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Abstract

In [3], exclusion sensitivity and exclusion stability for symmetric exclusion processes
on graphs were defined as natural analogues of noise sensitivity and noise stability in
this setting. As these concepts were defined for any sequence of connected graphs, it
is natural to study the monotonicity properties of these definitions, and in particular,
if some graphs are in some sense more stable or sensitive than others. The main
purpose of this paper is to answer one such question which was stated explicitly
in [3]. In addition, we get results about the eigenvectors and eigenvalues of symmetric
exclusion processes on complete graphs.
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1 Introduction

The notions noise sensitivity and noise stability were first introduced in [2], describing
how sensitive a sequence of Boolean functions fn : {0, 1}n → {0, 1} was to a particular
kind of noise in the argument. The main type of noise considered was re-sampling each
entry in the argument of fn with a small probability, or equivalently, by letting each
such entry run a continuous time Bernoulli process in a short time interval. Since this
paper was published, similar definitions have been made in slightly different settings, by
changing one or several of the elements in the setup, such as the domain of the functions
fn, the range of the functions fn or the process constituting the noise ([2, 11, 10, 1, 9]).
In [3], the range and domain of the functions (fn)n≥1 was kept from the original setting,
but the process was changed into a symmetric exclusion process with respect to some
sequence of connected graphs, (Gn)n≥1. In this new setting, it is natural to ask to what
extent the sensitivity of a sequence of functions depends on the sequence of graphs. This
is the main subject of this paper.

We now define what we mean by a symmetric exclusion process. Let (Gn)n≥1 be a
sequence of finite connected graphs and let (αn)n≥1 be a sequence of strictly positive
real numbers. We are interested in the sequence of Markov chains (X(n))n≥1, where
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Monotonicity properties of exclusion sensitivity

X(n) is a symmetric exclusion process on {0, 1}V (Gn) with rate αn. This process can be
defined as follows. At time zero, put a black or white marble at each vertex of the graph.
Now for each edge e ∈ E(Gn), associate an independent Poisson clock with rate αn.

When this clock rings, interchange the marbles at the endpoints of e. Let X(n)
t be the

configuration of marbles at time t.
In general, for a graph Gn we will identify configurations of black and white marbles

with elements in {0, 1}V (Gn) by letting the numbers be indicators of black marbles.
Similarly, for each ` ∈ {0, 1, . . . , |V (Gn)|}, we will identify elements in

(
V (Gn)
`

)
with

configurations with exactly ` black marbles by representing such a configuration by the
set of vertices at which there are black marbles.

It is easy to check that the uniform distribution πn on {0, 1}V (Gn) will be a stationary
distribution for the symmetric exclusion process X(n) on Gn with rate αn. However, as
the Markov process X(n) is not irreducible, this is not the only stationary distribution,
and in fact for any ` ∈ {0, . . . , |V (Gn)|}, the uniform distribution π(`)

n on
(
V (Gn)
`

)
will be a

stationary distribution for X(n). For x, y ∈
(
V (G)
`

)
, write x ∼ y to denote that y can be

obtained from x by interchanging the marbles at the endpoints of some edge in E(G).

Whenever we pick X(n)
0 according to πn, we will say that X(n) is a symmetric exclusion

process with respect to (Gn, αn)n≥1, and whenever we pick X(n)
0 according to π(`n)

n we
will say that X(n) is a symmetric exclusion process with respect to (Gn, αn, `n)n≥1.

We now give the two definitions from [3] with which we will be concerned.

Definition 1.1. Let (Gn)n≥1 be a sequence of finite connected graphs and let (αn)n≥1
be a sequence of real numbers. For each n ≥ 1, let X(n) be the symmetric exclusion
process on {0, 1}V (Gn) with rate αn where L(X

(n)
0 ) = πn. The sequence of functions

fn : {0, 1}V (Gn) → {0, 1} is said to be exclusion sensitive (XS) with respect to (Gn, αn)n≥1
if

lim
n→∞

Cov(fn(X
(n)
0 ), fn(X

(n)
1 )) = 0

The next definition captures an opposite behavior.

Definition 1.2. Let (Gn)n≥1 be a sequence of finite connected graphs and let (αn)n≥1
be a sequence of real numbers. For each n ≥ 1, let X(n) be the symmetric exclu-
sion process on {0, 1}V (Gn) with rate αn where L(X

(n)
0 ) = πn. The sequence of func-

tions fn : {0, 1}V (Gn) → {0, 1} is said to be exclusion stable (XStable) with respect to
(Gn, αn)n≥1 if

lim
ε→0

lim sup
n

P ((f(X
(n)
0 ) 6= f(X(n)

ε )) = 0,

or equivalently, if
lim
ε→0

lim sup
n

E[(f(X
(n)
0 )− f(X(n)

ε ))2] = 0.

Now let Kn be the complete graph on n vertices. In addition to the two definitions
above, a sequence of functions (fn)n≥1, where fn : {0, 1}V (Gn) → {0, 1}, is said to be
complete graph exclusion sensitive (CGXS) is it is exclusion sensitive with respect to
(Kn, 1/n)n≥1 and complete graph exclusion stable (CGXStable) if it is exclusion stable
with respect to (Kn, 1/n)n≥1.

It is relatively easy to see that any sequence of functions (fn)n≥1 for which

limn→∞Var(fn(X
(n)
0 )) = 0 will be both exclusion stable and exclusion sensitive with

respect to (Gn, αn)n≥1 for any sequence (αn)n≥1 of positive numbers. For this reason,
we will only be interested in so called nondegenerate sequences of functions (fn)n≥1,

meaning that Var(fn(X
(n)
0 )) is uniformly bounded away from zero.

In [3], the authors asked the following two questions. If (Gn)n≥1 is a sequence of
graphs, αn satisfies αn ≤ 1/maxv∈V (Gn) deg v and fn : {0, 1}V (Gn) → {0, 1} is a sequence
of functions, is it the case that
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Monotonicity properties of exclusion sensitivity

1. (fn)n≥1 is XS with respect to (Gn, αn)n≥1 ⇒ (fn)n≥1 is CGXS?

2. (fn)n≥1 is CGXStable⇒ (fn)n≥1 is XStable with respect to (Gn, αn)n≥1?

The main objective of this paper is to provide a proof of the following result, which
provides a positive answer to both questions.

Theorem 1.3. Let (fn)n≥1, fn : {0, 1}n → {0, 1}, be a sequence of functions and let
(Gn)n≥1 be a sequence of connected graphs. Further let αn ≤ 1/maxv∈V (Gn) deg v. Then

(i) if (fn)n≥1 is exclusion sensitive with respect to (Gn, αn)n≥1, then (fn)n≥1 is exclu-
sion sensitive with respect to (K|V (Gn)|, 1/|V (Gn)|)n≥1.

(ii) if (fn)n≥1 is exclusion stable with respect to (K|V (Gn)|, 1/|V (Gn)|)n≥1, then (fn)n≥1
is exclusion stable with respect to (Gn, αn)n≥1.

Given the positive answers to both questions above, one might ask if being exclusion
sensitive (or exclusion stable) is monotone with respect to adding edges to the graphs
(Gn)n≥1. We will later see that this is true if we use the same rates (αn) for both
graphs, but the following example shows that if we only use the restriction on the rates
from the previous theorem, that is if we only assume that for each sequence of graphs,
αn ≤ 1/maxv∈V (Gn) deg v, we will not always get monotonicity.

Example 1.4. Let Gn be the graph with vertex set {1, 2, . . . , 2n} and an edge between
two vertices i and j if and only if |i−j| = 1 mod 2n. Further, letG′n be the graph obtained
from Gn by adding an edge between each pair of vertices i, j ∈ {n+ 1, n+ 2, . . . , 2n} that
are not already connected by an edge. Finally, let G′′n = K2n.

For x ∈ {0, 1}V (Gn), define fn(x) = (−1)|x∩{1,3,...n}|. Then (fn)n≥1 is exclusion sen-
sitive with respect to (Gn, 1/2)n≥1, exclusion stable with respect to (G′n, 1/(n− 1))n≥1
and exclusion sensitive with respect to (G′′n, 1/(n− 1))n≥1. To see this, note that for an
exclusion process on Gn, at time ε, about a proportion ε of the clocks on edges in the
upper circle will have ticked. It follows that in the limit, almost surely the number of ones
at vertices labeled with 1,3, . . . , n will have changed arbitrarily many times, rendering
the sequence of functions exclusion sensitive with respect to (Gn, 1/2)n≥1. By contrast,
for an exclusion process on G′n with rate 1/(n− 1), there is a positive probability that
none of the marbles on the upper part of the graph will have moved, hence in this setting
the sequence (fn) is exclusion stable. On the last graph, the rate for each edge is the
same up to a constant as for G′n, but now there are enough edges connected to the
odd labeled vertices in the upper part of the graph for the sequence of functions to be
exclusion sensitive.

