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Near-extreme eigenvalues in the beta-ensembles
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Abstract

For beta-ensembles with convex polynomial potentials, we prove a large deviation
principle for the empirical spectral distribution seen from the rightmost particle. This
modified spectral distribution was introduced by Perret and Schehr (J. Stat. Phys.
2014) to study the crowding near the maximal eigenvalue, in the case of the GUE. We
prove also convergence of fluctuations.
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1 Introduction

In random matrix models, the most popular statistics is the empirical spectral distri-
bution (ESD). For a N ×N matrix MN with real eigenvalues (λ1, · · · , λN ), it is:

µ(N) :=
1

N

N∑
k=1

δλk . (1.1)

The first step in asymptotic study is to prove the convergence of µ(N) and also of the
so called integrated density of states Eµ(N). The limiting distribution σ is most often
compactly supported. A second step is to prove the convergence of the largest eigenvalue
λ(N) = max(λ1, · · · , λN ) to the end of the support of σ. At a more precise level, it is
sometimes possible to establish large deviations. In the so-called β-models, the density
of eigenvalues is

PNV,β(dλ1, · · · , dλN ) = (ZNV,β)−1|∆(λ)|β exp

(
−Nβ

2

N∑
1

V (λk)

)
N∏
1

dλk (1.2)
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Near-extreme eigenvalues in the beta-ensembles

where ∆(λ) is the Vandermonde determinant. Under convenient assumptions on the
potential V , the ESD satisfy the large deviation Principle (LDP) with speed βN2/2 and
good rate function

IV (µ) = −Σ(µ) +

∫
V dµ− cV if

∫
|V |dµ <∞ , (1.3)

where Σ is the logarithmic entropy

Σ(µ) =

∫ ∫
ln(|x− y|)dµ(x)dµ(y) , (1.4)

and

cV = inf
ν
−Σ(ν) +

∫
V dν . (1.5)

Moreover IV achieves its minimum 0 at a unique probability measure µV which is
compactly supported, and which is consequently the limit of µ(N).

The most famous example is the Gaussian Unitary Ensemble which corresponds to
V (x) = x2/2 and β = 2. The limiting distribution µV is then the semicircle distribution :

µSC(dx) =
1

2π

√
4− x2 1[−2,2](x) dx , (1.6)

and the result of large deviations is due to [2], with cV = 3/4.
Moreover under appropriate conditions again, the support of µV is an interval [aV , bV ]

and the maximal eigenvalue λ(N) converges to bV .
To analyze the "crowding" phenomenon near the largest eigenvalue, Perret and

Schehr proposed in [10] and [11] to study the empirical measure :

µN :=
1

N − 1

N−1∑
k=1

δλ(N)−λ(k)
∈M1(R+) , (1.7)

where λ(1) < λ(2) < · · · < λ(N) are the eigenvalues of MN ranked increasingly. They
considered the Gaussian case with the Dyson values β = 1, 2, 4 and made a complete
study of EµN , in the limit N →∞ both in the bulk and at the edge.

In the present paper, we consider more general potentials V , actually convex polyno-
mials of even degree. We first prove that µN converges in probability to the pushforward
νV of µV by the mapping x 7→ bV − x. Then we prove that the family of distributions of
(µN )N satisfies the LDP with speed N2 and a “new" rate function which we call IDOS

V ,
referring to the name “Density of States near the maximum" given by Perret and Schehr
to EµN . There are two striking facts. The first one is that the LDP is obtained for a
Wasserstein topology (and not for the usual weak topology). This ensures in particular
that the rate function is lower semicontinuous. The second one is that the LDP is weak
i.e. we do not have a large deviation upperbound for closed sets but only for compact
sets. This implies that we could not deduce the convergence to the limit from the LDP as
usual. In the Gaussian case, we have V (x) = x2/2 and

IDOS
V (ν) = −Σ(ν) +

1

2
Var ν − 3

4
, (1.8)

where for ν ∈M1(R+) such that
∫
xdν(x) <∞, we define

Var ν =

∫
x2dν(x)−

(∫
xdν(x)

)2

∈ [0,∞] . (1.9)

Section 2 is devoted to LDPs: Proposition 2.7 and Corollary 2.8 study the pair
(λ(N), µN ), which prepares the main result, the LDP for (µN )N in Theorem 2.9. The
proofs are in Section 3. To complete the description of the asymptotic behavior of µN , we
prove also the convergence of fluctuations in Section 4. Finally, in the Appendix (Section
5), we gather some properties of the Wasserstein distance on probability measures.
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Near-extreme eigenvalues in the beta-ensembles

2 Assumptions and main result

To begin with, let us recall the definition of the Wasserstein distance.

Definition 2.1. Let p ∈ [1,∞[, and Mp
1 (R) = {ν ∈ M1(R),

∫
|x|pdν(x) < ∞}. For two

probabilities µ and ν in Mp
1 (R), the Wasserstein distance of order p is defined by

dWp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
R

|x− y|pdπ(x, y)

)1/p

(2.1)

where Π(µ, ν) is the set of probabilities on R2 with first marginal µ and second marginal
ν.

