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Abstract

In this paper, we consider Markov chains of the form X( 1)/, = ¥&(X{), Zkt1/V/n,
1/n) where the innovation comes from the sequence Zi,k € IN* of independent
centered random variables with arbitrary law. Then, we study the convergence
E[f(X{)] — E[f(X:)] where (X¢):>0 is a Markov process in continuous time. This
may be considered as an invariance principle, which generalizes the classical Central
Limit Theorem to Markov chains. Alternatively (and this is the main motivation of our
paper), X™ may be an approximation scheme used in order to compute E[f(X})] by
Monte Carlo methods. Estimates of the error are given for smooth test functions f as
well as for measurable and bounded f. In order to prove convergence for measurable
test functions we assume that Z; satisfies Doeblin’s condition and we use Malliavin
calculus type integration by parts formulas based on the smooth part of the law of Zj,.
As an application, we will give estimates of the error in total variation distance for the
Ninomiya Victoir scheme.
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1 Introduction

In this paper, we consider a time grid ¢} = k/n,k € IN with n € IN* and a Markov
chain

i :wk(th,’:aZk+1/\/ﬁv]-/n)>

T

where 9, : R? x RY x R, — R? is a smooth function and Z, k € IN*, is a sequence of
independent centered random variables. We aim to study the convergence of the law of

*MathRisk ENPC-INRIA-UMLYV Project, This research benefited from the support of the ‘Chaire Risques
Financiers’, Fondation du Risque.
TUniversité de Marne-la-Vallée Cité Descartes. E-mail: vlad.bally@univ-mlv.fr
*CERMICS-Ecole des Ponts Paris Tech, France.
E-mail: clem6410@msn.com


http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/16-EJP4079
mailto:vlad.bally@univ-mlv.fr
mailto:clem6410@msn.com

Approximation of Markov semigroups

X™ to the law of a Markov process X. More precisely, we will give estimates of the weak
error

en(f) = B[ (X)) = E[f (X)]]-

This problem may be considered from two points of view. The first one is to look
at this convergence result as to an invariance principle. We illustrate this approach
with the Central Limit Theorem (CLT). Indeed, if ¥y (z, 2,t) = = + z and Z;, k € IN*, are
independent and identically distributed with variance 1, we have X" = n~Y/23")" | Z;.

Using then the CLT, we know that X7 oy W1 where (W;):>0 is a standard Brownian
motion and then W; ~ A(0,1) where N (0,1) is the standard Normal distribution. Since
the law of Zy, k € IN* is arbitrary and the limit law of (X7"),,c does not depend on this
law, we say that it is an invariance principle. Keeping this in mind, we look at our Markov
chain X" as to a general Markovian scheme based on the sequence of random variables
Zi,k € IN*. Then, the convergence of X" to a Markov process X which is universal (in
the sense that it does not depend on the law of Z;, k € IN*) represents an invariance
principle. Our result can thus be seen as a direct generalization of the CLT. Notice that,
when looking from this point of view, 1,k € IN represents a scheme which naturally
appears in a concrete modelization problem. A main interest is to approximate the law
of X7, which may be difficult to understand directly, by the law of X; which is simpler to
study (as for W, above).

A second point of view comes from numerical probabilities: For instance, if X is a
diffusion process and we want to compute E[f(X;)], then we can use a discretization
scheme X" (for example the Euler scheme). Thereafter, we can obtain the approximation
E[f(X}*)] using Monte Carlo methods. In this kind of approaches, we may choose the
approximation scheme (Xt"g)ke]N as we want (in contrast with the previous situation
when the Markov chain X™ was given by an external modelization).

Our initial motivation for the study of the error ¢, (f) comes from the second point of
view (numerical probabilities) but all the results of this paper are significant from both
perspectives. Let us mention that the difficulty of the analysis and the interest of the
result depend on the regularity of the test function f. It turns out that if f is a smooth
function, then the analysis of the error is rather simple, using a Taylor type expansion
in short time first, and a concatenation argument after. However, the study is much
more subtle if f is simply a bounded and measurable test function - this is the so called
convergence in total variation distance. A lot of work has been done in this direction in
the case of the CLT. In particular, Bhattacharya and Rao [9] obtained the convergence
when f(z) = 14(z) where A is a measurable set that belongs to a large class (including
convex sets). From that point, one would hope to get such results for every measurable
set A and consequently for every measurable and bounded test function f. Eventually,
the seminal result of Prokhorov [32] clarified this point: He proved that the convergence
in total variation in the CLT may not be obtained without some regularity assumptions
on the law of Z;,. Essentially, one has to assume that the law of Z; has an absolute
continuous component. In our framework this hypothesis has to be slightly strengthened.
We assume that Z;, verifies the Doeblin’s condition (see (1.8)). In this way, we extract
some regular noise and use it in order to build some integration by parts formulas
(inspired from Malliavin calculus). Then, we use those formulas to regularize the test
function f and finally to achieve our error analysis.

Main results

Let us now present our results with more details. In order to do it, we have to
introduce some notations. For fixed 7' > 0 and n € IN*, we define the homogeneous time

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
Page 2/44


http://dx.doi.org/10.1214/16-EJP4079
http://www.imstat.org/ejp/

Approximation of Markov semigroups

grid 7, = {t} = kT/n,k € IN}. We consider the d dimensional Markov chain

Zk+1
Jn

where v, : R? x RV x R, — R? is a smooth function such that 1 (z,0,0) = =, and
Z, € RN, k € N*, is a sequence of independent and centered random variables
and sup,- 6 < C/n. The semigroup of the Markov chain (X}');er,., is denoted by
(QF)texr, and its transition probabilities are given by v}, (z,dy) = ]P(X?EH € dy| Xi =
z), k € IN. We recall that for ¢ € mp,,, Q7 f(x) = E[f(X]")| X = z]. We will also consider
a Markov process in continuous time (X;):>o with semigroup (P;);>o and we define
P (7, dy) = IP(XtZ+1 € dy|Xip = 7).

Moreover, for f € C*°(R?) and for a multi-index o = (ay,--- ,a4) € N? we denote
lof = a1 + ...+ agand O, f = (01)** ... (0a)f = 0% f(x) = O3} ... 054 f(x). We include
the multi-index o = (0, ...,0) and in this case d,f = f. We will use the norms

Xp = ge(Xp, 0r),  keN, (1.1)

o= s 3" 0uf@l = Y [ l0af@)ide

P ]Rd
€/ 0<]al<q 0<|al<q

In particular || f|jo,c = ||f||c is the usual supremum norm and we will denote C;/(R?) =
{f € CIRY),[|fllg0 < oo} and C4(RY) C CI(R?) the set of functions with compact
support.

A first standard result is the following: Let us assume that there exists h > 0, ¢ € IN
such that for every f € C4(R?), k € N* and = € RY,

i f(x) = v f(@)| = | [ F @)k, dy) — [ F)vi(z, dy)|] < C| fllgeo/n' " (1.2)
Then, for all 7' > 0, there exists C' > 1 such that we have
sup [|Pof — QF flloo < Cllfllg.o0/n". (1.3)

temr nt<T

It means that (X/");cx,., is an approximation scheme of weak order h for the Markov
process (X;)¢>0. In the case of the Euler scheme for diffusion processes, this result,
with h = 1, has initially been proved in the seminal papers of Milstein [27] and of Talay
and Tubaro [34] (see also [18]). Similar results were obtained in various situations:
Diffusion processes with jumps (see [33], [16]) or diffusion processes with boundary
conditions (see [13], [12], [14]). An overview of this subject is given in [17]. More
recently, approximation schemes of higher orders (e.g., h = 2), based on cubature
methods, have been introduced and studied by Kusuoka [22], Lyons [26], Ninomiya,
Victoir [28] or Alfonsi [1]. The reader may also refer to the work of Kohatsu-Higa and
Tankov [19] for a higher weak order scheme for jump processes.

Another result concerns convergence in total variation distance. We want to obtain
(1.3) with || f||4,c0 replaced by || f|lcc when f is a measurable function. In the case of the
Euler scheme for diffusion processes, a first result of this type has been obtained by Bally
and Talay [6], [7] using the Malliavin calculus (see also Guyon [15]). Afterwards Konakov,
Menozzi and Molchanov [20], [21] obtained similar results using a parametrix method.
Recently Kusuoka [23] obtained estimates of the error in total variation distance for the
Victoir Ninomiya scheme (which corresponds to the case h = 2). We will obtain a similar
result using our approach. Moreover, we give estimates of the rate of convergence of
the density function and its derivatives.
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Regularization properties. We first remark that the crucial property which is used in
order to replace || f||4,00 bY || fllco in (1.3), is the regularization property of the semigroup.
Let us be more precise: Let n : Ry — R4 an increasing function, ¢ € IN be fixed. Given
the time grid 77, = {t} = kT/n,k € IN}, we say that a semigroup (P;");cr,., satisfies
Ry, if

C

oo < 27 1 loe (1.4)

Ryy Vte€mra,t>0, |P'f e

We also introduce a dual regularization property: We consider the dual semigroup P;"”
(ie. (P"g, f) = (g, P" f) with the scalar product in L?(R%)) and we assume that

* n,* C
Ry, Vtemrnt>0, B flga < W”Jc”l (1.5)

Finally, we consider the following stronger regularization property: For every multi-index
a, f with o] + 8] = ¢,

_ C
Ryn VtE€TTn,t>0, [[0aP0sflle < WHf”oo (1.6)

We notice that R, implies both R, , and R}, and that a semigroup satisfying R, is
absolutely continuous with respect to the Lebesgue measure.
In addition to (1.2), we will also suppose that the following dual estimate of the error

in short time holds:

[ {g: (it = v ) | < Cligllgall fllo/n* . (1.7)

Using those hypothesis, we can obtain a first result.
Theorem 1.1. We recall that T > 0 and n € N*. We fix h > 0, ¢ € N and we assume
that the short time estimates (1.2) and (1.7) hold (with this q and h). Moreover, we
assume that (1.4) holds for (P;)icx,, and that (1.5) holds for (Q})icx,. . Then, for every
Se[T/n,T)2),

C

Vt € T, t > 28, ||Pf —Qf fll < W”f”oo/nh-

Integration by parts formulas. Once we have this abstract result, the following step
is to give sufficient conditions in order to obtain R, ,, Ry, and R, ,. The method we
adopt in this paper is to use Malliavin type integration by parts formulas based on the
noise Z;, € RY, k € IN*. Then we will have to bound the weights that appear in those
formulas and the regularization properties will follow.

In order to obtain those estimates, we assume that the law of each Zj, is locally lower
bounded by the Lebesgue measure: There exists some z, ; € RY and T+, Ex > 0 such that
for every measurable set A C B, (z. ) one has

P(Zy € A) > e \(A) (1.8)

where A is the Lebesgue measure. If this property holds then a “splitting method” can
be used in order to represent Z; as

Z
ZE = iUk + (1 — X&) Vi,

vn

where i, Ui, Vi, are independent random variables, y; is a Bernoulli random variable
and /nUy ~ ¢, (u)du with ¢,, € C*°(R"Y). Then we use the abstract Malliavin calculus
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based on Uy, developed in [5] and [3], in order to obtain integration by parts formulas.
The crucial point is that the density ¢,., of v/nUj is smooth and we control its logarithmic
derivatives. Using this property, we build integration by parts formulas and we obtain
relevant estimates for the weights which appear in these formulas. It is worth mentioning
that, a variant of the Malliavin calculus based on a similar splitting method has already
been used by Nourdin and Poly [30] (see also [29] and [24]). They use the so called T"
calculus introduced by Bakry, Gentil and Ledoux [2]. Roughly speaking, the difference
between our approach and the one in [2] is the following: Our construction is similar to
the “simple functionals” approach in Malliavin calculus and has the derivative operator
as basic object. In contrast, in the I' calculus, the basic object is the Ornstein Uhlenbeck
operator.

In order to state the main result of our paper, we introduce some additional assump-
tions:

Vpe N, sup E[|Z|P] < oo, (1.9)
kelN*
r r=lal
Vr e ', sup [¢klliree =sup 3 > (02020 ¢r]le < 0 (1.10)
ren "N Jal=0 181+ 1=1
N
I\ >0, VkeN, inf inf Y (9., (z,0,0),7)% > \,. (1.11)
z€R? |n|=1 Pl

Moreover, we introduce the following regularized version of the approximation
scheme (X{")icry,.:

1
Vt € T, XM(z) = FG + X{'(z),

with GG a standard normal random variable independent from X{% and 0 > h+1. Here
X7 (x) is the Markov chain which starts from z: X (z) = . We denote

Q1 (z,dy) = P(X]""(z) € dy) = p}"* (z,y)dy.

Theorem 1.2. We recall that T > 0 and n € IN*. We fix h > 0, ¢ € N and and we
consider a Markov semigroup (P,);>o and the discrete Markov chain (Q} )icr,, defined
in (1.1). We assume that the short time estimates (1.2) and (1.7) hold (with this q and h).
Moreover, we assume (1.8), (1.9), (1.10) and (1.11).