1

3 5

7

(a) The graph G7.

1

3 5

7

(b) The graph G′7.

1

3 5

7

(c) The graph G′′7 .

Figure 1: The three graphs described in Example 1.4 when n = 7.

In the previous example, one thing that made monotonicity fail was that the structure
of the graphs were different enough to suggest that very different rates should be used
for the corresponding exclusion processes. It is therefore natural to ask whether using
the same rates before and after adding edges would be a strong enough assumption to
get monotonicity.
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We now state our second main result, which shows that for any fixed sequence of rates
(αn)n≥1, any sequence of graphs (Gn)n≥1 and any sequence of functions fn : V (Gn) →
{0, 1}, the properties of being exclusion sensitive and exclusions stable with respect to
(Gn, αn)n≥1 are monotone with respect to adding edges to the graphs in (Gn)n≥1.

Theorem 1.5. Let (Gn)n≥1 and (G′n)n≥1 be two sequences of finite connected graphs
with V (Gn) = V (G′n) and E(G′n) ⊆ E(Gn), and let (αn) be a sequence of strictly positive
real numbers. Let fn : {0, 1}V (Gn) → {0, 1} be a nondegenerate sequence of functions.
Then

(i) if (fn)n≥1 is XS with respect to (G′n, αn)n≥1, then (fn)n≥1 is XS with respect to
(Gn, αn)n≥1.

(ii) if (fn)n≥1 is XStable with respect to (Gn, αn)n≥1, then (fn)n≥1 is XStable with
respect to (G′n, αn)n≥1.

For more general versions of this theorem, see Remarks 5.3 and 5.2.
The rest of this paper will be structured as follows. In the next section, we give

notation for the eigenvectors and eigenvalues for the different processes with which
we will be concerned in the rest of this paper. We also give spectral equivalences of
exclusion stability and exclusion sensitivity. In the third section we study the structure
of these eigenvectors and eigenvalues a bit more closely. In particular, we prove some
results concerning these when we have a symmetric exclusion process with respect to
(Kn, αn)n≥1 for some sequence (αn)n≥1 of real numbers. In the fourth section, we give a
proof of our first main result, Theorem 1.3. Finally, in the last section, we give a proof
Theorem 1.5.

2 Spectral equivalences of exclusion sensitivity and stability

All of the results presented in this paper will use methods from Fourier analysis. In
this section we will define the functions which we will use as a basis and derive some
simple results.

Let X(n,`) be a symmetric exclusion process with respect to (Gn, α, `). Then X(n,`)

is a Markov process and has a generator Q(`)
n . For functions f, g :

(
V (Gn)
`

)
→ R, 〈f, g〉 =

〈f, g〉
π
(`)
n

:= E[f(X
(n,`)
0 )g(X

(n,`)
0 )] is an inner product. As X(n,`) is reversible and ir-

reducible, we can find a set {ψ(n,`)
i }i of eigenvectors of −Q(`)

n , with corresponding
eigenvalues

0 = λ
(n,`)
1 < λ

(n,`)
2 ≤ λ(n,`)3 ≤ . . . ≤ λ(n,`)

(|V (Gn)|
` )

(2.1)

such that {ψ(n,`)
i }i is an orthonormal basis with respect to 〈·, ·〉 for the space of real

valued functions on
(
V (Gn)
`

)
. Note that we can assume that ψ(n,`)

1 ≡ 1 for all ` and n.
Next, for all t ≥ 0, let H(n,`)

t denote the continuous time Markov semigroup given by

H
(n,`)
t = exp(tQ(`)

n ).

In other words, H(n,`)
t operates on a function f with domain

(
V (Gn)
`

)
by

H
(n,`)
t f(x) = E[f(X

(n,`)
t ) | X(n,`)

0 = x].

The eigenvectors {ψ(n,`)
i }i will be eigenvectors of H(n,`)

t as well, with correspond-

ing eigenvalues {e−λ
(n,`)
i t}i. Since the set {ψ(n,`)

i }i is an orthonormal basis, for any
f :
(
V (Gn)
`

)
→ R we can write

f(x) =

(|V (Gn)|
` )∑
i=1

〈f, ψ(n,`)
i 〉ψ(n,`)

i (x).
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To simplify notations, we will write f̂ (`)(i) instead of 〈f, ψ(n,`)
i 〉. Using these Fourier

coefficients, for any function f :
(
V (Gn)
`

)
→ R we have that

E[f(X
(n,`)
0 )] = 〈f, 1〉 = 〈f, ψ(n,`)

1 〉 = f̂ (`)(1)

and

Var(f(X
(n,`)
0 )) = 〈f, f〉 − f̂ (`)(1)2 =

∑
i≥2

f̂ (`)(i)2.

Another well known (see e.g. (1.8) on page 5 in [6]) characterization of the eigenval-
ues {λ(n,`)i }i which will be useful for us later is

λ
(n,`)
i = min

f : 〈f,ψ(n,`)

i′ 〉=0 for all i′<i

〈−Q(`)
n f, f〉
〈f, f〉

, (2.2)

where the minimum is attained by the corresponding eigenvector ψ(n,`)
i . The ratio on the

right hand side of (2.2) is called the Rayleigh quotient of −Q(`)
n . It is easy to see that if ψ

is an eigenvector of −Q(`)
n , then the Rayleigh quotient is the corresponding eigenvalue.

Using the definition of the generator Q(`)
n , we can write

2〈−Q(`)
n f, f〉 = 2α

∑
x,y∈(V (Gn)

` ) : x∼y

π(`)
n (x)f(x)(f(x)− f(y))

= α
∑

x,y∈(V (Gn)
` ) : x∼y

π(`)
n (x)(f(x)− f(y))2

= α
(|V (Gn)|

`

)−1 ∑
x,y∈(V (Gn)

` ) : x∼y

(f(x)− f(y))2. (2.3)

It follows that if Qn is the generator of the exclusion process with respect to (Gn, α, `) and
Q′n the generator of the exclusion process with respect to (G′n, α, `) for some graph G′n
satisfying V (Gn) = V (G′n) and E(G′n) ⊆ E(Gn), then for any function f :

(
V (Gn)
`

)
→ R,

〈−Q′nf, f〉
〈f, f〉

≤ 〈−Qnf, f〉
〈f, f〉

, (2.4)

as for the right hand side of this inequality, the sum in (2.3) simply contains more terms.

Above, we listed some simple properties of the eigenvectors of the generator Q(`)
n

of an exclusion process with a fixed number of black marbles. The next lemma relates
these eigenvectors to the eigenvectors of the generator Qn.

Lemma 2.1. Let Gn be a finite connected graph and let αn be a strictly positive real
number. For each ` ∈ {0, 1, . . . , |V (Gn)|}, let Q(`)

n be the generator of the exclusion pro-

cess with respect to (Gn, αn, `), and let {ψ(n,`)
i }i be an orthonormal basis of eigenvectors

of −Q(`)
n with corresponding eigenvalues {λ(n,`)i }i. Define ψ(n)

i,` : {0, 1}n → R by

ψ
(n)
i,` (x) :=


√

2n

(n
`)
· ψ(n,`)

i (x) if x ∈
(
V (Gn)
`

)
0 otherwise.

(2.5)

Then {ψ(n)
i,` }i,` is an orthonormal basis for −Qn, where Qn is the generator of the

symmetric exclusion process with respect to (Gn, αn), with corresponding eigenvalues

{λ(n,`)i }i,`.
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Proof. Let x ∈ {0, 1}n and suppose first that x ∈
(
V (Gn)
`

)
. Then

−Qnψ(n)
i,` (x) =

∑
y∼x

α(ψ
(n)
i,` (x)− ψ(n)

i,` (y))

=

√
2n(
n
`

) ·∑
y∼x

α(ψ
(n,`)
i (x)− ψ(n,`)

i (y))

=

√
2n(
n
`

) · (−Q(`)
n ψ

(n,`)
i (x)

)
=

√
2n(
n
`

) · λ(n,`)i ψ
(n,`)
i (x)

= λ
(n,`)
i ψ

(n)
i,` (x).