Besides, we denote by d the usual distance for the weak topology, given by Lipschitz
bounded functions. It is known that

d ≤ dW1
≤ dWq

for q ≥ 1 . (2.2)

We assume that

Assumption 2.2. V is a convex polynomial of even degree p ≥ 2.

This assumption guarantees that µV is unique, with support [aV , bV ]. Moreover we
have:

Theorem 2.3. The sequence of distributions of (µ(N))N satisfies a large deviation prin-
ciple in (M1(R), d), with speed βN2/2 with good rate function IV given by (1.3).

This result is Th. 2.6.1 in [1]. As we will prove in the following section, it can be
improved:

Corollary 2.4. The LDP still holds in Mq
1 , endowed with the distance dWq

for any q < p.

For the largest eigenvalue, we have:

Proposition 2.5. Under Assumption 2.2,

1. λ(N) converges in probability to bV ,

2. the sequence of distributions of (λ(N))N satisfies a large deviation principle with
speed βN/2, with a good rate function J+

V satisfying J+
V (x) = +∞ for x < bV , i.e.

lim
N

2

βN
lnPV,β(λ(N) > x) = −J+

V (x) , x > bV (2.3)

with J+
V (bV ) = 0 ,

3. the sequence of distributions of (λ(N))N satisfies a large deviation principle with
speed βN2/2, with a rate function J−V , on the left of bV i.e.

lim
N

2

βN2
lnPV,β(λ(N) ≤ x) = −J−V (x) := − inf

µ:Suppµ⊂(−∞,x]
IV (µ) , x < bV . (2.4)

Points 1 and 2 are in [1] Prop. 2.6.6, but are more readable in [3] Prop. 2.1. For Point
3, see [9] Rem. 2.3, [7] Sect. 4.2, [5] and [14]).

We are now interested in the behavior of µN . First, we have the following convergence
result:

Proposition 2.6. We denote by τcµ the probability defined by∫
f(x)τcµ(dx) =

∫
f(c− x)µ(dx) .

Then, as N →∞, µN converges weakly in probability to the probability measure :

νV := τbV µV . (2.5)
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Near-extreme eigenvalues in the beta-ensembles

Our main result rules the large deviations of the pair (λ(N), µN ). We equip Mp
1 (R+)

with dWp
and denote by B(µ; δ) the ball around µ of radius δ.

We define
IV (c, ν) = IV (τcν) , (2.6)

which, since Σ is invariant by the transformation τc, is also

IV (c, ν) = −Σ(ν) +

∫
V dτcν − cV . (2.7)

Proposition 2.7. We have

1. For any c ∈ R and µ ∈Mp
1 (R+),

lim
δ↘0,δ′↘0

lim inf
N→∞

2

βN2
ln(PNV,β(λ(N) ∈ [c− δ′, c+ δ′], µN ∈ BWp(µ, δ)))

≥ −IV (c, µ) . (2.8)

2. For any closed set F ⊂ R and µ ∈Mp
1 (R+),

lim
δ↘0

lim sup
N→∞

2

βN2
ln(PNV,β(λ(N) ∈ F, µN ∈ BWp

(µ, δ)))

≤ − inf
c∈F
IV (c, µ) . (2.9)

Corollary 2.8. The sequence of distributions of (λ(N), µN )N satisfies a weak LDP on
R×Mp

1 (R+) equipped with the product topology, at speed βN2/2 with rate function IV .

From these results, we may deduce on the one hand a weak LDP for the random
measure µN , and on the other hand a conditional LDP for µN , knowing λ(N).

Theorem 2.9. The sequence of distributions of (µN )N satisfies a weak LDP in
(Mp

1 (R+), dWp
) at speed βN2/2 with rate function

IDOS
V (ν) := inf

c∈(−∞,∞)
IV (c, ν) = −Σ(ν) +GV (ν)− cV , (2.10)

with

GV (ν) := inf
c∈(−∞,∞)

∫
V dτcν . (2.11)

The properties of IDOS
V and GV are ruled by the following lemma:

Lemma 2.10. Let p− 1 ≤ q ≤ p.

1. The infimum in (2.11) is reached at a unique point which we call κV (ν).

2. ν 7→ κV (ν) is continuous for dWq
.

3. ν 7→ GV (ν) =
∫
V (κV (ν)− x)dν(x) is lower semicontinuous for dWq

.

4. IDOS
V is well defined on Mq

1 (R) with values in [0,+∞] and lower semicontinuous for
the Wq topology.

5. For b ≥ bV ,
IDOS
V (τbµV ) = 0 .

It follows from property 5 in Lemma 2.10 that IDOS
V is not a good rate function since

the level sets are not compact. Then, (µN ) is not exponentially tight in scale N2 (see [6,
Lemma 1.2.18]) and we do not know if the large deviations upper bound in Theorem 2.9
is true for closed sets. Nevertheless, we can prove exponential tightness in a weaker
topology, conditionally that λ(N) remains bounded, which leads to:
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Proposition 2.11. Let p− 1 ≤ q < p.
For any closed set F of Mq

1 (R+) and any C > bV , we have

lim sup
N→∞

2

βN2
ln(PNV,β(µN ∈ F |λ(N) ∈ [−C,C])) ≤ − inf

µ∈F
IDOS
V (µ) . (2.12)

The conditional large deviations are ruled by the following theorem.