A. Forevery S € [T/n,T/2), we have

¢

VtEﬂ'Tm,tG (257T]7 Hptfo;‘n.f”oo < (A*S)n(q)

[/ llo/n". (1.12)

B. Foreveryt >0, P;(x,dy) = pi(z,y)dy with (z,y) — p;(z,y) belonging to C>(R% x
RY).

C. For every xg,yo, R > 0,e € (0,1) and every multi-index «, 3, we have

vt € 7TT,n7t € (257 TL Sup ‘8;;85]%(1‘,?]) - asagp?ﬂ(xvy” < CE/nh(l_s)v
Br(zo,y0)
(1.13)

with a constant C. which depends on R, g, yo, 5, A\s,T,e,n and on |«| + || (and
may go to infinity as ¢ tends to 0). Moreover we denote Bg(zo,y0) = {(z,y) €
Rd X Rd7 ‘((E,y) - (x03y0)| < R}
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We notice that (1.12) gives the total variation convergence between the semigroups
(Py)i>o0 and (Q})ier,.,,. Once the appropriate regularization properties are obtained
(using the abstract Malliavin calculus), the proof of (1.12) is rather elementary. In
contrast, the estimate (1.13) is based on a non trivial interpolation result recently
obtained in [8]. Notice, however, that the estimate (1.13) is sub-optimal (because of
e > 0). We will illustrate (1.12) by taking X™ to be the Ninomiya Victoir scheme of a
diffusion process. This is a variant of the result already obtained by Kusuoka [23] in the
case where Z; has a Gaussian distribution (and so the standard Malliavin calculus is
available). As we have mentioned in the beginning of this paper, the random variables
Zi, k € IN* have an arbitrary distribution (except the property (1.8)) and our result can
be seen as an invariance principle as well.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section
3, we settle the abstract Malliavin calculus based on the splitting method. We use it in
Section 4 in order to prove the regularization properties for the approximation scheme
X" (in fact for the regularization X ™0) and we obtain Theorem 1.2. Finally, in Section 5,
we use the previous results in order to give estimates of the total variation distance for
the Ninomiya Victoir approximation scheme. In order to enlighten the presentation of
our results, Section 6 is devoted to the proof of Theorem 4.2 on Sobolev norms of X"
which is presented in Section 4

2 The distance between two Markov semigroups

Throughout this section the following notations will prevail. We fix T' > 0 and we
denote n € IN*, the number of time step between 0 and 7. Then, for k¥ € IN we define
? = kT'/n and we introduce the homogeneous time grid mr, = {t} = kT/n,k € N} and
its bounded version ’/T;n = {t € mprpn,t < T} for T > 0. Finally, for S € [0,7) we will

denote wf{z ={te ﬂ;m, t > S}. Notice that, all the results from this paper remain true
with non homogeneous time step but, for sake of simplicity, we will not consider this
case. First, we state some results for smooth test functions.

2.1 Regular test functions

We consider a sequence of finite transition measures u}(z,dy), k¥ € IN* from R? to
R%. This means that for each fixed = and k, u?(z,dy) is a finite measure on R? with the
borelian ¢ field and for each bounded measurable function f : R¢ — R, the application

v @)= [ (o)
is measurable. We also denote

lupl == sup sup | [ fly)pi(z,dy)l,
2€R? ||flle<l JRY

and, we assume that all the sequences of measures we consider in this paper satisfy:

sup |ugp| < oo. (2.1)
kEN*

Although the main application concerns the case where p}(z, dy) is a probability measure,
we do not assume this here. Indeed, u}(z,dy) is only supposed be a signed measure
of finite (but arbitrary) total mass. This is because one may use the results from this
section not only in order to estimate the distance between two semigroups but also in
order to obtain an expansion of the error.

Now we associate the sequence of measures " to the time grid 77 y,.
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Definition 2.1. We define the discrete semigroup P" in the following way.
Rf@) = 1) Py f0) = PR @) = Py [ 0oy,
More generally, we define (Pt’s)t,seﬂT,n;tgs by

Pt%,t',’:f(‘r) = f(), Vk,r € N*, k <, ngg,t;fﬂf(x) = Pt?:,tﬁﬂr«klf( z).

We notice that for ¢, s,u € m7,, t < s < u, we have the semigroup property ", f =
P P!, f. We will consider the following hypothesis: Let ¢ € Nand ¢t < s € 7. If

t,s* s,u

f € CI(RY) then P, f € C/(R%) and

sup  [|P/f]

t,sETT n;t<s

300 < C||fllg,00- (2.2)

Notice that (2.1) implies that (2.2) holds for ¢ = 0.

We consider now a second sequence of finite transition measures v} (z,dy), k € IN*.
Moreover, we introduce the corresponding semigroup Q" defined in a similar way as P"
with u” replaced by »™ which also satisfies (2.1) and (2.2).

We aim to estimate the distance between P"f and Q" f in terms of the distance
between the transition measures pj (z, dy) and v} (z, dy), so we denote

n__ ,n n
k=M — V-

(P{)terr.,, can be seen as a semigroup in continuous time, (P;);>o, considered on the
time grid 7r,,, while (Q¢)¢cr,,, would be its approximation discrete semigroup. Let
q € IN, h > 0 be fixed. We introduce a short time error approximation assumption: There
exists a constant C' > 0 (depending on ¢ only) such that for every & € IN*, we have

En(h,q) AR fllee <CIIf

Proposition 2.2. Let ¢ € IN be fixed. Suppose that v" satisfies (2.2) for this q and that
we have E,,(h,q) (see (2.3)). Then for every f € Cq(]Rd),

sup [P f = Q7 flloe < Cllfllgoo/n" (2.4)

tEﬂ'T n

g.00/n L (2.3)

Proof. Let m € IN*, m < n. We have

m—1
||Pt7;L¢Lf_Q?&ﬁf||oo < Z ||Pt%PtT:1 n thﬂ,
k=0

in S = Pin Qi in flloo (2.5)

n
k+1 k:+1’ m

3

IPEAL QR Floer

b
I
o

Using (2.1) for p™, (2.3) and then (2.2) for v", we obtain

HPZQH}% z+1Q?;;fHoo < C[|A% +1Qt"f||f>0 S C||Qt"f||q~,00/nh+1 < C|‘f||q>c>0/n1+h~

Summing over k = 0, ..., m — 1, we conclude. O

2.2 Measurable test functions (convergence in total variation distance)

The estimate (2.4) requires a lot of regularity for the test function f. We aim to show
that, if the semigroups at work have a regularization property, then we may obtain
estimates of the error for measurable and bounded test functions. In order to state this
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result we have to give some hypothesis on the adjoint semigroup. Let ¢ € IN. We assume
that there exists a constant C' > 1 such that for every measurable and bounded function
f and any g € C?(R%)

En(h,q) {9, AL f) [ < Clig

where (g, f) = [ g(z)f(x)dz is the scalar product in L?(R%).
Our regularlzatlon hypothe51s is the following. Letg € N, S >0and n: Ry — R, an
increasing function be given. We assume that there exists a constant C' > 1 such that

a1l flloo/n' T (2.6)

Ryn(S) Vit s€mry,, withS<s—t, ||Pf < %Hf”oo (2.7)

We also consider the “adjoint regularization hypothesis”. We assume that there exists an
adjoint semigroup Pt”; , that is

(P g.f) = (9. Pl f)
for every measurable and bounded function f and every function g € C2°(R?). We assume
that P";" satisfies

Ry, (S) Vt,s € Trp,, With S <s—t, [P fllg1 < ||f|\1 (2.8)

Sn(q

Notice that a sufficient condition in order that R} , (S) holds is the following: For every
multi index a with |a| < ¢

. n C
Vi, s € Tr ., With S <s—t, [P0 flloo < WH]CHOC (2.9)
Indeed:

10 P fll < sup [(0aP/fig) = sup [(f, Pi(0ag))|

llglleo <1 Hg\looél

< Al s PR @ag)llo < oI

lglloo<1
Proposition 2.3. Let g € N, h >0, S € [T/n,T/2) and n : Ry — R, an increasing
function be fixed. We assume that E,,(h,q) (see (2.3)) and E} (h,q) (see (2.6)) hold for

P™ and Q™. We also suppose that P" satisfies Ry, (S) (see (2.7)) and Q™ satisfies R;,U(S)
(see (2.8)) and that (2.2) hold with ¢ = 0 for both of them. Then,

sup [P f = Qf flloo <

teT"T n

ool

Proof. Using a density argument we may assume that f € C(R¢). Moreover, by (2.5), it
is sufficient to prove that

”Q?}: Z+1Pt%+1,tmf”00 A Sn(q) ||f||00/n1+h7

form € {2,...,n}. Since t};, > 25 we have t}; > S ort;, —t,, > S. Suppose first that

tm — tg, 1 = S. Using (2.1) for Q", (2.3) and (2.7) for P",
1QF AR 1Py n flloo S CIAL P i flloo
S CIPE i fllaoe/n' " < CSTND f oo fnt .
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Suppose now that 7 > S. We take ¢.(x) = e~ %¢(c~x) with ¢ € C.(R?), ¢ > 0. Then,
for a fixed zy, we define ¢. ., (v) = ¢.(z — x¢). Since we have (2.2), Qt"Ak+1Pt” un fis
continuous. Then

‘Qt" 1Pt7h

k+1°

Jtn, f@o)| = hm (e, Qt" ;cl+1pt7';t;+l,t1;f>|-
Using (2.6), (2.8) for Q™ and then (2.1) for P™, we obtain
|(e,z0 Qt" Z+1Pt7';ib+l,t;;f>‘ = ?ﬂ*@ zos Z+1Ptr;§+1,tn hl
CHQH " Pe,o ll .1 | Py tn f||00/n1+h
< CS™"Dge gy 1| flloo /0"

k412

and since ||¢: 4, |1 = [|¢]l1 < C, the proof is completed. O
In concrete applications the following slightly more general variant of the above
proposition will be useful.

Proposition 2.4. Let g € N, h > 0, S € [T/n,T/2) and  : Ry — R, an increasing
function be fixed. We assume that E,,(h,q) (see (2.3)) and E} (h,q) (see (2.6)) hold for
P"™ and Q™. Moreover, we assume that there exists some kernels (Pt s)t.serr nit<s Which

satisfies R, ,(S) (see(2.7)) and (@Zs)t,seﬂm;tgs which satisfies R;n( ) (see (2.8)) and
that (2.2) hold with g = 0 for both of them. We also assume that for every t,s € wr , with
s—t>=05,

Q7 o f = QF o flloo + 1P f = Py flloo < CSTMD flloo/nl 1. (2.10)
Then,
sup [[P/'f = Q7' flloe < C'sup(luf] + RS D £l 0o /0

t€7rT "

Remark 2.5. Notice that P and @n are not supposed to satisfy the semigroup property
and are not directly related to u" and v"™.

Proof. The proof follows the same line as the one of the previous proposition. Suppose
first that ¢, — ¢} > S. Then, (2.1) implies

||Q?;; 1131577,2+1 tn, flloo < HQt" +1Pt;;+1,t;;fHoo + ”Qt” k+1(Pt7}i‘+l tn t” Lt ) oo
< Ak -s-1ptk+1 t;;f| +HAk+1(PtTiL+1,t:;L - t")fHoo
Since P verifies RM(S), we deduce from (2.3) that
1A% 1 Pl flloo < ClIPgy fllguoo/n" < CSTD]|f oo /n" .

Using (2.10), it follows

AL (PG o — P < / PR — Pl ) v (. dy)|

m k1t m kt1:tm k+12tm

A+1v

1 [ (Pl - PZQH,W,L)f(y)W(x, day)|
< (Wl + i DI P .
Ol + i DS~ | fll oo /1

tn t2+1 ?

Suppose now that t}} > S. We write
QAT PR flloo < [ @ AT, PR

k+1° k412

an Flloo + 1(QF — Q) AR P 4 flloo-
In order to bound ||Qt;f i HP{,% 4 fllc we use the same reasoning as in the proof of

the previous proposition. And the second term is bounded using (2.10). O
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2.3 Convergence of the density functions

In this section we will consider a Markov semigroup (F;):>o and we will give an
approximation result and a regularity criterion for it. The regularization property that
we assume for the approximation processes is stronger than the one considered in the
previous section and, instead of Proposition 2.3 we will use a general approximation
result based on an interpolation inequality, proved in [8]. We recall that we have fixed T" >
0, and for n € IN* we denote ¢} = kT /n. For k € IN*, we consider u}(z,dy) = u"(z,dy) =
Pr;,(z,dy), for all k € IN, the homogeneous sequence of finite transition measures which
satisfy (2.2). To this sequence of measures, we associate the discrete version (P/");cr,. .
of P such that for all t,s € 77.,, t < 5, P{’,f(z) = Ps—¢f(z). Moreover we introduce a
sequence of transition probability measures v}'(x,dy), k € IN*, and the corresponding
discrete semigroups Q" (z, dy) defined by Q}', = Id and Q?ﬁat?m = Q?th? v . We recall
that for all ¢ € 7y, then QY f = Qp,f. We assume that for f € C1(R%), we have
QF.f € CI(RY) forall t,s € mrpn,t < s, and it verifies (2.2):

sup Q75 fllg,c0 < Cllfllg,00-

t,8ETT n;t<s

For h > 0 and ¢q € IN, we assume that we have (2.3) and (2.6):

En(hya) (" = i) flloo < Cllfllg.o0/n* ™"

and,
Ey(h,q) g, (" =) )] < Clligllgall flloo/n' .

