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Abstract

A key insight from statistical physics about spin systems on random graphs is the cen-
tral role played by Gibbs measures on trees. We determine the local weak limit of the
hardcore model on random regular graphs upto a density for the largest independent
set that is bounded by and goes asymptotically to the condensation threshold. We
show that the hardcore measure converges in probability locally in a strong sense to
the free boundary condition Gibbs measure on the tree. As a consequence we show
that the reconstruction threshold on the random graph, indicative of the onset of point
to set spatial correlations, is equal to the reconstruction threshold on the d-regular
tree for which we determine precise asymptotics. We expect that our methods will
generalize to a wide range of spin systems for which the second moment method
holds.
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1 Introduction

In this paper we consider the hardcore model on random d-regular graphs and study
its local spatial mixing properties. We determine the location of a phase transition
where the model undergoes a spatial mixing transition after which the spin at a typical
vertex becomes dependent over long distances. Theory from statistical physics relates
this transition to the clustering or shattering threshold. These transitions appear
to be related to the absence of efficient algorithms finding large independent sets,
although no hardness results are known for random satisfiability problems. Currently, no
algorithms are known to find independent sets of size (1+ε) log d

d n in a random d-regular
graph on n vertices, which coincides with the spatial mixing threshold. In contrast the
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Decay of correlations for the hardcore model

maximal independent set is of size (2−od(1)) log d
d n [16]. In this work, we show that the

reconstruction or extremality threshold on the infinite d-regular tree determines the
onset of long distance point to set spatial correlations in the random d-regular graph.
We prove an asymptotic lower bound on the reconstruction threshold which matches
the known upper bound in the first two terms of the asymptotic series. Together, these
results determine the asymptotic location of the threshold for the random d-regular
graph for the onset of point to set correlations over long distances.

In a finite graph G = (V,E), an independent set is a subset of the vertices containing
no adjacent vertices. Denote the set of independent sets as I(G). We will view an
independent set as a spin configuration σ, taking values in {0, 1}V with σv denoting the
spin at the vertex v. We say a vertex or site v is occupied in σ if σv = 1. The hardcore
model (or hardcore measure) is the probability measure over the set of independent sets
σ ∈ I(G) given by

P(σ) =
1

Z
λ
∑
v∈V σv1σ∈I(G). (1.1)

The parameter λ > 0 is known as the fugacity and controls the typical size of an
independent set with larger values of λ putting more of the weight of the distribution
on larger independent sets. As usual, Z is a normalizing constant called the partition
function. The definition of Gibbs measures and the hardcore model in particular can
be extended to infinite graphs by way of the Dobrushin-Lanford-Ruelle condition which
essentially says that for every finite set A, the probability of a configuration on A is given
by the Gibbs distribution given by a random boundary generated by the measure outside
of A. Such a measure is called a Gibbs measure, and it may not be unique (see e.g. [18]
for more details).

On the infinite d-regular tree Td, there is a unique Gibbs measure for the hardcore

model if and only if λ ≤ (d−1)d−1

(d−2)d
. However, for every λ, there exists a translation

invariant Gibbs measure given by a Markov model on the tree which we denote by PTd
(henceforth, we refer to this as “the translation invariant measure" on Td). We denote
the density of PTd , that is, the probability that a site is occupied, by α = α(λ, d) which
satisfies the relation

λ =
α

1− 2α

(
1− α
1− 2α

)d−1

. (1.2)

Since α = α(λ, d) is a strictly monotone increasing function of λ we will use both
parameters interchangeably to specify the model depending on the context. The density
of the largest independent set of a d-regular random graph is asymptotically (2 log d−
(2 + od(1)) log log d)/d [16]. The results we present hold very close to this threshold, up to

α < αc(d) :=
(2 log d− (3 + od(1)) log log d)

d
.

We take λc to be the corresponding value of λ. The bulk of this paper is devoted to estab-
lishing that the hardcore measure on the random d-regular graph is well approximated
locally by the measure PTd when λ < λc. We prove that the measure converges in a
strong notion of local weak convergence described in Section 1.2.

Theorem 1. Let Gn be the random d-regular graph on n vertices. Then for large enough
d, the hardcore measure on Gn with fugacity λ < λc converges in probability locally to
the measure PTd .

Our methods provide a general framework for proving convergence in probability
locally which we expect will apply to various other Gibbs measures on random graphs
such as colorings or NAE-SAT. Having established Theorem 1, it is natural to consider
properties of the measure PTd . The set of Gibbs measures is convex and so we may
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Decay of correlations for the hardcore model

ask whether PTd is extremal, that is, it is not a convex combination of other Gibbs
measures. Extremality is equivalent to a notion of point to set correlation on trees called
the reconstruction problem (for a survey, see [30]).