Theorem 2.12. Let p− 1 ≤ q < p. Let F be closed and G be open in Mq
1 (R+).

1. If c > bV , we have

lim sup
N

2

βN2
lnPNV,β

(
µN ∈ F | λ(N) ∈ [c, c+ δ]

)
≤ − inf

µ∈F
IδV (c, µ) (2.13)

lim inf
N

2

βN2
lnPNV,β

(
µN ∈ G | λ(N) ∈ [c, c+ δ]

)
≥ − inf

µ∈G
IδV (c, µ) , (2.14)

where IδV (c, µ) := infa∈[c,c+δ] IV (a, µ) satisfies

lim
δ→0
IδV (c, µ) = IV (c, µ) . (2.15)

2. If c < bV , set

JV (c, µ) := IV (c, µ)− inf
ν∈Mp

1 (R+)
IV (c, ν) (2.16)

= IV (c, µ)− J−V (c),

(see Remark 2.13).

Then

lim sup
N

2

βN2
lnPNV,β

(
µN ∈ F | λ(N) ∈ [c− δ, c]

)
≤ − inf

µ∈F
J δV (c, µ) (2.17)

lim inf
N

2

βN2
lnPNV,β

(
µN ∈ G | λ(N) ∈ [c− δ, c]

)
≥ − inf

µ∈G
J δV (c, µ) , (2.18)

where J δV (c, µ) := infa∈[c−δ,c] IV (a, µ)− J−V (c) satisfies

lim
δ→0
J δV (c, µ) = JV (c, µ) . (2.19)

Remark 2.13. Let us compute the projection on R of the rate function (2.7) i.e.

JV (c) := inf
µ∈Mp

1 (R+)
IV (c, µ) .

We have, by invariance

JV (c) = inf
ν:∃µ∈Mp

1 (R+):µ=τcν
−Σ(ν) +

∫
V dν − cV .

Recall that the support of µV is assumed to be [aV , bV ]. Then, either c ≥ bV and we can
take ν = µV , JV (c) = 0, or c < bV and we get

JV (c) = inf
ν:Supp ν⊂(−∞,c)

IV (ν) := J−V (c) .

We recover Point 3 of Prop. 2.5.
As noticed in Prop. 2.1 and Rem. 2.3 in [9] there is a unique µ such that JV (c) = IV (µ),

let us call it µc. In the Gaussian case, its explicit expression is in [5] (up to some notational
changes).
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Remark 2.14. Let us notice that for fixed c, IV (c, ·) and JV (c, ·) may be seen as condi-
tional rate functions. From (2.6), we conclude that

IV (c, µ) = 0 iff µ = τcµV ,

whereas from (2.16) and the above remark, we conclude that

JV (c, µ) = 0 iff µ = τcµ
c .

Remark 2.15. Let us now give some additional comments relative to the Gaussian case:
V (x) = x2/2. In this case, κV (µ) is the mean of µ i.e. m(µ) =

∫
xdµ(x) and GV (µ) is its

variance. Therefore,

IDOS
V (µ) = −Σ(µ) +

1

2
Var(µ)− 3

4
,

and

dνV (x) =

√
4x− x2

2π
1[0,4](x)dx .

As we have seen above, the rate function IDOS
V is zero for probabilities of the form

µ = τbµSC, b ≥ 2 and thus is not a convex rate function. Notice that this particular
functional is semicontinuous not only for dW1 but also for the weak topology. It is a
consequence of the semicontinuity of Var. To prove this fact, use the representation

Var(µ) =
1

2
E(X − Y )2

where X and Y are two real random variables independent and µ distributed, and then
apply Fatou’s Lemma.

A nice consequence is that the weak LDP satisfied by µN holds also in the weak
topology (see p. 127 Remark (b) in [6]).

3 Proofs

In this section, we begin with the proofs of the easiest results and we end with the
proof of the main result.

3.1 Proof of Corollary 2.4

The set

KM = {µ ∈M1(R),

∫
|V (x)|dµ(x) ≤M}

is compact for the weak topology and is used to prove the exponential tightness for µ(N)

in [1] p. 78. Actually KM is also a compact set for the q-Wasserstein distance for q < p

(see the Appendix). It is then enough to apply Theorem 4.2.4 of [6].

3.2 Proof of Proposition 2.6

Let f a bounded Lipschitz function with Lipschitz constant and uniform bound less
than 1. Then,

| 1

N − 1

N−1∑
1

f(λ(N) − λ(k))−
1

N

N∑
1

f(bV − λ(k))|

= | 1

N − 1

N−1∑
1

(f((λ(N) − λ(k))− f(bV − λ(k))) +
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1

N(N − 1)

N−1∑
1

(f(bV − λ(k))− f(bV − λ(N)))|

≤ |λ(N) − bV |+
2

N
.

Therefore d(µN , τbV µ
(N)) ≤ |λ(N) − bV |+ 2

N .

From the convergence of µ(N) to µV , and λ(N) to bV , we deduce that µN converges to
τbV µV . 2

3.3 Proof of Lemma 2.10

1) Notice that the uniqueness of κV comes from the convexity of V .
2) Let f(c) =

∫
V (c− x)dν(x). Then κV (ν) is the solution of

f ′(c) =

∫
V ′(c− x)dν(x) = 0 .