In concrete applications, it may be cumbersome to prove the regularization properties
of the underlying semigroups P™ and Q™. In order to treat this problem, we introduce
now (@?)teﬂrn, a modification of (Q})icr,, in the sense that for every measurable and
bounded function f : R* — R, we have

Vi, s € T, With S <s—t, Q7 f — Qpoflloe < CST"D|flloc/n" ™. (2.11)

We assume that (@?)tew . satisfies the following strong regularization property. We
fix g € N S,n > 0, and we assume that for every multi-index «a, 8 with |a| + |3] < ¢ and
f € C1(RY) one has

Ryy(S) Yt s€mrn,, withS <s—t, [0aQ;.95flcc < CS™"D||f]lco. (2.12)

Notice that if R, 24,,(S5) holds, then for all t € 77 ,, there exists p} € C¢(R¢ x R?) such
that Q, (x, dy) = p/*(x,y)dy. Moreover, if t > S, then for every |a| + |8| < ¢, we have

sup |0g 8ﬁpt (z,y)] < C§—nla+2d) (2.13)
(,y)ER4 X R4

Indeed, let f; : RY — C,z — e S Using the Fourier representation of the density
function, we have

Rlew) = [ G fe@ig

Now we notice that 07 f¢ (y) = fe(y)(—i)!?! T1/7, ¢5, and it follows that for all ,y, € RY,

[B]
02 08F2 (z, ) = / ([0 @] o) w)ic

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
Page 10/44


http://dx.doi.org/10.1214/16-EJP4079
http://www.imstat.org/ejp/

Approximation of Markov semigroups

18]
- /[ 1,1 il Hgﬁi)em’y)a?(@fc)(x)@
o i=1
] N eiCw) 9o n d
+/le\[l,udZ (Ecﬂ’)e 95 (Qy fo)(x)d¢

=I1+J

Since || f¢||o = 1, we use (2.12) and we obtain: |I| < C.S~"(el) < CS~(9). Moreover,
for any multi-index 8’, we have

J=( 1)\B|-|ﬁ"/ o 02(Qy 00 f) (w)dC
= (- i —57 . Y% B OB J¢)\L)AS -
rei-1ae [ ¢ T

We take 8’ = (2,...,2) and we obtain similarly |J| < CS~"(@+2d), We gather all the
terms together and we obtain (2.13). Finally, we recall that the regularization properties
Ryy(S) and R}, (S) hold when R, , (S) is satisfied.

Theorem 2.6. We recall thatT' > 0 and n € IN*. We have the following properties.

A. We fixqe N, h, S € [T/n,T/2) and nn : R+ — R4 an increasing function. We
assume that for every m € IN, m > n, there exists some modifications (@;n)te,mm
of (QY")texy,, such that (2.11) and (2.12) hold for these ¢, h,n and S. Moreover we
assume that E,,(h, q) (see (2.3)) and E7,(h, q) (see (2.6)) hold between (P™)terpm =
(P)terr,, and (Q}")tery.,, and that (2.2) hold for Q™. Then, we have

sup || Pof = Q7 flleo < CST|fl|oo /0" (2.14)

temst)

B. Moreover, we suppose that the modifications @ of () satisfy also ﬁa,n(S) (see (2.12))
for every g € N. Then, for every t > 0, Pi(x,dy) = pi(x,y)dy with (x,y) — pi(x,y)
belonging to C* (R4 x RY).

C. For every R > 0,¢ € (0,1) and every multi-index «, 8 with |a| + |8| = u, we also
have

sup sup |5§55pt(96, y) — 8;“65@?(;57@\ < C§MPucva) [ph(1=2) (2 15)
temz® " (2,y)€Br(x0,y0)

with a constant C which depends on R, x¢, yo,T and on ||+ |3| and p, . = (u+2d+
14+ 2[(1 —¢e)(u+d)/(2e)]).

Remark 2.7. The inequality (2.14) is essentially a consequence of Proposition 2.4.
However, we may not use directly this result, because we do not assume that the
semigroup (P;):>o has the regularization property (2.7) or even the less restrictive
hypothesis (2.2). It simply satisfies (2.1). This is a result of main interest since we have
to check the regularization properties for the approximation scheme Q" only (more
precisely for every Q™,m > n). Indeed, in concrete applications, it can be cumbersome
to study the regularization property for P. Using this result, it is not necessary anymore.
Consequently in this paper, we will only study the regularization properties of the
approximation Markov chain (1.1) and we will give sufficient conditions in order to
obtain those properties.

Remark 2.8. The estimate (2.15) is sub-optimal because of ¢ > (0. One may wonder if
optimal estimates (with n" instead of nh(l_a)) may be obtained - as it was the case in

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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the paper of Bally and Talay [6] concerning the Euler scheme. Notice that, in the above
paper, specific properties related to the dynamics of the diffusion process which gives
the semigoup are used, and in particular properties of the tangent flow. For example,
if X;(z) denotes the diffusion process starting from x then we have E[f'(X;(x))] =
OE[f (X (2))(0: X (2)) 7Y — E[f (Xi(x))0,(0:X¢(x))~1)]. Such properties are crucial in
the above paper - but are difficult to express in terms of general semigroups.

Proof. We prove A first. We fix n € IN*. Now we introduce the sequence of discrete
semigroups ((Q}""™)texr.,.)men+ defined in the following way: For all ¢ € 77, we have
Q7™ f(x) = QY™ f(x). Let m’ > m, then

! ’
1Qu e f = Q™ fllo = QT o F = Q™ fll

tnogn tnm
k" k+1 k' k41 mk>’m(k+1) “m/ k2 m! (k+1)

< NQE e f =PI o o
mk?’

mi ot (et 1) m(k+1)
’ !
+ ||Pt7:17;’7'1’ tnm,’ f - Q:::;’ tnm’ fHOO
m'k’> m’ (k+1) m/k’> m’ (k+1)
Since Q™™ and Q™™ verify respectively E,m(h,q) and E,,,(h,q) and both @™ and Qnm

satisfy (2.2), we use the Lindeberg decomposition (2.5) in order to obtain: HQZ{%H -
,m’ h h ; . Jm/
Q?Z,f?z+1f||oo< C| fllg.00/(n"1mM). In the same way we olbtaln g, Q?Zt,tlzﬂf_Q?Z%Hfﬂ <
Cllgl1.qllflloo/ (nFtmM). Now, since both Q"™ and Q™™ have modifications which satisfy
(2.11) and (2.12), we use the same reasoning as in the proof of Proposition 2.4 and
it follows that: V¢ € w%i’LT, QY™ f — Q™ flloo < CS™D||f|loo/(nm™"). The sequence
(@™ )terr., ) men~ is thus Cauchy and it converges toward (P;*)icr,.,, for smooth test
functions using Proposition 2.2. In particular, taking m = 1 and letting m’ tend to infinity

in the previous inequality we have

vt el QP f = PP flloo < CSTMD| flloo/n",

which is (2.14). Let us prove C. We are going to use a result from [8]. First, we introduce
some notations. For ¢ € IN, we introduce the distance d, defined by

dy(u,v) = sup {| [ fdp — [ fdv] : | fllgee < 1}-

Forgq, I € N, r > 1 and f € C/(R? x R?), we denote

Wl = > (JSQ+ el + ly)10af (2, )| dady) "

0<]al<g

Since we want to show how the constant depends from S in the right hand side of
(2.15), we will use a variant of Theorem 2.11 from [8].

Proposition 2.9. Let p,p € N, m € IN* and r > 1 be given and let r* be the conjugate
of r. We consider some measures p(dz,dy) and p,, (dr,dy) = gn(x,y)dzdy with g, €
CPH2m(R? x R?) and we assume that there exists K,,, K, , m» > 1, h € N*, such that

ds(pts pig,) < Kpu/n", Ngnllpr2mzmr < Kgpm,  ¥n€N. (2.16)

Then p(dx, dy) = g(x,y)dxdy where g belongs to the Sobolev space W»"(R?) and for all
¢ > (p+p+d/r*)/m, there exists a universal constant C > 1 such that

19 = gnllwergay < CChme pirdsr (Kgpmn 3¢ + K, n~hHh@rotd/r)/Cm)y (2 17)

with €, ¢, = 2hT4(1 — 278+u) =L,

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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Proof. For k,n € IN, we introduce
ng = min{n;n” > 2¢*™} and k, = min{k € N;n;, > n}

First, we notice that ny, 1 < n < ny,. Moreover, if we define Cy, = 2™ C; = 27", we
have

Clnh < QCknm < CQTL}L. (2.18)

Indeed n" > n}! _, which gives C5. In order to obtain Cy, we notice that ny, <
1 + 26kam/h Now, we fix n € IN and for k € IN*, we define

gk:()lfk<kn andgk:gnk — 9n; iftk>k,

and v(dz) = p(dx) — gn(z)dz, vi(dz) = gr(x)dz. Using Proposition 2.5 and Theorem 2.6
in [8], it follows that

lg = gullwer ey < Y 2"PPEY A 0) 43 7 272Gkl psom,2mp = T1 + T
k=1 k=1
First, we estimate T7. If k < k,, we have v, = 0 so that d;(v,v) = dp(v,0) =
dp(p, prg,) < Ku/n". On the other and, if k > k,, we have dy(v,vx) = dp(p, g, ) <
K,n" < K,27%"¢. Using (2.18) together with all ¢ > (p + p + d/r*)/m, it follows that

Ty <K, 28n®Hptd/r) g =h 4 () _ g=mCtptptd/r™y=1 ¢ o—kn(mC—p=p=d/r")

<2(1 — 27mC+P+:5+d/’r‘*)71C§p+13+d/'f’*)/(Cm)Cl—lK‘u/nh(lf(eriier/r*)/(Cm))'

Now, we estimate T,. Using (2.16) and (2.18) again, we have

o0
T2 < 2Kg,p,m Z 2_2mk < 2(1 - 2_2m')_10;1Kg’p)mn_2h/g7
k=kn

and since m > 1, the proof is completed. O

We come back to our framework. We fix R > 0, ¢ € w%?f. We consider a function

@R € C°(R? x RY) such that Iz, (z,y) < Pr(z,y) < 1B, (2,4, @and we denote

CEo,yo)
g?)R(‘%y) = @R(m,y)ﬁ?(x, y)'

We use the result above for the sequence g, := gf’R7 n € N and u(dz,dy) = @r(x,y) x
Py(z,dy)dz. In our specific case (2.11) and (2.14) give do(u, i1y, ) < CS™"@Dn~". Since
we have also (2.13), it follows that (2.16) hold with K, = ¢S4 and Kgpm =
C§—np+2m+2d) We deduce from Proposition 2.9 that ®x(z,y)P;(z, dy)dx = p(dx,dy) =
g(z,y)dxdy with g € WP (R?). Moreover, using Sobolev’s embedding theorem, for
¢>(p+d/r*)/mand u < p — d/r we have

19 = gnlluco0 < Cllg = gnllwr.rwa)

< OCh e pid)re (S—n(p+2m+2d)n—2h/( + S—n(q)n—h+h(p+d/7“*)/(ém))_

We take u = |a| + |8, r=d, p=u+1land m = [(1 —e)(u+d)/(2¢)] and put ¢ = 2/(1 —¢).
In this case ( > (p+ d/r*)/m + 2 and we obtain

g — gnHIQ\Hﬁl,oo
< C2h+u+d(S—n(u+2d+1+2[(1—8)('u+d)/(25)])n—h(l—a) + S—n(q)n—h(l—e)). 0
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3 Integration by parts using a splitting method

In this section, we aim to build some integration by part formulas in order to prove the
regularization properties. This kind of formulas is widely studied in Malliavin calculus
for the Gaussian framework. However, since we are interested in random variables
with form (1.1), where the random variables laws of Zy, k € IN* are arbitrary (and thus
not Gaussian) the standard Malliavin calculus is not adapted anymore. Therefore, we
whether develop a finite dimensional differential calculus which happens to be well
suited to our framework as soon as Zj involves a regular part.

Concretely, we consider a sequence of independent random variables Z; = (7, ,1, ey
ZN)y € RN, k € {1,...,n} and we denote Z = (Zi,...,Z,). The number n is fixed
throughout this section (so there is no asymptotic procedure going on even if n is large in
concrete applications since we are interested in estimating the error as n — o0). We aim
to build integration by parts formulas based on the random vectors Z. The basic required
assumption to obtain those formulas is the following: There exists z. = (zxk)ken-
taking its values in R" and ¢,,7, > 0 such that for every Borel set A C R" and every
ke{l,...,n}

Lz* (5*7T*) IP(Zk S A) Z 5*>\(A0Br* (Z*,k)) (3.1)

where )\ is the Lebesgue measure on R". We also define

My,(Z):=1Vv sup E[Z|"] (3.2)
ke{l,...,n}

and assume that M,(Z) < oo for every p > 1.