To formalize the definition of the problem, we will make use of a description of PTd as
a Markov model on the tree generated as follows. First the spin at the root is chosen to
be occupied with probability α and unoccupied with probability 1− α, where α is chosen
as in (1.2). The spins of the remaining vertices of the graph are generated from their
parents’ spins by taking one step of the Markov transition matrix

M =

(
p11 p10

p01 p00

)
=

(
0 1
α

1−α
1−2α
1−α

)
,

where pij denotes the probability of the spin at a vertex being j given that the spin of the
parent is state i. Since (α, 1− α) is reversible with respect to M this gives a translation
invariant measure on Td which corresponds to the measure PTd with fugacity λ.

Let σ(L) denote the spins of the vertices L = L(`) at depth ` in the tree, as generated
by the Markov model described above. The reconstruction problem on the tree asks if
we can recover information on σx, the spin of the root x from the spins σ(L) as `→∞.
Formally, we say that the model (Td,M) has non-reconstruction if

lim
`→∞

PTd(σx = 1|σ(L))→ α(λ, d) (1.3)

in probability as `→∞, and otherwise, the model has reconstruction. Non-reconstruction
is equivalent to extremality of the Gibbs measure or that the tail σ-algebra of the Gibbs
measure is trivial [30].

Information theoretically, non-reconstruction corresponds to fast decay of correlations
between the spin at the root and the spins of far away vertices [30]. Proposition 12
of [29] implies that there exists a critical fugacity λR (or, equivalently, a critical density
αR) such that reconstruction holds for the hardcore model with fugacity λ > λR and non-
reconstruction holds for λ < λR. The reconstruction problem on the tree was originally
studied as a problem in statistical physics but has since found many applications including
in computational phylogenetic reconstruction [12], the study of the geometry of the
space of random constraint satisfaction problems (CSP’s) [1, 22] and the mixing time of
Markov chains [4, 9, 25, 33, 38].

Here we establish tight bounds on the reconstruction threshold for the hardcore
model on the d-regular tree1. The upper bound was shown by Brightwell and Winkler [10],
and our contribution is the lower bound.

Theorem 2. For large enough d, the reconstruction threshold for PTd on the d-regular
tree satisfies

(log 2− od(1)) log2 d

2 log log d
≤ λR ≤ (e+ od(1)) log2 d.

Prior to our work, Martin [24] had shown that λR > e− 1. Restating Theorem 2 in
terms of α we have that the critical density for reconstruction satisfies

1

d
(log d+ log log d− log log log d− log 2 + log log 2− od(1))

≤ αR ≤
1

d
(log d+ log log d+ 1 + od(1)) (1.4)

leaving only an additive (log log log d)/d gap between the bounds. The form of our bound
in equation (1.4) is strikingly similar to the bound for the q-coloring model [35] which

1This result previously appeared in extended abstract form in [5].
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states that reconstruction (resp. non-reconstruction) holds when the degree d is at least
(resp. at most) q(log q + log log q +O(1)).

The next theorem, combined with Theorem 2 gives a precise picture of the local
spatial mixing properties of the hardcore model on the random d-regular graph. In [19] a
natural extension of the reconstruction problem was introduced for graphs. Let {Gn} be
a family of random graphs whose size n goes to infinity, and let σ be distributed according
to the hardcore model with fugacity λ. We will use σ(S) to denote the configuration
on a subset of vertices S and σv to denote the spin at a vertex v. The model has
non-reconstruction if for a uniformly chosen u ∈ V (Gn),

lim
`→∞

lim sup
n

E

∣∣∣P(σu = 1|σ(∂Bu(`)), u
)
− α(λ, d)

∣∣∣ = 0 (1.5)

where Bu(`) denotes the vertices within distance ` of u (and by abuse of notation, the
induced subgraph), ∂Bu(`) denotes the boundary of Bu(`) and α(λ, d) is the density
given by (1.2). Here, the expectation is over the choice of the random vertex u and the
configuration on the boundary ∂Bu(`).

Theorem 3. Let λ < λc and let α(λ, d) be the density given by (1.2). Let Gn be the
random d-regular graph on n vertices and let u be a uniformly random vertex in V (Gn).
Then, for large enough d,

PTd(σx = 1|σ(L))
P→ α(λ, d) as `→∞
⇔

lim
`→∞

lim sup
n

E

∣∣∣∣P(σu = 1|σ(∂Bu(`)), u
)
− α(λ, d)

∣∣∣∣ = 0.