Since the polynomial V ′ is of degree p− 1 and, for dWq
, the functions ν 7→

∫
xkdν(x) are

continuous for k ≤ p− 1, this implies the continuity of ν 7→ κV (ν).
3) Denote by mk(ν) the kth moment of ν. We can write

∫
V (κV (ν)− x)dν(x) as

apmp(ν) + F (m1(ν), . . . ,mp−1(ν), κV (ν))

where F is a polynomial function and ap > 0. The function mp(ν) is lower semicontinuous
as the supremum of the continuous functions

∫
(|x|p ∧M)dν(x). The functions κV (ν) and

mk(ν), k ≤ p− 1 are continuous in ν for dWq
. Therefore, GV is lower semicontinuous.

4) We refer to [1] for the same properties of IV , using e.g. for the positivity that
IDOS
V (µ) = IV (τκV (µ)(µ)).

From [2], −Σ(µ) is lower semicontinous for the topology of the weak convergence,
and therefore is lower semicontinuous for the stronger topology Wq.

At last, GV is lower semicontinuous from the 3).
5) First notice that τbµV has a support in R+ iff b ≥ bV . From (2.10) and (2.6) we have
then

IDOS
V (τbµV ) = inf

c
IV (τcτbµV ) ,

and this infimum is 0, reached at c = b since τb is an involution.

We could have also argued that, since the sequence µN converges to τbV µV and IDOS
V

is the rate function in the LDP for µN , this insures that IDOS
V (τbV µV ) = 0.

3.4 Proof of Theorem 2.9

It is enough to take c = κV (µ) in the lower bound (2.8) in Proposition 2.7 to obtain:

lim
δ↘0

lim inf
N→∞

2

βN2
ln(PNV,β(µN ∈ BWp(µ, δ))) ≥ −IDOS

V (µ) ,

which implies the lower bound for open sets.

For the upperbound, we take F = R in (2.9). 2

3.5 Proof of Proposition 2.7

Since the potential V is assumed to be a convex polynomial, it is lower bounded by
Vmin. Changing V into V − Vmin induces a change of cV into cV − Vmin, so in the above
proofs we may and shall assume V ≥ 0.
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If PNV,β is the distribution defined in (1.2), we denote by Q̄N the non normalized

measure Q̄NV,β = ZNV,βP
N
V,β. From [1, p.81], we know that:

lim
N→∞

2

βN2
ln(ZNV,β) = −cV .

Therefore, it is enough to prove the weak LDP for the measure Q̄N .
The proof will consist in two parts: the lower bound and the upper bound.

3.5.1 Proof of the lower bound

We need an approximation lemma whose second statement is an easy consequence
of Lemma 3.3 in [2] (see also [1] p. 79). Indeed, the statement is given there for the
distance of the weak convergence. Since the measure ν (and therefore its approximation)
has compact support, the same is true for the Wasserstein distance.

Lemma 3.1. i) Let µ ∈ Mp
1 (R+), for any δ > 0, there exists a compactly supported

probability ν such that dWp
(µ, ν) ≤ δ.

ii) Let ν be probability on a compact set in R+, with no atoms. Let (xi,N ) the sequence
of real numbers defined by

x1,N = inf{x ≥ 0| ν([0, x]) ≥ 1

N
} ,

xi+1,N = inf{x ≥ xi,N | ν(]xi+1,N , x]) ≥ 1

N
, 1 ≤ i ≤ N − 2} .

Then,

x1,N < xN−2,N < . . . < xN−1,N ,

and for any δ > 0 and N large enough,

dWp

(
ν,

1

N − 1

N−1∑
i=1

δxi,N

)
≤ δ.

Proof of i)
For M > 0 and µ ∈ Mp

1 (R+), we denote by µ̃M the compactly supported probability
defined by dµ̃M = (µ([−M,M ]))−11{|x|≤M}dµ.

It is easy to see that µ̃M converges weakly to µ as M tends to ∞. Moreover, by
dominated convergence theorem,

1

µ([−M,M ])

∫
|x|p1{|x|≤M}dµ(x)→M→∞

∫
|x|pdµ(x).

This implies the convergence in Wp distance (see Proposition 5.3, ii)). 2

To prove the lower bound (2.8), we will repeat almost verbatim the proof of [1] pp.
79-81, but follow step by step the rôle played by λ(N). We assume that I(c, µ) < ∞ so
that µ has no atoms. We can also assume that µ is compactly supported, by considering
µ̃M defined in Lemma 3.1. One can check that I(c, µ̃M )→ I(c, µ).

Recall that

µN =
1

N − 1

N−1∑
k=1

δλ(N)−λ(k)

where the λ(k) are the increasing sequence of eigenvalues.
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Then, if C = [c− δ′, c+ δ′] and B := BWp
(µ, δ),

Q̄N (λ(N) ∈ C, µN ∈ B)

= N !