On the other hand, if x ∈
(
V (Gn)
`

)
, then by definition, ψ(n)

i,` (x) = 0, hence clearly,

−Qnψ(n)
i,` (x) = 0 = λ

(n,`)
i · 0 = λ

(n,`)
i ψ

(n)
i,` (x).

Consequently, the equation

−Qnψ(n)
i,` (x) = λ

(n,`)
i ψ

(n)
i,` (x)

is valid for all x ∈ {0, 1}n. This shows that ψ(n)
i,` is an eigenvector of −Qn with corre-

sponding eigenvalue λ(n)i,` = λ
(n,`)
i .

The claim of orthonormality follows similarly, and is therefore omitted here.

Remark 2.2. Note that the eigenvectors given by (2.5) with eigenvalue equal to zero is
independent of the chosen graph Gn as long as Gn is connected.

Below and in the rest of this paper, whenever f, g : {0, 1}V (Gn) → R, we will write

〈f, g〉 = 〈f, g〉πn
:= E[f(X

(n)
0 )g(X

(n)
0 )] and whenever we calculate the Fourier coeffi-

cients of some real valued function f : {0, 1}V (Gn) → R with respect to the basis {ψi,`}i,`
given by (2.5), we write f̂(i, `) := 〈f, ψ(n)

i,` 〉. Also, we will for x ∈ {0, 1}V (Gn) let
‖x‖ :=

∑
v∈V (Gn)

x(v).
The next result provides a spectral characterization of what it means to be exclusion

sensitive, and it is the equivalent definition it provides that we will use in all subsequent
results. Together with Proposition 2.4 this result is a complete analogue of Theorem
1.9 in [2], and similar analogues for exclusion process, although for a different set of
eigenvectors, can be found in [3] (Proposition 3.1 and Proposition 3.2 respectively). The
proofs of both these results very similar to the proofs in the original setting (see e.g. [8])
after conditioning on ‖X(n)

0 ‖.
Proposition 2.3. Let (Gn)n≥1 be a sequence of finite connected graphs, let (αn)n≥1 be
a sequence of positive real numbers and for each n ≥ 1, let X(n) be the exclusion process
with respect to (Gn, αn)n≥1. Further let {ψ(n)

i,` }i,` be the orthonormal basis of eigenvec-

tors defined in Lemma 2.1, and let {λ(n)i,` }i,` be the corresponding eigenvalues. Then a

sequence fn : {0, 1}V (Gn) → {0, 1} is exclusion sensitive with respect to (Gn, αn)n≥1 if
and only if

(i) limn→∞Var(E[f(X
(n)
0 ) | ‖X(n)

0 ‖]) = 0 and

(ii) for all k > 0,
lim
n→∞

∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 = 0.
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Proof. First recall the well known result stating that for three random variables X, Y
and Z,

Cov(X,Y ) = E [Cov(X,Y | Z)] + Cov (E[X | Z],E[Y | Z]) .

Fix ε > 0 and set X = f(X
(n)
0 ), Y = f(X

(n)
ε ) and Z = ‖X(n)

0 ‖ to obtain

Cov(f(X
(n)
0 ), f(X(n)

ε ))

=

n∑
`=0

P (‖X(n)
0 ‖ = `) · Cov

(
f(X

(n)
0 ), f(X(n)

ε ) | ‖X(n)
0 ‖ = `

)
+ Var

(
E
[
f(X

(n)
0 ) | ‖X(n)

0 ‖
])
.

(2.6)

We will now rewrite the term Cov
(
f(X

(n)
0 ), f(X

(n)
ε ) | ‖X(n)

0 ‖ = `
)

in the expression above.

To this end, note first that for any ` ∈ {0, 1, . . . , n} and any t > 0,

E
[
fn(X

(n)
0 )fn(X

(n)
t )

]
= E

[
fn(X

(n)
0 )E

[
fn(X

(n)
t ) | X(n)

0

]]
= E

[
fn(X

(n)
0 )H

(n)
t fn(X

(n)
0 )

]
=
〈
fn, H

(n)
t fn

〉
.

Writing fn as fn =
∑
i,` f̂n(i, `)ψ

(n)
i,` it follows that〈

fn, H
(n)
t fn

〉
=

〈∑
i,`

f̂n(i, `)ψ
(n)
i,` ,

∑
j,`′

f̂n(j, `′)H
(n)
t ψ

(n)
j,`′

〉

=

〈∑
i,`

f̂n(i, `)ψ
(n)
i,` ,

∑
j,`′

f̂n(j, `′)e
−tλ(n)

j,`′ψ
(n)
j,k′

〉

=
∑
i,j,`,`′

e
−tλ(n)

j,`′ f̂n(i, `)f̂n(j, `′)
〈
ψ
(n)
i,` , ψ

(n)
j,`′

〉
.

As {ψ(n)
i,` }i,` is an orthonormal set, summing up, we obtain

E
[
fn(X

(n)
0 )fn(X

(n)
t )

]
=
∑
i,`

e−tλ
(n)
i,` f̂n(i, `)2. (2.7)

Using that

E
[
fn(X

(n)
0 ) | ‖X(n)

0 ‖ = `
]

=
∑

x∈(V (Gn)
` )

π(`)
n (x)fn(x) =

∑
x∈(V (Gn)

` )

π(`)
n (x)fn(x) · 1

=
∑

x∈(V (Gn)
` )

π(`)
n (x)fn(x) · ψ(n,`)

1 = 〈fn, ψ(n,`)
1 〉

= f̂n,`(1) =
(
P (‖X(n)

0 ‖ = `)
)−1/2

f̂n(1, `)

we now get
n∑
`=0

P (‖X(n)
0 ‖ = `) · Cov

(
f(X

(n)
0 ), f(X(n)

ε ) | ‖X(n)
0 ‖ = `

)
= E

[
fn(X

(n)
0 )fn(X(n)

ε )
]
−

n∑
`=0

P (‖X(n)
0 ‖ = `) · E

[
fn(X

(n)
0 ) | ‖X(n)

0 ‖ = `
]2

=

n∑
`=0

(|V (Gn)|
` )∑
i=2

e−ελ
(n)
i,` f̂n(i, `)2.
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Note in particular that the term e−ελ
(n)
i,` f̂n(i, `)2 in the previous equation is positive. From

this fact and (2.6), it follows that (fn)n≥1 can be XS with respect to (Gn, αn)n≥1 if and
only if

(i) limn→∞Var
(
E
[
f(X

(n)
0 ) | ‖X(n)

0 ‖
])

= 0, and

(ii’) limn→∞
∑n
`=0

∑(|V (Gn)|
` )

i=2 e−ελ
(n)
i,` f̂n(i, `)2 = 0

For any ε > 0, it is easy to see that (ii) is satisfied if and only if (ii’) holds. From this
the desired conclusion follows.

The following result provides an analogue of Proposition 2.3 for exclusion stability.

Proposition 2.4. Let (Gn)n≥1 be a sequence of finite connected graphs, let (αn)n≥1
be a sequence of positive real numbers and for each n ≥ 1, let X(n) be the exclusion
process with respect to (Gn, αn)n≥1. Further let {ψ(n)

i,` }i,` be the orthonormal basis of

eigenvectors defined in Lemma 2.1, and let {λ(n,`)i }i,` be the corresponding eigenvalues.
Then a sequence fn : {0, 1}V (Gn) → {0, 1} is exclusion stable with respect to (Gn, αn)n≥1
if and only if for all δ > 0 there is k ∈ N such that

sup
n

∑
i,` : λ

(n)
i,` ≥k

f̂n(i, `)2 < δ. (2.8)

Proof. First note that since fn is Boolean, we have that

P
(
fn(X(n)

ε ) 6= fn(X
(n)
0 )

)
= E

[
fn(X(n)

ε )(1− fn(X
(n)
0 ))

]
+ E

[
fn(X

(n)
0 )(1− fn(X(n)

ε ))
]

= 2
(
E
[
fn(X

(n)
0 )

]
− E

[
fn(X

(n)
0 )fn(X(n)

ε )
])

= 2
(
E
[
fn(X

(n)
0 )fn(X

(n)
0 )

]
− E

[
fn(X

(n)
0 )fn(X(n)

ε )
])
.

