t/2) = −∞. (5.3)

We know from [14] and [1, Exercice 2.1.27] that the largest eigenvalue of XN converges
in mean to 2. Besides by Weyl’s inequality (see Lemma 9.2 in the Appendix) we have,

E |λA − λXN |
2 ≤ E

(
tr(A−XN )2

)
=

1

N

∑
1≤i,j≤N

E
(
|Xi,j |2 1|Xi,j |>(logN)d

)
. (5.4)

But from Lemma 5.2 we have,

E
(
1|Xi,j |>(logN)d |Xi,j |2

)
= O

(
e−

κ
2 (logN)dα

)
,

with κ > 0 defined in (4.1). Putting the estimate above into (5.4), we get together with
the fact that dα > 1,

E |λA − λXN |
2 −→
N→+∞

0,

which implies
E (λA) −→

N→+∞
2. (5.5)

Putting together (5.3) and (5.5), we get

lim
N→+∞

1

Nα/2
logP (|λA − 2| > t) = −∞.

We can deduce from Proposition 5.3 that for t large enough, we have,

lim sup
N→+∞

1

Nα/2
logP (λA > t) = −∞. (5.6)

For the second event {λBε > t}, we start by proving the following lemma.

Lemma 5.4. For all t > 0,

lim sup
N→+∞

1

Nα/2
logP

(
tr (Bε)

2
> t
)
≤ −2α/2

8
tκαε−2+α,

with κ > 0 as in (4.1).
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Proof. We repeat here almost verbatim the argument used in the proof of Lemma 2.3 in
[9, p.7]. We have

P
(

tr (Bε)
2
> t
)

= P
(∑
i,j

|Xi,j |2

N
1(logN)d<|Xi,j |∞<εN1/2 > t

)
≤ P

(
2
∑
i≤j

|Xi,j |2

N
1(logN)d<|Xi,j |∞<εN1/2 > t

)
≤ P

(∑
i≤j

|Xi,j |2

N
1(logN)d<|Xi,j |<

√
2εN1/2 >

t

2

)
,

where we used in the last inequality |Xi,j |∞ ≤ |Xi,j | ≤
√

2|Xi,j |∞.
Let now λ > 0. By Chernoff’s inequality,

P
(

tr (Bε)
2
> t
)
≤ e−λ t2

∏
i≤j

E

(
exp

(
λ
|Xi,j |2

N
1(logN)d<|Xi,j |<

√
2εN1/2

))
. (5.7)

We denote by Λi,j be the Laplace transform of |Xi,j |
2

N 1(logN)d<|Xi,j |<
√
2εN1/2 , and by µ the

distribution of |Xi,j |. Then, we have

Λi,j (λ) ≤ 1 +

∫ √2εN1/2

(logN)d
e
λx2

N dµ(x).

Recall that for µ a probability measure on R, and g ∈ C1, we have the following
integration by parts formula:∫ b

a

g(x)dµ(x) = g(a)µ [a,+∞)− g(b)µ (b,+∞) +

∫ b

a

g′(x)µ [x,+∞) dx.

Thus,

Λi,j (λ) ≤ 1 + µ[(logN)d,+∞)e
λ(logN)2d

N +

∫ √2εN1/2

(logN)d

2λx

N
e
λx2

N µ[x,+∞)dx.

We define f(x) = λx2

N − κx
α, with κ as in (4.1). For N large enough we get,

Λi,j (λ) ≤ 1 + ef((logN)d) +

∫ √2εN1/2

(logN)d

2λ

N
xef(x)dx

≤ 1 + ef((logN)d) + 4λε2 max
[(logN)d,

√
2εN1/2]

ef . (5.8)

Choose λ = 2α/2−2καε−2+αNα/2. Observe that f is decreasing until x0 and increasing
on [x0,+∞), with x0 given by

x0 =

(
καN

2λ

)1/(2−α)

=
(

21−α/2N1−α/2ε2−α
)1/(2−α)

=
√

2εN1/2.

Thus, the maximum of ef on [(logN)d,
√

2εN1/2] is achieved at (logN)d. Since α/2 < 1,
we have for N large enough,

f
(

(logN)
d
)

= 2α/2−2καε−2+αNα/2−1(logN)2d − κ(logN)dα ≤ −κ
2

(logN)dα.
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From (5.8) and the inequality above, we get

Λi,j (λ) ≤ 1 + e−
κ
2 (logN)dα

(
1 + 2α/2καεαNα/2

)
.

Since dα > 1, we have for N large enough

Λi,j (λ) ≤ 1 + e−
κ
4 (logN)dα ≤ exp

(
e−

κ
4 (logN)dα

)
.

Finally, putting this last estimate into (5.7) we get

P
(

tr (Bε)
2
> t
)
≤ exp

(
−2α/2

8
tκαε−2+αNα/2

)
exp

(
N2e−

κ
4 (logN)dα

)
, (5.9)

which gives the claim.

Coming back at the proof of Proposition 5.1, we observe that

P (λBε > t) ≤ P
(

tr (Bε)
2
> t2

)
.

Hence,

lim sup
N→+∞

1

Nα/2
logP (λBε > t) ≤ −2α/2

8
t2καε−2+α. (5.10)

We focus now on the third event {λCε > t}. The estimate is given by the following
lemma.

Lemma 5.5. For all t > 0,

lim sup
N→+∞

1

Nα/2
logP (ρ(Cε) > t) ≤ − κ

4
√

2
tεα+1, (5.11)

with κ as in (4.1) and where ρ(Cε) denotes the spectral radius of Cε.

Proof. As

ρ(Cε) ≤ max
1≤i≤N

N∑
j=1

|Cεi,j |,

we have

P (ρ(Cε) > t) ≤ NP
( N∑
j=1

|Cε1,j | > t
)

= NP
( N∑
j=1

|X1,j |1εN1/2≤|X1,j |∞≤ε−1N1/2 > t
√
N
)

≤ NP
( N∑
j=1

|X1,j |1εN1/2≤|X1,j |≤
√
2ε−1N1/2 > t

√
N
)

= NP
( N∑
j=1

Yj > t
√
N
)
, (5.12)

with Yj = |X1,j |1εN1/2≤|X1,j |≤
√
2ε−1N1/2 . But from Lemma 5.2 we deduce

E (Yj) = O
(
e−

κ
2 ε
αNα/2

)
= o

(
1/
√
N
)
.
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This yields for N large enough,

P
( N∑
j=1

Yj > t
√
N
)
≤ P

( N∑
j=1

(Yj − E (Yj)) >
t

2

√
N
)
. (5.13)

But by Bennett’s inequality (see in the Appendix Lemma 9.3), we have

P
( N∑
j=1

(
Yj − E (Yj)

)
>
t

2

√
N

)
≤ exp

(
− v

2ε−2N
h

(
ε−1Nt√

2v

))
,

with h(x) = (x+ 1) log(x+ 1)− x, and v =
∑N
j=1E

(
Y 2
j

)
. Using again Lemma 5.2, we find,

v = O
(
Ne−

κ
2 ε
αNα/2

)
. (5.14)

As h(x) ∼
x→+∞

x log x, we have for N large enough,

P
( N∑
j=1

(Yj − E (Yj)) >
t

2

√
N
)
≤ exp

(
− t

2
√

2ε−1
log

(
ε−1Nt√

2v

))
.

Using (5.14), we get

lim sup
N→+∞

1

Nα/2
logP

( N∑
j=1

(Yj − E (Yj)) >
t

2

√
N
)
≤ − κ

4
√

2
tεα+1. (5.15)

Putting together inequalities (5.12) and (5.13) with the last exponential estimate (5.15),
we get the claim

lim sup
N→+∞

1

Nα/2
logP (ρ(Cε) > t) ≤ − κ

4
√

2
tεα+1.

Finally, we now turn to the estimation of the last event {λDε > t}. It will directly fall
from the following lemma.

Lemma 5.6. For all t > 0,

lim sup
N→+∞

1

Nα/2
logP (ρ (Dε) > t) ≤ −κ

2
ε−α.

where ρ (Dε) denotes the spectral radius Dε, and κ is as in (4.1).

Proof. Just as in the proof of Lemma 5.5, we have

P (ρ (Dε) > t) ≤ NP
( N∑
j=1

|X1,j |√
N
1ε−1N1/2<|X1,j | > t

)
.

By Markov’s inequality we get

P (ρ (Dε) > t) ≤
√
N

t

N∑
j=1

E
(
|X1,j |1ε−1N1/2<|X1,j |

)
.

From Lemma 5.2 we deduce

E
(
|X1,j |1ε−1N1/2<|X1,j |

)
= O

(
e−

κ
2 ε
−αNα/2

)
.

Therefore,

P (ρ (Dε) > t) = O
(
N
√
Ne−

κ
2 ε
−αNα/2

)
,

which gives the claim.
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Putting together the different estimates (5.6), (5.10), (5.11) and (5.6), and using
inequality (5.1), we get

lim sup
N→+∞

1

Nα/2
logP(λXN > 4t) ≤ −C1 min

(
t2ε−2+α, tεα+1, ε−α

)
, (5.16)

where C1 is some constant small enough. Taking the limsup as t goes to infinity, and
then the limsup as ε goes to 0, we get finally

lim sup
t→+∞

lim sup
N→+∞

1

Nα/2
logP (λXN > 4t) ≤ −∞.

We show now that at the exponential scale we consider, Cε has a bounded number
of non-zero entries. This will be crucial later when we will see Cε as a finite rank
perturbation of the matrix A.

Proposition 5.7. For all ε > 0,

lim
r→+∞

lim sup
N→+∞

1

Nα/2
logP

(
Card{(i, j) : Cεi,j 6= 0} > r

)
= −∞.

Proof. We follow here the argument of the proof of Lemma 2.2 in [9, p. 6]. We have,

P
(
Card{(i, j) : Cεi,j 6= 0} > r

)
= P

(∑
i,j

1Cεi,j 6=0 > r
)

≤ P
(∑
i≤j

1|Xi,j |∞≥εN1/2 > r/2
)

≤ P
(∑
i≤j

1|Xi,j |≥εN1/2 > r/2
)
.

Let pi,j = P
(
|Xi,j | ≥ εN1/2

)
. From (4.1), we get that pi,j = o

(
1/N2

)
. Therefore it is

enough to show that for any r > 0,

lim sup
r→+∞

lim sup
N→+∞

1

Nα/2
logP

(∑
i≤j

(
1|Xi,j |≥εN1/2 − pi,j

)
> r
)

= −∞.

Using Bennett’s inequality (see in the Appendix Proposition 9.3), we get

P
(∑
i≤j

(
1|Xi,j |≥εN1/2 − pi,j

)
> r
)
≤ exp

(
−vh

( r
v

))
,

with h(x) = (x + 1) log(x + 1) − x, and v =
∑
i≤j pi,j . As h(x) ∼

+∞
x log x, we have for N

large enough,

P
(∑
i≤j

(
1|Xi,j |≥εN1/2 − pi,j

)
> r
)
≤ exp

(
−r log

( r
v

))
≤ exp

(
r log

(
rN2

))
exp

(
−rκεαNα/2

)
, (5.17)

where we used in the last inequality the fact that v ≤ N2e−κε
αNα/2 , with κ as in (4.1).

Taking the limsup at the exponential scale in (5.17), we get the claim.

As a consequence of the latter proposition, we get the following result.

Proposition 5.8. For all ε > 0,

lim
r→+∞

lim sup
N→+∞

1

Nα/2
logP (rank (Cε) > r) = −∞.

Proof. As the rank of a matrix is bounded by the number of non-zero entries, we see that
Proposition 5.7 yields the claim.
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6 Exponential equivalences

6.1 First step

We show here that we can neglect at the exponential scale Nα/2, the contributions of
the very large entries (namely those such that |Xi,j |∞ > ε−1

√
N ) and the intermediate

entries (namely those such that (logN)d < |Xi,j |∞ < ε
√
N ) to the deviations of the

largest eigenvalue of XN .

Proposition 6.1. For all t > 0,

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λA+Cε − λXN | > t) = −∞,

where A and Cε are as in (3.1). In short, (λA+Cε)N∈N,ε>0 are exponentially good
approximations of (λXN )N∈N.

Proof. We have by Weyl’s inequality (see Lemma 9.2 in the Appendix),

P (|λA+Cε − λXN | > t) ≤ P (ρ(Bε) > t/2) + P (ρ (Dε) > t/2) . (6.1)

But we know by Lemma 5.6 and 5.4, that

lim sup
N→+∞

1

Nα/2
logP

(
ρ (Dε) >

t

2

)
≤ −κ

2
ε−α,

and

lim sup
N→+∞

1

Nα/2
logP

(
tr (Bε)

2
>
t

2

)
≤ −2α/2

16
tκαε−2+α,

with κ as in (4.1). Thus, taking the limsup at the exponential scale Nα/2 in (6.1), and
then the limsup as ε goes to 0, recalling that α < 2, we get the claim.

6.2 Second step

We now show that in the study of the deviations of λA+Cε , we can consider A and Cε

to be independent. We will prove the following result.

Theorem 6.2. Let PN be the law of X1,1 conditioned on the event {|X1,1|∞ ≤ (logN)d}
and QN the law of X1,2 conditioned on the event {|X1,2|∞ ≤ (logN)d}. Let H be a
random Hermitian matrix independent of X such that (Hi,j)1≤i≤j≤N are independent,
and for 1 ≤ i ≤ N , Hi,i has law PN , and for all i < j, Hi,j has law QN . We denote by HN

the normalized matrix H/
√
N .