It is easy to check that (3.1) holds if and only if there exists some non negative
measures j, with total mass u;(RY) < 1 and a lower semi-continuous function ¢ > 0
such that P(Zy, € dz) = pi(dz)+¢@(z—24)dz. Notice that the random variables 71, ..., Z,
are not assumed to be identically distributed. However, the fact that r, > 0and e, >0
are the same for all k£ represents a mild substitute of this property. In order to construct
© we have to introduce the following function: For v > 0, set ¢, : RY — R defined by

2

v
0u(2) = 1);1<0 + exp (1 — m)lqukm- (3.3)

2| —v
Then ¢, € C,‘)’O(IRN ), 0 < ¢, < 1 and we have the following crucial property: For every
p,k € IN there exists a universal constant C , such that for every z € RY, ¢ € N and
i1,...,ig € {1,..., N}, we have

01 Cop

eol(2)l5 (Inpy) ()" < —20 (3.4)

20 - Ozl

with the convention In ¢, (z) = 0 for |z| > 2v. As an immediate consequence of (3.1), for
every non negative function f : RN — R

BUAZ) > e [ onpalz =2 f2)de

By a change of variable

1 Zx. k
E[f(—=Z)] > e. N/2 -2 dz. 3.5
H(G=2) > e [ 00 (Vi = Z0) )iz 3.5
We denote
My = Ex / ©r, j2(2)dz = €, / ©r, j2(2 — Za ke )dz
RN RN
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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and

¢n(z) = nN/zspm /2(\/7;'2)

and we notice that [ ¢,,(z)dz = m.e; '

We consider a sequence of independent random variables y, € {0,1}, Uz, Vi, € RY,
k e {1,...,n} with laws given by

Plxp = 1)=my, P(xr =0)=1—m,, (3.6)
= S _ Bk

P(U, € dz)= - On(z \/ﬁ)dz,

PV € d2) = —— (P(—=Z4 € d2) — eudn(z — 225)d2).

vn vn

Notice that (3.5) guarantees that P(V}, € dz) > 0. Then a direct computation shows that

1 —m.

1

Zr.. Now on we will work with this representation

P(xiUs + (1 = xx)Vi € dz) = P(

1
%
of the law of ﬁZk. So, we always take

This is the splitting procedure for

1
n

Remark 3.1. The above splitting procedure has already been widely used in the littera-
ture: In [31] and [25], it is used in order to prove convergence to equilibrium of Markov
processes. In [10], [11] and [35], it is used to study the Central Limit Theorem. Last but
not least, in [30], the above splitting method (with 1p,_ (.. ) instead of ¢, (z — z\/ﬁ" ) is
used in a framework which is similar to the one in this paper.

Zi = xeUk + (1 — x) Va-

In the following, we will denote x = (x1,-.-,Xn), U = (Uy,...,U,) and V =
(Vi,...,V,) and we will consider the class of random variables:

S={F = f(x,U,V) : f is measurable and u — f(x,u,v) € C;°(R™ x RY),Vx,v}. (3.8)

We will also denote S? the space of d-dimensional vectors with components that belong
to S. For a multi index o = (o, ..., qq) With o; = (kj,4;), k; € {1,...,n}, i; € {1,...,N},
we denote |a| = ¢ the length of o and

04

i1 iq
8uk1 . ~8ukq

agf(Xau7U) = f(XyU,’U).

We construct now a differential calculus based on the laws of the random variables
Ui, k=1,...,n which mimics the Malliavin calculus, following the ideas from [5], [3]
and [4]. In order to be self contained, we shortly present the results that we need. For
F = f(x,U,V) € S we define the Malliavin derivatives

1 OF 1 of

DpnF=xkt—=a==xr—=2—0UV k=1,... o =1,...,N. 3.9
(ki) Xk\/ﬁaU]’é Xk\/ﬁau}c(X? ) )7 ) )1y s ’ ( )

We denote by (-, -) the usual scalar product on R" x R". The Malliavin covariance matrix

for a multi dimensional functional F = (F,..., F?) is defined as
o n N
of = (DF',DF') => "> "D F' x D F?,  ij=1,....d (3.10)
k=1r=1
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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The higher order derivatives are defined by iterating D:
D.,F =Dy, ---D,, F.

Now we define the Ornstein Uhlenbeck operator L : S — S. We denote

Dy =Ingn(Us - Z5) €8
and we notice that
1 Zw,k Zx,k
D AT —x10,,i In o, 6L1 n(Up — —=)|w.=U.
(ki) L \/ﬁXk i 0o (U f) ka n ¢, (ug \/ﬁ)| K=Uy,

= Xkazi 111(,0“/2(2”2:\/5([])“7 \*/;)

Finally, we define

n N n N
—LF = Z ZD(k,i)D(kﬂ‘)F + Z ZD(k,z‘)F X Dg,i)i-

k=11i=1 k=11i=1

Remark 3.2. The basic random variables in our calculus are Z;, k = 1,...,n so we
precise the way in which the differential operators act on them. Since Z;, = \/nxi Uy +
vn(1 — xx) Vi, it follows that

D2 = XkOmkbij, (3.11)

LZ; = —Xkazilnwr*/Q(z)L:\/ﬁ(Uk_z%. (3.12)

where §; ; = 1 ifi = j and 0 if i # j, stands for the Kroenecker symbol.

In our framework, the duality formula in Malliavin calculus reads as follows: For each
F.GeS
E[FLG]) = E[{(DF,DG)] = E[GLF]. (3.13)

This follows immediately using the independence structure and standard integration by
parts on RY: Indeed, if f,g € C}(RY) and k € {1,...,n}, then

N
> E[dy; f(Ur)du; 9(Ur)]
i=1

- / 0,4 19,4 (0)n (0 = )

8uk¢7l( ) *,k
W)%( - \/ﬁ

= ffr;* Z | T 90 + 0,4 9(w) )du

N
= —]E[f(Uk);Bigg(Uk) + 0,1 9(Uk)0,s In 6 (Uy, — z\;%) .

It follows that

N
E[D(k,Z)F X D(kﬂ') G]

M=

b
Il

1i=1

>

=11

Mz

3\H
I
N
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n N
= —E[f(.U.V) kz:: ; 90U V) + =0, g(x, U, V) —

Zx,k

vn

= “E[f0¢UV) DY Dt DG + Dty GDis ) T |
k=11i=1

S

= E[FLG),

which is exactly (3.13). We have the following standard chain rule: For ¢ € C'(R%) and
Fedsd

d
=Y 0;¢(F)DF’. (3.14)

Moreover, one may prove, using (3.14) and the duality relation (or direct computation),
that

d
F)=>"0;¢(F)LF’ + Z 8;0;6(F) (DF', DF7). (3.15)
i 7,7=1
In particular for F,G € S,
L(FG) = FLG + GLF +2(DF,DG). (3.16)

We are now able to give the Malliavin integration by parts formula:

Theorem 3.3. Let F € S% and G € S be such that E[(det 0r)~P] < oo for every p > 1.
We denote vp = cr;l. Then for every ¢ € C>°(RY) and everyi =1,...,d

E[0;6(F)G]) = E[¢(F)H;(F, G)] (3.17)

with
— H(F,G) = GypLF + (D(Gyr), DF) (3.18)
and
d ..
H(F.G) = " Gy LFY + (D(Gi), DFY).
Jj=1

Moreover, for every multi index o = (a1,...,an,) € {1,...,d}™

E[0.6(F)G] = E[¢(F)Hu(F, G)] (3.19)
with H,(F,G) defined by the recurrence relation H, ... o, )(F,G) = Ha,,, (F,
H(Dzl ..... am,l)(FaG))-

Proof. Using the chain rule D¢(F') = V¢(F)DF we have

(Do(F), DF) = V(F) (DF, DF) = V$(F)or

It follows that V¢(F) = vp (D¢(F), DF) . Then, using (3.16) and the duality formula
(3.13),

1
E[GV(F)] = E[Gyr (Do(F), DF)] = SE[Gyr(L(¢(F)F) = 6(F)LE — FLY(F))]
1
= SERE)FL(GYr) = GyrLF — L(GyrF)))-
We use once again (3.16) in order to obtain H (F,G) in (3.18). O
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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We give now estimates of the weights H, (F, G) which appear in the above integration
by parts formulas. We will work with the norms:

F2,= S IDaFP,  |F2=|FP+|F[, (3.20)
1<]el<q
and
1Fllgp = |||F|1,q|\p:IE[|F|’177q]1/p (3.21)
IFlap = NFlp+[[IFl1ql,-

Proposition 3.4. For each m, q € N, there exists a universal constant C' > 1 (depending
on d,m,q only) such that for every multi index a with |a| < ¢ and every F' € S% and
G € S on has

|Ha(F,G)|sn < C(LV (detop) ™)1 (14 |FRGE™ 4+ [LFR )| Glintg: (3:22)

The proof is long but straightforward so we skip it. The reader may find the detailed
proof in [5] and in [3], Theorem 3.4.
We end this section with an estimate of |LZ]} ||, :

Lemma 3.5. We have the following properties.

A. Foreveryk=1,....,nandi=1,..., N, we have
E[LZ;] = 0. (3.23)
B. Forevery g € IN and p > 2 there exists a constant C' depending on ¢, p only

Cmi/P

*

1L Zillgp < (147 (3.24)
Proof. A. Using the duality relation we have E[1 x LZ}] = E[(D1,DZ})] = 0. In order to
prove B we recall (see (3.12)) that

i Zx .k
LZk = 7Xkai(ln<pT*/2)(\/ﬁ(Uk — \/ﬁ))
Let Ay 4 be the set of the multi-index o = (a1, ..., aq) such that a; = (k,4;). Notice that
for a multi-index « of length ¢, such that o ¢ Ay 4, we have DaLZ,i = 0. Suppose now
that o € Ay, and let @ = (i1, ..., 44, ). It follows

. Zx
DoLZ} = —x10a(n e, 1) (va(Uy — \/5))-

Since the function ¢, /» is constant on B,._,5(0) and on R¢\ B, (0), using (3.4), we
obtain

IDarztlg = D [ 0o nie, ) (Vi — 2 P (Vi — 2
p My RN * \/ﬁ * \/ﬁ
exllxkllh
—sn | 010 pr.12)(0) 1. 2 )
* 7 /25 |u| <y
Cyt1,pMx
rf(ﬁl)
and then
) . Cmi/p
I1LZ;]lgp < C'sup sup || Do LZi < (L+7.9). O
Sq €Nk *
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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3.1 Localization

We have seen in Proposition 3.4 that we can bound the Sobolev norms of the weight
which appear in the integration by part formula (3.19). In order to obtain the regular-
ization properties, we will have to bound the moments of those Sobolev norms or more
particularly, the moments of the terms which appear in the right hand side of (3.22).
However, in many cases it is cumbersome to estimate E[(det o) 7], p € N. The method
adopted in this paper comes down to localize the calculus when det o does not belong
to a neighborhood of zero. Then, we will prove a similar property as (2.11) and we will
obtain the convergence in total variation distance. More specifically, when F = X",
we will have to localize the random variables Z; and y; which appear in (1.1) with the
decomposition (3.7). We introduce a suited framework to treat this problem.

In the following, we will not work under IP, but under a localized probability measure
which we define now. We fix S > 0 such that S < T and we consider the set

[Sn/T]

Sl Z Xk = 5" ) (3.25)

Using Hoeffding’s inequality and the fact that E[xx] = m., it can be checked that
P(AS) < exp(—m?2[Sn/T|/2). (3.26)

We consider also the localization function ¢,,1/4 Y defined in (3.3), and we construct the
random variable

O =05 =1Lng x [ Gursaja(Ze). (3.27)
k=1
Since Z;. has finite moments of any order, the following inequality can be shown: For
every [ € IN there exists C' such that

P(Og, =0) < P(AS,) + ZIP(|Zk| > n'/*) < exp(—m2|Sn/T]/2) + 1\44“;7;)(2) (3.28)
k=1

We define the probability measure

1

Corollary 3.6. Let F € S and G € S be such that Eg|[(det o) P] < oo for every p > 1
We denote vp = 0;1. Then, for every ¢ € C>*(R?) and everyi=1,...,d

Eo[0;6(F)G] = Eol¢(F)H? (F, G)] (3.30)

with
—H®(F,G) = GyrLF + (D(Gvr), DF) + Gyr (DIn©, DF)
and
d ..
HP(F,G) ==Y Gy’ LF’ + (D(G7y), DF') + Gy (DIn©,DF).
Jj=1
And for every multi index o = (a1,...,am) € {1,...,d}™,

Eo [0a¢(F)G] = Be[¢(F)Hg (F,G)), (3.31)

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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with HE(F,G) defined by the recurrence relation Hg, . . (F,G) = Hg (F,
H@

(o, am_1) (F5G)), and the convention In(©) = 0 for © = 0. Moreover there exists
an universal constant C' such that for every multi index a with |a| = ¢

Eol|Hg (F,G)[h] < CCye(F,G), (3.32)
with
Cyo(F,G) =Ee[(1V (det o)~ 1)2Palatmt1)L/2
x (14 Bo|F{Pe T2V L B | LF?, ]V ) Ee |G, V1. (3.33)
Proof. Using (3.18) with G replaced by GO we obtain E[9;¢(F)GO] = E[¢(F)H;] with
H = -0GyrLF — (D(OGyr), DF) = OH(F,G) — Gyr (DO, DF) .
It follows that

Eol0.0(F)G] = g Bl00(F)GO] = prmBIo(F)(OH(F.C) - sz (D6, DF¥)

d
= Fel¢(F)(Hi(F,G)—G> v (DIn®, DF7)].

So (3.30) is proved and (3.31) follows by recurrence. Moreover
|GZW (DIn®, DF7) 7]

< CE@[IDln( Y)Y B [lvr| "] Ee | DF| ] Ee [|G|*7)M1.
Notice that by (3.4) we have
Eo[|DInO*7)Y/4 < C/nl/4,

Then (3.32) follows from (3.22). O

4 Convergence results for a class of Markov chain

Now we have introduced the integration by parts formulas which are adapted to our
study, we are in a position to prove the regularization properties. In order to do it, we
have to bound the miscellaneous terms which appear in the right hand side of (3.33).
This section is devoted to the estimation of those terms. We will treat separately the
estimation of the norm of the inverse of the covariance matrix from the other terms.
Indeed, this study requires localization techniques which are not necessary in order
to bound the Sobolev norms of the others terms. Then we will give the regularization
properties and the total variation convergence results that follow from those estimates.