Combining this with (2.7) for t = 0 and t = ε, we obtain

P
(
fn(X

(n)
0 ) 6= fn(X(n)

ε )
)

= 2

∑
i,`

f̂n(i, `)2 −
∑
i,`

e−ελ
(n)
i,` f̂n(i, `)2


= 2

∑
i,`

(
1− e−ελ

(n)
i,`

)
f̂n(i, `)2.

For the if direction of the proof, suppose that for any δ > 0 there is k ≥ 1 such that

sup
n

∑
i,` : λ

(n)
i,` ≥k

f̂n(i, `)2 < δ.

Then for all δ > 0,

lim
ε→0

sup
n
P
(
fn(X(n)

ε ) 6= fn(X(n))
)

= 2 lim
ε→0

sup
n

∑
i,`

(
1− e−ελ

(n)
i,`

)
f̂n(i, `)2

≤ 2δ + 2 lim
ε→0

sup
n

∑
i,` : λ

(n)
i,` <k

(
1− e−εk

)
f̂n(i, `)2

≤ 2δ + 2 lim
ε→0

(
1− e−εk

)
= 2δ.
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As δ can be chosen to be arbitrarily small, this implies that (fn)n≥1 is exclusion stable
with respect to (Gn, αn)n≥1.

For the only if direction, suppose that there is δ > 0 such that for all k ≥ 1,

sup
n

∑
i,` : λ

(n)
i,` ≥k

f̂n(i, `)2 ≥ δ

for all k > 0. Then in particular, this is true for k = ε−1. This implies that

lim
ε→0

sup
n
P
(
fn(X

(n)
0 ) 6= fn(X(n)

ε )
)

= 2 lim
ε→0

sup
n

∑
i,`

(
1− e−ελ

(n)
i,`

)
f̂n(i, `)2

≥ 2 lim
ε→0

sup
n

∑
i,` : λ

(n)
i,` ≥ε−1

(
1− e−ελ

(n)
i,`

)
f̂n(i, `)2

≥ 2 lim
ε→0

sup
n

∑
i,` : λ

(n)
i,` ≥ε−1

(
1− e−εε

−1
)
f̂n(i, `)2

= 2 lim
ε→0

(1− e−1)δ.

In particular, (fn)n≥1 cannot be noise stable.

Before ending this section, we present a last lemma which gives an upper bound
of the eigenvalues λ(n)i,` , which more or less follows directly by spelling out the terms
in (2.2) and then taking trivial upper bounds.

Lemma 2.5. Let Q(`) be the generator of the symmetric exclusion process on G with `
black marbles and rate α. If λ is an eigenvalue of −Q(`) and d := maxv∈V (G) deg v, then
λ ≤ 2α`d.

Proof. First recall the characterization of an eigenvalue λ
(n,`)
i given by the Rayleigh

quotient, namely that for any i,

λ
(n,`)
i ≤ sup

g 6≡0

〈−Q(`)
n g, g〉
〈g, g〉

.

Equivalently, for any such eigenvalue,

λ
(n,`)
i ≤ sup

g

∑
x π

(`)
n (x)g(x)

∑
y∼x α · (g(x)− g(y))∑

x π
(`)
n (x)g(x)2

.

Using that π(`)
n is uniform, and simplifying, we obtain

λ
(n,`)
i ≤ sup

g

α
∑
x,y : y∼x(g(x)− g(y))2

2
∑
x g(x)2

.

As ∑
x,y : y∼x

(g(x)− g(y))2 ≤ 2
∑

x,y : y∼x

(
g(x)2 + g(y)2

)
and as for any state s there is at most `d states y such that y ∼ x, we obtain

λ
(n,`)
i ≤ sup

g

4α
∑
x `d g(x)2

2
∑
x g(x)2

= 2α`d.
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3 Eigenvectors and eigenvalues for symmetric exclusion processes

Below and in the rest of this section, for any graph G, any ` ∈ {0, 1, . . . , |V (G)|}, any
x ∈

(
V (G)
`

)
and any v ∈ V (G), let xv denote the unique element in

(
V (G)
`−1

)
or
(
V (G)
`+1

)
which

differs from x in only the color at vertex v. Moreover, for any e ∈ E(G), let xe be the
unique element in

(
V (G)
`

)
which is obtained by switching positions of the marbles at the

endpoints of e. For any v ∈ V (G), let

x(v) :=

{
1 if the marble at v ∈ V (G) is black

0 if the marble at v ∈ V (G) is white

and recall that
‖x‖ := |{v ∈ V (G) : x(v) = 1}| .

Finally, for m < ` and y ∈
(
V (G)
m

)
, let y ≤ x denote that for all v ∈ V (G) we have that

y(v) ≤ x(v).
Our main objective in this section will be to give the relationships between the

eigenvectors {ψ(n,`)
i }i and eigenvalues {λ(n,`)i }i for different ` ∈ {1, 2, . . . , bn/2c}. This

will done by studying the following operators, defined for any eigenvector ψ of Q(`)
n by

ψ+(x) :=
∑

v : x(v)=0

ψ(xv), x ∈
(
V (Gn)
`−1

)
and

ψ−(x) :=
∑

v : x(v)=1

ψ(xv), x ∈
(
V (Gn)
`+1

)
.

The following result will play a major role in the later proof of our main result,
Theorem 1.3.

Proposition 3.1. For each ` = 1, 2, . . . , bn/2c, let Q(`)
n be the generator of the symmetric

exclusion process with respect to (Kn, α, `). Also, for each such `, let {ψ(n,`)
i }i be

an orthonormal set of eigenvectors of −Q(`)
n and let {λ(n,`)i }i be the corresponding

eigenvalues. Then

(a) for each j = 1, . . . , `, the eigenvalue αj(n− j + 1) has multiplicity(
n

j

)
−
(

n

j − 1

)
,

(b) If we order the eigenvalues of −Q(`)
n so that

0 = λ
(n,`)
1 < λ

(n,`)
2 ≤ λ(n,`)3 ≤ · · · ≤ λ(n,`)

(n
`)
,

an orthogonal basis of eigenvectors to −Q(`−1)
n is given by

{(ψ(n,`)
i )+}i∈{1,2,...,( n

`−1)}
,

(c) given the ordering of the eigenvectors given in (b), for i ∈ {1, 2, . . . ,
(
n
`−1
)
}, we can

pick ψ(n,`)
i = Ci(ψ

(n,`−1)
i )−, for some normalizing constants Ci > 0 that depends on

i, n, ` and α.

(d) given the ordering of the eigenvectors given in (b), for any m < ` we can pick the
eigenvectors {ψ(n,`)

i } of −Q(`)
n with eigenvalue less than or equal to αm(n−m+ 1)

in such a way that any such eigenvector ψ(n,`)
i can be written as

ψ
(n,`)
i (·) = C ′i

∑
y≤· : ‖y‖=m

ψ
(n,m)
i (y).
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for normalizing constants C ′i > 0 that depends on i, n, `, α and m. Moreover, we

have λ(n,`)i = λ
(n,m)
i .

Remark 3.2. Proposition 3.1 is stated only for ` ∈ {1, 2, . . . , bn/2c}, that is for ` ∈
{1, 2, . . . , bn/2c} black marbles and n− ` ∈ {bn/2c+1, . . . , n−1} white marbles. However,
as an exclusion process with ` black marbles and n− ` white marbles essentially behaves
in the same way as a exclusion process with n− ` black marbles and ` white marbles, we
have

ψ
(n,`)
i (x) = ψ

(n,n−`)
i (1− x)

and

λ
(n,`)
i = ψ

(n,n−`)
i (1− x).

The merit of Proposition 3.1 is not that it provides new information about the eigen-
values and eigenvectors of the generator of the exclusion process on a complete graph;
in fact neither the eigenvectors nor the eigenvalues of this process are unknown (see
e.g. [3, 7, 4]). Rather, this result is important to us because it provides a quite explicit
structure of the eigenvectors, and it is this structure that we will need in the proof of
Theorem 1.3. In particular, we will need this structural results for exclusion processes
on general graphs, which is provided by the next lemma.

For eigenvectors ψ of Q(1)
n and x ∈

(
V (Gn)
`

)
, a function similar to ψ+ and ψ−, defined

by

ψ∗(x) :=
∑

v : x(v)=1

ψ((0, 0, . . . , 0)v),

was used in [5] to find bounds on the smallest nonzero eigenvalue of −Q(`) for general
graphs. In this paper the authors showed that ψ∗ will be an eigenvector of −Q(`), and
thus deduced parts of Proposition 3.1 and the lemmas that we will use to prove it.
However, they did not extend this definition to eigenvectors eigenvectors ψ of Q(j)

n for
j ≥ 1. The next lemma therefore extends their result, and provides a way to obtain
eigenvectors of −Q(`−1) and −Q(`+1) given eigenvectors of −Q(`).