For all t > 0,

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − λHN+Cε | > t) = −∞.

With a similar argument as in the proof of Proposition 5.7, we get the following
lemma.

Lemma 6.3. Let I = {(i, j) : |Xi,j |∞ > (logN)d}. For all t > 0,

lim
N→+∞

1

Nα/2
logP(|I| > tNα/2) = −∞.

Proof of Theorem 6.2. Due to Proposition 6.1, it is enough to prove for any ε > 0 and
any t > 0,

lim sup
N→+∞

1

Nα/2
logP (|λA+Cε − λHN+Cε | > t) = −∞.
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We will follow the same coupling argument to remove the dependency between A and
Cε, as in the proof of Proposition 2.1 in [9].

Let I = {(i, j) : |Xi,j |∞ > (logN)d}. Let A′ be the N ×N matrix with (i, j)-entry,

A′i,j = 1(i,j)/∈IAi,j + 1(i,j)∈I
Hi,j√
N
.

Let F be the σ-algebra generated by the random variables Xi,j such that (i, j) ∈ I. Then
A′ and HN are independent of F and have the same law. By Weyl’s inequality (see
Lemma (9.2) in the appendix),

|λA+Cε − λA′+Cε |2 ≤ tr (A−A′)2

=
∑
i,j

∣∣Ai,j −A′i,j∣∣2
=

1

N

∑
i,j

(
1(i,j)∈I |Hi,j |2

)
≤ |I| (logN)2d

N
. (6.2)

Let t > 0. Define the event F =
{
|I| < t2N/(logN)2d

}
. Then, by Lemma 6.3 we have,

lim
N→+∞

1

Nα/2
logP (F c) = −∞. (6.3)

But according to (6.2),

1F |λA+Cε − λA′+Cε | ≤ t. (6.4)

Thus,

lim
N→+∞

1

Nα/2
logP (|λA+Cε − λA′+Cε | > t) = −∞.

But Cε is F -measurable, and conditioned by F , A′ is a random Hermitian matrix with
up-diagonal entries independent and bounded by (logN)d/

√
N . According to Proposition

4.1, we have

lim
N→+∞

1

Nα/2
logP (|λA′+Cε − EF (λA′+Cε)| > t) = −∞,

where EF denotes the conditional expectation given F . Applying again Proposition 4.1
to HN and Cε, we get

lim
N→+∞

1

Nα/2
logP (|λHN+Cε − EF (λHN+Cε)| > t) = −∞.

But A′ and HN are independent of F and have the same law. Therefore,

EF (λA′+Cε) = EF (λHN+Cε) .

Thus by triangular inequality,

lim
N→+∞

1

Nα/2
logP (|λA+Cε − λHN+Cε | > 3t) = −∞,

which ends the proof.
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6.3 Exponential approximation of the equation of eigenvalues outside the bulk

As a consequence of the LDP for the empirical spectral measure proved in [9], we
show in the next proposition that the deviations at the left of 2 have an infinite cost at
the exponential scale Nα/2. This result will allow us to focus only on understanding the
deviations of the largest eigenvalue at the right of 2.

Proposition 6.4.

∀x < 2, lim sup
N→+∞

1

Nα/2
logP (λXN ≤ x) = −∞.

Proof. According to [9], we know that the empirical spectral measure µXN satisfies a
LDP with speed N1+α/2, and with good rate function I which achieves 0 only for the
semicircular law σsc. Let x < 2 and h be a bounded continuous function whose support
is in (x, 2), and such that σsc(h) = 1. We have

P (λXN ≤ x) ≤ P (µXN (h) = 0) .

But F = {µ ∈M1(R) : µ(h) = 0} is a closed set with respect to the weak topology and it
does not contain σsc. Then

lim sup
N→+∞

1

N1+α/2
logP (µXN (h) = 0) = − inf

F
I.

Since σsc /∈ F , infF I > 0. Thus,

lim sup
N→+∞

1

Nα/2
logP (λXN ≤ x) = −∞.

In the view of Theorem 6.2, Proposition 6.6, and Proposition 6.4, we are reduced
to understand the deviations in (2,+∞), at the exponential scale Nα/2, of the largest
eigenvalue of the perturbed matrixHN+Cε, where Cε can be assumed, due to Proposition
5.8 to be a finite rank matrix. We will use here the same approach as in many papers on
finite rank deformations of Wigner matrices (see for example [7] or [16]) to determine
the behavior of the extreme eigenvalues outside the bulk of a perturbed Wigner matrix.
This approach is based on a determinant computation, stated here without proof, in the
following lemma. It is a direct consequence of Frobenius formula (see Proposition 9.1 in
the Appendix).

Lemma 6.5. Let H and C be two Hermitian matrices of size N . Denote by k the rank
of C, by θ1, ..., θk the non-zero eigenvalues of C in nondecreasing order and u1, ..., uk
orthonormal eigenvectors associated with these eigenvalues. Let Sp(H) be the spectrum
of H. If λH+C /∈ Sp(H), then it is the largest zero of fN , where fN is defined for all
z /∈ Sp(H) by

fN (z) = det (MN (z)) , where MN (x) = Ik −
(
θi〈ui, (x−H)

−1
uj〉
)
1≤i,j≤k

.

To make this strategy works, we need a control on the spectrum of HN which will
allow us to assume that the spectrum of HN is nearly included (−∞, 2] at the exponential
scale we consider. As a consequence of Proposition 4.1, and arguing similarly as in the
proof of Corollary 5.3, we get the following proposition.

Proposition 6.6 (Control on the spectrum of HN ). Let δ > 0. Define

Cδ = {X ∈ HN (C) : λX < 2 + δ} .

Then,

lim
N→+∞

1

Nα/2
logP (HN /∈ Cδ) = −∞,

with HN is as in Theorem 6.2.
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Large deviations of the largest eigenvalue of Wigner matrices

The goal of this section is to prove an exponential approximation of the equation of
the eigenvalues of the perturbed matrix on every compact subset of (2,+∞). We will
prove the following result.

Theorem 6.7. Let HN be as in Theorem 6.2 and let CN be an independent random
Hermitian matrix. Let k be the rank of CN , θ1, ..., θk the non-zero eigenvalues in non-
decreasing order of CN and u1, ..., uk orthonormal eigenvectors of CN associated with
those eigenvalues.

Let δ > 0, ρ > 0, and r ∈ N. Define the event

W = {rank(CN ) = r, ρ(CN ) ≤ ρ, λHN ≤ 2 + δ} , (6.5)

where ρ(CN ) is the spectral radius of CN . For any t > 0, and any compact subset K of
(2 + δ,+∞),

lim sup
N→+∞

1

Nα/2
logP

({
sup
x∈K
|fN (x)− f(x)| > t

}
∩W

)
= −∞,

where fN is defined for any x /∈ Sp(HN ) by

fN (x) = det (MN (x)) , with MN (x) = Ik −
(
θi〈ui, (x−HN )

−1
uj〉
)
1≤i,j≤k

,

f is defined for any x > 2 by f(x) = det (M(x)), with

M(x) = Ik −



θ1Gσsc(x) 0 0

0

0

0 0 θkGσsc(x)


,

where Gσsc(x) is defined in (1.2).

6.4 First step

We start by showing that MN is close to its conditional expectation given CN . As a
consequence of Proposition 4.2, we get the following concentration result.

Proposition 6.8. Let u, v be two unit vectors. Define for all x > 2 + δ,

bN (u, v) = 1HN∈Cδ〈u, (x−HN )
−1
v〉,

where HN is as in Theorem 6.2, and Cδ = {X ∈ HN (C) : λX < 2 + δ}. For any t > 0,

lim
N→+∞

1

Nα/2
log sup
||u||=||v||=1

P (|bN (u, v)− E (bN (u, v))| > t) = −∞.

Proof. Since bN is a bilinear form, by the polarization formula we see that we only need
to prove,

lim
N→+∞

1

Nα/2
log sup
||u||=1

P (|bN (u, u)− E (bN (u, u))| > t) = −∞.

By assumption, HN has its entries bounded by (logN)d/
√
N . Applying Proposition 4.2

with µ = 2 + δ, we get that for any x > 2 + δ,

lim
N→+∞

1

Nα/2
log sup
||u||=1

P
(∣∣∣f̃u(HN )− E

(
f̃u(HN )

)∣∣∣ > t
)

= −∞, (6.6)
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where f̃u is a convex extension of fu which is defined on Cδ by

fu(Y ) = 〈u, (x− Y )
−1
u〉.

Furthermore, f̃u is 1/(x− 2− δ)2-Lipschitz, with respect to the Hilbert-Schmidt norm.
We have for all t > 0,

P
(∣∣∣f̃u(HN )− bN (u, u)

∣∣∣ > t
)
≤ P (λHN /∈ Cδ) , (6.7)

which, invoking Proposition 6.6 yields,

lim
N→+∞

1

Nα/2
log sup
||u||=1

P
(∣∣∣f̃u(HN )− bN (u, u)

∣∣∣ > t
)

= −∞. (6.8)

Moreover, ∣∣∣f̃u(HN )− bN (u, u)
∣∣∣ ≤ 1λHN /∈Cδ sup

KN

∣∣∣f̃u∣∣∣ ,
where the supremum is taken over the set KN of Hermitian matrices of size N with
entries bounded by (logN)d/

√
N . Thus,

E

∣∣∣f̃u(HN )− bN (u, u)
∣∣∣ ≤ sup

KN

∣∣∣f̃u∣∣∣P (λHN /∈ Cδ) . (6.9)

It only remains to show that

sup
||u||=1

E

∣∣∣f̃u(HN )− bN (u, u)
∣∣∣ −→
N→+∞

0. (6.10)

Indeed, putting together (6.6) with (6.8) and the claim above, we will get by the triangular
inequality,

lim
N→+∞

1

Nα/2
log sup
||u||=1

P (|bN (u, u)− E (bN (u, u))| > 2t) = −∞.

We now show (6.10). Since x > 2 + δ, we have for all H ′ ∈ Cδ,

|fu(H ′)| ≤ 1

η
,

with η = x− (2 + δ). Let H be a Hermitian matrix with entries bounded by (logN)d/
√
N .

We have, ∣∣∣f̃u(H)
∣∣∣ ≤ ∣∣∣f̃u(H)− f̃u

( H

||H||+ 1

)∣∣∣+
∣∣∣f̃u( H

||H||+ 1

)∣∣∣.
But H/(||H||+ 1) is in Cδ, thus |fu (H/(||H||+ 1))| ≤ 1

η . Besides f̃u is 1/η2-Lipschitz with
respect to the Hilbert-Schmidt norm. Therefore,∣∣∣f̃u(H)

∣∣∣ ≤ 1

η2
||H||HS +

1

η

≤
√
N(logN)d

η2
+

1

η
≤ 2
√
N(logN)d

η2
.

We deduce that

sup
KN
|f̃u| ≤

2
√
N(logN)d

η2
.

From Proposition 6.6 we get,

E|f̃u(HN )− bN (u, u)| −→
N→+∞

0,

which ends the proof of the claim.
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We are now ready to prove that MN , restricted to the event that the spectrum of HN

is in (−∞, 2 + δ) for some δ > 0, is exponentially equivalent to its conditional expectation
given CN , uniformly on any compact subset of (2 + δ,+∞).

Proposition 6.9 (Concentration in the equation of eigenvalues outside the bulk). Let HN

be as in Theorem 6.2, and let CN be an independent random Hermitian matrix. Let k be
the rank of CN , θ1, ..., θk the non-zero eigenvalues in non-decreasing order, and u1, ..., uk
orthonormal eigenvectors associated with these eigenvalues. For all x > 2 + δ, we define

M̃N (x) = Ik −
(
θi〈ui,1HN∈Cδ (x−HN )

−1
uj〉
)
1≤i,j≤k

,

where Cδ = {X ∈ HN (C) : λX < 2 + δ}, and where HN is as in Theorem 6.2.
Let t > 0 and ρ > 0. For any compact subset K of (2 + δ,+∞),

lim
N→+∞

1

Nα/2
logP

({
sup
x∈K

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t
}
∩ V

)
= −∞,

where
V = {rank(CN ) = r, ρ(CN ) ≤ ρ} ,

and ECN denotes the conditional expectation given CN , and where for any matrix M ,
|M |∞ = supi,j |Mi,j |.

Proof. Fix x in (2 + δ,+∞) and i, j ∈ {1, ..., r}. We will denote by PCN the conditional
probability given CN . We have,

1V PCN

(∣∣∣M̃N (x)i,j−ECN
(
M̃N (x)i,j

)∣∣∣ > t
)
≤ sup
||u||=||v||=1

P (ρ |bN (u, v)− E (bN (u, v))| > t) ,

where bN (u, v) is as in Proposition 6.8. Thus, from Proposition 6.8, we get

lim
N→+∞

1

Nα/2
logP

({∣∣∣M̃N (x)i,j − ECN
(
M̃N (x)i,j

)∣∣∣ > t
}
∩ V

)
= −∞.

Taking the union over all the i, j in {1, ..., r}, we get for any x ∈ (2 + δ,+∞),

lim
N→+∞

1

Nα/2
logP

({∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t
}
∩ V

)
= −∞.