∫
∆N∩{ 1

N−1

∑N−1
k=1 δλN−λk∈B,λN∈C}

L̂N (λ1, . . . λN )dλ1 . . . dλN (3.1)

where
∆N = {λ1 < λ2 < . . . < λN} , (3.2)

and

L̂N (λ) =
∏
i<j

|λi − λj |β exp(−βN
2

N∑
i=1

V (λi)) (3.3)

=
∏

i<j<N−1

|λ′i − λ′j |β
∏
i<N

|λ′i|β exp(−βN
2

(

N−1∑
i=1

V (λN − λ′i) + V (λN )))

:= LN ((λ′i)i<N , λN )

where {λ′i = λN − λi, i < N} is a decreasing family of positive numbers. Since the
density LN ((λ′i)i<N , λN ) is symmetric in (λ′i), we can write:

Q̄N (λ(N) ∈ C, µN ∈ B)

= N

∫
R
N−1
+ ×C ∩{ 1

N−1

∑N−1
k=1 δλ′

k
∈B}

LN (λ′1, . . . , λ
′
N−1, λN ))dλ′1 . . . dλ

′
N−1dλN .

From Lemma 3.1, for N ≥ Nδ,{
(λ′k)k : |λ′k − xk,N | ≤

δ

2
, ∀k < N

}
⊂

{
(λ′k)k :

1

N − 1

N−1∑
k=1

δλ′k ∈ B

}
,

and we can write LN as

LN =
∏

i<j<N

|(λ′i − xi,N )− (λ′j − xj,N ) + xi,N − xj,N |β
∏
i<N

|λ′i|β

× exp(−βN
2

(

N−1∑
i=1

V (λN − xi,N − (λ′i − xi,N )) + V (λN − c+ c))) .

Set yi = λ′i − xi,N , i < N and yN = λN − c. Then,

Q̄(µN ∈ B)

≥ N

∫
∆N (δ)

∏
i<j<N

|yi − yj + xi,N − xj,N |β
∏

i≤N−1

|yi + xi,N |β

exp(−βN
2

(

N−1∑
i=1

(V ((yN + c)− (yi + xi,N )) + V (yN + c)))
∏
i≤N

dyi

where

∆′N = {y1 < y2 < . . . < yN−1}
∆N (δ) = {(y1, . . . , yN ) : (yi)i<N ∈ [0, δ/2]N−1, yN ∈ [−δ, δ]} ∩∆′N .

Since on ∆′N , the (yi) and the (xi,N ) form both increasing sequences, we have the lower
bound:

|yi − yj + xi,N − xj,N | ≥ sup{|xi,N − xj,N |, |yi − yj |}
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Near-extreme eigenvalues in the beta-ensembles

and we use the same minoration as in [1] for the term

A :=
∏

i<j<N

|yi − yj + xi,N − xj,N |β

≥
∏

i+1<j<N

|xi,N − xj,N |β
∏

i<N−1

|xi,N − xi+1,N |β/2
∏

i<N−1

|yi − yi+1|β/2 .

For the second term, we use, since the yi and xi,N are positive,∏
i<N−1

|yi + xi,N |β ≥
∏

i<N−1

|yi|β .

We get:
Q̄(λ(N) ∈ C, µN ∈ B) ≥ PN,1PN,2 ,

where

PN,1 = N exp−βN
2

(
N−1∑
i=1

V (c− xi,N ) + V (c)

)
×

∏
i+1<j<N

|xi,N − xj,N |β
∏
|xi,N − xi+1,N |β/2 (3.4)

and

PN,2 =

∫
∆N (δ)

∏
i<N−1

|yi − yi+1|β/2|yi|β

× exp−βN
2

N−1∑
i=1

V (c− xi,N − yi + yN )− V (c− xi,N )

× exp−βN
2

[V (yN + c)− V (c)]
∏
i≤N

dyi .

Since we have assumed that µ is compactly supported, the sets {xi,N , 1 ≤ i ≤ N − 1} are
uniformly bounded and by continuity of V ,

lim
δ→0

sup
N

sup
1≤i≤N

sup
|x|≤δ

|V (c− xi,N + x)− V (c− xi,N ))| = 0 ,

and
lim
δ→0

sup
|x|≤δ

|V (c+ x)− V (c)| = 0 .

Moreover, writing u1 = y1, ui+1 = yi+1 − yi, with δ′′ = min(δ/2, δ′)∫
{(yi)i<N∈[0, δ2 ]N−1}∩∆′N∩{yN∈[−δ,δ]}

∏
i<N−1

|yi − yi+1|β/2|yi|β
∏
i≤N

dyi

≥
∫
{(ui)i<N∈[0, δ

′′
N ]N

uβ1 (u2 · · ·uN−1)3β/2u
β/2
N

∏
i≤N

dui

≥ C−N1

(
δ′′

N

)C1N

for some constant C1, which yields

lim
δ,δ′→0

lim inf
N

2

βN2
logPN,2 ≥ 0 .
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Near-extreme eigenvalues in the beta-ensembles

On the other hand, from the choice of the xi,N , we have

lim
1

N − 1

N−1∑
i=1

V (c− xi,N ) =

∫
V (c− x)dµ(x) .