That is, the random d-regular graph has non-reconstruction if and only if (Td,M) has
non-reconstruction.

1.1 Related work

A significant body of work has been devoted to the reconstruction problem on the d-
regular tree by probabilists, computer scientists and physicists for a number of different
spin configuration models. The earliest such result is the Kesten-Stigum bound [21]
which states that for a Markov model defined on the tree, reconstruction holds whenever
θ2(d − 1) > 1, where θ is the second largest eigenvalue of the corresponding Markov
matrix. This bound was shown to be tight in the case of the Ising model [7, 14] where
it was shown that non-reconstruction holds when θ2(d − 1) ≤ 1. Similar results were
derived for the Ising model with small external field [9] and the 3-state Potts model [34]
which constitute the only models for which exact thresholds are known. On the other
hand, for the hardcore model θ2(d− 1) = (1 + od(1)) 1

d log2 d and thus at least when d is
large, the Kesten-Stigum bound is known not to be tight [10].

In both the coloring model and the hardcore model the reconstruction threshold is far
from the Kesten-Stigum bound for large d. In the coloring model close to optimal bounds
on the reconstruction threshold [6, 35] were obtained by first showing that, when n

is small, the information on the root is sufficiently small. Then a quantitative version
of [20] establishes that the information on the root converges to 0 exponentially quickly.
In this work, we show that the hardcore model behaves similarly.

1.1.1 Replica symmetry breaking and finding large independent sets

The reconstruction problem plays a deep role in the geometry of the space of solutions
of random CSPs. While for problems with few constraints the space of solutions is
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connected and finding solutions is generally easy, as the number of constraints increases
the space may break into exponentially many small clusters. Physicists, using powerful
but non-rigorous “replica symmetry breaking” heuristics, predicted that the clustering
phase transition exactly coincides with the reconstruction region on the associated
tree model [23, 22]. This picture was rigorously established (up to first order terms)
for the coloring and satisfiability problems [1, 28]. When solutions are far apart, local
search algorithms will in general fail. Indeed for both the coloring and SAT models, no
algorithm is known to find solutions in the clustered phase. It has been conjectured to
be computationally intractable beyond this phase transition [1].

Previous results [19, 28] have related the reconstruction problem on the Poisson tree
with constant expected degree with reconstruction in sparse random graph ensembles.
These results established a “replica” condition saying that the empirical distribution
of pairs of spins at a vertex from two independent configurations are from a product
measure. This does not apply in the case of the hardcore model since the degree of a
vertex affects its probability of being in the independent set. At the same time, for the
d-regular random graph the methods of [28] do not seem to be directly applicable and
we approach the problem instead using the theory of local weak convergence of Gibbs
measures.

The associated CSP for the hardcore model corresponds to finding large independent
sets in random d-regular graphs. For the Erdös-Rényi random graph of average degree
d or the random regular graph of degree d it was shown that there exist independent
sets of density (2−od(1)) log d

d [16, 15]. On the other hand the best known algorithm finds

independent sets only of density (1+od(1)) log d
d [39], which is equal to αR asymptotically

as d → ∞ [5], and is roughly half the density of the largest independent set. It has
been shown that local algorithms will fail to find or sample from dense independent
sets beyond this threshold [17, 11]. It was shown that asymptotically close to the
reconstruction threshold independent sets exhibit the same clustering phenomena in
random regular graphs [32, 17] and Erdős-Renyi random graphs [11] as colorings and
SAT [1, 22].

On the other hand, in the statistical physics community, it was thought until recently
that the hardcore model behaves differently from the coloring or SAT [3]. Statistical
physicists had shown that as the density of occupied sites increases, the hardcore
model undergoes a continuous phase transition, rather than a discontinuous transition
as the mathematical work suggests. In [3] the authors address this discrepancy and
use the cavity method to predict that for graphs of small degree (d < 16), the phase
transition is indeed continuous while for d > 16, the model should have a discontinuous
phase transition at a location agreeing with the theoretical work showing clustering and
reconstruction [11, 5]. By determining the reconstruction threshold on random regular
graphs we provide further evidence supporting the connection of the reconstruction
threshold with the computational hardness of finding large independent sets in random
graphs.