We now use a ε-net argument to extend this exponential equivalence uniformly in z in
a given compact subset K of (2 + δ,+∞). Let n ∈ N. Since K is compact, there are a
finite number of points in {x ∈ K : nx ∈ Z}. Taking the union bound, we deduce that for
any t > 0,

lim
N→+∞

1

Nα/2
logP

({
sup
x∈K
nx∈Z

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t
}
∩ V

)
= −∞. (6.11)

Note that provided ρ(Cε) ≤ ρ, we have for any x, y ∈ K,∣∣∣M̃N (x)− M̃N (y)
∣∣∣
∞
≤ ρ|x− y|1HN∈Cδ ||(x−HN )−1||.||(y −HN )−1|| ≤ ρ

η2
|x− y|,

where η = inf K − (2 + δ). Therefore, on the event V , the function x ∈ K 7→ M̃N (x) is
ρ/η2-Lipschitz with respect to the norm | |∞, and we have,

sup
x∈K

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
≤ sup
x∈K
nx∈Z

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞

+
2ρ

nη2
.

Taking n large enough, we get from (6.11) and the inequality above, that for any t > 0,

lim
N→+∞

1

Nα/2
logP

({
sup
x∈K

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t
}
∩ V

)
= −∞.
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The second step of the proof of Theorem 6.7 will be to prove an isotropic-like property
of the semicircular law. This will be made possible due to the results on estimates of the
coefficients of the resolvent of Wigner matrices in [22]. This is where our assumption
on the independence between the real and imaginary parts of the entries of our Wigner
matrix X plays its role.

Theorem 6.10. For any compact subset K of (2 + δ,+∞),

sup
x∈K

sup
||u||=||v||=1

∣∣∣〈u,E(1HN∈Cδ (x−HN )
−1
)
v〉 − 〈u, v〉Gσsc(x)

∣∣∣ −→
N→+∞

0,

where Cδ = {X ∈ HN (C) : λX < 2 + δ}, and where HN is as in Theorem 6.2.

Proof. Let u and v be two unit vectors. Let K be a compact subset of (2 + δ,+∞). Set
η = inf K − (2 + δ). To ease the notation, we denote for any z /∈ Sp(HN ), the resolvent of
HN , R(z) = (z −HN )

−1. Let y > 0 and x ∈ K. We write z = x+ iy. We have,

1HN∈Cδ |〈u,R(x)v〉 − 〈u,R(z)v〉| ≤ 1HN∈Cδ
∣∣∣∣∣∣(x−HN )

−1
(z − x) (z −HN )

−1
∣∣∣∣∣∣ ≤ y

η2
.

Thus,

E |1HN∈Cδ 〈u,R(x)v〉 − 〈u,R(z)v〉| ≤ y

η2
+

1

y
P (HN /∈ Cδ) .

Take y = 1/ logN . From Proposition 6.6, we get uniformly for x in K,

sup
||u||=||v||=1

E

∣∣∣∣1HN∈Cδ〈u,R(x)v
〉
−
〈
u,R

(
x+

i

logN

)
v
〉∣∣∣∣ −→N→+∞

0. (6.12)

Thus, we only need to show,

sup
||u||=||v||=1

∣∣∣∣E(〈u,R(x+
i

logN

)
v
〉)
− 〈u, v〉Gσsc(x)

∣∣∣∣ −→N→+∞
0,

uniformly for x ∈ K.

Expanding the scalar product and using the exchangeability of the entries of HN , we
get

〈u,ER(z)v〉 =
∑

1≤i,j≤N

uiERi,j(z)vj

= 〈u, v〉ER1,1(z) +
∑
i 6=j

uivjER1,2(z)

= 〈u, v〉 1

N
EtrR(z) +

∑
i 6=j

uivjER1,2(z).

Since u and v are unit vectors,∣∣∣∣〈u,ER(z)v〉 − 〈u, v〉E
(

1

N
trR(z)

)∣∣∣∣ ≤ N |ER1,2(z)| . (6.13)

But since the entries of X have finite fifth moment and their real and imaginary parts
are independent, we have according to Proposition 3.1 in [22],

ER1,2(XN )(z) = O

(
P9 (1/ |=(z)|)

N3/2

)
, (6.14)
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uniformly for z ∈ C \R, where we denote by R(XN ) the resolvent of XN , and where P9

is a polynomial of degree 9. But recall from the proof of Proposition 6.2 that HN has the
same law as the matrix A′, where A′ is the N ×N matrix such that

A′i,j =
Xi,j√
N
1|Xi,j |∞≤(logN)d +

Hi,j√
N
1|Xi,j |∞>(logN)d .

Thus,
ER1,2(z) = ER(A′)1,2(z), (6.15)

where R(A′) denotes the resolvent of A′. Using the resolvent equation we get,

N |ER(A′)1,2(z)− ER(XN )1,2(z)| ≤ N (logN)
2
E ||A′ −XN ||HS , (6.16)

where ||.||HS denotes the Hilbert-Schmidt norm. But it is easy to see that

E ||A′ −XN ||HS = o

(
1

N (logN)
2

)
,

since we know from Lemma 5.2 that

E
(
|Xi,j |1|Xi,j |>(logN)d

)
= O

(
e−

κ
2 (logN)dα

)
,

with κ as in (4.1) and dα > 1. Thus, the latter estimate, together with (6.16) and (6.15),
yields,

N

∣∣∣∣ER1,2

(
x+

i

logN

)
− ER(XN )1,2

(
x+

i

logN

)∣∣∣∣ −→N→+∞
0,

uniformly in x ∈ K. Using (6.14), we get

NER1,2

(
x+

i

logN

)
−→

N→+∞
0, (6.17)

uniformly in x ∈ K.
By the same coupling argument as above, one can show that

E
( 1

N
trR (XN )

(
x+

i

logN

))
− E

( 1

N
trR
(
x+

i

logN

))
−→

N→+∞
0,

uniformly for x in K.
But according to [22, Proposition 3.1], we have also

E
( 1

N
trR(XN )(z)

)
= Gσsc(z) +O

(
1

|=(z)|6N

)
,

uniformly on bounded subsets of C \R. We deduce that,

E
( 1

N
trR
(
x+

i

logN

))
−→

N→+∞
Gσsc(x), (6.18)

uniformly for x in K. Thus, putting (6.18) , (6.17) together with (6.13), we get

sup
||u||=||v||=1

∣∣∣∣〈u,ER(x+
i

logN

)
v
〉
− 〈u, v〉Gσsc(x)

∣∣∣∣ −→N→+∞
0,

uniformly for x in K, which completes the proof.

As a consequence of Proposition 6.9, and the isotropic property of Proposition 6.10,
with the control on the spectrum of HN proved in Proposition 6.6, we get the following
exponential equivalent for MN .
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Proposition 6.11. Let HN be as in Theorem 6.2 and CN be a random Hermitian matrix
independent of HN . Let k be the rank of CN , θ1, θ2, ..., θk the non-zero eigenvalues of
CN in non-decreasing order, and u1, u2, ..., uk orthonormal eigenvectors associated with
these eigenvalues. We define for x /∈ Sp(HN ),

MN (x) = Ik −
(
θi

〈
ui, (x−HN )

−1
uj

〉)
1≤i,j≤k

,

and for all x > 2,

M(x) = Ik −



θ1Gσsc(x) 0 0

0

0

0 0 θkGσsc(x)


.

Let δ > 0 and ρ > 0. For any compact subset K of (2 + δ,+∞) and t > 0, we have

lim
N→+∞

1

Nα/2
logP

({
sup
x∈K
|MN (x)−M(x)|∞ > t

}
∩W

)
= −∞,

with
W = {rank(CN ) = r, ρ(CN ) ≤ ρ, λHN ≤ 2 + δ} .

Proof. By triangular inequality, we have

P
({

sup
x∈K
|MN (x)−M(x)|∞ > t

}
∩W

)
≤ P

({
sup
x∈K

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t/2

}
∩ V

)
+ P

({
sup
x∈K

∣∣∣ECN (M̃N (x)
)
−M(x)

∣∣∣
∞
> t/2

}
∩ V

)
,

with
V = {rank (CN ) = r, ρ(CN ) ≤ ρ} .

From Theorem 6.10, we know that

sup
x∈K

1V

∣∣∣ECN (M̃N (x))−M(x)
∣∣∣
∞

L∞−→
N→+∞

0,

where the convergence takes place in the space of essentially bounded functions. Thus,
for N large enough,

P
({

sup
x∈K
|MN (x)−M(x)|∞ > t

}
∩W

)
≤P

({
sup
x∈K

∣∣∣M̃N (x)− ECN
(
M̃N (x)

)∣∣∣
∞
> t/2

}
∩V
)
,

which, applying Proposition 6.9, ends the proof.

We are now ready to give the proof of Theorem 6.7.

Proof of Theorem 6.7. Let K be compact subset of (2 + δ,+∞). Assuming W occurs, we
see that for all x in K, the matrices MN (x) and M(x) have their spectral radii bounded
by

1 + ρmax

(
1,

1

d(2 + δ,K)

)
,

where d(2 + δ,K) is the distance of 2 + δ from K. Therefore M(x) and MN (x) remain in
a compact set ofMr(C). As the determinant is uniformly continuous on compact sets of
Mr(C), Theorem 6.11 yields the claim.
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6.5 Exponential equivalence of the largest solutions of the eigenvalue equa-
tion and the limit equation.

We are interested here in finding simple exponentially good approximations of
(λXN )N∈N, which will allow us to derive a large deviation principle for λXN . To this end,
define for all N ∈ N and ε > 0,

µN,ε =

{
G−1σsc (1/λCε) if λCε ≥ 1,

2 if λCε < 1.
(6.19)

We will show in this section the following result.

Theorem 6.12. For all t > 0

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − µN,ε| > t) = −∞.

In other words, (µε,N )N∈N,ε>0 are exponentially good approximations of (λXN )N∈N at
the exponential scale Nα/2.

Since we know from Theorem 6.2 that (λHN+Cε)N∈N,ε>0 are exponentially good
approximations of (λXN )N∈N, we only need to prove Theorem 6.12 with λHN+Cε instead
of λXN . For sake of clarity, we will focus first on finding an exponential equivalent of
λHN+CN where CN is a general random Hermitian matrix independent of HN , and then
we will apply our result to the matrix Cε to get Theorem 6.12.

We know by Lemma 6.5, that provided λHN+CN is outside the spectrum of HN , it is
the largest zero of fN defined for all z /∈ Sp (HN ) by

fN (z) = det
(
Ik −

(
θi〈ui, (z −HN )

−1
uj〉
)
1≤i,j≤k

)
,

with k the rank of CN , θ1, θ2, ..., θk are the non-zero eigenvalues of CN in non-decreasing
order and u1, u2, ..., uk are orthonormal eigenvectors associated with those eigenvalues.
But from Theorem 6.7, we know that this function is arbitrary close to a certain limit
function f on every compact subset of (2,+∞) with an exponentially high probability,
with f defined for all x /∈ (−2, 2) by

f(x) =

k∏
i=1

(1− θiGσsc(x)) . (6.20)

Therefore, one can hope that the largest zero of fN , which is the top eigenvalue of
HN + CN , is arbitrary close to the largest zero of f . But since

∀x ≥ 2, Gσsc(x) =
x−
√
x2 − 4

2
,

(see [1, p.10] for the computation), we see that Gσsc is decreasing on [2,+∞) taking its
values in (0, 1], and that

∀x ∈ (0, 1], G−1σsc(x) = x+
1

x
.

Thus, f admits a zero only when θk > 1, in which case its largest zero is G−1σsc(1/θk),
which is also equal to G−1σsc (1/λCN ).

Proposition 6.13. Let HN be as in Theorem 6.2, and let CN be a random Hermitian
matrix independent of HN . Let δ > 0 and l ≥ 2 + 2δ. For all t > 0 and r ∈ N,

lim
N→+∞

1

Nα/2
logP (|λHN+CN − µN | > t, µN ≥ 2 + 2δ, λHN+CN ≤ l, CN ∈ Vr,l) = −∞,
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where

µN =

{
G−1σsc (1/λCN ) if λCN ≥ 1,

2 if λCN < 1.

and
Vr,l = {C ∈ HN (C) : rank(C) = r, ρ(C) ≤ 1/Gσsc(l)} .

Proof. We start by reducing the problem to the case where CN has its top eigenvalue
simple and bounded away from its last-but-one eigenvalue. Let u be an eigenvector
associated with the largest eigenvalue of CN . Let γ > 0. We denote by C(γ)

N the matrix
defined by,

C
(γ)
N = CN + γuu∗.

By definition, the largest eigenvalue of CN is bounded away from its last-but-one eigen-
value by γ. Provided that λCN ≥ 1, we define

µ
(γ)
N = G−1σsc

(
1/λCN,γ

)
= G−1σsc (1/(λCN + γ)) .

Weyl’s inequality (see Lemma 9.2) yields,

|λ
HN+C

(γ)
N

− λHN+CN | ≤ γ.

As for all x ∈ (0, 1], G−1σsc(x) = x+ 1
x , easy computation yields

|µ(γ)
N − µN | ≤ 2γ.

Thus, we see that it is sufficient to prove the statement in Proposition 6.13 but with V (γ)
r,l

instead of Vr,l, where

V
(γ)
r,l = {C ∈ HN (C) : rank(C) = r, ρ(C) ≤ 1/Gσsc(l), θr(C)− θr−1(C) ≥ γ} ,

where θr(C), and θr−1(C) denote respectively the largest and the second largest eigen-
value of C.

We know from Theorem 6.7 that the functions fN and f are arbitrary close on any
compact subset of (2,+∞), with exponentially high probability. Since we cannot make
the error on the distance between fN and f in Theorem 6.7 depend on CN , we need now a
kind of uniform continuity property of the largest zero of continuous functions belonging
to a certain compact set, to get that their largest zeros are close with exponentially high
probability. This is the object of the following lemma.