Throughout this section, n € IN* will still be fixed and will be the number of time
step between 0 and 7" and also the number of increments that we consider in our
abstract Malliavin calculus. We consider two sequences of independent random variables
Ziy1 € RN ki € R, k € N and we assume that Zj, k € IN*, are centered and verify (3.1)
and (3.2).

We suppose that, there exists C' > 1 such that sup, - 0p < C/n and we construct
the R valued Markov chain (X{'):er,,, in the following way:

Zit1

th‘ :w(ﬂkvX%vW7

k+1

57), kel (4.1)

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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where
P eC®R xR x RN x Ry;R?Y) and (k,z,0,0) = . (4.2)

We introduce the norm

r—|af

[9]]1,r,00 = 1V Z > 11080207 ¢l oo 4.3)

lo|=0[B[+]vI|=1

Remark 4.1. Notice that the random variables kj, can be useful in concrete applications.
Indeed, in the Ninomiya Victoir scheme, at each time step k, one throws a coin kj, €
{1, -1} and uses different forms for the function ¢ according to the fact that ry, is equal
tol orto—1.

Since the function ¢ only needs to be measurable with respect to x and that all
our estimates will be done in terms of ||¢||1,,,., then without loss of generality, we can
simplify the notations and denote

Yp(z, 2, t) = V(R x, 2,1).

Then, we slightly modify the definition (4.3) and instead, in the sequel, we will consider
the norm

r—|af

= sup 1Vkll1,r00 =1V sup Z Z 10202 0] 11| sos (4.4)

kelN
N al=0 |8l+]y|=1

with (¥ )ren a sequence of functions that belong to C"(R? x RY x R, ;R?). It is worth
noticing that all our results remain true if we replace the supremum over k£ € IN by the
supremum over k € IN with ¢t} <T'. However, for the sake of clarity, we will work with
(4.4). Finally for r € IN*, we denote

R () = (

)exp([11]13 5.00)- (4.5)

We aim to give sufficient conditions under which the above Markov chain has the regu-
larization property (2.12). In order to do it, we consider the following new representation
of X™. Let us introduce some notations. We denote

Zy,

Hy = 25 = Ui + (1 — xi)Va.
k o XeUk + (1 — xx)Vie

Using a Taylor expansion of order one, we write

Xp = Xp +Zazl¢k (X7, 0,0)Hf oy + 671y / Ot (X7, Hi1, AOf 41 )dA
=1
+ Z Hj, H],, / N0,k (X, AHp 41, 0)d.
1,j=1
We denote

1
aj, = 82,41 (X(,0,0), by’ :/ (1= A)0:, 02,9k (Xfh, \Hg 11, 0)dA, by
0

1
:/ Detn(X s, Hioy 1, AOF 1 )N
i ,

and then, we write

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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N m—1 N m—1 m—1
Xpho=a+> > apHi, + Z S OWTHL G HL L+ Y bebi. (4.6)
i=1 k=0 i,j=1 k=0 k=0

Moreover we denote by X" (x) the Markov chain which starts from z (i.e. XJ(z) = )
and we denote by 0% X™ the derivative with respect to the starting point . We will use
the results from the previous section for X”. In order to do it we have to estimate the
Sobolev norms of X":

Theorem 4.2. For every q,q' € IN with q > ¢/, and p > 2 there exists | € IN*, C' > 1 which
depend on ry, €., My, q,p and the moments of Z, but not on n,such that

sup sup ||8§Xn( )”q B Oﬁq+2(¢)a (4.7)
ten] , 0<]al<qg—q’
sup [|LX{[|q,p < Cﬁq+4(¢)la (4.8)
tETK'Tn

where R,.(¢) is defined in (4.5) and is given by
£ () = (L4 [¥l1,r.00) exp(([¥]17 5,00 )-

The proof is long and technical so we postpone it to Section 6.

4.1 The Malliavin covariance matrix
We turn now to the covariance matrix. We will work under the probability PPg
deﬁned in (3.29). We recall that 7" > 0 and n € IN are given and we have denoted
{LnS 7] ZL"S/ e > %= }. The localization random variable O, is defined in
(3 27) and we have proved in (3.28) that, for every [ € N,

P(Os., = 0) < exp(—m?|nS/T|/2) + ]‘440;7[1)(2)

We also have

o [nS/T] N |nS/T |m. 2l < 1/4 .
(Osn #01C 1 3 e > MG A (AL <0/ = L)
Using the computational rules for k € {0,...,m — 1} and m < n, we obtain
m—1
Dier1.Xtn =Tei+ Y JiDges, i Xk (4.9)
I=k+1
with
1 N L , .
Lei = TRk (ah + Y HL b7+ > HL HE ™+ 67,,8),  (4.10)
Jj=1 J,q=1
- 1 1
.74 _ _ n
ey = %X}g+1 ; A1 A)@zi&zjazqwk(Xtﬁ,/\H;Hl,o)d)\
1
& = / 8Zi8t¢k(Xt’%,Hk+1,)\5gﬂ)d)\ (4.11)
0

and the d x d dimensional matrices .J;, defined by

N N
T = It YT+ Y I Ga)
j=1 Jq=1
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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with

1
= o / D, 01 (1 (X, Hir, ATy 1)) rdN

I0T(G) = H4100,0:, (0(XE, 0,0)),

lew(ﬁ ) l+1 l+1/ awpazjazq<¢l(Xt" )‘Hl+1a )) dA.

We first aim to express D, ;) X{" using the variance of constants method. We
consider the tangent flow Y;* = V,X*(z), t € mr,,, which is the d x d dimensional matrix
solution of

m—1
Vi =Ty v
=0

where [ is the identity matrix. The explicit solution of the above equation is given

by Y = T[pZ5 (I + Ji). If each of the matrices I + Ji, k = 1,...,m, is invertible
then, Y;% is also invertible. On the set {O » # 0}, we have |Hy| = |n 2z < 1/4
so that ||Jk||OO 1= sup; j<q |7yl < 3|[¥]|1,3,00n~ /4. It follows that, among others, if

|%]|1,3.00m~/* < 1/6, then the lower eigenvalue of I + J is larger then 1/2, so we have
the invertibility property. We denote by (Y;"):cr,.,, the inverse of (Y;");cx, , and it is easy
to check that Y solves the equation:

m—1
vn U —1
Vi =I=Y Ya(+J) "I
1=0
The following representation of the Malliavin derivative, known as the “variance of
constants method”, is given by
YVt € 7TT7n,t > tz+1 D(k—&-l,i)X? = KnYZL+1[k’,L‘, (412)

and is zero if t < ¢}, ;. We will use the following estimates.

Lemma 4.3. Let p > 2. There exists a constant C' > 1, which depends on p and T, such
that the following holds. Suppose thatn andt € 77%717; are sufficiently large in order to
have

3|1Y]1,3,00  Ms(Z 1
Hnu}f + Sn( )+exp( m2nt/(2T)) < <3 (4.13)
Then,
Ee, [ sup [Y2|P] < 2exp (C(Map(2)7 + My(Z)?)(1 ) (4.14)
SETFTW
and
Ee, [ sup [Y|[7] < 2exp (C(M2p(2)*P + Mu(Z)?)(1 + 19017 5.00)) (4.15)
SETT .
with

Y]] := sup [(Y;")i,5]-
1/7.7\
Proof. Step 1. We notice that on the set {0, # 0} we have H; = H; := Hily 7, 1<n1/4y-
Consequently J; = J; := 1§ 2,1 |<n1/4y and Y™ =Y" where (7?)%,71" is the solution of
the equation

EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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Moreover, we have

Ee,.[ sup [|[Y2]?] < E[ sup ||Y.|I”] < CE[ sup [Y, 7],

SETT n E[®t7n] SETT n SETT n

the last inequality is a consequence of (3.28). Indeed

E@mJ2I—P@mfﬂngl_mm_m%U@T»_ﬂﬁw)

The last inequality is true under the hypothesis (4.13). So, our task is now to estimate
E[SUPsew%n ||Y9 ||p]
Step 2. Let

]:l :U(Xi,Uia‘/;7i:17"'al)'

Since, from (4.13), the lower eigenvalue of (I+.J;) is larger than 1/2, then ||(I+J;) || <
It follows that H?Z (I+J)7 1T < 2|\Ytn |.7;]| and since Ytn is F; measurable, we obta1n

IEY 4 (1 +T0) 0 | Fll < 201V 3[BTl | 7).

Now, we notice that E[|[J; || | Fi] < C[[¢[|1,2,00/n and

112,00 Bl Z] 1 141 241 1mn1/ay | F]

C

TEW
C C coM3(Z

< Sl oo 2 ) « D12 M(Z)

B[l (D) F] <

Moreover, using the Holder inequality, we obtain

My(Z)!

E[l7;" (o)l | Fll < C

n
It follows that E[||.J;|| | F1] < CMy(2)||%]/1,3,00/n SO, finally, we obtain
IEY 5 (1 +T0) 70 | F)l < OMo(Z) (L + [[4]l1,3,00) [V iy |/ (4.16)

Step 3. We are now ready to start our proof. We write

(Vi ) =6, Z 07 (4.17)

with
07 = (Vi (I +T0) " 7)™
We denote
O=E6 | R, 6=6-0

and we write

th = M, +A4,  with
m—1 m—1
~ . =~
My = =2 0, AJ=6,-) 07
=0 =0
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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By (4.16) we have ||n§l|| S CMy(Z)(1 + Hz/;||1,37oo)\|72n || and using the triangle inequality,

we deduce that

1 m—
sup ||Ag|| K14+ CMy(Z2)(1 3,00) = 7|
W%H kl 4(Z)( ) ; i
So that,
1 m—
[ sup [ARIPTY? < 14+ CMa(Z)(1+ [|[9]]1,5,00) - Z 1V -
tr<tn, 1=0

We recall that ||6;]| < 2||J,|| HYtn || and it follows that

16l < (16211 + 16:]] < C(1Zis1|” + Ma(Z)) (1 + |[9]l1,3,00) 1V | /02,
and then,
16112 < C(Map(2)*/7 + Ma(2)2) (1 + 6113 5 0V 15 12/

Moreover, (M,,)men+ is a martingale so, using Burkholder’s inequality (see (6.2)), we

have
m—1
E[ sup || M|[P]? < (> |16il|2)! 2.
n<t1L l O

We conclude that

m—1

Z 1% 115)*2.

E[ sup [V [7]'/7 < 1+ O(May(2)V7 + Ma(2))(1

tEn,
Now, we are going to use the Gronwall’s lemma. We put Q; = ”?Z" 2 5o that,
”?Z" 12 = |Qillp/2- Tt follows that
m—1
2
E[supQZ/ (LS 1+C(M2p(z)1/p+M4(Z))(1+ Hu)”i&w Z HQal/Q 7

k<m

which gives,

1
I 5uka||p/2 1+ C(Mop(2)2/7 + Mu(2)?)(1 + ||77/1||i3,oo)ﬁ Z Q]2
!

m—1
> IIsup Qll2-
=0 k<

S|

<1+ C(Map(Z)*7 + Mu(Z)*) (1 + 19]13 5,00)

Then, by Gronwall’s lemma,

||bukaHp/2 oxp (C(Mz2p(2)*7 + My(Z2)) (1 + |97 5.00)) -

k<m

The estimate of Ee, , [supyc,.,. . [|YJ"[|P] is similar but simpler, so we leave it out. O

We have the following estimate for the covariance matrix of X :
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Proposition 4.4. Suppose that there exists A\, > 0 such that

N

inf inf inf 9,.(k,1,0,0),6)% > \, 4.18
Sellleen]Rd |é|n:1i:1< e, ):€) ( )

Assume also thatn andt € w%’fz are sufficiently large such that (4.13) holds and that

A2 8(N3 + N%2+1)
= )\*
Let oxy be the Malliavin covariance matrix of X|' defined in (3.10) fort € wr,. There

exists a constant C' > 1, which depends on p, T and the moment of Z up to order 8p,
such that
exp( )

2
E@tm[(det O‘th>_p]1/p < CW (4.20)

(4.19)

Proof. Lett ¢ ﬂ'Tn and m € IN* such that ¢}, = ¢. By (4.12), oxp» = Y}" a(Yy")*, with
(Y;*)* the transpose matrix of ¥;* and ¢ = Zkzl(Y;ZIk,l) (}szk,l) . It follows that
det oxp = (det Y;")? det & andt

Ee,, [(detox;) "] < Ee, , [(det Y;")~**]"/*Ee, , [(det5)~*]"/2.