Lemma 3.3. Let G be a finite connected graph, ` ∈ {0, 1, . . . , |V (G)| − 1} and let α any
strictly positive real number. Let Q(`) be the generator of the symmetric exclusion
process with respect to (G,α, `), and let ψ be an eigenvector of −Q(`) with eigenvector λ.
Then, for x ∈

(
V (G)
`−1

)
, the function ψ+ :

(
V (G)
`−1

)
→ {0, 1} is either an eigenvector to −Q(`−1)

with eigenvalue λ, or ψ+ ≡ 0. Similarly, for x ∈
(
V (G)
`+1

)
, the function ψ− :

(
V (G)
`+1

)
→ {0, 1}

is either an eigenvector to −Q(`+1) with eigenvalue λ, or ψ− ≡ 0.

Note that by applying the operator ψ 7→ ψ+ `−m times and then using Lemma 3.3,
we get the following corollary, which is a weaker version of Proposition 3.1 (d) for finite
connected graphs.

Corollary 3.4. In the setting of Lemma 3.3, if ψ(m)
i is an eigenvector of −Q(m) with

corresponding eigenvalue λ(m)
i , then either

ψ(x) :=
∑

y≤x : ‖y‖=m

ψ
(m)
i (y), x ∈

(
V (G)
`

)

is a (nonzero) eigenvector of −Q(`)
n with eigenvalue λ(`)i = λ

(m)
i , or ψ ≡ 0.

We now prove Lemma 3.3 mainly by spelling out the definitions of ψ+ and ψ−.
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Proof. Note first that for any x ∈ {0, 1}V (G),∑
e∈E(G)

ψ+(xe) =
∑

e∈E(G)

∑
v∈V (G) :
xe(v)=0

ψ((xe)v)

=
∑

e∈E(G)

∑
v∈V (G) :
x(v)=0

ψ((xv)e).

Using this, for x ∈
(
V (G)
`−1

)
, we obtain

−Q(`−1)ψ+(x) = α
∑

e∈E(G)

(ψ+(x)− ψ+(xe))

= α
∑

e∈E(G)

∑
v∈V (G) :
x(v)=0

(ψ(xv)− ψ((xv)e)

=
∑

v∈V (G) :
x(v)=0

α
∑

e∈E(G)

(ψ(xv)− ψ((xv)e)

=
∑

v∈V (G) :
x(v)=0

−Q(`)ψ(xv)

=
∑

v∈V (G) :
x(v)=0

λψ(xv) = λψ+(x).

This shows that ψ+ is an eigenvector to −Q(`−1) with eigenvalue λ, provided that ψ+ 6≡ 0.
Analogously, for x ∈

(
V (G)
`+1

)
, we have∑

e∈E(G)

ψ−(xe) =
∑

e∈E(G)

∑
v∈V (G) :
xe(v)=1

ψ((xe)v) =
∑

e∈E(G)

∑
v∈V (G) :
x(v)=1

ψ((xv)e)

in turn implying that

−Q(`+1)ψ−(x) = α
∑

e∈E(G)

(ψ−(x)− ψ−(xe))

= α
∑

e∈E(G)

∑
v : x(v)=1

(ψ(xv)− ψ((xv)e)

=
∑

v∈V (G) :
x(v)=1

−Q(`)ψ(xv)

=
∑

v∈V (G) :
x(v)=1

λψ(xv) = λψ−(x).

As this shows that ψ− is an eigenvector to −Q(`+1) with eigenvalue λ provided that
ψ− 6≡ 0, this concludes the proof.

The purpose of the next lemma is to provide expressions for the lengths of ψ+ and
ψ−. In contrast to the previous lemma, this lemma requires that the graph Gn on which
the exclusion process evolves is the complete graph.

Lemma 3.5. Let α be a positive real number and let Q(`)
n be the generator of the

symmetric exclusion process with respect to (Kn, α). Then for any eigenvector ψ of

−Q(`)
n with corresponding eigenvalue λ,

〈ψ+, ψ+〉 =
n− `+ 1

α`
· (α`(n− `+ 1)− λ)
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and

〈ψ−, ψ−〉 =
`+ 1

α(n− `)
· (α(`+ 1)(n− `)− λ) .

Proof. Let ψ and ψ′ be any two eigenvectors of −Q(`)
n . Then by definition,

〈ψ+, ψ
′
+〉 =

1(
n
`−1
) · ∑

x∈(V (Kn)
`−1 )

ψ+(x)ψ′+(x)

=
1(
n
`−1
) · ∑

x∈(V (Kn)
`−1 )

∑
v : x(v)=0

v′ : x(v′)=0

ψ(xv)ψ
′(xv′).

Now for each y ∈
(
V (Kn

`

)
, in the double sum above, the term ψ(y)ψ′(y) will be counted

` times, as for each v such that y(v) = 1, we can let v = v′, x = yv and write ψ(y)ψ′(y)

as ψ(xv)ψ(xv′). Similarly, for any y, y′ ∈
(
V (Kn

`

)
such that y ∼ y′, the term ψ(y)ψ(y′) will

appear exactly one time, as this requires x to be the configuration with black marbles at
the positions where both y and y′ have black marbles. This implies that∑

x∈(V (Kn)
`−1 )

∑
v : x(v)=0

v′ : x(v′)=0

ψ(xv)ψ
′(xv′)

=
∑

x∈(V (Kn)
` )

(
` ψ(x)ψ′(x) +

∑
x′∈(V (Kn)

` ) : x′∼x

ψ(x)ψ′(x′)

)

=
∑

x∈(V (Kn)
` )

ψ(x)

(
` ψ′(x) +

∑
x′∈(V (Kn)

` ) : x′∼x

ψ′(x′)

)
.

(3.1)

Now recall that for any eigenvector ψ′ of −Q(`)
n with corresponding eigenvalue λ, and

any x ∈
(
V (Kn)
`

)
,

λψ′(x) = −Q(`)
n ψ′ = α`(n− l)ψ′(x) − α

∑
x′∈(V (Kn)

` ) : x′∼x

ψ′(x′).

Using this, we obtain

〈ψ+, ψ
′
+〉 =

1(
n
`−1
) · ∑

x∈(V (Kn)
` )

ψ(x)

(
` ψ′(x) + `(n− `)ψ′(x)− α−1λψ′(x)

)

=
1(
n
`−1
) · α`(n− `+ 1)− λ

α
·

∑
x∈(V (Kn)

` )

ψ(x)ψ′(x)

=
n− `+ 1

`
· α`(n− `+ 1)− λ

α
· 〈ψ,ψ′〉.

(3.2)

If we set ψ = ψ′, the first claim of the lemma immediately follows.
To repeat the argument with ψ− and ψ′− instead of ψ+ and ψ′+, the only thing we need

to replace is (3.1). By a similar argument as in the first case, we obtain∑
x∈(V (Kn)

`+1 )

∑
v : x(v)=1

v′ : x(v′)=1

ψ(xv)ψ
′(xv′)

=
∑

x∈(V (Kn)
` )

(
(n− `)ψ(x)ψ′(x) +

∑
x′∈(V (Kn)

` ) : x′∼x

ψ(x)ψ′(x′)

)
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Using this equation, we get the following equation.

〈ψ−, ψ′−〉 =
`+ 1

n− `
· α(`+ 1)(n− `)− λ

α
· 〈ψ,ψ′〉. (3.3)

If we set ψ = ψ′, the second claim of the lemma now immediately follows.

The next lemma shows that orthogonality is preserved by the operations ψ 7→ ψ+ and
ψ 7→ ψ−.

Lemma 3.6. Let α be a positive real number and let Q(`)
n be the generator of the

symmetric exclusion process with respect to (Kn, α). Then for any two orthogonal

eigenvectors ψ and ψ′ of −Q(`)
n ,

〈ψ+, ψ
′
+〉 = 〈ψ−, ψ′−〉 = 0.

Proof. As ψ and ψ′ are orthogonal, we have that 〈ψ,ψ′〉 = 0. Using (3.2), we obtain

〈ψ+, ψ
′
+〉 =

n− `+ 1

`
· α`(n− `+ 1)− λ

α
· 〈ψ,ψ′〉 = 0.