Lemma 6.14. Let K ′ ⊂ K be two compact subsets of R, such that there is some open
set U such that K ′ ⊂ U ⊂ K. Let K a compact subset of C(K), the space of continuous
functions on K taking real values. We assume that any f ∈ K admits at least one zero in
K, its largest zero, z(f), lies in K ′, and f changes sign at z(f). Then, for all t > 0, there
is some s > 0, such that for all f ∈ K and g ∈ C(K), such that

||f − g|| < t,

g admits at least one zero in K, and its largest zero z(g), satisfies

|z(f)− z(g)| < s.

Proof. As an consequence of the intermediate values theorem, the function φ, defined
for all g ∈ C(K) by,

φ(g) =

{
zmax(g) if g admits a zero in K,

† otherwise,

is continuous at each f ∈ K. As the set K is compact, we get the claim.
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We come back now at the proof of Proposition 6.13. Observe that if CN ∈ V
(γ)
r,l ,

then µN ≤ l. Let K be a compact set such that there is an open set U satisfying
[2 + 2δ, l] ⊂ U ⊂ K ⊂ (2 + δ,+∞). Note that the subset

K(γ) =

{
x ∈ K 7→

r∏
i=1

(1− θiGσsc(x)) : (θ1, ..., θr) ∈ Θγ

}
,

where

Θ(γ) =
{

(θ1, ..., θr) ∈ Rr : −ρ ≤ θ1 ≤ ... ≤ θr−1 ≤ θr − γ, 1 ≤ θr ≤ ρ, G−1σsc(1/θr) ∈ K
′} ,

is a compact subset of C(K). Applying Lemma 6.14 with K ′ = [2 + 2δ, l] and K, we get
for any t > 0, that there is s > 0, such that

P
(
|λHN+CN − µN | > t, µN ∈ K ′, λHN+CN ≤ l, CN ∈ V

(γ)
r,l

)
≤ P

({
sup
x∈K
|fN (x)− f(x)| > s

}
∩W

)
+ P (λHN > 2 + δ) ,

with

W = {rank(CN ) = r, ρ(CN ) ≤ 1/Gσsc(l), λHN ≤ 2 + δ} .

By Theorem 6.7 and Proposition 6.6, we deduce that,

lim
N→+∞

1

Nα/2
logP

(
|λHN+CN − µN | > t, µN ≥ 2 + 2δ, λHN+CN ≤ l, CN ∈ V

(γ)
r,l

)
= −∞,

which ends the proof of Proposition 6.13.

We are now ready to give the proof of Theorem 6.12.

Proof of Theorem 6.12 . According to Proposition 6.4, we only need to prove that for
δ > 0 small enough,

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − µN,ε| > t, λXN > 2− δ) = −∞.

Taking δ < t/3, we see that it is actually sufficient to show

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − µN,ε| > t, µN,ε ≥ 2 + 2δ) = −∞. (6.21)

Using Proposition 6.13, but with Cε instead of CN , we get for any l ≥ 2 + 2δ, and s ∈ N,

lim sup
N→+∞

1

Nα/2
logP (|λHN+Cε − µN,ε| > t, µN,ε ≥ 2 + 2δ, λHN+Cε ≤ l, Cε ∈ Vs,l) = −∞,

where µN,ε is defined as in (6.19), and where Vs,l is defined in Proposition 6.13. Let
V≤r,l = ∪rs=0Vs,l. Since V≤r,l is a finite union of the Vs,l’s, we get

lim sup
N→+∞

1

Nα/2
logP (|λHN+Cε − µN,ε| > t, µN,ε ≥ 2 + 2δ, λHN+Cε ≤ l, Cε ∈ V≤r,l) = −∞.

As a consequence of Lemma 5.5 and Proposition 5.8, we deduce that for any ε > 0,

lim
r,l→+∞

lim sup
N→+∞

1

Nα/2
logP (Cε /∈ V≤r,l) = −∞.

EJP 21 (2016), paper 32.
Page 26/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4146
http://www.imstat.org/ejp/


Large deviations of the largest eigenvalue of Wigner matrices

Thus,

lim sup
N→+∞

1

Nα/2
logP (|λHN+Cε − µN,ε| > t, µN,ε ≥ 2 + 2δ, λHN+Cε ≤ l) = −∞.

Using the fact that according to Theorem 6.2, (λHN+Cε)N∈N,ε>0 are exponentially good
approximations of (λXN )N∈N, we get,

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − µN,ε| > t, µN,ε ≥ 2 + 2δ, λXN ≤ l) = −∞.

But (λXN )N∈N is exponentially tight according to Proposition 5.1, thus we can conclude
that,

lim
ε→0

lim sup
N→+∞

1

Nα/2
logP (|λXN − µN,ε| > t, µN,ε ≥ 2 + 2δ) = −∞,

which ends the proof.

7 Large deviations principle for the largest eigenvalue of XN

Our aim here is to prove for each ε > 0, a large deviations principle for (µN,ε)N∈N.
Since (µN,ε)N∈N,ε>0 are exponentially good approximations of the largest eigenvalue of
XN , we will get a large deviations principle for (λXN )N∈N.

For every r ∈ N, we define

Er = {A ∈ ∪n≥1Hn(C) : Card{(i, j) : Ai,j 6= 0} ≤ r}.

For any n ∈ N, let Sn be the symmetric group on the set {1, ..., n}. We denote by S, the
group ∪n∈NSn. We denote by Ẽr the set of equivalence classes of Er under the action of
S, which is defined by

∀σ ∈ S,∀A ∈ Er, σ.A = M−1σ AMσ =
(
Aσ(i),σ(j)

)
i,j
,

where Mσ denotes the permutation matrix associated with the permutation σ, that is,
Mσ = (δi,σ(j))i,j .

Let Hr(C)/Sr be the set of equivalence classes of Hr(C) under the action of the
symmetric group Sr. Note that any equivalence class of the action of S on Er has a
representative in Hr(C). This defines an injective map from Ẽr into Hr(C)/Sr. Identifying
Ẽr to a subset of Hr(C)/Sr, we equip Ẽr of the quotient topology of Hr(C)/Sr. This
topology is metrizable by the distance d̃ given by

∀Ã, B̃ ∈ Ẽr, d̃
(
Ã, B̃

)
= min
σ,σ′∈S

max
i,j

∣∣Bσ(i),σ(j) −Aσ′(i),σ′(j)∣∣ , (7.1)

where A and B are two representatives of Ã and B̃ respectively. Since the application
which associates to a matrix of Hr(C) its largest eigenvalue is continuous and is invariant
by conjugation, we can define this application on Hr(C)/Sr and it will still be continuous.
Therefore, the application which associates to a matrix of Ẽr its largest eigenvalue is
continuous for the topology we defined above. This fact will be crucial later when we
will apply a contraction principle to derive a large deviations principle for (µε,N )N∈N,ε>0.

Let ε > 0. Let PεN,r be the law of Cε, with Cε as in (3.1), conditioned on the event

{Cε ∈ Er}, and P̃εN,r the push forward of PεN,r by the projection π : Er → Ẽr.

Proposition 7.1. Let r ∈ N and ε > 0. Then (P̃εN,r)N∈N satisfies a large deviations

principle with speed Nα/2, and good rate function Iε,r defined for all Ã ∈ Ẽr by,

Iε,r

(
Ã
)

=

{
b
∑
i≥1 |Ai,i|

α
+ a

2

∑
i 6=j |Ai,j |

α if A ∈ Dε,r,
+∞ otherwise,

(7.2)
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where A is a representative of the equivalence class Ã and

Dε,r =
{
A ∈ Er : ∀i ≤ j, Ai,j = 0 or ε ≤ |Ai,j | ≤ ε−1, and Ai,j/|Ai,j | ∈ supp(νi,j)

}
,

with νi,j = ν1 if i = j, and νi,j = ν2 if i < j, where ν1 and ν2 are defined in (1.1).

From the assumptions 1.1 we made on the tail distribution of the entries, and the
independence of the angle and the modulus of the entries, we have the following lemma.

Lemma 7.2 (From [9, p.2478] ). For all γ > 0, and all x 6= 0 with x/|x| ∈ supp(ν1), there
is a sequence (bN )N∈N which converges to b, such that for N large enough,

P
(
X1,1/

√
N ∈ [x− γ, x+ γ]

)
≥ e−bN |x|

αNα/2 .

Similarly, for all z 6= 0 such that z/|z| ∈ supp(ν2), and all 0 < γ < |z|, there is a sequence
(aN )N∈N which converges to a, such that for N large enough,

P
(
X1,2/

√
N ∈ BC(z, γ)

)
≥ e−aN |z|

αNα/2 .

Proof of Proposition 7.1. Property of the rate function: The function φ defined on
Hr(C) by,

φ(A) = b
r∑
i=1

|Ai,i|α +
a

2

∑
1≤i 6=j≤r

|Ai,j |α ,

has compact level sets. Thus, we can deduce, by definition of the topology we equipped
Ẽr, that the rate function Iε,r has also compact level sets.

Exponential tightness: Let γ > 0. We define,

Kγ =
{
Ã ∈ Ẽr :

∑
i,j∈N

|Ai,j |α ≤ γ
}
,

where A denotes a representative of Ã. Since the set{
A ∈ Hr(C) :

∑
1≤i,j≤r

|Ai,j |α ≤ γ
}
,

is a compact subset of Hr(C) and invariant under the action of Sr, we can deduce, by
the choice of the topology we equipped Ẽr, that K̃γ is a compact subset of Ẽr. Then, by

definition of P̃εN,r, we have

P̃εN,r
(
Kc
γ

)
= P

( ∑
1≤i,j≤N

∣∣Cεi,j∣∣α > γ | Cε ∈ Er
)
. (7.3)

But 1∑
i,j |Cεi,j |>γ and 1Cε∈Er are respectively nondecreasing and nonincreasing with

respect to the absolute value of each entry of Cε. Therefore, Harris’ inequality yields,

P
( ∑

1≤i,j≤N

∣∣Cεi,j∣∣α > γ | Cε ∈ Er
)
≤ P

( ∑
1≤i,j≤N

∣∣Cεi,j∣∣α > γ
)

≤ P
( N∑
i=1

|Cεi,j |α > γ/2
)

+ P
( ∑

1≤i6=j≤N

|Cεi,j |α > γ/2
)
.

Now choose a1 such that 0 < 2a1 < a, and b1 such that 0 < b1 < b. By Chernoff’s
inequality we have,

P̃εN,r
(
Kc
γ

)
≤ e−b1N

α/2γ/2E
(
e
b1|X1,1|α1εN1/2≤|X1,1|≤ε−1N1/2

)N
+ e−a1N

α/2γ/2E
(
e
2a1|X1,2|α1εN1/2≤|X1,2|∞≤ε−1N1/2

)N(N−1)/2
. (7.4)
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Let b2 ∈ (b1, b). For t large enough we have,

P (|X1,1| > t) ≤ e−b2t
α

.

Thus, integrating by part just as in the proof of Lemma 5.4 we get, for N large enough,

E
(
e
b1|X1,1|α1εN1/2≤|X1,1|≤ε−1N1/2

)
≤ exp

(
b2

b2 − b1
e−(b2−b1)ε

αNα/2
)
. (7.5)

Similarly, for N large enough and with a2 such that 2a2 ∈ (2a1, a) we have,

E
(
e
2a1|X1,2|α1εN1/2≤|X1,2|∞≤ε−1N1/2

)
≤ exp

(
a2

a2 − a1
e−2(a2−a1)ε

αNα/2
)
. (7.6)

Therefore, putting together (7.5) and (7.6) into (7.4), we get,

lim sup
N→+∞

1

Nα/2
log P̃εN,r

(
K̃c
γ

)
≤ −γ

2
a1 ∨ b1,

which proves that (P̃εN,r)N∈N is exponentially tight.
Lower bound: Let A ∈ Hr(C). Without loss of generality, we can assume that

Iε,r(Ã) < +∞, that is A ∈ Dε,r. Moreover, we assume that for all 1 ≤ i, j ≤ r,

Ai,j = 0 or ε < |Ai,j | < ε−1.

Let δ > 0 be such that

δ < min

(
min
Ai,j 6=0

|Ai,j | − ε, ε−1 − max
1≤i,j≤r

|Ai,j | , ε
)
.

Let
B̃
(
Ã, δ

)
=
{
X̃ ∈ Ẽr : d̃

(
Ã, X̃

)
< δ
}
,

with d̃ being the distance defined in (7.1). We have

P̃εN,r

(
B̃
(
Ã, δ

))
= P

(
min
σ∈S

max
i,j

∣∣∣Cεσ(i),σ(j) −Ai,j∣∣∣ < δ | Cε ∈ Er
)
.

Let

B∞,N (A, δ) =

{
X ∈ HN (C) : max

1≤i,j≤N
|Xi,j −Ai,j | < δ

}
.