Since (detY;")~! = detY,", we use (4.15) and we obtain Ee,  [(detY;") *]1/2 <
exp(C(Msy(Z)"/@P) + My(Z)?)(1 + |93 3,00)). We estimate now the lower eigenvalue of
o given by

m N
A= i jlzz<ytnlk 1) (21;1,@,1,1-)*5,@
k=1 1i1=1
m N
= inf 303 (Uil (F4)°€ (7€) (4.21)
k=11:1=1

Recall that, I} ; is given in (4.10):

N
1 . o . o
Iy = ﬁxkﬁ-l(ak + ZHichbZ] Z H HY o7+ 674406
Jj=1 Jq 1
Then, for n € RY and k € {0,..., M — 1} we have
N N LN ,
. 2 i
S ATnilki) ) =Y (Teim)® > o > Xkt (ap,m)” —2(N* 4+ N? +1)
i=1 i=1 i=1

xcsup{ | (HL 07 n) 2| (L HE o) P 0 adks )l
7,49

Since we are on the set {©,, # 0}, we have sup,c(, ., [Hx| < n™'/%. Moreover,
supi,]7q{|b”| |c J’q| |ck|} l4]]1,3,00, for all k € {0,...,n — 1}, so that
1
SUP{ | < k+1b;cjv77> |, | <Hk+1HZ+1 i q’77> k |<6k+1ck’n>|} < nl/4 [l
1,5,4
We recall that we have the hypothesis (4.18)
2 2
Z a1 Z( A(X,0,00,m)" = Ayl
=1 =1
EJP 21 (2016), paper 12. http://www.imstat.org/ejp/
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Using (4.19), we have \,/2 — 2(N3 + N2 + 1)H1/J||%3700/n1/2 > \./4, and we obtain

N 3 2
Xerr A (N"HN"41)

Z; Ikl[kl >> n (7_ n1/2 )l ‘2 Xk +1 )‘*|77|2

i=

We come back to (4.21) and we take n = (f/;&)*g. Since on the set {©,,, # 0} and
|nt/T| = nt/T, we have L Zzt/lT Xk = 3m., it follows that

nt/T nt/T
N o> 2 inf Y2)EE|? > f(YvR)*€|?
4n‘é‘anxk|| el > 4n;xklgl I¥g)l
Aemant /T At
> X nf inf Y" 2y su Y2
8n seﬂ'Tn,s<t|5| 1H( )SH 8T (sew%,,f);sgtH ”)

Since we have (4.13), (4.14) follows and we conclude that

~ &n
Eo. [N PP < Ee yn|2p|t/p
0un A7 N (/T ot,n[ssg 1Y (177]

&P (C(Mup(2)7 + Mu(Z)*) (1 + (|93 5,00)) T

At

X

4.2 The regularization property

We still fix T > 0 and n € IN* and we consider the Markov chain (X{");cx,.,,, defined

in (4.1). We also recall that O, is defined in (3.27) and we introduce ( ”’@)teﬂn" such
that,

Vi€ mrp, Q' f(w) i=Be,, [f(X]'(2))] = mE[@t,nf(X?(w))}- (4.22)

Notice that ( ?’@)teﬂT%, is not a semigroup, but this is not necessary. We will not be
able to prove the regularization property for Q™ but for @™® and every ¢t < T..

Proposition 4.5. A. LetT > 0 andn € IN*. We assume thatn andt € w%rﬁ are
sufficiently large in order to have (4.13):

+ M) p(mnt 1) <

/4

and (4.19). Moreover we assume that (4.18) holds true. Then for every ¢ € IN and
multi index «, B with |a| + |3] < ¢, there exists | € N* and C > 1 which depend on
my, T« and the moments of Z such that

" (1)
19207995 oo < C T I o (4.23)

with &,(¢) defined in (4.5). In particular, Q7"° (z,dy) = p{"®(z,y)dy and (z,y) —
p©(z,y) belongs to C*°(R% x R%).

B. There exists C' > 1, such that for everyl € N and t € w%ﬁn, we have
n n M l 1 ( )
1Q7'f = QF°flloe < Alexp(=mint/(2T)) + — ) | . (4.24)

Remark 4.6. (4.23) means that the strong regularization property Rm (see (2.12)),
with n(q) = q(¢ + 1), holds for Q"™-°.
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Proof. We fixt € ﬂ%fb. Let us prove A.

0aQ1 0 f(x) = Y Be, [0 f(X](x))Py(X])], (4.25)

[BI<]vI<q

where P, (X}') is a universal polynomial of 02X*(z),0 < |p| < ¢ — |y| + 1. Using the
integration by parts formula (3.30) and the estimate (3.32) (together with E[@m] >1/2
using (4.13)) we obtain

Ee, ., [0 (X" (2)) Py (X[ (2)]] = [Ee, , [f (X]" (@) HY " (X7 (2), P, (X7 (2))]|  (4.26)

< fllooBey,, [|HS ™ (X7 (), Py (X](2))]]
< OHf”oo X A1 X AQ X A3

with
A, — 1\/IE@,W[((detO’X?(x))fl)Qq(qH)]l/z
n qd n
Ay = 1+ E[XP ()[4 BLX] ()32

As

E[|Py (X7 (@) [}, ).
Using the results from Theorem 4.2, we obtain
Ay x Az < CReps(¥).
We use now (4.20) and it follows
A; =1V Eg,, [(det aX;L(x))_%(q“)}l/z <1lv C()\*t)_‘I(‘IH) exp(Cqlq + 1)||1p||§73)00).

Now, we gather all the terms together,

001 0050 < R )

B. We have

Q1 1@) - QrOS@ < 1@ - g+ F] BV X7 @)(1 - 01
< 2l gl <2l e s

By (3.28) we have, for every | € IN, P(0,,,, = 0) < exp(—m?Znt/(2T)) + My11)(Z)n~" and
we conclude using (4.13) in order to obtain 1 — P(©,,, =0) > 1/2. O

We give now an alternative way to regularize the semigroup Q™ (by convolution). We
consider a d dimensional standard normal random variable G which is independent from
Zy,k € IN*, and for § > 0, we introduce (Xt"ﬁ)t@mn as follows

1
XM () = G+ X[ (x). (4.27)

We denote by p?(z,y) the density of the law of X;"?(z) and for ¢ € 77, we define

QP f(x) = B[f(5G + X7 (@) (4.28)

Corollary 4.7. Under the hypothesis of the previous proposition we have:
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A. For every multi index a, § with |a| + |5| < ¢, and every g € IN*, there exists | € IN*,
C > 1, which depend on q, T and the moments of Z such that for all I’ € IN and
te w%ﬁ sufficiently large in order to have (4.13) and (4.19), the following estimate
holds:

10aQ1 95 f|

ﬁq-&-S(w)
(M t)q(q+1)

M 7 1/2
98,0 (exp(-mnt/(47)) + ST gy

(4.29)

<o

with &,.(¢) defined in (4.23).

B. There exists | € N*, C > 1, such that for every !’ ¢ N and t € 7.,

l
102a) Q1" )l < A + atenplmine/ (21)) + L2
(4.30)

Proof. We fixt € w%’z. Let us prove A. As in (4.25), we write

0.Q1"0f(x) = Y El@.f)(n~"G + X['(2))Py (X] (@),

[BI<|vI<q
where P, (X/) is a universal polynomial of 92X} (z),0 < |p| < g — |7| + 1. We decompose
E[(0, f)(n™°G + X[ () Py (X' ()] = I + J
with

I = E[01.]Ee,,[0,f(n"G + X{'(x))Py (X} ()],
= E[0,/)(n"C + X['(2))Py (X} (2))(1 = ©.n)].

The reasoning from the previous proof shows that

I<C ﬁq-&-S( )

And since G follows the standard normal law and is independent from X" and 6, ,, we
have

T = B[P (X7 @)1 = €0n) [ (0N~ + Xp (@) 2m) e ).
Moreover, one has
(Oy 1) (0™ y + X7 (@) = n0O (F(n ™0y + X7 (2))),
so that, using standard integration by parts, we have
7 = B[P (X )1 = €1, [ 10~y + X7 (@), () 2m) 2 ),

where H, is the Hermite polynomial corresponding to the multi-index v. Finally we
obtain

7] < O Ry 3 ()| fll oo B[1 — O 0]/
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M4(l’+1)(Z)1/2

< Cnlﬂeﬁq-&-S(z/))lHf||00(eXp(_mznt/(4T)) + nt'/2

the last inequality being a consequence of (3.28).
Now we prove B. Let I’ € IN*. Using (3.28) and (4.23), there exists C, [/ > 1 such that
we have

Q1 f(w) = Q1 f ()] < E[Oyn][Eo, , [f(X]'(2) = f(XP (@) + 0~ G| + 2| f | E[L — O]

d 1
w0 [ o (X @) + 2~ GIG A+ 20— B0
= Jo

On 0B+ aenpmint 1) + S

N

4.3 Approximation result

In this section we give the approximation result for a Markov semigroup (#;):>o.
We recall that 7' > 0 and n € IN are fixed. We denote uj(x,dy) = Pr/,(x,dy) for
all k € IN*. We consider now an approximation scheme based on the Markov chain
introduced in the previous section (see (4.1). Therefore, we consider two sequences of
independent random variables Z;,; € RY, k., € R, k € IN and we take (07 )ken+ such
that supyen- 0 < C/n for a constant C' > 1. We assume that 74, ..., Z,, verifies (3.1) and
have finite moments of any order: For every p > 1,

My(Z)=1V 21<1p E[|Z|?] < oo. (4.31)

Moreover, we take ¢ € C®(R x R? x RY x Ry;R%) such that ¥ (x,z,0,0) = =

and we construct XZ:LH(;E) = zb(/ﬁk,X[%,(m),ZkH/\/ﬁ, Op1) with X¢'(z) = 2. We de-

note v}, (v, dy) = ]P(Xﬁlz+1 € dy | Xin = x) and we construct the discrete semigroup

i, = Qizviy, on the time grid 77 ,,. We recall that the notation l¥]11,r,00 is introduced
in (4.3) and we assume that, for every r € IN,

110]]1,r,00 < 0. (4.32)

We also assume that there exists A, > 0 such that

N

inf inf inf 9,.(k,,0,0),6)% > \,. 4.33
Jnf inf, ‘g‘n:li:l< Ak, 2,0,0),€) (4.33)

Now we are able to prove our main result.

Theorem 4.8. We recall that T > 0. We fixq € IN, h > 0 and S € (0,7/2). For a given
n € IN*, we consider the Markov semigroup (P;);>0, and the approximation Markov chain
(QF)terr.,., defined above. Moreover, we assume that there exists no € IN* such that
T/no < S and, (4.13) and (4.19) hold with n = ng and t = S. Then, for all n > ng, we
have the following properties.

A. We assume that (4.31), (4.32) and (4.33) hold. Moreover we assume that E,,(h, q)
(see (2.3)) and E}, (h,q) (see (2.6)) hold between (P")icr;.,. = (P¢)ters.,, and
(Qf")texr,,, for every m > n. Then, there exists| € N*, C > 1, which depend on g,
T and the moments of Z, such that

C‘ﬁiﬁ‘ ( )

sup [|Ptf — Q7 flleo < (\.5)n(a

tETrT .

)Hf”oo/n (4.34)
with n(q) = q(q + 1).
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B. Moreover, for everyt > 0, Py(x, dy) = pi(z,y)dy with (z,y) — p:(z,y) belonging to
C>®(R% x R%).

C. We recall the Q™ is defined in (4.22) and verifies Q}"° (z, dy) = p{"® (x, y)dy. Then,
there exists | € IN* such that for every R > 0,e € (0,1), x9,y0 € R%, and every
multi-index «, 8 with |a| + |§| = u, we also have

Rgi3(¥)’ -
a af3 a B, 1,0 q+3 h(1
SggT Sup ‘893 8ypt (l‘, y) - aﬂc aypt (.’IJ, y)' <C (/\*S)U(Pu,s\/Q) /n (1=e)

teryo ! (2,9)EBR(0,y0)

(4.35)

with a constant C' which depends on R, zy,yo, T and on |a|+|3] and p, . = (u+2d+
1+2[(1 = ¢)(u+d)/(2e)])

D. Let 6 > h + 1. We recall the Q™ is defined in (4.28) and verifies Qf"g(x,dy) =
p?(2,y)dy. Then, there exists | € N* such that for every R > 0, € (0,1), zo, o €
R?, and every multi-index «, 8 with |a| + |B| = u, we also have

(67 (63 n ﬁ ! —&
sup sup (070 pu(w,y) — 0700 ()| <CW%/HM )

tenzo ! (z.y)€BR(z0,y0)

(4.36)

Proof. A-B. We use Proposition 2.4: We have proved in Proposition 4.5 that Q™© verifies
the regularization properties. The proof of (4.34) and (4.35) is an immediate consequence
of Theorem 2.6. C. In order prove (4.36) one uses Corollary 4.7 instead of Proposition
4.5. O

Remark 4.9. The simulation of an approximation scheme given by Q™® may be cum-
bersome, so the estimate obtained in (4.35) is not very useful. This is why we propose
the regularized scheme X" which is easier to simulate.

5 The Ninomiya Victoir scheme

We illustrate Theorem 4.8 when X" is the Ninomiya Victoir scheme for a diffusion
process. This is a variant of the result already obtained by Kusuoka [23] in the case
where Z;, has a Gaussian distribution (and so the standard Malliavin calculus is available).
Since in our paper Z; has an arbitrary distribution (except for the property (3.1)), our
result may be seen as an invariance principle as well. We consider the d dimensional
diffusion process

N
dX; = Vi(Xy) 0 dW + Vo(Xy)dt (5.1)
i=1
with V5,V € C°(R%GRY), i = 1,...,N and W = (W!,...,W") a standard Brownian
motion and odW; denotes the Stratonovich integral with respect to W*. The infinitesimal
operator of this Markov process is given by

N
1
A:Vo+§;v,3 (5.2)

with the notation V f(z) = (V(z), Vf(z)). Let us define exp(V)(z) := Py (x, 1) where @y
solves the deterministic equation

Sy (z,t) =z + [[V(Dy(z,s))ds. (5.3)
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By a change of variables, it is possible to show that ®.y (z,t) = @y (z,t), so we have
exp(eV)(z) = Doy (z,1) = Dy (x,e).