Analogously, using (3.3), we obtain

〈ψ−, ψ′−〉 =
`+ 1

n− `
· α(`+ 1)(n− `)− λ

α
· 〈ψ,ψ′〉 = 0.

We are now ready to give a proof of Proposition 3.1.

Proof of Proposition 3.1. We will first prove that (a), (b) and (c) hold by using induction
on the number of black marbles, `. As an induction hypothesis, suppose that for some
` ∈ N, there is an orthonormal basis of eigenvectors ψ(n,`)

1 , . . . , ψ(n,`)

(n
`)

to −Q(`)
n with

corresponding eigenvalues

λ
(n,`)
i =

{
0 for i = 1

αj(n− j + 1) for
(
n
j

)
< i ≤

(
n
j+1

)
, j = 0, 1, . . . , `.

By Lemmas 3.3 and 3.6, the nonzero vectors among ψ(n,`)
1− , . . . , ψ(n,`)

(n
`)−

is an orthogonal

set of eigenvectors of −Q(`+1)
n with corresponding eigenvalues λ(n,`)1 , . . . , λ(n,`)

(n
`)

. By

Lemma 3.5 and the induction hypothesis, for any i ∈ {1, 2, . . . ,
(
n
`

)
},

〈ψ(n,`)
i− , ψ

(n,`)
i− 〉 =

`+ 1

α(n− `)
·
(
α(`+ 1)(n− `)− λ(n,`)i

)
6= 0.

For i ∈ {1, . . . ,
(
n
`

)
}, set

ψ
(n,`+1)
i :=

ψ
(n,`)
i−√

〈ψ(n,`)
i− , ψ

(n,`)
i− 〉

.

Then for each i ∈ {1, 2, . . . ,
(
n
`

)
}, ψ(n,`+1)

i is an eigenvector of −Q(`+1)
n with corresponding

eigenvalue λ(n,`+1)
i = λ

(n,`)
i . Moreover, we can extend the set {ψ(n,`+1)

i }i=1,...,(n
`)

to an

orthonormal basis {ψ(n,`+1)
i }i=1,...,( n

`+1)
of eigenvectors of −Q(`+1)

n . To show that the

induction hypothesis must hold for ` + 1 black marbles given that it holds for ` black
marbles, it now suffices to show that λ(n,`+1)

i = α(`+ 1)(n− `) for all i >
(
n
`

)
. To this end,

EJP 21 (2016), paper 45.
Page 14/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4092
http://www.imstat.org/ejp/


Monotonicity properties of exclusion sensitivity

note that by Lemmas 3.3 and 3.6, the nonzero vectors in the set {ψ(n,`+1)
i+ }i=1,...,( n

`+1)
are

an orthogonal set of eigenvectors of −Q(n)
` . By Lemma 3.5,

〈ψ(n,`+1)
i+ , ψ

(n,`+1)
i+ 〉 =

n− `
α(`+ 1)

·
(
α(`+ 1)(n− `)− λ(n,`+1)

i

)
.

By the induction hypothesis, this is nonzero for i ∈ {1, 2, . . . ,
(
n
`

)
}. As no orthogonal

set of eigenvectors of −Q(`)
n can contain more than

(
n
`

)
elements, we must have that

λ
(n,`+1)
i = α(` + 1)(n − `) for all i >

(
n
`

)
. As the induction hypothesis is well known to

hold for ` = 0, the desired conclusion follows.
(d) follows directly from (a), (b) and (c) by applying the operator ψ 7→ ψ+ ` − m

times.

4 A proof of Theorem 1.3

Before we give a proof of our first main result, Theorem 1.3, we will prove the
following lemma, which is interesting in itself, relating the eigenvectors of an exclusion
process on any graph with the eigenvectors of an exclusion process on the complete
graph.

Lemma 4.1. Let Q(`)
n be the generator of the symmetric exclusion process on Kn with `

black marbles and rate α, and let R(`)
n be the generator of the symmetric exclusion pro-

cess of a graph Gn, V (Gn) = V (Kn), with ` black marbles with rate β. Let {ψ(n,`)
i }i be the

eigenvectors of −Q(`)
n , and let {λ(n,`)i }i be the corresponding eigenvalues. Analogously,

let {χ(n,`)
i }i be the eigenvectors of −R(`)

n , and let {µ(n,`)
i }i be the corresponding eigenval-

ues. Further, let d = maxv∈V (Gn) deg v. Then for any k and k′ such that αk′(n−k′+1) ≥ k,

Span
i : λ

(n,l)
i ≤k ψ

(n,`)
i ⊆ Span

i′ : µ
(n,l)

i′ ≤2βk′d χ
(n,`)
i′ .

Consequently, if Qn is the generator of the symmetric exclusion process on Kn

with rate α, Rn is the generator of the symmetric exclusion process of Gn with rate
β and {ψ(n)

i,` } and {χ(n)
i,` } are the orthonormal bases of eigenvectors of −Qn and −Rn

respectively, as defined in Lemma 2.1, then

Span
i : λ

(n)
i,` ≤k

ψ
(n)
i,` ⊆ Span

i′ : µ
(n)

i′,`≤2βk
′d
χ
(n)
i′,`

whenever αk′(n− k′ + 1) ≥ k.

When we use Lemma 4.1 in the proof of Theorem 1.3, we will think of n as being very
large and k as being small and fixed, and pick α = 1/n and β = 1/d. With this choice of
parameters, and any k and k′ such that k′(n− k′ + 1)/n ≥ k, Lemma 4.1 says that

Span
i : λ

(n)
i,` ≤k

ψ
(n)
i,` ⊆ Span

i′ : µ
(n)

i′,`≤2k
′ χ

(n)
i′,`.

From the simple inequality
x(n− x+ 1)

n
≥ n+ 1

2n
· x,

valid for x ∈ [0, n/2], we obtain that in this special case, we can choose any k′ ≥ 2n
n+1 · k.

In particular, we can choose k′ = 2k. From this we get the following lemma as a corollary.

Lemma 4.2. In the setting of Lemma 4.1, if α = 1/n, β = 1/d and k ≤ n/4, then

Span
i : λ

(n)
i,` ≤k

ψ
(n)
i,` ⊆ Span

i : µ
(n)
i,` ≤4k

χ
(n)
i,` .
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Monotonicity properties of exclusion sensitivity

Proof of Lemma 4.1. Note first that by Remark 3.2, it suffices to prove the lemma in
the case ` ≤ bn/2c Fix k and let ψ(n,`)

i be an eigenvalue of −Q(`)
n with corresponding

eigenvalue λ(n,`)i ≤ k. By Proposition 3.1 (a), λ(n,`)i = αj(n−j+1) for some j ∈ {1, 2, . . . , `}.
By Proposition 3.1 (d), this in turn implies that ψ(n,`)

i can be written as

ψ
(n,`)
i = ψ

(n,`)
i (·) = C

∑
y≤· : ‖y‖=j

ψ
(n,j)
i (y)

for some normalizing constant C. As ψ(n,j)
i :

(
V (Gn)
j

)
→ R, V (Gn) = V (Kn) and {χ(n,j)

i }i
is an orthonormal basis for all functions f :

(
V (Kn)
j

)
→ R,

ψ
(n,j)
i ∈ Spani′ χ

(n,j)
i′ .

By Lemma 2.5, this is equivalent to that

ψ
(n,j)
i ∈ Span

i′ : µ
(n,j)

i′ ≤2βjd χ
(n,j)
i′

implying that

ψ
(n,`)
i (·) = C

∑
y≤· : ‖y‖=j

ψ
(n,j)
i (y) ∈ Span

i′ : µ
(n,j)

i′ ≤2βjd

∑
y≤· : ‖y‖=j

χ
(n,j)
i′ (y)

⊆ Span
i′ : µ

(n,`)

i′ ≤2βjd χ
(n,`)
i′ .

where the last inclusion follows from Corollary 3.4. Now as αk′(n − k′ + 1) ≥ k ≥
αj(n− j + 1) and j ≤ ` ≤ bn/2c, we have that j ≤ k′. Using this, we obtain

ψ
(n,`)
i ∈ Span

i′ : µ
(n,`)

i′ ≤2βjd χ
(n,`)
i′ ⊆ Span

i′ : µ
(n,`)

i′ ≤2βk′d χ
(n,`)
i′

which is the desired conclusion.