Since δ < ε, and since all the non-zero entries of Cε are in {z ∈ C : ε ≤ |z| ≤ ε−1}, we
see that if Cε ∈ B∞,N (A, δ), then Cε ∈ Er. Thus,

P̃εN,r

(
B̃
(
Ã, δ

))
≥ P (Cε ∈ B∞,N (A, δ) |Cε ∈ Er)

=
1

P (Cε ∈ Er)
P (Cε ∈ B∞,N (A, δ)) . (7.7)

But by independence, we have

P (Cε ∈ B∞,N (A, δ)) =

N∏
i=1

P
(
|Cεi,i −Ai,i| < δ

)∏
i<j

P
(
|Cεi,j −Ai,j | < δ

)
. (7.8)

Since

δ < min

(
min
Ai,j 6=0

|Ai,j | − ε, ε−1 − max
1≤i,j≤r

|Ai,j |
)
,

EJP 21 (2016), paper 32.
Page 29/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4146
http://www.imstat.org/ejp/


Large deviations of the largest eigenvalue of Wigner matrices

we have

P
(
|Cεi,i −Ai,i| < δ

)
≥ P

(∣∣∣∣Xi,i√
N
−Ai,i

∣∣∣∣ < δ

)
1Ai,i 6=0 + P

(
Cεi,i = 0

)
1Ai,i=0.

Thus, according to Lemma 7.2, there is a sequence (bN )N∈N converging to b such that,

P
(
|Cεi,i −Ai,i| < δ

)
≥ e−bN |Ai,i|

αNα/21Ai,i 6=0 +
(
1− P

(
|Cεi,i| 6= 0

))
1Ai,i=0

≥ e−bN |Ai,i|
αNα/21Ai,i 6=0 +

(
1− P

(
|Xi,i| ≥ εN1/2

))
1Ai,i=0.

For N large enough we get, with κ defined in (4), we get

P
(
|Cεi,i −Ai,i| < δ

)
≥ e−bN |Ai,i|

αNα/21Ai,i 6=0 +
(

1− e−κε
αNα/2

)
1Ai,i=0

≥ e−bN |Ai,i|
αNα/2

(
1− e−κε

αNα/2
)
. (7.9)

Similarly for i 6= j, we have,

P
(
|Cεi,j −Ai,j | < δ

)
≥ e−aN |Ai,j |

αNα/2
(

1− e−κε
αNα/2

)
, (7.10)

where (aN )N∈N is a sequence converging to a. Putting (7.9) and (7.10) into (7.8), we
get,

P (Cε ∈ B∞,N (A, δ)) ≥ e−bN
∑
i≥1 |Ai,i|

αNα/2e−aN
∑
i<j |Ai,j |

αNα/2
(

1− e−κε
αNα/2

)N2

.

Hence at the exponential scale,

lim inf
N→+∞

1

Nα/2
logP (Cε ∈ B∞,N (A, δ)) ≥ −b

∑
i≥1

|Ai,i|α − a
∑
i<j

|Ai,j |α.

Besides by Proposition 5.7 and Borel-Cantelli Lemma, we have

P (Cε ∈ Er) −→
N→+∞

1.

Putting these estimates into (7.7), we get

lim inf
N→+∞

1

Nα/2
log P̃εN,r

(
B̃
(
Ã, δ

))
≥ −b

r∑
i=1

|Ai,i|α − a
∑

1≤i<j≤r

|Ai,j |α. (7.11)

Observe that since the rate function Iε,r is continuous on its domain π (Dε,r), we have
also the bound (7.11) for any A ∈ Dε,r. This concludes the proof of the lower bound.

Upper bound: From our assumption 1.1, we deduce that for N large enough, the
support of P̃εN,r is included in the domain of Iε,r, that is π (Dε,r). Thus, we see that

whenever Iε,r(Ã) = +∞ for Ã ∈ Ẽr,

lim
δ→0

lim sup
N→+∞

1

Nα/2
log P̃εN,r

(
B̃
(
Ã, δ

))
= −∞.

Let A ∈ Hr(C) be such that A ∈ Dε,r. Since the functions X ∈ Hr(C) 7→
∑r
i=1 |Xi,i|α

and X ∈ Hr(C) 7→
∑

1≤i 6=j≤r |Xi,j |α are continuous, then by definition of the topology

we equipped Ẽr, we deduce that X̃ ∈ Ẽr 7→
∑
i≥1 |Xi,i|α and X̃ ∈ Ẽr 7→

∑
i6=j |Xi,j |α are
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continuous. Then, we can find a nonnegative function h, such that h(δ) → 0 as δ → 0,
and such that

P̃ εN,r

(
B̃
(
Ã, δ

))
≤ P

(∑
i≥1

|Cεi,i|α ≥
∑
i≥1

|Ai,i|α − h (δ) ,
∑
i 6=j

|Cεi,j |α ≥
∑
i6=j

|Ai,j |α − h (δ) | Cε ∈ Er
)
.

But the sets{∑
i≥1

|Cεi,i|α ≥
∑
i≥1

|Ai,i|α − h (δ)
}

and
{∑
i 6=j

|Cεi,j |α ≥
∑
i≥1

|Ai,j |α − h (δ)
}
,

are nondecreasing with respect to the absolute value of each entry of Cε, and {Cε ∈ Er}
is nonincreasing with respect to the absolute value of each entry of Cε. Using Harris’
inequality and the independence of the entries,

P̃ εN,r

(
B̃
(
Ã, δ

))
≤ P

(∑
i≥1

|Cεi,i|α ≥
∑
i≥1

|Ai,i|α − h (δ) ,
∑
i6=j

|Cεi,j |α ≥
∑
i 6=j

|Ai,j |α − h (δ)
)

= P
(∑
i≥1

|Cεi,i|α ≥
∑
i≥1

|Ai,i|α − h (δ)
)
P
(∑
i6=j

|Cεi,j |α ≥
∑
i 6=j

|Ai,j |α − h (δ)
)
.

(7.12)

Let N ≥ r. By Chernoff’s inequality we get, with 0 < b1 < b,

P
( N∑
i=1

|Ci,i|α ≥
N∑
i=1

|Ai,i|α + h(δ)
)

≤ e−N
α/2b1(

∑N
i=1 |Ai,i|

α+h(δ))E
(
e
b1|X1,1|α1εN1/2≤|X1,1|≤ε−1N1/2

)N
.

But we know from (7.5) that for any b2 ∈ (b1, b) and N large enough,

E
(
e
b1|X1,1|α1εN1/2≤|X1,1|≤ε−1N1/2

)
≤ exp

(
b2

b2 − b1
e−(b2−b1)ε

αNα/2
)
.

Hence,

lim sup
N→+∞

1

Nα/2
logP

( N∑
i=1

|Ci,i|α ≥
N∑
i=1

|Ai,i|α + h(δ))
)
≤ −b1

∑
i≥1

|Ai,i|α + h(δ).

As this inequality is true for all b1 < b, letting b1 go to b, we get,

lim sup
N→+∞

1

Nα/2
logP

( N∑
i=1

|Ci,i|α ≥
N∑
i=1

|Ai,i|α + h(δ)
)
≤ −b

(∑
i≥1

|Ai,i|α + h(δ)
)
.

Similarly one can show,

lim sup
N→+∞

1

Nα/2
logP

(∑
i 6=j

|Ci,j |α ≥
∑
i 6=j

|Ai,j |α + h(δ)
)
≤ −a

2

(∑
i 6=j

|Ai,j |α + h(δ)
)
.

Putting these two last estimates into (7.12), we get

lim sup
δ→0

lim sup
N→+∞

1

Nα/2
log P̃ εN,r

(
B̃
(
Ã, δ

))
≤ −b

∑
i≥1

|Ai,i|α −
a

2

∑
i 6=j

|Ai,j |α.
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The idea now, is to use the fact that Cε has with exponentially large probability at
most r non-zero entries, by Proposition 5.7, to release the conditioning on the event
{Cε ∈ Er}. Then, as the largest eigenvalue map is continuous on Ẽr, the contraction
principle will give us a LDP for (µN,ε)N∈N.

Proposition 7.3. Recall that for any N ∈ N and ε > 0, we define

µN,ε =

{
G−1σsc (1/λCε) if λCε ≥ 1,

2 otherwise,

where λCε denotes the largest eigenvalue of Cε, and Cε is as in (3.1).
For all ε > 0, (µN,ε)N∈N follows a large deviations principle with speed Nα/2, and

good rate function Jε, defined by

Jε(x) =


inf{Iε(A) : A ∈ ∪n≥1Hn(C), λA = 1/Gσsc(x)} if x > 2,

0 if x = 2,

+∞ if x < 2,

where λA denotes the largest eigenvalue of any Hermitian matrix A and

Iε(A) =

{
b
∑
i≥1 |Ai,i|

α
+ a

∑
i<j |Ai,j |

α if A ∈ Dε,
+∞ otherwise.

with

Dε =
{
A ∈ ∪n∈NHn(C) : ∀i ≤ j, Ai,j = 0 or ε ≤ |Ai,j | ≤ ε−1 and Ai,j/|Ai,j | ∈ supp(νi,j)

}
,

with νi,j = ν1 if i = j, and νi,j = ν2 if i < j, where ν1 and ν2 are defined in 1.1.

Proof. Note that by Lemma 5.5, we already know that (µN,ε)N∈N is exponentially
tight. Therefore, we only need to show that (µN,ε)N∈N satisfies a weak LDP. Let
f : ∪n≥1Hn(C)→ R be defined by,

f(A) =

{
G−1σsc (1/λA) if λA ≥ 1,

2 otherwise.

Since the largest eigenvalue of a Hermitian matrix is invariant by conjugation, f can be
defined on Ẽr for any r ∈ N. Because of the topology we put on Ẽr, f is continuous on
Ẽr. Therefore, by the contraction principle (see [12, p.126]), the push-forward of P̃εN,r
by f , denoted P̃εN,r ◦ f−1, satisfies a LDP with speed Nα/2, and good rate function Jε,r,
defined for any x ∈ R by

Jε,r(x) = inf
{
Iε,r(Ã) : f(Ã) = x, Ã ∈ Ẽr

}
,

where Iε,r is as in (7.2). Since G−1σsc(x) ≥ 2, for all x ∈ (0, 1], we can re-write this rate
function as,

Jε,r(x) =


inf {Iε(A) : λA = 1/Gσsc(x), A ∈ Dε} if x > 2,

0 if x = 2,

+∞ if x < 2,

where Iε and Dε are defined in Proposition 7.3. Observe that P̃εN,r ◦ f−1 is in fact the

law of µN,ε conditioned on the event {Cε ∈ Er}. We will show that (P̃εN,r ◦ f−1)N,r∈N are
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exponentially good approximations of (µN,ε)N∈N. Let νr,N be an independent random
variable with the same law as of µN,ε conditioned on the event {Cε ∈ Er}. Define

ν̃r,N = µN,ε1Cε∈Er + νr,N1Cε /∈Er .

Then, ν̃r,N and νr,N have the same law P̃εN,r ◦ f−1. Let δ > 0. We have

P (|ν̃r,N − µN,ε| > δ) ≤ P (Cε /∈ Er) .

By Proposition 5.7, we get

lim
r→+∞

lim sup
N→+∞

1

Nα/2
logP (|ν̃r,N − µN,ε| > δ) = −∞.

We can apply [12, Theorem 4.2.16] and deduce that (µN,ε)N∈N satisfies a weak LDP with
speed Nα/2, and rate function defined for all x ∈ R by

Ψε(x) = sup
δ>0

lim inf
r→+∞

inf
|x−y|<δ

Jε,r(y).

But Jε,r is nonincreasing in r. Thus,

Ψε(x) = sup
δ>0

inf
r>0

inf
|x−y|<δ

Jε,r(y) = sup
δ>0

inf
|x−y|<δ

inf
r>0

Jε,r(y) = sup
δ>0

inf
|x−y|<δ

Jε(y),

where Jε is defined in Proposition 7.3. To conclude that Ψε = Jε, we need to show that
Jε is lower semicontinuous. We will in fact show that Jε has compact level sets. Let
τ > 0 and x ∈ R. If

inf{Iε (A) : f(A) = x,A ∈ ∪n∈NHn(C)} ≤ τ,

where Iε is defined in Proposition 7.3, then

inf{Iε (A) : f(A) = x} = inf{Iε (A) : f(A) = x, Iε (A) ≤ 2τ}

But if A ∈ ∪n≥1Hn(C) is such that Iε(A) ≤ 2τ , then(
b ∧ a

2

)∑
i,j

εα1Ai,j 6=0 ≤ Iε(A) ≤ 2τ.

Let r ≥ 2τ
εα(b∧a/2) . We deduce by the above observation that,

inf{Iε (A) : f(A) = x} = inf{Iε (A) : f(A) = x, Iε (A) ≤ 2τ,A ∈ Er}.

Therefore,
inf {Iε (A) : f(A) = x} = inf {Iε (A) : f(A) = x,A ∈ Er} .

Thus,

inf {Iε (A) : f(A) = x} = inf
{
Iε,r

(
Ã
)

: f(Ã) = x, Ã ∈ Ẽr
}
,

with Iε,r being defined in Proposition 7.1. Since Iε,r is a good rate function and f is
continuous on Ẽr, we have

{x ∈ R : Jε (x) ≤ τ} =
{
f(Ã) : Iε,r

(
Ã
)
≤ τ

}
.

Thus, the τ -level set of Jε is compact, which concludes the proof.

We are now ready to give a proof the main result of this paper. More precisely, we
will prove the following.
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Theorem 7.4. The sequence (λXN )N∈N follows a LDP with speed Nα/2, and good rate
function defined by,

J(x) =


cGσsc(x)−α if x > 2,

0 if x = 2,

+∞ if x < 2,

where
c = inf {I(A) : λA = 1, A ∈ D} , (7.13)

where I is defined for any A ∈ ∪n≥1Hn(C), by

I (A) = b

+∞∑
i=1

|Ai,i|α + a
∑
i<j

|Ai,j |α ,

and

D =

{
A ∈ ∪n≥1Hn(C) : ∀i ≤ j, Ai,j = 0 or

Ai,j
|Ai,j |

∈ supp(νi,j)

}
,

where νi,j = ν1 if i = j, and ν2 if i < j, and where supp(νi,j) denotes the support of the
measure νi,j .