We also notice that the semigroup of the above Markov process is given by P f(z) =
f(®y(x,t)) and has the infinitesimal operator Ay f(z) = V f(x). In particular the relation
PY Ay = Ay PY reads

Vf(@y(z,t)=AvPY f =P Ay f = (V(2),V, (f(®v(z,1))).

Using m times Dynkin’s formula P f(z) = f(z) + [; PY Ay f(z)ds we obtain
S tr T 1 K m m
f(@v(z,1)) = f(z) + ; SV (@) + %/0 (t —s)"V™HLPY f(z)ds. (5.4)

We present now the Ninomiya Victoir scheme. We consider a sequence p;, kK € IN
of independent Bernoulli random variables and we define v, : R¢ x RN*! — R? in the
following way

', w?) = exp(wVo) o exp(w V1) o - 0 exp(w" N Vi) o exp(w®Vo) (), if pr, = 1,
(5.5)

i, w',0?) = exp(uVo) o exp(w N Vy) o -0 exp(w" V1) o exp(w®Vo)(), if p, = L.
(5.6)

The Ninomiya Victoir scheme uses these functions with w9 = T'/2n and w,iz = \/TZ,i /v,
fori=1,...,N. Moreover Z., i = 1,...,d, k € N* are independent random variables
which verify (3.1) and moreover satisfy the following moment conditions:

E[Zy] = B[(Z,)°] = E[(Z,)°] =0,  El(Z)’]=1, E[(Z)"]=6. (5.7)

In the original paper of Ninomiya Victoir, the random variables Z,i, are standard normally
distributed, and then verify (3.1). The new point here is that we do not require that Z;,
follows this particular law anymore but only the weaker assumptions (3.1) and (5.7). We
recall that ¢} = Tk/n. One step of our scheme is given by

X = (X, wi gy, wigy). (5.8)

We have the first following result.

Theorem 5.1. There exists some universal constants | € IN*, C' > 1 such that for every
f € C8(R%), we have

sup |E[f(X¢)] - B[f(X)]] < CCs(V)'|| fllo,00 /1 (5.9)

tent
with Cy(V) := Sup;—o,.,N 1Villg,00-

Remark 5.2. The same estimate has already been proved by Alfonsi [1] using short time
expansions on the solution of the Feynman Kac partial differential equation associated
to the diffusion process.

Under an ellipticity condition we are able to give an estimate of the total variation
distance between a diffusion process of the form (5.1) and its Ninomiya Victoir scheme.
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Theorem 5.3. We assume that

N

‘glfl Vi(z),&)> = A >0  VzeR (5.10)
=1

Let S € (0,7/2). Then there exists ny € IN* such that for every n > ng, there exists
1 € IN*, C > 1 such that for every bounded and measurable function f : R — R,

sup IEL(X0) - B/ < R T G11)

Remark 5.4. This estimate has already been proved by Kusuoka [23] (with a different
approach). He considers a much more general non degeneracy assumptions (of Hor-
mander type) and uses Malliavin calculus in order to prove his result. Here the noise
Z,i is no more Gaussian so the standard Malliavin calculus does not work anymore, but,
since we have the property (3.1), we may use the abstract integration by parts formula
introduced in Section 3.

Proof of Theorem 5.1. We have to show E,,(3,6) (see (2.3)) and (2.2) for Q". Indeed, the
proof will then follow from Proposition 2.2. First, we notice that (2.2) is satisfied with
q = 6 for the semigroup Q™ using Theorem 4.2 (see (4.7)). Now, we focus on the proof of
E,(3,6). In order to simplify the notations, we fix T' = 1 without loss of generality. We
denote

1 A .
Tof(x) = Tn1f(2) = flexp(5 Vo) (@), Tif(z) = flexp(==Vi)(@))i=1,..., N.
n Vn
Notice that, with the notation introduced in the beginning of this section, 7;f(z) =
PYi f(z) with U; = ZVi/y/n, ifi = 1,...,N and Uy = Uy 41 = Vp/(2n). Using (5.4) with
t=1landV=U;,i=1,...,N we obtam

m Zm,—i—l
Tif (@ )+ Z r/2 (z) + WRmﬂ,if(l‘) (5.12)
with X
1
Ry if (z) = — / (1= NV PY f(2)dA (5.13)
“Jo

and we recall that Pl f(z) = f(exp(AZVi/y/n)). We have a similar expansion if we
put V = V5/(2n) in (5.4). We aim to give an expansion of order 3 (with respect to
1/n) for E[f (¢x(z, w} 1, wj, )] (see (5.14) below). In order to do it, we replace each
Ti,i =1,..., N, with an expansion of order m < 5 given above with Z = Z; | (and we
proceed in the same way when V' = V;/(2n)). Then, we calculate the products of the
miscellaneous expansions, each with a well chosen order m such that there is no term
with factor n™", r > 3, appearing in those products. Moreover, all the terms containing
n~3 go in the remainder. The last step consists in computing the expectancy. We notice
that B[P//] = Ptviz/(%) and E[(Z],)"] = 0 for odd r < 5. Finally, since E[(Z; ,)?] = 1,
E[(Zk+1)*] = 6, the calculus is completed and we obtain:

E[f (Yk (2, Wiy 1, whsr)] = E[ToT1 - .. T f ()] (5.14)

N

1

= @)+~ (Vof(a Z VEF@) 4 5 VR + g D V()

=1

1 al 1
+ 5 ) Vi) Z (VoV2S (2) + VEVo (1) + — Rf (2).

1<j =1
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The remainder R is a sum of terms of the following form:

C%yao, - 7TN+17QN+1f(£C) (5.15)
with o = (ag,...,ant1) € {0,...,3}*2 |a] = ag+...+ans1 = 3, and using the notation
given in (5.13),

Toks 1.k € {V, Rro}s Tik €V Ropit,ic{l,...,N} k=0,...,2,
To,3 =Tn+1,3 = R30, Ti3 =Regq,i€{1,...,N},

with fori=1,..., N,
) 1
R = E[(Z)°Re ] :/ (1= A\)PE[ZSVSPY f(x)]dA.
0

It is easy to check that for every g € C**?(RR), we have the following property

175,k lp.co < CCoip (V) gl ktp,oo

for some constants [ € IN*, C > 1. So, it follows that

IRf]loo < CCs(V)'|If]

6,00 (5.16)

We turn now to the diffusion process X;. For any ¢ > 0, we have the expansion

2
BIf (X)) = PAf(@) = f(o) + tAf(@) + 5 AP (@) + 5 Rif ().

with .
Rif(z) = t—l/ PAA3F(2)(1 — N/t)%d). (5.17)
0

We take t = n~! and make the difference between (5.17) and (5.14). All the terms cancel
except for the remainders so we obtain

vk € {0,...,n—1},
BUA(Xe,,) — F(XR ) | Xy = Xfp =) = (B, 0(2)/31 ~ RF@)/n*. (5.18)

We clearly have [|R) , fllo < CCs(V)!||f|l6,00- This, together with (5.16) completes the
proof. O

Proof of Theorem 5.3. This will be a consequence of Theorem 4.8 as soon as we check
that the ellipticity assumption (4.18) holds true. We fix k£ and we look at v (z, w!, w")
defined in (5.6). We suppose that p;, = 1 (the proof for p;, = —1 is similar). We denote
w! = (whl, - Jwh N} and @ = (w!,w®) with w® € R,. Using the notation T; = i, we
consider the process z:(w),0 < t < T2 solution of the following equation:

0 ot
_ w -
xt(w) = ;C—|—7 %($S<W))d8, TO <t<Tla
To
ot
ze (W) = mTi(ﬁi)—&-le/ Vi(zs(w))ds, T, <t<Tiy1, i=1,....N,
T;
U/O ¢
0(@) = ang @)+ [ Ve (@)ds,  Twe <0< Ty
TN+1
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Then, ¢ (2, W) = x7y_, (W) and consequently for » € {1,..., N}, we have 01,» ¢y (z, W) =
Outr Ty, (W). Moreover 0,1~z (w) = 0 for ¢t < T, and

N o TNt
Dutr 4 (W) = Dy vy, (W) + Y w' / VVi(24(0)) Dy r 4 (D) ds
i=r+1 Tint
wo ¢
+— VVo(2s(1))Opr.rzs(W)ds,
2 TNyt

for ¢t > T,41, in particular for ¢t = Tn41. For T, < t < Ty41, Q.- (W) solves the equation

¢ ¢
Oprr (W) = / V(s (0))ds +w'" [ VVi(2s(10))Dyrras (1) ds.
; T,

It follows that

Dyt 2 (1) \@:Oz/ Vi(2s(0))ds = Vi(2)(t — T0).

T

Notice that T, y; — T, = 1. Then, we have
Butor @710 (B) [amo= Ouror o, 1, (@) [omo= V().

and then, by (5.10),
N

Z<8wl’rxTN+2 (O)7§>2 P )\*|§|2 O

r=1

6 Proof of Theorem 4.2 on Sobolev norms

In this section, we will obtain estimates of the Sobolev norms of X" and LX"™ which
appear in Theorem 4.2. The method we adopt here is to prove the estimates for a generic
class of processes which involves the Malliavin derivatves of X™ and LX".

Before doing it, we give some preliminary results. We consider a separable Hilbert
space U, we denote |a|y the norm of U and, for a random variable F' € U, we denote
|Fllv,p = (E[|F[E)]/P. Moreover we consider a martingale M,, € U, n € IN and we recall
Burkholder’s inequality in this framework: For each p > 2 there exists a constant b, > 1
such that

e N, [ Mallup < BB My — My [3)P/2)7. (6.1)
k=1
As an immediate consequence

n

IMallop < bp (Y [ Mi = My-al|2,)'2. (6.2)
k=1

Indeed

IMallf, < BREIQ 1My — Mia[f)?P1PP = bl D [ My — M [l

k=1 k=1
n n
< 0 My = My llpje = 05 Y 1My — My |7,
k=1 k=1

We consider the scheme defined in the previous sections (see (4.6)):

N m-—1 m—1
n _ 7 7 n n 1 n n
th+1 =+ Z Z Hk—i—lak(XtZ') + Z 6k+1bk(th7Hk+1a 5k-i—l)
i=1 k=0 k=0
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Ju

3

1N
PP

with H, = n~Y2Z, and

J ,] n
k+lHk+1bk (Xt;; ) Hk+1)

IIM

a;c(‘/l’.) = azﬂ/}("ib xz, 07 0)7
. 1
b;i(x,z) = /0 (1 =X)0.,0.,¢(kk, z, Az,0)dA,

1
Bk(x,z,t):/ O (K, z, 2, \t)d.
0

We also denote

N
Ay = Hi Vel (X[h) + 0 Vabi(Xp, Hiyr, 641)

i=1

N
1 i j ) n
+5 > Hi HL Vb (X, Higa)-

i,5=1

Notice that X7, a, bfc’j .b,, € RY and Ay, is a d x d dimensional matrix.

Now, we focus on the estimates of the Sobolev norms. As before, U is a separable
Hilbert space. We say that, a U valued random variable F' belongs to S(U) if for every
h € U we have (h, F) € S (see (3.8)) and we define DF by (h, DF) = D (h, F) for every
h € U. Then, we define the norms (see (3.20) and (3.21))

Flim= > DaFlt,  1Fllvumy = [|Flomll, = EIFIE,.)"".