We are now ready to give a proof of Theorem 1.3. The main idea of this proof is to
use Lemma 4.2 to compare the sums in the characterizations of exclusion sensitivity and
exclusions stability given by Propositions 2.3 and 2.4 for the two sequences of graphs.

Proof of Theorem 1.3. Note first that it is enough to prove the result for βn =

1/maxv∈V (Gn) deg v.
Suppose that (fn)n≥1 is not exclusion sensitive with respect to the sequence

(K|V (Gn)|, 1/|V (Gn)|)n≥1. By Proposition 2.3, either

lim
n→∞

Var(E[fn(x) | ‖x‖ = ‖X(n)
0 ‖]) 6= 0

or there is k > 0, ε > 0 and a subsequence n′ such that∑
i,` : 0<λ

(n′)
i,` ≤k

f̂n′(i, `)
2 > ε (4.1)

for all n′. In the first case, we are already done, so we can assume that (4.1) holds.

Now (4.1) says exactly that the length of the projection of fn′ onto Span
i,` : 0<λ

(n′)
i,` ≤k

ψ
(n′)
i,`

is at least ε. By Lemma 4.2,

Span
i : λ

(n)
i,` ≤k

ψ
(n)
i,` ⊆ Span

i : µ
(n)
i,` ≤4k

χ
(n)
i,` .
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As π(n′) is the uniform measure for both Gn and K|V (Gn)|, these two spaces have the
same inner product. This implies that the length of the projection onto the larger of the
two spaces must be larger than the length of the projection onto the smaller subspace.

In other words, if we define f̌n′(i, `) := 〈fn′ , χ(n′)
i,` 〉 then we must have∑

i,` : 0<µ
(n′)
i,` ≤4k

f̌n′(i, `)
2 ≥

∑
i,` : 0<λ

(n′)
i,` ≤k

f̂n′(i, `)
2 > ε

for all n′. From this it follows that (fn)n≥1 cannot be exclusion sensitive with respect to
(Gn, 1/dn)n≥1, and finishes the proof of (i).

To show that (ii) holds, suppose that (fn)n≥1 is exclusion stable with respect to
(K|V (Gn)|, 1/|V (Gn)|)n≥1. Then, by Proposition 2.4, for all δ > 0 there is k > 0 such that

sup
n

∑
i,` : λ

(n)
i,` ≥k

f̂n(i, `)2 < δ

or equivalently, such that

inf
n

∑
i,` : λ

(n)
i,` <k

f̂n(i, `)2 > 〈f, f〉 − δ.

By Lemma 4.2, this implies that

inf
n

∑
i,` : µ

(n)
i,` <4k

f̌n(i, `)2 > 〈f, f〉 − δ.

As δ was arbitrary, by Proposition 2.4, (fn)n≥1 is exclusion stable with respect to
(Gn, 1/dn)n≥1. This finishes the proof.

5 Monotonicity at equal rate

The main purpose of this section is to give a proof of Theorem 1.5, which gave
conditions given which the properties of being exclusion sensitive and exclusion stable
was monotone with respect to adding edges to a sequence of graphs. We now formulate
the main lemma we will use in the proof of this result.

Lemma 5.1. Let Q be the generator for the symmetric exclusion process with respect to
(G,α) and Q′ be the generator for the symmetric exclusion process with respect to (G′, α),
for two finite connected graphs G and G′ with the same number of vertices and a strictly
positive real number α. Let {ψi,`}i,` be and orthonormal set of eigenvectors of −Q with
corresponding eigenvalues {λi,`}i,`, and let {χi,`}i,` and {µi,`}i,` be the corresponding
sets for −Q′. Further, let f : {0, 1}V (G) → R. Then, if E(G′) ⊆ E(G), for all strictly
positive real numbers k and k′ we have that

∑
i,` : µi,`>k′

〈f, χi,`〉2 ≤


√√√√ k

k′

∑
i,` : 0<λi,`≤k

〈f, ψi,`〉2 +

√ ∑
i,` : λi,`>k

〈f, ψi,`〉2


2

.

The main idea of our proof of this lemma is to use (2.4) to relate the eigenvectors and
eigenvalues of −Q and −Q′. This gives good bounds for functions with support only on
eigenvectors corresponding to small eigenvalues, hence the function f is first split into
two parts; one of which is the projection of f onto the span of such eigenvectors. The
squares and square roots arises naturally by an application of the triangle inequality.
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Proof. Fix k > 0 and k′ > 0 and define Pλ≤kf :=
∑
i,` : 0<λi,`≤k〈f, ψi,`〉ψi,` to be the

projection of f onto the space spanned by all eigenvectors ψi,` with corresponding
eigenvalue less than or equal to k but not equal to zero. Similarly, define Pλ>kf :=∑
i,` : λi,`>k

〈f, ψi,`〉ψi,`. Then for any k′ > 0,

∑
i,` : µi,`>k′

〈f, χi,`〉2 =
∑

i,` : µi,`>k′

〈
Pλ≤kf + Pλ>kf +

∑
j,m : λj,m=0

〈f, ψj,m〉ψj,m, χi,`
〉2

=
∑

i,` : µi,`>k′

〈
Pλ≤kf + Pλ>kf +

∑
j,m : µj,m=0

〈f, χj,m〉χj,m, χi,`
〉2

where the last equality follows from Remark 2.2. Using that any eigenvector with
corresponding eigenvalue equal to zero is orthogonal to any eigenvector χi,` with
corresponding eigenvalue µi,` ≥ k′ > 0, and then applying the triangle inequality,
we obtain∑

i,` : µi,`>k′

〈f, χi,`〉2 =
∑

i,` : µi,`>k′

〈Pλ≤kf + Pλ>kf, χi,`〉2

≤

√ ∑
i,` : µi,`>k′

〈Pλ≤kf, χi,`〉2 +

√ ∑
i,` : µi,`>k′

〈Pλ>kf, χi,`〉2

2

. (5.1)

Now note that∑
i,` : µi,`>k′

〈Pλ≤kf, χi,`〉2 ≤
∑

i,` : µi,`>k′

µi,`
k′
· 〈Pλ≤kf, χi,`〉2 ≤ 1

k′

∑
i,` : µi,`>0

µi,` · 〈Pλ≤kf, χi,`〉2

=
1

k′
· 〈−Q′Pλ≤kf, Pλ≤kf〉.

Applying (2.4), it follows that∑
i,` : µi,`>k′

〈Pλ≤kf, χi,`〉2 ≤
1

k′
· 〈−QPλ≤kf, Pλ≤kf〉 =

1

k′

∑
i,` : λi,`>0

λi,` · 〈Pλ≤kf, ψi,`〉2

=
1

k′

∑
i,` : 0<λi,`≤k

λi,` · 〈f, ψi,`〉2 ≤
k

k′

∑
i,` : 0<λi,`≤k

〈f, ψi,`〉2.

For the second term in the last expression of (5.1), again using Remark 2.2, we have∑
i : µi,`>k′

〈Pλ>kf, χi,`〉2 ≤
∑

i : µi,`>0

〈Pλ>kf, χi,`〉2 =
∑

i : λi,`>0

〈Pλ>kf, ψi,`〉2

=
∑

i : λi,`>k

〈f, ψi,`〉2

Summing up, we now get,

∑
i,` : µi,`>k′

〈f, χi,`〉2 ≤


√√√√ k

k′

∑
i,` : 0<λi,`≤k

〈f, ψi,`〉2 +

√ ∑
i,` : λi,`>k

〈f, ψi,`〉2


2

.

which is the desired conclusion.

We now give a proof of Theorem 1.5, whose conclusion will follow more or less directly
by applying Lemma 5.1 to the sums in the characterizations of exclusions sensitivity and
exclusion stability given by Propositions 2.3 and 2.4.
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Proof of Theorem 1.5. Let f̂n(i, `) = 〈fn, ψ(n)
i,` 〉 and f̌n(i, `) = 〈fn, χ(n)

i,` 〉.
For the proof of the first part of the theorem, suppose that (fn)n≥1 is exclusion stable

with respect to (Gn, αn)n≥1. Then by Proposition 2.4, for all δ > 0 there is k > 0 such
that

∑
i,` : λ

(n)
i,` >k

f̂n(i, `) < δ/4 for all n ≥ 1. Since∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 ≤
∑
i,`

f̂n(i, `)2 = E[fn(X
(n)
0 )2] ≤ 1

there is k′ > 0 such that
k

k′

∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 < δ/4

for all n. Using Lemma 5.1, we thus obtain

∑
i,` : µ

(n)
i,` >k

′

f̌n(i, `)2 ≤


√√√√ k

k′
·

∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 +

√√√√ ∑
i,` : λ

(n)
i,` >k

f̂n(i, `)2


2

≤
(√

δ/4 +
√
δ/4
)2

= δ.