Proof. We already know by Proposition 5.1 that (λXN )N∈N is exponentially tight. Thus, it
is sufficient to prove that (λXN )N∈N satisfies a weak LDP. Since we know from Theorem
6.12 that (µN,ε)N∈N,ε>0 are exponentially good approximations of (λXN )N∈N, and that
for each ε > 0, (µN,ε)N∈N follows a LDP with rate function Jε, then by [12, Theorem
4.2.16], we deduce that (λXN )N∈N, satisfies a weak LDP with rate function,

Φ(x) = sup
δ>0

lim inf
ε→0

inf
|y−x|<δ

Jε(y),

As Jε is nondecreasing in ε, we get

Φ(x) = sup
δ>0

inf
ε>0

inf
|y−x|<δ

Jε(y) = sup
δ>0

inf
|y−x|<δ

inf
ε>0

Jε(y)

= sup
δ>0

inf
|y−x|<δ

J(x), (7.14)

with

J(x) =


inf
{
I(A) : A ∈ ∪n≥1Hn(C), λA = Gσsc(x)−1, A ∈ D

}
if x > 2,

0 if x = 2,

+∞ if x < 2.

(7.15)

As for any t > 0, and A ∈ Hn(C), I(tA) = tαI(A) and λtA = tλA, and furthermore D is a
cone, we have for any x > 2,

J(x) = Gσsc(x)−αJ(1).

As Gσsc is non-increasing from [2,+∞) to (0, 1]. This yields that J has compact level sets.
Therefore, from (7.14), we get that Φ = J , which concludes the proof.

8 Computation of J(1)

In this section, we compute the constant c in Theorem 7.4 explicitly, assuming certain
conditions on the supports of the limiting angle distributions of the diagonal and off-
diagonal entries (in the sense of 1.1). In particular, when the entries are real random
variables, or when α ∈ (0, 1], the following proposition together with Theorem 7.4, gives
an explicit formula for the rate function.
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Proposition 8.1. With the notations of Theorem 7.4, we have the following :
(a). If 0 < α ≤ 1, then

c =

{
min(b, a) if 1 ∈ supp(ν1),

a otherwise.

(b). If 1 < α < 2 and 1 ∈ supp(ν1), and b ≤ a
2 , then c = b.

(c). If 1 < α < 2, 1 ∈ supp(ν1) ∩ supp(ν2) and b > a
2 , then

c = min
{
I
(
B(k)

((1

b

) 1
α−1

,

(
2

a

) 1
α−1 ))

: k ∈ N
}
,

where B(k)(s, t) denotes for any (s, t) 6= (0, 0), and k ∈ N, the following matrix of size
k × k,

B(k)(s, t) =
1

s+ (k − 1)t



s t t

t

t

t t s

 . (8.1)

Equivalently,

c = min (ψ (bt0c) , ψ (dt0e)) ,

where bt0c and dt0e denote respectively the lower and upper integer parts of t0, and with
ψ and t0 being defined by

∀t ≥ 1, ψ(t) =
t((

1
b

) 1
α−1 + (t− 1)

(
2
a

) 1
α−1

)(α−1) , t0 =
1

2− α

(
1−

( a
2b

) 1
α−1

)
. (8.2)

(d). If 1 < α < 2, 1 ∈ supp(ν1), and supp(ν2) = {−1} and b > a
2 , then,

c = min
(
b,

2((
1
b

) 1
α−1 +

(
2
a

) 1
α−1

)α−1).
(e). If 1 < α < 2, supp(ν1) = {−1} and 1 ∈ supp(ν2), then

c = min
{
I
(
B(k) (0, 1)

)
: k ≥ 2

}
=
a

2
min (φ (bt1c) , φ (dt1e)) ,

where

∀t ≥ 2, φ(t) =
t

(t− 1)α−1
, t1 =

1

2− α
.

(f). If 1 < α < 2, and supp(ν1) = supp(ν2) = {−1}, then c = a.

Proof. (a). Let 0 < α ≤ 1 and 1 ∈ supp(ν1). Note that if A ∈ Hn(C) is such that |Ai,j | ≥ 1,
for some i, j ∈ {1, ..., n}, then I(A) ≥ min(b, a). But, as 1 ∈ supp(ν1),

c ≤ min
(
I (1) , I

(
0 eiθ

e−iθ 0

))
, (8.3)

with some θ ∈ supp(ν2). Therefore c ≤ min(b, a). We deduce that we can restrict the
constraints set of the optimization problem (7.13) to matrices with entries less or equal
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than 1 in absolute value. As 0 < α ≤ 1, we get,

c ≥ (b ∧ a) inf

∑
i≥1

|Ai,i|+
∑
i<j

|Ai,j | : λA = 1, A ∈ ∪n≥1Hn(C)


≥ (b ∧ a) inf

1

2
|tr(A)|+ 1

2

∑
i,j

|Ai,j | : λA = 1, A ∈ ∪n≥1Hn(C)

 ,

where used the triangular inequality in the last inequality. But we know from [26,
Theorem 3.32], that for any A ∈ Hn(C),

∑
i,j

|Ai,j | ≥
n∑
i=1

|λi| ,

where λ1, ..., λn are the eigenvalues of A. Therefore,

c ≥ 1

2
(b ∧ a) inf

n≥1
inf
{∣∣∣1 +

n−1∑
i=1

λi

∣∣∣+
(

1 +

n−1∑
i=1

|λi|
)

: λ1, ..., λn−1 ∈ R
}
.

But, for all λ1, ..., λn−1 ∈ R,∣∣∣1 +

n−1∑
i=1

λi

∣∣∣+
(

1 +

n−1∑
i=1

|λi|
)
≥ 2 +

n−1∑
i=1

(λi + |λi|) ≥ 2,

with equality for λ1 = λ2 = ... = λn−1 = 0. We conclude that c = min(b, a).

Let 0 < α ≤ 1, but assume supp(ν1) = {−1}. Then,

c ≥ inf
{
b
∑
i≥1

|Ai,i|+ a
∑
i<j

|Ai,j | : A ∈ ∪n≥1Hn(C), Ai,i ≤ 0,∀i ∈ N, λA = 1
}

= inf
{(

b− a

2

) ∣∣∣∑
i≥1

Ai,i

∣∣∣+
a

2

∑
i,j

|Ai,j | : A ∈ ∪n≥1Hn(C), Ai,i ≤ 0,∀i ∈ N, λA = 1
}

≥ inf
{(

b− a

2

) ∣∣∣∑
i≥1

Ai,i

∣∣∣+
a

2

∑
i,j

|Ai,j | : A ∈ ∪n≥1Hn(C), trA ≤ 0,∀i ∈ N, λA = 1
}
.

Using again the fact that
∑
i,j |Ai,j | ≥

∑n
i=1 |λi|, where A ∈ Hn(C), and λ1, ..., λn are the

eigenvalues of A, we get

c ≥ inf
n≥1

inf
{(

b− a

2

) ∣∣∣1 +

n−1∑
i=1

λi

∣∣∣+
a

2

(
1 +

n−1∑
i=1

|λi|
)

: λ1, ..., λn−1 ∈ R,
n−1∑
i=1

λi ≤ −1
}
.

But if 1 +
∑n−1
i=1 λi ≤ 0, for λ1, ..., λn−1 ∈ R, then

(
b− a

2

) ∣∣∣1 +

n−1∑
i=1

λi

∣∣∣+
a

2

(
1 +

n−1∑
i=1

|λi|
)

= −
(
b− a

2

)(
1 +

n−1∑
i=1

λi

)
+
a

2

(
1 +

n−1∑
i=1

|λi|
)

= a− b
(

1 +

n−1∑
i=1

λi

)
+
a

2

n−1∑
i=1

(|λi|+ λi)

≥ a.

Thus, c ≥ a. But, c ≤ a by the same argument as in (8.3), therefore c = a.
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(b). Let 1 < α < 2 and assume 1 ∈ supp(ν1) and b ≤ a
2 . Due to [26, Theorem 3.32], we

have for any A ∈ Hn(C),

I(A) ≥ b
∑

1≤i,j≤n

|Ai,j |α ≥ b
n∑
i=1

|λi|α ,

where λ1, ..., λn are the eigenvalues of A. As λA = 1, we get I(A) ≥ b. Therefore, c ≥ b.
As 1 ∈ supp(ν1), we also have c ≤ I((1)) = b, which ends the proof.

(c). Let 1 < α < 2, b > a
2 and assume 1 ∈ supp(ν1) ∩ supp(ν2). We have the bound

c ≥ inf
n≥1

inf {I(A) : A ∈ Hn(C), λA = 1} .

Let n ≥ 2. We consider the minimization problem

inf {I(A) : A ∈ Hn(C), λA = 1} .

As I is continuous and the constraints set is compact, the infimum is achieved at some
A ∈ Hn(C). If 1 is an eigenvalue of A of multiplicity greater that 2, then denoting by
λ1, ..., λn the eigenvalues of A, we have by [26, Theorem 3.32],

I(A) ≥ a

2

n∑
i=1

|λi|α ≥ a.

As A is a minimizer, and 1 ∈ supp(ν1) ∩ supp(ν2),

I(A) ≤ I
(

p (1− p)
(1− p) p

)
,

where p =
(

1 +
(
2b
a

)1/(α−1))−1
. As 2bpα−1 = a(1− p)α−1,

I

(
p (1− p)

(1− p) p

)
= 2bpα + a(1− p)α

= a(1− p)α−1p+ a(1− p)α

= a(1− p)α−1 < a,

where we used in the last inequality the fact that α > 1. This yields a contradiction.
Therefore, 1 must be a simple eigenvalue of A. From the multipliers rule (see [11,

Theorem 10.48]), there exist η, γ ∈ R, (η, γ) 6= 0, such that η = 0, or 1, and

0 ∈ η{∇I(A)} − γ∂λ(A), (8.4)

where the gradient of f , and the subdifferential of λ, denoted ∂λ, are taken with respect
to the canonical Hermitian product on Hn(C). As a consequence of Danskin’s formula
(see [11, Theorem 10.22]), we have the following lemma.

Lemma 8.2. Let λ : Hn(C)→ R be the largest eigenvalue function. The subdifferential
of λ at A, taken with respect to the canonical Hermitian product, is

∂λ (A) =
{
X ∈ Hn(C) : 0 ≤ X ≤ 1EλA (A), trX = 1

}
,

where 1EλA (A) denotes the projection on the eigenspace EλA(A) of A associated with
the largest eigenvalue of A, and ≤ is the order structure on Hn(C).
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As 1 is a simple eigenvalue of A, we get from Lemma 8.2 that there is some unit
eigenvector of A, x, associated with the eigenvalue 1, such that

η∇I(A) = γxx∗.

We deduce that for any i 6= j,

η
a

2
αAi,j |Ai,j |α−2 = γxixj , (8.5)

and for any 1 ≤ i ≤ n,
ηbαAi,i |Ai,i|α−2 = γ |xi|2 , (8.6)

with the convention that z|z|α−2 = 0 when z = 0. Multiplying the two equations above by
Ai,j and Ai,i respectively, and summing over all i, j ∈ {1, ..., n}, we get

ηI(A) = γ. (8.7)

As (η, γ) 6= (0, 0), this shows that η = 1. Furthermore, the stationary condition yields for
all i 6= j,

Ai,j =

(
2γ

aα

) 1
α−1

xixj |xixj |
1

α−1−1 ,

and for all 1 ≤ i ≤ n,

Ai,i =
( γ
bα

) 1
α−1 |xi|

2
α−1 .

Due to the eigenvalue equation Ax = x, we have for all 1 ≤ i ≤ n,( γ
bα

) 1
α−1 |xi|

2
α−1 xi +

(
2γ

aα

) 1
α−1 ∑

j 6=i

xi |xi|
1

α−1−1 |xj |
1

α−1+1
= xi. (8.8)

At the price of permuting the coordinates of x and conjugating A by a permutation matrix,
we can assume x = (x1, ..., xk, 0, ..., 0), with x1 6= 0, ..., xk 6= 0. Dividing by xi|xi|

1
α−1−1 in

(8.8), we get

By =
(γ
α

)− 1
α−1

y−
2−α
α , (8.9)

where y ∈ Rk is such that yi = |xi|1+
1

α−1 for all i ∈ {1, ..., k}, and where the power on the
right-hand side must be understood entry-wise, and

B =



b−
1

α−1 (a/2)−
1

α−1 (a/2)−
1

α−1

(a/2)−
1

α−1

(a/2)−
1

α−1

(a/2)−
1

α−1 (a/2)−
1

α−1 b−
1

α−1


∈ Hk(C).

As x is a unit vector, we have
∑k
i=1 y

2(α−1)/α
i = 1. Taking the scalar product with y in

(8.9), yields (γ
α

)− 1
α−1

= 〈By, y〉 .

As I(A) = γ
α by (8.7), we deduce that

c ≥
(

sup
k≥1

sup
{
〈By, y〉 : y ∈ [0,+∞)k,

k∑
i=1

y
2(α−1)/α
i

})−(α−1)
. (8.10)
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In the next lemma, we compute the maximum of certain quadratic forms, like the one
given by the matrix B, on the unit `δ-sphere, intersected with [0,+∞)n, where δ ∈ (0, 1).