Finally the product in (3.4) can be managed exactly as in [1] p. 80. We conclude

lim
δ′↘0

lim
δ↘0

lim inf
N

2

βN2
ln(Q̄(λ(N) ∈ C, µN ∈ B)

≥ −
∫ ∫

ln(y − x)dµ(x)dµ(y)−
∫
V (c− x)dµ(x)

which is the expected lower bound. 2

3.5.2 Proof of the upper bound

We start as in the proof of the lower bound with the representation (3.1). Formula (3.3)
can be rewritten as

2

β
ln(L̂N (λ)) = 2(N − 1)2

∫ ∫
x<y

ln(|x− y|)dµN (x)dµN (y)

+ 2(N − 1)

∫
ln(|x|)dµN (x)

− (N − 1)2

∫
V (λN − x)dµN (x)− (N − 1)V (λN )

−
N∑
i=1

V (λi) (3.5)

where µN = 1
N−1

∑N−1
k=1 δλN−λk , since we are on the set ∆N defined in (3.2).

Under Q̄N , the λi are a.s. distinct so (µN )⊗2({(x, y);x = y}) = 1
N−1 a.s.. Therefore, for

every M ∈ R we can write,

−2

∫ ∫
x<y

ln(|x− y|)dµN (x)dµN (y) =

−2

∫ ∫
x<y

ln(|x− y|)dµN (x)dµN (y) +M

(
(µN )⊗2({(x, y);x = y})− 1

N − 1

)
≥

∫ ∫
R2

(− ln(|x− y|) ∧M)dµN (x)dµN (y)− M

N − 1

:= −ΣM (µ)− M

N − 1
. (3.6)

We have assumed V ≥ 0 so the second term in the third line of (3.5) is non positive. For
the first term of the same line, notice that

−(N − 1)2

∫
V (λN − x)dµN (x) ≤ −(N − 1)2 inf

c∈F

∫
V (c− x)dµN (x) .

We bound the term in the second line of (3.5) by (N − 1)
∫
|x|dµN (x). On the event

{µN ∈ B}, we have

2

β
log L̂N (λ) ≤ −(N − 1)2 inf

ν∈B

(
−ΣM (ν) + inf

c∈F

∫
V dτcν

)
+(N − 1) sup

ν∈B

∫
|x|dν(x) + (N − 1)M

−
N∑
i=1

V (λi) .

EJP 21 (2016), paper 52.
Page 11/17

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4
http://www.imstat.org/ejp/


Near-extreme eigenvalues in the beta-ensembles

Since

N !

∫
∆N

exp−β
2

N∑
i=1

V (λi) =

[∫
exp−β

2
V (λ)dλ

]N
,

and supν∈B
∫
|x|dν(x) <∞, we obtain:

lim sup
N

2

βN2
ln(Q̄(λ(N) ∈ F, µN ∈ B) ≤ − inf

ν∈B

(
−ΣM (ν) + inf

c∈F

∫
V dτcν

)
.

To let δ → 0, we need semicontinuity in ν. We know that ΣM is lower semicontinuous.
Assume that F = [a,∞). Since V is convex, the infimum infc≥a

∫
V (c−x)dν(x) is reached

at c = κV (ν) or at c = a, so that

inf
c≥a

∫
V (c− x)dν(x) =

∫
V (max(a, κV (ν))− x)dν(x)

which is a lower semicontinuous function of ν.
We obtain:

lim
δ↘0

lim sup
N

2

βN2
ln(Q̄(λ(N) ∈ F, µN ∈ B)) ≤

−
(
−ΣM (µ) + inf

c∈F

∫
V (c− x)dµ(x)

)
. (3.7)

and since ΣM grows to Σ as M goes to infinity, this yields the upper bound (2.9).
The same is true for F =]−∞, a].
Now, take F a non empty closed set. If κV (µ) ∈ F , (3.7) is clearly true. If κV (µ) /∈ F ,

then κV (ν) /∈ F for ν ∈ B for small δ. Denote by a− = sup{x < κV (µ), x ∈ F} and
a+ = inf{x > κV (µ), x ∈ F}. Then, F ⊂]−∞, a−] ∪ [a+,∞[ and

lim
δ↘0

lim sup
N

1

N2
ln(Q̄(µN ∈ B, λ(N) ∈ F )) ≤

−
(
−ΣM (µ) +

∫
V (a− − x)dµ(x) ∧

∫
V (a+ − x)dµ(x)

)
. (3.8)

The last term in the above equation is infc∈F
∫
V (c− x)dµ(x). 2

3.6 Proof of Propostion 2.11 and Theorem 2.12

From Corollary 2.8, we have

lim sup
2

βN2
lnPNV,β(µN ∈ F, λ(N) ∈ [a, b]) ≤ − inf

µ∈F,c∈[a,b]
IV (c, µ) , (3.9)

as soon as F is compact. To extend this property to closed sets, we follow the classical
way and prove:

Lemma 3.2. Let q < p. For any −∞ < a < b <∞ and M > 0, there exists a compact set
Ka,b,M of Mq

1 (R+) such that

lim sup
N

2

βN2
ln(PNV,β(λ(N) ∈ [a, b], µN /∈ Ka,b,M )) ≤ −M . (3.10)

Proof. Let

KM := {µ ∈Mp
1 (R+) :

∫
|V |dµ ≤M} ,

which is compact of Mq
1 (R+) from Proposition 5.3.
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Near-extreme eigenvalues in the beta-ensembles

With our assumptions on the potential V , there exists c1, c2 > 0 such that

|V (x)| ≤ c1xp + c2 ,

Let a < b and C = sup{|a|, |b|}.
For N ≥ 2, using the convexity of xp

{µN (V ) ≥M} ∩ {λ(N) ∈ [a, b]} ⊂ {µ(N)(V ) ≥M ′}

where

M = c1(Cp2p−1 + 2p−1M ′) + c2 .