0<lal<m

The Hilbert space U being given, we denote V = U? (recall that X{h € R? so, in this

case, U = R and V = R?). We consider now some processes (aj)ien, (Bk)ke]l\h (Fk)ke]N
with ay, = (af,...,af) € VN, B, = (B},...,8t) € VN, T, € V. We assume that o}, =
ai(Zy,...,Z) and <h ai) € C°(R*) for every h € V,i = 1,...,N (we recall that
Zr € RY). So ap € S(V). The same is assumed on (3 and T. We look at a process
Y, € V =U? k € IN which satisfies the equation

N m-—1 m—1
=Y + Z AYe +> 3 Hiah+> > LH{ B+ T (6.3)
=1 k=0 =1 k=0

Notice that we do not discuss about existence and uniqueness of the solution of such
an equation. We just suppose that, the process Y at hand satisfies this equation (which
naturally appears in our calculus). We aim to estimate the Sobolev norms of Y,,. Let
q € N and p > 2. We denote

Cypla, 3,T) = sup sup (1 + ||k, llvigp + 11Bimllviap + ITmtllvigp) (6.4)
o<m<n—1i=1,.,N

Proposition 6.1. For every ¢ € IN and p > 2 there exists some constantsl € N*, C' > 1
(depending on q and p) such that

1/

sup [[Yon|[v,q,p < C(Mi(2) +

m<n T«

(14 7,9)Cq (e, B, ) Rysa(CM(Z)). (6.5)

with R, () and M;(Z) defined in (4.5) and (3.2).
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-»- We will check that

1/p

sup [|[Yonllvyp < C(MP(Z)l/pCO,p(aa(),O) +

m<n

Co,p(07 ﬁ7 0) + Co,p(oa 07 F))

x exp(CMap(Z2)*/?||9]7 5.00)- (6.6)

We study the terms which appear in the right hand side of (6.3). Notice that ﬁ,i
is 0(Zy,...,Z;) measurable and IE[LH,@+1] = 0 (see (3.23)). It follows that, M,, =
e 01 LH} 1 i is a martingale and consequently, by (6.2)

m—1

IMonllvip < bp(D ILHE 41 BRI ).
k=0

Since LH} | and f3; are independent, using (3.24) we obtain

2
LH N2 — L 21| pi 112 Cm*/p
ILH 1BV, = |1 LHL 2B, < —5—I8kIT,/n-

We conclude that

Cm*/p 1 C’m*
sup [[Mm|lv,p < Z IBkIIY )2 < sup

m<n Ty k<n—1

Since Hj_ , is independent from o}, and E[H] ] = 0, it follows that M,, = >_;"")' H} o},

is a martingale. We have | H}||, < n~'/2M,(Z)"/? so the same reasoning as above

proves that the previous inequality holds for M,, (with m*/ Pr—1 replaced by M, »(Z )1/ p

and ||8|lv, replaced by |ai|lv,). We use the same reasoning for M,, =
i Co Hiy1Vaaj,(Xih)Yy, € V and we obtain

m—1

wllvie <03 NHE Vaah (Xi)Yilp)'/” < OMu(2) 7 41 2.0 S [l
k=0 k=0
Finally, using the triangle inequality
I Z Hj o B Vb (X0 He)Yillve <030 I1HE B Vbl (X3 Hica)Yillv,
k=0
m—1
< COMyy(Z )1/”H¢||13oo > 1Yallvas
k=0

and in the same way | Y} 07 V. Ek(XﬁL Hi1,00,)Yillvp <

Yo HYk |lv.p/n. We gather all the terms and we obtain
1 m—
< Yollvp + CMp(2) 7 3,00 (- kZ IYilI¥,,) 2
1 ' my/?
HCQI(Z)7 swp okl + T sup (8 vs) + [Tl
c<n— *  k<n—

Using Gronwall’s lemma we obtain (6.6).
Step 2. Let

n N
H={h:{l,...,n} x{1,...,N} > R [nf3; = > > h*(k,i) < oo}.

k=11=1
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so that DX}, € HY. We are going to prove that

sup ”DXf:;L”Hd',p < OMgp(Z)l/p||¢||173,oo exp(C' My, (Z) ). (6.7)

m<n

For h € H we denote

n N
DpF = (DF,h) =Y " h(k,i)Dg i F.
k=11i=1

Since
D jHy = %&,k(sjn)(k,

we use (4.6) to obtain

N
1 -\ 1 n
DpXpp = DnXpp + ApDp X + 7n > Xwrh(k+ 1,80 (X72)
—

Jr% Z X1 (h(k + 1) Hy g + h(k + 1, ) Hy )by (Xin, Hi1)

ij=1
1

N
+ﬁ Z X1 Hjpy Hyf 1 020 (X, Hiega )Wk + 1, q)
,3,q=1

1 -
+%Xk+1512+1 Z 5quk(th;;7Hk+17 51?+1)h(k +1,q)
g=1

Iterating this formula over k we obtain

m—1
DpXph = > AgDpX(y + (h,T)
k=0

with Iy, (k,4) = 0 for £ > m and, for k < m
Do) =22 (o (X )+ DD HLL (X3 Hi) + 37 HERO0 (X3 )
7j=1 7,l=1
+Op 0.1 (XJy Hy, 67)).
One has

n

m N
. 1
Colia =YD Lok, ) < ClIPIIT 3,00~ Do+ 1zl

k=1 i=1 k=1
so, using (6.6) (with V replaced by H% and ay, = Br = 0), we obtain

sup [|DX]} | ga,, < C sup Tl g7 p exp(C Moy (Z)?/P (|93 5.00)

m<n m<n

< OMap(Z)VP([]]1.3,00 exD(C M2y (Z)*P |19 5.00)-

Step 3. We estimate the derivatives of Y,,,, solution of (6.3). We have

N m-—1 N m-—1
SHIED 3 ST W) op AR 4
i=1 k=0 =1 k=0
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with
o, = VaV.a(X[) DX Yy + Day,
Br = Dpi
and
. m—1 N N m-—1 . ) o
T, = > Veai (X)) DHyyr Vi + Z > D(Hjy HY Vb (X, Hiyr))Ye
k=0 =1 =1 k=0
m—1 N m-—1 ) ‘
+ Z 0111 D(Va bk(Xt" Hy1,6541)) Yk+z o DHy 4
k=0 i=1 k=0
N m-—1
+ >3 BiDLH, + DT,

1

S
Il

s
Il

=

Notice that DY, is a process with values in H?. We will prove that

1/p B B
My (Z)"?Cy ,(@,0,0) + Co,»(0,8,0) + Cp,(0,0,T) (6.8)
Tn1/2p
< OMuy(Z2)YP(May(Z)/*Co 2p(, 0,T) + —T (14 7,1Co,25(0, 3,0))
2 2 1 m}f/p
X |[9]]1 4,00 €XP(CMap(2) 2 hoo) T Mp(Z)/PCy (0, 0,T) + C1,5(0,8,0).

Once (6.8) is proved, the whole proof is concluded. Indeed, using (6.8) and the result
from the first step (that is (6.5) with ¢ = 0 and Y;,, replaced by DY,,), we obtain (6.5)

with ¢ = 1. Consequently, using recursively the same reasoning we obtain (6.5) for every
q € IN.

We estimate each of the terms which appear in the right hand side of (6.8). First, we
write

920 (X ) DX Vil < Il e DX
< Cllélh e DX,
<C

May(Z )1/2p||w‘|1,3,oo(MQP(Z)1/2p00,2p(avan)
1/2p

Hd|Yk|VHp

+ CO,2p(07B7 0)

+ C0.2p(0,0,T)) exp(CMap(Z) 7913 5 00),
the last inequality being a consequence of (6.6) and (6.7). It follows that

1/2p
. e
@ | e,y < CMap(Z)M/?P (Mop(Z)/?PCo 2p(cr, 0,T) + . Co.25(0, 8,0))

*

X 19113 5 00 exD(CMap(2) P19} 5,0) + C1p(,0,0).
And
1Bx 114, = I DBi N sra, < Crp(0, 8,0).
We analyse now I',,,. We treat first I,,, := > i DLH} . Since 8D, j)LH}_, =0
if p # k+ 1, we obtain

N m-—1

Il }a <0 1Dy LH 1 PIBL

j=1 k=0
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so that, using (3.24), and the independency of LH; and [, we have

N m-—1
el szally = [1Tm el < 2 3 NPy EH 1 PIBEE N, )2
j=1 k=0

3

H|D(k+1sJ)LHk+1HBk‘VH 1/2

Il
1=
=
Il
o

3
L

M=

D15 LHE 12188V ()2

=1 k=0
C’mi/p B Cm* .
<9y s ], = S sup 1B v
* k<m—1 k<m—

Since DH }C has properties which are similar to the ones of DLH?, the same reasoning
as above gives

m—1
1Y~ 04 DH] e, < C sup vy
k=0 k<m—1
and we have
m—1 m—1 N
1> Vedh (Xp YD H 2 <613 20 S S0 IVl3 | Diir s Hi s
k=0 k=0 j=1

C n—1
< ZI0IB 2oo 3 Ml
k=0

Using (6.6) and the triangle inequality, we obtain

m—1 n—1
. . _ 1/2
IIZanz(X&)YkDHiHIIHd,p < Clllhzee(n 1lelfzcl\Zv,,))
k=0 _
1/p
< O(Mp(2)Y7Co p(a,0,T) + Co,»(0,3,0))

X[[9]11,2,00 exD(CMap(Z)*P I YIIF 5 00)-

We write now

3
L

D(H’i+1Hg+1be2j(X&aHkJrl))Yk =I+J

k=0
with
I = (H}CHDH,]€+1 +H,JCHDH;H)V;UI)Z;J(X&,Hk+1)Yk,
k=0
m—1 ) o
J = Hy 1 Hi  D(Vaby (Xin, Hiy1)) Y
k=0
We have
m—1 )
[3ra < ClYIT 5000 " D (Higa I+ 1HL 4 [)Yal3,
k=0
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and using the independence between Y; and Hy. 1, it follows that

| s7a,, < Cn=Y2(M,(2)"/PCop(@,0,T)

1
m*/p

Co,p(0,8,0)) Mp(Z2) |14 ]|1,3,00 ex0(C Moy (2)*P |13 5, 0)-

Considering the estimates of DXt"Z, we obtain in a similar way

||‘]||Hd,p < Cn_l (MP(Z)l/pCO,p(aa 07 F)
1/p

Co.p(0, B, 0)) M2y (Z2) /7 |[)]]1,3,00 exp(C Moy (2)* P[] 5 o)

1/2p
+ O Y2 (May(2)/7PCo 2 (@, 0,T) + 22 —Ci2/(0.8.0)) May (2)'/7
x ||¢||i4,ooexp<cM4p<Z>1/p||wuig,oo>

1/2p

< On V2 (Map(Z)V?PCh 0p (e, 0,T) +
X917 4,00 €xP(C My (Z) )

It follows that a similar estimate holds for 22:01 D(H}, Hj +1V bij(X{:))Yy as for
J. Finally, in the same way, we obtain

CO@I)(Oa 53 0))M4P(Z)1/p

[ Z 031 D(Vabi (X7, Hicyr, 611)) Vil e

< Cn Y2( Moy (2)Y?2C (e, 0,T)

1/2p
My
+ Co,2(0, 8, 0)) 110117 4,00 €xP(C M (2) 7|17 5 00)-
We gather all these terms and we obtain (6.8). O

Now, we are in a position to prove Theorem 4.2. For the reader’s convenience we
recall the statement of this result.

Theorem 6.2. For every q,q' € N, ¢’ < ¢, and p > 2 there exists some constants | € IN*,
C > 1 (depending on r, ., M., q,p and the moments of Z but not on n) such that

sup sup 0z X{' (z )”q RS Cﬁq+2(1/1), (6.9)

terl, 0<|a|<q—a’

< CRypa(p) (6.10)

tEﬂTn

where R,.(¢) is defined in (4.5) and is given by

R () = ( ) exp([[9[17 5,00 )-
Proof. We estimate first || X}*||,,- We have already checked that
m—1
DX[y = ADX[y + T,
k=0
with
N
(ki) = 1{k<m}%(“271(X?;,1) + 3 HIb (Xp | Hy)
j=1
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N
j l,j n n 7 n n
+ Y HIHO. (X Hy) + 07 0.b 1 (X, Hy, 7).
Gi=1

Using (6.5), the only thing to prove is that |Ty,||4—1,, < CRy42(1)!. We have already done
it for the first order derivatives (that is ¢ = 1). For higher order derivatives, the proof
follows the same line (using a recurrence argument).
Now, we study V,X]"(z) which solves the equation
m—1
Vo Xp (2) = T+ Y AV, X[ (x).
k=1
This equation is similar to (6.3) so the upper bound of ||V, X}, (z)|lq, follows from (6.6).
For higher order derivatives the reasoning is the same.
Let us now deal with LX}*. Notice that <DH,JCA7 DH,1> = 0 for ¢ # j. Then, using the
computational rules (see (3.15)), we obtain

LXf | = A LX], +ZHk+1ak+ZLHk+lﬁk 4 Z i

i,j=1

with
= " 00,00, (X (DX, (DX, Bl = ab(X7L)
l,r=1

and

1 i j i,] n
*LHIZHHIJCHZ’JJJ(X%’ Hjy 1)

LH}c+1Hk+1bl’j<thg>Hk+l) T3

'Vk = =35
1 3 y d . .
+ §Hllc+1Hli+1( Z amlamrbZJ(X&, Hk+1)<(DXZ:’:L)l7 (DXZ%)T>
l,r=1
N \ N
i n r k1 i N
+ ; aszkj (sz, Hk+1)LHk+1 + o 7; (’ﬁrka(XtZ,HkH))

k+1 54,4 k+1 1 i
Ly ML (O Hin) + 2 (H 04,67 (X, Hi)

+ H]z+182i b;c’] <XZLZ ) H/chl))

d
1, - r
50 (D2 O, (X, i, 8 (DX (DXF))
l,r=1
N

+ >0, b(Xph, Hiyr, 60 ) LHE y + =2 Xbtl 252 b (X, Hk+1a5k+1))

r=1

We have

< Ol l1gt3.00 1 X7 711 < CRo(¥)'

and a similar estimate holds for |||, ,. Moreover, we have I, = >.7 =1 S vk so
we have to analyse each of the terms in 'yi’j . We look first at

||LH,2+1H,]€+1();€’J (XZ%, Hk—i-l)qu = ”LHk-HHIJchl||q,2pr”(tht Hk+1)||q72p

< ||LHk+1||q,4pHH +1||q74p||¢||1,q+2 oo(HXt” ||l 2p + HH]
< CRgp2(¥ ¥)! /.

q,2p)
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The other terms in yi’j verify similar estimates. So we obtain

N m—
[Tmllgp < Z Z ||7k’J||q»p ﬁq+4(¢)l-
=1 k=0

We conclude that

qu(aa B, F) < C-ﬁq+4(¢)l

and the proof is competed. O
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