Lemma 8.3. Let λ, µ ∈ R such that 0 ≤ λ < µ. Let δ ∈ (0, 1). Define for any n ∈ N,

B =



λ µ µ

µ

µ

µ µ λ


∈ Hn(C).

It holds

sup
{
〈By, y〉 : y ∈ [0,+∞)n,

n∑
i=1

yδi = 1
}

= max
1≤k≤n

(λ+ (k − 1)µ)k1−2/δ. (8.11)

Proof. Let n ∈ N. By continuity and compactness arguments, we see that the supremum

sup
{
〈By, y〉 : y ∈ [0,+∞)n,

n∑
i=1

yδi = 1
}
,

is achieved at some y ∈ Rn. At the price of re-ordering the coordinates of y, we can
assume that y = (z1, ..., zm, 0..., 0), with z1 > 0, ..., zm > 0, for some m ∈ {1, ..., n}. Then,
the vector z = (z1, ..., zm) ∈ Rm is a solution of the optimization problem

sup
{
〈Bz, z〉 : z ∈ [0,+∞)m,

m∑
i=1

zδi = 1
}
,

which lies in the interior of [0,+∞)m. The multipliers rule (see [11, Theorem 9.1]) asserts
that there is some (η, γ) 6= (0, 0), with η = 0 or 1, such that

ηBz = γzδ−1, (8.12)

where the power on the right-hand side has to be understood entry-wise. Taking the
scalar product with z in (8.12) yields

η 〈Bz, z〉 = γ.

We deduce that η = 1. Moreover, by (8.12) we have for any i ∈ {1, ...,m},

µ

m∑
j=1

zj = γzδ−1i + (µ− λ) zi. (8.13)

But then, the function

∀s ∈ (0,+∞), f(s) = γsδ−1 + (µ− λ)s,

is decreasing on (0, s0], and increasing on (s0,+∞), for some s0 ∈ (0,+∞). Thus, (8.13)
yields that z has at most two distinct coordinates. Thus, there are some k, l ∈ N, such
that k + l = m, and s, t ≥ 0, such that ksδ + ltδ = 1, and

∀i ∈ {1, ...,m}, zi = 1i≤ks+ 1k+1≤i≤k+lt.

But then,

〈Bz, z〉 = λks2 + µk(k − 1)s2 + λlt2 + µl(l − 1)t2 + 2µklst

= k (λ+ (k − 1)µ) s2 + l (λ+ (l − 1)µ) t2 + 2µklst.
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Let x = ksδ. We get

〈Bz, z〉 = k1−2/δ (λ+ (k − 1)µ)x2/δ + l1−2/δ (λ+ (l − 1)µ) (1− x)2/δ

+2µ(kl)1−1/δx1/δ(1− x)1/δ.

Define
∀x ∈ (0,+∞), φ(x) = x1−2/δ(λ+ (x− 1)µ).

Note that φ is increasing on (0, x0] and decreasing on [x0,+∞), where

x0 =

(
2
δ − 1

)
2
δ − 2

(
1− λ

µ

)
. (8.14)

With this definition, we have

〈Bz, z〉 = φ(k)x2/δ + φ(l)(1− x)2/δ + 2µ(kl)1−1/δx1/δ(1− x)1/δ.

Therefore,

max
{
〈Bz, z〉 : z ∈ [0,+∞)n,

n∑
i=1

zδi = 1
}

= max
k+l≤n
k,l∈N

max
x∈[0,1]

fk,l(x),

with

∀x ∈ [0, 1], fk,l(x) = φ(k)x2/δ + φ(l)(1− x)2/δ + 2µ(kl)1−1/δx1/δ(1− x)1/δ.

Let m ∈ N, be such that φ(m) = max{φ(k) : k ∈ N∗}. Since φ is increasing on (0, x0] and
decreasing on [x0,+∞), we have m ∈ {bx0c, dx0e}. Moreover φ, restricted on N \ {0}, is
increasing on {1, ...,m}, and decreasing on {m,m + 1, ..., n}. As δ ∈ (0, 1), we have for
any k, l ∈ N, and x ∈ [0, 1],

fk,l(x) ≤ φ(k ∧m)x2/δ + φ(l ∧m)(1− x)2/δ + 2µ((k ∧m)(l ∧m))1−1/δx1/δ(1− x)1/δ.

Therefore,

max
{
〈By, y〉 : y ∈ [0,+∞)n

n∑
i=1

yδi = 1
}

= max
k+l≤n
k,l≤m

max
x∈[0,1]

fk,l(x). (8.15)

We are reduced to study the maximum of certain functions fk,l on the interval [0, 1]. The
variations of those functions are given by the following lemma.

Lemma 8.4. Let a, b, c ≥ 0, a, c 6= 0. Let also δ ∈ (0, 1). Define

∀x ∈ [0, 1], f(x) = ax2/δ + 2bx1/δ(1− x)1/δ + c(1− x)2/δ.

Then one of the following holds :
(a). There is some x1 ∈ (0, 1), such that f is decreasing on [0, x1], and increasing on [x1, 1].
(b). There are some 0 < x1 < x2 < x3 < 1, such that f is decreasing on [0, x1] and [x2, x3],
and increasing on [x1, x2] and [x3, 1].

Proof. We have, for all x ∈ (0, 1),

δ

2
f ′(x) = ax

2
δ−1 + bx

1
δ−1(1− x)

1
δ − bx 1

δ (1− x)
1
δ−1 − c(1− x)

2
δ−1.

We write
δ

2
f ′(x) = x

2
δ−1

(
a+ bs

1
δ − bs 1

δ−1 − cs 2
δ−1
)
, (8.16)

EJP 21 (2016), paper 32.
Page 40/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4146
http://www.imstat.org/ejp/


Large deviations of the largest eigenvalue of Wigner matrices

where s = 1−x
x . Set for all s ∈ (0,+∞), g(s) = a + bs

1
δ − bs 1

δ−1 − cs 2
δ−1. Then, for any

s ∈ (0,+∞)

g′(s) =
b

δ
s

1
δ−1 − b

(1

δ
− 1
)
s

1
δ−2 − c

(2

δ
− 1
)
s

2
δ−2 = s

1
δ−2h(s),

with h(s) = b
δ s− b(

1
δ − 1)− c( 2

δ − 1)s
1
δ . Deriving once more, we get for any s ∈ (0,+∞),

h′(s) =
b

δ
− c

δ

(2

δ
− 1
)
s

1
δ−1.

As δ ∈ (0, 1), we see that h′ is decreasing. This entails that f has at most three changes
of variations. As f ′(0) < 0, and f ′(1) < 0, we deduce that f is either decreasing on [0, x1],
and increasing on [x1, 1], for some x1 ∈ [0, 1], or there are some x1 < x2 < x3 such that f
is decreasing on [0, x1] and [x2, x3], and increasing on [x1, x2] and [x3, 1].

We come back at the proof of Lemma 8.3. Let k, l ∈ N, such that k + l ≤ n and
1 ≤ k ≤ l ≤ m. If k = l, then fk,l(x) = fk,l(1 − x) for any x ∈ [0, 1]. By Lemma 8.4, this
entails that if fk,l has a local maximum in (0, 1), then it must be at 1/2. One can easily
check that fk,k(1/2) = φ(2k). Thus,

max
x∈[0,1]

fk,k(x) = max (φ(2k), φ(k)) .

This shows also that for m = 1, we can compute the right-hand side of (8.15).
Assume now m ≥ 2, and 1 ≤ k < l ≤ m. We will show that the maximum of fk,l is

achieved at either 0, k/(k + l) or 1. We can write for any x ∈ [0, 1],

δ

2
f ′k,l(x) =

(
x(1− x)

kl

) 1
δ−

1
2

gk,l(y), (8.17)

with y = k(1−x)
lx , and gk,l(y) = (λ+ (k− 1)µ)y−

1
δ+

1
2 +µ

(
ly

1
2 − ky− 1

2

)
− (λ+ (l− 1)µ)y

1
δ−

1
2 .

Note that gk,l(1) = 0, so that f ′k,l(
k
k+l ) = 0. Observe that y is a decreasing function of x.

Thus, to show that k/(k + l) is a local maximum of fk,l, we need to show that g′k,l(1) > 0.
But

g′k,l(1) =
(2

δ
− 1
)

(µ− λ)− (k + l)µ
(1

δ
− 1
)
.

Thus,

g′k,l(1) > 0⇐⇒ k + l

2
<

(
2
δ − 1

)
2
δ − 2

(
1− λ

µ

)
⇐⇒ k + l

2
< x0,

with x0 as in (8.14). If m = bx0c or n < 2x0, then (k + l)/2 < x0, so that g′k,l(1) > 0.

This yields that k
k+l is a local maximum of fk,l. By Lemma 8.4, we deduce that the

maximum of fk,l is achieved at either 0, k/(k + l), or 1. Moreover, one can check that

fk,l

(
k
k+l

)
= φ(k + l). Therefore,

max
[0,1]

fk,l = max (φ(k), φ(l), φ(k + l)) .

Assume now m = dx0e and n ≤ 2x0. If (k, l) 6= (m−1,m), one can use the same arguments
as above to identify the maximum of fk,l. Thus, we are reduced to the case k = m− 1,
and l = m. As φ is increasing on {1, ...,m}, we have for any x ∈ [0, 1],

fm−1,m(x) ≤ φ(m)x2/δ + 2µ(m(m− 1))1−1/δx1/δ(1− x)1/δ + φ(m)(1− x)2/δ.
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As the function on the right-hand side, which we denote by f , is such that f(x) = f(1−x)

for any x ∈ [0, 1], we get by Lemma 8.4 that its maximum is achieved at 0 or 1/2. Thus,

max
x∈[0,1]

fm−1,m(x) ≤ max
(
φ(m), f

(1

2

))
.

We claim that f(1/2) ≤ φ(m), which amounts to say that(
1− 1

m

)1−1/δ
≤ 1− 21−2/δ

21−2/δ

(
1− 1

m

(
1− λ

µ

))
.

Note that as m ≥ x0, we have

1− 1

m

(
1− λ

µ

)
≥ 1

2/δ − 1
.

Since δ ∈ (0, 1) and m ≥ 2, we only need to prove that

2−1+1/δ ≤ 1− 21−2/δ

21−2/δ
1

2/δ − 1
,

which we can re-write as follow

21/δ − 21−1/δ − 2

δ
+ 1 ≥ 0.

But the function on the left-hand side of the above inequality is increasing in 1/δ on
[1,+∞), and is equal to zero for δ = 1. Thus, the above inequality is true for any δ ∈ (0, 1),
which proves our claim. We conclude that

max
x∈[0,1]

fm−1,m(x) = φ(m).

We can deduce from (8.15) that

max

{
〈By, y〉 : y ∈ [0,+∞)n,

n∑
i=1

yδi = 1

}
= max

1≤k≤n
φ(k).

We come back now at the proof of case (c). As α ∈ (1, 2), we have 2(α− 1)/α ∈ (0, 1).
From Lemma 8.3 and (8.10), we get

c ≥
{

max
k≥1

((1

b

) 1
α−1

+ (k − 1)
(2

a

) 1
α−1

)
k−(α−1)

}−(α−1)
= min

k≥1
ψ(k),

where ψ is defined in the statement of Proposition 8.1. As 1 ∈ supp(ν1) ∩ supp(ν2), the

matrix B(k)
((

1
b

) 1
α−1 ,

(
2
a

) 1
α−1

)
defined in (8.1), is in the domain D, and

I
(
B(k)

((1

b

) 1
α−1

,

(
2

a

) 1
α−1 ))

= ψ(k),

which gives the first part of the claim in case (c).
Easy computations show that the function ψ defined in (8.2) is decreasing on [0, t0]

and increasing on [t0, 1], with

t0 =
1

2− α

(
1−

(
2b

a

)− 1
α−1 )

.
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Thus,
c = min (ψ (bt0c) , ψ (dt0e)) .

(d). Let 1 < α < 2 and assume 1 ∈ supp(ν1), supp(ν2) = {−1} and b > a
2 . Then,

c = inf
n≥1

inf {I(A) : A ∈ Sn(R), λA = 1, Ai,j ≤ 0,∀i 6= j} ,

where Sn(R) denotes the set of real symmetric matrices of size n.
Let n ≥ 1. We consider the minimization problem

inf {I(A) : A ∈ Sn(R), λA = 1, Ai,j ≤ 0,∀i 6= j} .

The same argument as in case (c) justifies that the infimum is achieved at some A ∈ Sn(R)

for which 1 is a simple eigenvalue. The multipliers rule (see [11, Theorem 9.1]) asserts
that there are some (M,γ) ∈ Sn(R)×R such that (M,γ) 6= (0, 0), and

∀i 6= j,Mi,j ≥ 0,Mi,jAi,j = 0, and Mi,i = 0,∀1 ≤ i ≤ n, ,

satisfying
∇I(A) +M = γxtx,

where x is a unit eigenvector associated with the eigenvalue 1. We deduce that for any
i 6= j,

a

2
αAi,j |Ai,j |α−2 +Mi,j = γxixj , (8.18)

and for any 1 ≤ i ≤ n,
bαAi,i |Ai,i|α−2 = γx2i . (8.19)

The same argument as in case (c), shows that

αI(A) = γ. (8.20)

Without loss of generality, we can assume x is of the form x = (x1, ..., xk, xk+1, ..., xk+l,

0, ...0), with x1 > 0, ..., xk > 0, and xk+1 < 0, ..., xk+l < 0.
Note that as Ai,jMi,j = 0, Mi,j ≥ 0, and Ai,j ≤ 0, for any i 6= j, we get from (8.18),

that for any i 6= j, Ai,j 6= 0 if and only if xixj < 0. Thus, for all i 6= j, Ai,j 6= 0, if and only
if (i, j) or (j, i) ∈ {1, ..., k} × {k + 1, ..., k + l}.