It remains to use the exponential tightness for the ESD µ(N), see [1], p. 77) where it is
shown that:

lim sup
N

2

βN2
ln(PNV,β(µ(N) /∈ KM̄ )) ≤ −M

where M̄ is an affine function of M . From Lemma 3.2, (3.9) is satisfied for F a closed set
of Mq

1 (R+). 2

3.6.1 Proof of Proposition 2.11

By Proposition 2.5, we know that for ∆ = [−C,C] large enough, then PNV,β(λ(N) ∈ ∆)→ 1,
so that

lim
N

2

βN2
lnPNV,β(λ(N) ∈ ∆) = 0 ,

and then, for a closed set F,

lim sup
N

2

βN2
lnPNV,β(µN ∈ F | λ(N) ∈ ∆) =

lim sup
N

2

βN2
lnPNV,β(µN ∈ F, λ(N) ∈ ∆)

≤ − inf
µ∈F,c∈∆

IV (c, µ) , (3.11)

from (3.9) for closed sets. Now, we use the easy bound

inf
µ∈F,c∈∆

IV (c, µ) ≥ inf
µ∈F,c∈(−∞,∞)

IV (c, µ) = inf
µ∈F

IDOS
V (µ) .

3.6.2 Proof of Theorem 2.12

We use Proposition 2.5 to estimate the probabilities of the conditioning events. On the
one hand (3.9) for closed sets and (2.3) lead to (2.13) and on the other hand (3.9), (2.4)
and Remark 2.13 lead to (2.17), using that J−V is decreasing on [−∞, bV ].

For the lower bounds, we use the lower bound coming from the LDP for both variables
(Theorem 2.7 (1) or Corollary 2.8) and (2.3) and (2.4), respectively.

It remains to prove (2.15) and (2.19), but it is straightforward since

lim
δ→0

inf
a∈[c,c+δ]

∫
V (a− x)dµ(x) = lim

δ→0
inf

a∈[c−δ,c]

∫
V (a− x)dµ(x)

=

∫
V (c− x)dµ(x) .
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4 Fluctuations

We want to study the fluctuations of µN around its limit νV given in (2.5). There are
two contributions: the fluctuations of the largest eigenvalue and the fluctuations of the
ESD. This yields a dichotomy according to the behavior of the test function. For the sake
of simplicity, we choose a simple assumption on the test function f which is far from
optimal. For V and β we introduce a new assumption:

Assumption 4.1. V satisfies Assumption 2.2 and β = 1, 2, 4, or V (x) = x2/2 and β > 0.

Proposition 4.2. Let f be a bounded C2 function with two bounded derivatives.

1. If V and β satisfy Assumption 4.1 and if νV (f ′) 6= 0,

N2/3 (µN (f)− νV (f))⇒ νV (f ′)TWβ ,

where TWβ denotes the Tracy-Widom distribution of index β (see [12] for a defini-
tion), and where⇒ denotes the convergence in distribution.

2. If V satisfies Assumption 2.2 and β > 0 and if νV (f ′) = 0,

N (µN (f)− νV (f))⇒ N (−f(0) +mV (f), σ2
V (f))

where

σ2
V (f) =

1

4β

∞∑
k=1

ka2
k , (4.1)

with

ak =
2

π

∫ π

0

f

(
bV − aV

2
(1− cos θ)

)
cos kθdθ ,

and

mV (f) =

(
2

β
− 1

)∫
f(bV − t)dγV (t) (4.2)

where γV is a signed measure on [aV , bV ] given by formula (3.54) in [8].

Let us notice, from Remark 3.5 in [8], that in the Gaussian case, V (x) = x2/2, then

dγV (t) =
1

4
δ−2 +

1

4
δ2 −

1

2π

dt√
4− t2

.

Proof. Let H > bV − aV . Set KH the random set defined by

KH = {(λ(1), · · · , λ(N)) : bV −H ≤ λ(1) ; λ(N) ≤ bV +H} ,

and

M = max

{
1

2
sup

x∈[−2H,2H]

|f ′′(x)|, sup
x∈[−H,H]

|f(x)|, sup
x∈[−H,H]

|xf ′(x)|

}
.

Setting

SN (f) := (N − 1)µN (f) =

N−1∑
1

f(λ(N) − λ(k)) ,

we make a Taylor expansion of f :

f(λ(N) − λ(k)) = f(bV − λ(k)) + εNf
′(bV − λ(k)) + rk,N (f) ,

with
εN := λ(N) − bV
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and
|rk,N (f)|1KH ≤Mε2

N .