As δ was arbitrary, by Proposition 2.4, (fn)n≥1 is exclusion stable with respect to
(G′n, αn)n≥1.

For the other direction, suppose that (fn)n≥1 is exclusion sensitive with respect to
(G′n, αn)n≥1. By Proposition 2.3,

lim
n→∞

Var(E[fn(x) | ‖x‖ = ‖X(n)
0 ‖]) = 0

and for all k′ > 0,
lim
n→∞

∑
i,` : 0<µ

(n)
i,` ≤k′

f̌n(i, `)2 = 0. (5.2)

By Lemma 5.1, for any k > 0 and k′ > 0 we have that∑
i,` : 0<µ

(n)
i,` ≤k′

f̌n(i, `)2 = 〈fn, fn〉 −
∑

i,` : µ
(n)
i,` =0

f̌n(i, `)2 −
∑

i,` : µ
(n)
i,` >k

′

f̌n(i, `)2

= 〈fn, fn〉 −
∑

i,` : λ
(n)
i,` =0

f̂n(i, `)2 −
∑

i,` : µ
(n)
i,` >k

′

f̌n(i, `)2

≥ 〈fn, fn〉 −
∑

i,` : λ
(n)
i,` =0

f̂n(i, `)2

−


√√√√ k

k′
·

∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 +

√√√√ ∑
i,` : λ

(n)
i,` >k

f̂n(i, `)2


2

.

Using (5.2), it thus follows that

0 ≥ lim sup
n→∞

(
〈fn, fn〉 −

∑
i,` : λ

(n)
i,` =0

f̂n(i, `)2

−


√√√√ k

k′
·

∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 +

√√√√ ∑
i,` : λ

(n)
i,` >k

f̂n(i, `)2


2)
.
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As this holds for any k′ > 0 and∑
i,` : 0<λ

(n)
i,` ≤k

f̂n(i, `)2 ≤
∑
i,`

f̂n(i, `)2 = E[f2n] ≤ 1

we obtain

0 ≥ lim sup
n→∞

〈fn, fn〉 − ∑
i,` : λ

(n)
i,` =0

f̂n(i, `)2 −
∑

i,` : λ
(n)
i,` >k

f̂n(i, `)2


= lim sup

n→∞

∑
i,` : 0<λ

(n)
i,` ≤k′

f̂n(i, `)2,

which in particular implies that for any k > 0,

lim sup
n→∞

∑
i,` : 0<λ

(n)
i,` ≤k′

f̂n(i, `)2 = 0.

Proposition 2.3 now ensures that (fn)n≥1 is exclusion sensitive with respect to
(Gn, αn)n≥1.

Remark 5.2. The proof of Theorem 1.5 is easy to extend to the setting where the rates
(αn)n≥1 is allowed to be different for different edges in the graphs, as long as the same
edge has the same rate in both graphs. To see this, simply note that the actual rates αn
was never used in the proof, which depends only on Proposition 2.3, Proposition 2.4 and
Lemma 5.1, which in turn only uses the earlier Remark 2.2 and (2.4). All of these results
can easily be seen to be valid also in this setting.

Remark 5.3. Using the previous remark, we can quite easily make Theorem 1.5 even
more general. Suppose namely that we are in the setting of Theorem 1.5, except that the
graphs (G′n)n≥1 are not necessarily connected, but that for each n ≥ 1, G′n is the union

of cn < |V (Gn)| connected components. For n ≥ 1 define intermediate graphs G(1)
n , G(2)

n

and G(3)
n as follows

• Let G(1)
n be a graph with V (G

(1)
n ) = V (Gn) and E(G′n) ⊂ E(G

(1)
n ) ⊆ E(Gn) and

where removing any edge in E(G
(1)
n )\E(G′n) would make G(1)

n disconnected. Call
such a set of edges a minimal connecting set of edges for Gn, and note that the
number of edges in such a set will always be cn − 1.

• Let G
(2)
n be a graph with V (G

(2)
n ) = V (Gn) and E(G

(1)
n ) ⊆ E(G

(2)
n ), where

E(G
(2)
n )\E(G

(1)
n ) is another minimal connecting set of edges for Gn, and let the

edges in this set all have rate ((cn − 1)n)−1. Note that we do not necessarily have

that E(G
(2)
n ) ⊆ E(Gn).

• Let G(3)
n be the graph with V (G

(3)
n ) = V (Gn) and E(G

(3)
n ) = E(G′n) ∪ (E(G

(2)
n )\

E(G
(1)
n )). Note that G(3)

n is connected.

Now let fn : {0, 1}V (Gn) → {0, 1}, En ⊆ E(Gn) and write En,t for the event that no
edge in En was used before time t. Then

P (fn(X
(n)
0 ) 6= fn(X(n)

ε ) | En,ε) · P (En,ε) ≤ P (fn(X
(n)
0 ) 6= fn(X(n)

ε ))

≤ P (fn(X
(n)
0 ) 6= fn(X(n)

ε ) | En,ε) + P (Ecn,ε).

EJP 21 (2016), paper 45.
Page 20/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4092
http://www.imstat.org/ejp/


Monotonicity properties of exclusion sensitivity

For the covariance, we get

Cov(fn(X
(n)
0 ), fn(X

(n)
1 ))

= E[fn(X
(n)
0 )fn(X

(n)
1 )]− E[fn(X

(n)
0 )]2

≤ E[fn(X
(n)
0 )fn(X

(n)
1 ) | En,1] + P (Ecn,1)− E[fn(X

(n)
0 ) | En,1]2 · P (En,1)2

= Cov(fn(X
(n)
0 ), fn(X

(n)
1 ) | En,1) + P (Ecn,1) + E[fn(X

(n)
0 ) | En,1]2 · (1− P (En,1)2)

≤ Cov(fn(X
(n)
0 ), fn(X

(n)
1 ) | En,1) + 3P (Ecn,1)

and similarly,

Cov(fn(X
(n)
0 ), fn(X

(n)
1 ))

= E[fn(X
(n)
0 )fn(X

(n)
1 )]− E[fn(X

(n)
0 )]2

≥ E[fn(X
(n)
0 )fn(X

(n)
1 ) | En,1] · P (En,1)−

(
E[fn(X

(n)
0 ) | En,1] · P (En,1) + P (Ecn,1)

)2
= Cov(fn(X

(n)
0 ), fn(X

(n)
1 ) | En,1) · P (En,1) + E[fn(X

(n)
0 ) | En,1]2 · P (En,1)P (Ecn,1)

− P (Ecn,1)2 − 2P (Ecn,1) · P (En,1) · E[fn(X
(n)
0 ) | En,1]

≥ Cov(fn(X
(n)
0 ), fn(X

(n)
1 ) | En,1) · P (En,1)− 3P (Ecn,1)

≥ Cov(fn(X
(n)
0 ), fn(X

(n)
1 ) | En,1)− 4P (Ecn,1).

As for En = (E(G
(2)
n )\E(G

(1)
n )) we have

P (En,1) ≤ P (En,ε) =
(
e−ε((cn−1)n)

−1
)cn−1

= e−ε/n,

and
lim sup
n→∞

e−ε/n = 1

these inequalities allow us to transfer the properties of being exclusion sensitive and
exclusion stable between sequences of graphs that differ only on sets of edges that are
being used very rarely in the limit. Using this, we get the series of implications

XS on G′n ⇒ XS on G(3)
n ⇒ XS on G(2)

n ⇒ XS on G(1)
n ⇒ XS on Gn

where the second and fourth implication uses Theorem 1.5 and Remark 5.2.
Analogously for exclusion stability, we have

XStable on Gn ⇒ XStable on G(1)
n ⇒ XStable on G(2)

n

⇒ XStable on G(3)
n ⇒ XStable on G′n

where again, the second and fourth implication uses Theorem 1.5 and Remark 5.2.
This shows that the assumption on that G′n is to be connected can be dropped from

Theorem 1.5. A similar argument shows that also the assumption that Gn is connected
for every n can be dropped.
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