Let (i, j) ∈ {1, ..., k} × {k + 1, ..., k + l}. From (8.18), we have

Ai,j = −
(

2γ

aα

) 1
α−1

|xixj |
1

α−1 ,

and for all i ∈ {1, ..., k + l}, we get by (8.19),

Ai,i =
( γ
bα

) 1
α−1 |xi|

2
α−1 .

The eigenvalue equation Ax = x, yields, for any i ∈ {1, ..., k},

( γ
bα

) 1
α−1 |xi|

2
α−1+1

+

(
2γ

aα

) 1
α−1 ∑

k+1≤j≤k+l

|xi|
1

α−1 |xj |
1

α−1+1
= |xi| ,

as xj < 0 for j ∈ {k + 1, ..., k + l}, and xi > 0 for i ∈ {1, ..., k}.
Similarly, for any i ∈ {k + 1, ..., k + l},

−
( γ
bα

) 1
α−1 |xi|

2
α−1+1 −

(
2γ

aα

) 1
α−1 ∑

1≤j≤k

|xi|
1

α−1 |xj |
1

α−1+1
= − |xi| .
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Dividing in the two equations above by |xi|
1

α−1 , we get

B(k,l)y =
(γ
α

)− 1
α−1

y−
2−α
α , (8.21)

with y ∈ Rk+l, such that yi = |xi|
1

α−1+1, for all i ∈ {1, ..., k + l}, and

B(k,l) =

( (
1
b

) 1
α−1 Ik

(
2
a

) 1
α−1 Uk,l(

2
a

) 1
α−1 tUk,l

(
1
b

) 1
α−1 Il

)
∈ Sk+l(R),

where Uk,l is the matrix of size k× l whose entries are all equal to 1. As x is a unit vector,

we have
∑k+l
i=1 y

2(α−1)
α = 1. We deduce from (8.21), that(γ

α

)− 1
α−1

=
〈
B(k,l)y, y

〉
.

Using (8.20) and the fact that A is a minimizer, we get

c =
(

sup
k,l∈N

sup
{〈

B(k,l)y, y
〉

:

k+l∑
i=1

y
2(α−1)/α
i = 1, y ∈ [0,+∞)k+l

})−(α−1)
. (8.22)

In the following lemma, we compute the supremum of the left-hand side of the above
inequality.

Lemma 8.5. Let δ ∈ (0, 1). Let k, l ∈ N, such that (k, l) 6= (0, 0). Let λ, µ ∈ R+, and
define

B =

(
λIk µUk,l
µtUk,l λIl

)
∈ Sk+l(R),

where Uk,l is the matrix of size k × l whose entries are all equal to 1. We have,

sup
{
〈By, y〉 :

k+l∑
i=1

yδi = 1, y ∈ [0,+∞)k+l
}

= max
(
λ, (λ+ µ)21−2/δ

)
.

Proof. With the same arguments as in the proof of Lemma 8.3, the supremum of the
quadratic form defined by B on

{
y ∈ [0,+∞)k+l :

k+l∑
i=1

yδi = 1
}
,

is achieved at some y such that,

∀i ∈ {1, ..., k + l}, yi = si1i≤k′ + tk′+i11≤i≤l′ ,

with s1 > 0, ..., sk′ > 0, and tk′+1 > 0, ...., tk′+l′ > 0, for some k′ ≤ k and l′ ≤ l, such that
the vector z = (s1, ..., sk′ , tk′+1, ..., tk′+l′) ∈ Rk

′+l′ , satisfies for some γ ∈ R,

B̃z = γzδ−1,

where

B̃ =

(
λIk′ µUk′,l′

µtUk′,l′ λIl′

)
∈ Sk′+l′(R).

Without loss of generality, we can assume k, l ≥ 1. Comparing the ith and jth coordinates
of Bz, for 1 ≤ i, j ≤ k′, we get

λ (si − sj) = γ
(
sδ−1i − sδ−1j

)
.
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If λ = 0, then it immediately yields si = sj . If λ 6= 0, as δ ∈ (0, 1), we see that if si 6= sj ,
the terms on the left-hand side, and the right-hand side must have opposite signs. Thus
si = sj for any i, j ∈ {1, ..., k′}. Similarly, comparing the ith and jth coordinates of By, for
i, j ∈ {k′ + 1, ..., k′ + l′}, yields that ti = tj , for all i, j ∈ {k′ + 1, ..., k′ + l′}. We can write

∀i ∈ {1, ..., k′ + l′}, zi = s1i≤k′ + t1k′+1≤i≤k′+l′ ,

for some s, t ∈ (0,+∞). As
∑k′+l′

i=1 zδi = 1, we have k′sδ + l′tδ = 1. Let v = (k′1/δs, l′1/δt).
Then,

〈B̃z, z〉 = λ(k′s2 + l′t2) + 2µk′l′ts = 〈M(k′, l′)v, v〉 ,

where

M (k′,l′) =

(
λk′1−2/δ µ(k′l′)1−1/δ

µ(k′l′)1−1/δ λl′1−2/δ

)
.

Thus,

sup
{
〈By, y〉 :

k+l∑
i=1

yδi = 1, y ∈ [0,+∞)k+l
}

= sup
1≤k′≤k
1≤l′≤l

sup
v=(s,t)

sδ+tδ=1,s,t≥0

〈M (k′,l′)v, v〉

= sup
v=(s,t)

sδ+tδ=1,s,t≥0

sup
1≤k′≤k
1≤l′≤l

〈M (k′,l′)v, v〉.

But for fixed v ∈ R2, as δ ∈ (0, 1), we easily see that the maximum of 〈M (k′,l′)v, v〉 is
achieved at k′ = l′ = 1. Thus,

sup
{
〈By, y〉 :

k+l∑
i=1

yδi = 1, y ∈ [0,+∞)k+l
}

= sup
v=(s,t)

sδ+tδ=1,s,t≥0

〈M (1,1)v, v〉.

From Lemma 8.3, we get

sup
v=(s,t)

sδ+tδ=1,s,t≥0

〈M (1,1)v, v〉 = max
(
λ, (λ+ µ)21−2/δ

)
,

which yields the claim.

We come back now to the proof of case (d). By Lemma 8.5 and (8.22), we get

c = max
(
b,

2((
1
b

) 1
α−1 +

(
2
a

) 1
α−1

)α−1),
which gives the claim.

(e). Let 1 < α < 2, and assume 1 ∈ supp(ν2) and supp(ν1) = {−1}. Then,

c ≥ inf
n≥2

inf {I(A) : A ∈ Hn(C), Ai,i ≤ 0,∀i ∈ N, λA = 1} .

Let n ≥ 2. We consider the minimization problem

inf {I(A) : A ∈ Hn(C), Ai,i ≤ 0,∀i ∈ N, λA = 1} .

Similar arguments as in case (c) and (d) show that the infimum is achieved at some A
such that Ai,i = 0 for all 1 ≤ i ≤ n. By the multipliers rule and Lemma 8.2, we deduce
that for any i 6= j,

Ai,j =

(
2γ

aα

) 1
α−1

Xi,j |Xi,j |
1

α−1−1 ,
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where γ = αI(A), and X ∈ Hn(C) is such that 0 ≤ X ≤ 1E1(A), and trX = 1. We deduce
that trAX = 1. This yields, (

2γ

aα

) 1
α−1 ∑

i 6=j

|Xi,j |
1

α−1+1
= 1.

As I(A) = γ
α , we have

I(A) =
a

2

(∑
i 6=j

|Xi,j |
1

α−1+1
)−(α−1)

≥ a

2

(
max
trX=1
X≥0

∑
i6=j

|Xi,j |
1

α−1+1
)−(α−1)

. (8.23)

In the following lemma, we compute the maximum on the right-hand side.

Lemma 8.6. Let β ≥ 2. We have for any n ∈ N, n ≥ 2,

max
{ ∑

1≤i 6=j≤n

|Xi,j |β : X ∈ Hn(C), X ≥ 0, trX = 1
}

= max
2≤k≤n

(k − 1)k1−β .

Proof. Let ξ : X ∈ Hn(C) 7→
∑
i6=j |Xi,j |β . Note that ξ is convex, and that the constraints

set,

S = {X ∈ Hn(C) : X ≥ 0, trX = 1} ,

is also convex. As a consequence of [24, Corollary 18.5.1], ξ attains its maximum at
an extreme point of the set S, which is of the form xx∗, with x a unit vector of Cn. We
deduce that,

max
S

ξ = max
{ ∑

1≤i 6=j≤n

|xixj |β : x ∈ Cn, ||x|| = 1
}
.

We can re-write the maximum on the right-and side of the above equation as,

max
{
〈By, y〉 : ∀i ∈ {1, ..., n}, yi ≥ 0,

n∑
i=1

y
2/β
i = 1

}
,

where

B =



0 1 1

1

1

1 1 0

 ∈ Hn(C).

Applying the result of Lemma 8.3, with δ = 2/β, we get the claim.

We come back at the proof of Proposition 8.1, (e). Note that, as 1 < α < 2, we have
1 + 1

α−1 ≥ 2. From (8.23) together with Lemma 8.6, we get

c ≥ a

2

(
max
n≥2

(n− 1)n−
1

α−1

)−(α−1)
=
a

2
min

n

(n− 1)
α−1 .

But,
a

2

n

(n− 1)
α−1 = I(B(n) (0, 1)),

where B(n) (0, 1) is defined in (8.1). As 1 ∈ supp(ν2), we have B(n) (0, 1) ∈ D, which ends
the proof of the case (e).
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(f). Assume finally 1 < α < 2, and supp(ν1) = supp(ν2) = {−1}. Let n ≥ 1 and consider
the minimization problem

inf {I(A) : A ∈ Sn(R), λA = 1, Ai,j ≤ 0,∀i ≤ j} .

The same arguments as in the case (e), show that the minimizer A is such that Ai,i = 0

for all i ∈ {1, ..., n}. If A is a simple eigenvalue of A, then, the same analysis can be
carried as in the case (d), and yields

I(A) ≥
(

sup
k,l∈N

sup
{
〈By, y〉 :

k+l∑
i=1

y
2(α−1)/α
i = 1, y ∈ [0,+∞)k+l

})−(α−1)
,

with

B =

(
0k

(
2
a

) 1
α−1 Uk,l(

2
a

) 1
α−1 tUk,l 0l

)
∈ Sk+l(R),

where Uk,l is the matrix of size k × l whose entries are all equal to 1, and 0k, 0l are the
null matrices of sizes k × k and l × l respectively. Due to Lemma 8.5, we have

sup
k,l∈N

sup
{
〈By, y〉 :

k+l∑
i=1

y
2(α−1)/α
i = 1, y ∈ [0,+∞)k+l

}
=

(
2

a

) 1
α−1

2−
1

α−1 .

Therefore, I(A) ≥ a.
Now, if 1 is not a simple eigenvalue of A, then we have by [26, Theorem 3.32],

I(A) =
a

2

∑
i 6=j

|Ai,j |α =
a

2

∑
i,j

|Ai,j |α ≥
a

2

n∑
i=1

|λi|α ≥ a,

where λ1, ..., λn are the eigenvalues of A.
In both cases, I(A) ≥ a. We deduce that c ≥ a, and as

I

(
0 −1

−1 0

)
= a,

we get the claim.

9 Appendix

9.1 Linear algebra tools

Proposition 9.1. Let p, q be two integers. Let A ∈Mp,q(C), B ∈Mq,p(C). Then,

det (Ip −AB) = det (Iq −BA) .

Lemma 9.2 (Weyl’s inequality, from [1, p.415]). For any Hermitian matrix X ∈ Hn(C),
we denote by λk(X) its eigenvalues with λ1(X) ≤ ... ≤ λn(X). Let A and E be in Hn(C).
For all k ∈ {1, ..., n}, we have

λk(A) + λ1(E) ≤ λk(A+ E) ≤ λk(A) + λk(E).

9.2 Concentration inequalities

Proposition 9.3. (Bennett’s inequality, see [20, p. 35]) Let X1, ..., Xn be independent
random variable with finite variance such that Xi ≤ b for some b > 0 almost surely for all
i ≤ n. Let

S =

n∑
i=1

(Xi − EXi)
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and v =
∑n
i=1E[X2

i ]. Then for any t > 0,

P (S > t) ≤ exp

(
− v

b2
h

(
bt

v

))
,

where h(u) = (1 + u) log(1 + u)− u for u > 0.

Lemma 9.4. [20, p.249] Let X a measurable space. Let f : Xn → [0,+∞) be a measur-
able function, and let X1, ...Xn be independent random variables taking their values in X .
Define Z = f(X1, ...Xn). Assume that there exist measurable functions ci : Xn → [0,+∞)

such that for all x, y ∈ Xn,

f(y)− f(x) ≤
∑
i=1

1xi 6=yici(x).

Setting

v = E

n∑
i=1

(
ci(X)2

)
and v∞ = sup

x∈Xn

n∑
i=1

ci(x)2,

we have for all t > 0,
P (Z ≥ E(Z) + t) ≤ e−t

2/2v,

and
P (Z ≤ E(Z)− t) ≤ e−t

2/2v∞ .
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