Adding,

SN (f) =

N−1∑
1

f(bV − λ(k)) + εN

N−1∑
1

f ′(bV − λ(k)) +

N−1∑
1

rk,N

=

N∑
i=1

f(bV − λi) + εN

N∑
i=1

f ′(bV − λi) +RN (f) (4.3)

where

RN (f) :=

N−1∑
1

rk,N (f) − f(−εN )− εNf ′(−εN ) ,

satisfies
|RN (f)|1KH ≤M(Nε2

N + |εN |+ 1) . (4.4)

Setting

∆N (f) :=
N∑
i=1

f(bV − λi)−NνV (f)

=

N∑
i=1

f(bV − λi)−N
∫
f(bV − x)dµV (x) , (4.5)

(4.3) gives

SN (f)−NνV (f) = NεNνV (f ′) + ∆N (f) + εN∆N (f ′) +RN (f) . (4.6)

The two sources of fluctuations are the convergences of εN (rescaled) and ∆N (f).
On the one hand we know (Prop. 2.5) that

εN → 0 in probability , (4.7)

and the fluctuations are ruled by

N2/3εN ⇒ TWβ . (4.8)

(see [4] in the cases β = 1, 2, 4, and [12] for the Gaussian case and β > 0).
On the other hand, under our assumptions on V and f ,

∆N (f)⇒ N (mV (f);σ2
V (f)) , (4.9)

where mV (f) and σ2(f) are given by (4.2) and (4.1), respectively (see ([8] Theorem 2.4)).
1. If νV (f ′) 6= 0, we set, for the sake of simplicity

N−1/3[SN (f)−Nν(f)] = N2/3εNνV (f ′) +R′N (f) .

We have then, if Φ(f) := E[exp[iν(f ′)TWβ ],

EeiN−1/3[SN (f)−Nν(f)] − Φ(f) =

EeiN2/3εNν(f ′) − Φ(f)

+ E
(

eiN2/3εNν(f ′)
[
eiR′N (f) − 1

]
1KH

)
+ E

(
eiN2/3εNν(f ′)

[
eiR′N (f) − 1

]
1Kc

H

)
. (4.10)
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• The first term converges to zero, thanks to (4.8).

• The second term is bounded by E (|R′N (f) ∧ 2|1KH ) which tends to zero since on
KH

|R′N (f)| ≤ N−1/3|∆N (f)|+N−1/3εN∆N (f ′)

+MN2/3(εN )2 +MN−1/3(|εN |+ 1)

and each of these terms tends to zero in probability, thanks to (4.9) and (4.7).

• The third one is bounded by 2P((KH)c) which tends to zero, since the extreme
eigenvalues tend to the endpoints of the support.

This allows to conclude that

N2/3 (µN (f)− τbV µV (f))⇒ νV (f ′)TWβ .

2. If ν(f ′) = 0, then,

SN (f)−Nν(f) = ∆N (f)− f(0) + εN∆N (f ′) + R̃N (f) , (4.11)

with

R̃N (f) :=

N−1∑
1

rk,N (f) − (f(−εN )− f(0))− εNf ′(−εN ) .

From (4.9),
∆N (f)− f(0)⇒ N (−f(0) +mV (f);σ2

V (f)) .

Moreover εN∆N (f ′) and R̃N (f)1KH tend to 0 in probability. The rest of the proof goes
as before. 2

5 Appendix

We give some properties of the Wasserstein distance dWp .

Definition 5.1. Let p ∈ [1,∞[, and Mp
1 (R) = {ν ∈ M1(R),

∫
|x|pdν(x) < ∞}. For two

probabilities µ and ν in Mp
1 (R), the Wasserstein distance of order p is defined by

dWp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
R

|x− y|pdπ(x, y)

)1/p

(5.1)

where Π(µ, ν) is the set of probabilities on R2 with first marginal µ and second marginal
ν.

Remark 5.2. For the Wasserstein distance of order 1, we have the duality formula

dW1
(µ, ν) = sup

‖f‖Lip≤1

(∫
fdµ−

∫
fdν

)
.

We now give a characterization of the convergence of probabilities in the topology
induced by dWp

on Mp
1 (R). We refer to [13, Def. 6.8 and Theorem 6.9].

In the following, we denote by µn → µ the weak convergence of probabilities, i.e. against
bounded continuous functions.

Proposition 5.3. Let (µn)n≥0 a sequence of probabilities in Mp
1 (R) and µ ∈Mp

1 (R). The
following assertions are equivalent:

i) dWp
(µn, µ)→ 0,

ii) µn → µ and

∫
|x|pdµn(x)→

∫
|x|pdµ(x),
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iii) µn → µ and lim sup
n→∞

∫
|x|pdµn(x) ≤

∫
|x|pdµ(x),

iv) µn → µ and lim
R→∞

lim sup
n→∞

∫
|x|≥R

|x|pdµn(x) = 0,

v) For all continuous functions f with |f(x)| ≤ C(1 + |x|p), one has∫
f(x)dµn(x)→

∫
f(x)dµ(x) .

The condition in iv) is the condition of tightness, or relative compactness, in (Mp
1 (R),

dWp
). In particular, it follows that, for any M ∈ R, the set

KM := {µ,
∫
|x|pdµ(x) ≤M}

is a compact set in (Mq
1 (R), dWq ) for any q < p.
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