Just below the satisfiability threshold many CSPs including the hardcore model
are believed to undergo an additional phase transition, different from the clustering
transition, called condensation [22, 26, 3]. Beyond the condensation transition the
second moment method fails and the distribution places most of its weight on a constant
number of clusters. For k-colorings on the Erdös-Rényi random graph, the cavity method
predicts a precise location for the condensation transition [26] in terms of a distributional
fixed point problem. For a sufficiently large number of colors, Bapst et al. [2] have
proved that the condensation transition occurs exactly at this value. As far as we know,
there is no precise conjecture about the location of the condensation transition in the
case of the hardcore model although Barbier et al. [3] use another heuristic known as
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the “1RSB approach" to conjecture that the transition exists and give its asymptotic
location. After the condensation transition it is believed that the hardcore measure no
longer converges locally to PTd explaining the necessity of an upper bound on λ in our
theorems.

1.2 Local weak convergence

There are a number of natural notions of local weak convergence of Gibbs measures
and we introduce these now, following the notation used in [27]. Let Td denote the space
of hardcore Gibbs measures on Td endowed with the topology of weak convergence
and letMd to be the space of probability measures over Td. For a sequence of graphs
Gn we denote a hardcore measure by µn while ν denotes a hardcore measure on Td.
The notation Td(`) will denote the restriction of the tree Td to a ball of radius ` around
the root (and by abuse of notation, we also use it to denote the set of vertices of the
restriction). The shorthand ν` denotes the restriction of the corresponding measure to a
ball of radius ` around the root. For a measure on Gibbs measures m ∈ Md, we let m`

denote the measure on the space of measures on {0, 1}Td(`) induced by such projections.

Definition 1.1. Consider a sequence of graphs-Gibbs measure pairs {(Gn, µn)}n∈N and
for v ∈ V (Gn), let P`n(v) denote the law of the pair (Bv(`), σ(Bv(`))) when σ is drawn with
distribution µn. Let Un denote the uniform measure over a random vertex u ∈ V (Gn).
Let P`n = EUn(P`n(u)) denote the average of P`n(u). Let δTd(`) denote the Dirac measure
on graphs which is 1 on Td(`).

A. The first mode of convergence concerns picking a random vertex u and a random
local configuration in the neighbourhood of u. Formally, for ν̄ ∈ Td we say that
{µn}n∈N converges locally on average to ν̄ if for any `,

lim
n→∞

dTV

(
P`n, δTd(`) × ν̄`

)
= 0. (1.6)

B. A stronger form of convergence involves picking a random vertex u and the asso-
ciated random local measure P`n(u) and asking if this distribution of distributions
converges. Formally, we say that the local distributions of {µn}n∈N converge locally
to m ∈Md if it holds that the law of P`n(u) converges weakly to δTd(`) ×m` for all `.

C. If m is a point mass on ν̄ ∈ Td and if the local distributions of {µn}n∈N converge
locally to m then we say that {µn}n∈N converges in probability locally to ν̄. Equiva-
lently convergence in probability locally to ν̄ says that for any ` and any ε > 0 it
holds that

lim
n→∞

Un
(
dTV(P

`
n(u), δTd(`) × ν`

)
> ε) = 0. (1.7)

Remark 1.2. As noted in [27], C ⇒ B ⇒ A while in [37] it is noted that if the measures
ν are extremal Gibbs measures then the three notions of convergence A, B and C are
equivalent.

At a high level, convergence locally on average to ν means that after averaging
the local distribution of configurations over all the vertices, the random configuration
converges weakly to ν while convergence in probability locally to ν means that the local
distribution at almost every vertex is close to ν eventually. As noted above the former
is a weaker condition and is in fact much simpler to prove. One can apply the second
moment method for the hardcore model on the random d-regular graph for a large range
of λ to relate the hardcore measure to its planted version where one first chooses a
random independent set and then constructs a uniformly chosen graph compatible with
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the set. By exploring the graph in the planted measure by progressively revealing its
edges one can show convergence locally on average to the measure PTd and via the
second moment method this can be extended to the original hardcore distribution. This
argument does not imply the stronger local convergence in probability and indeed, if
one assumes the picture developed in statistical physics, in the condensation phase one
expects local convergence of type A but not convergence of type B or C.

In order to investigate the reconstruction problem it is necessary to work with
local convergence in probability. Much of the work of the paper involves showing how
the second moment method can be used to imply this stronger notion of convergence.
Thus, our proof shows that for the hardcore model, up to the fugacity for which the
second moment method holds, the notions A and C of local convergence of measures
are equivalent. Our methods are quite general and should apply to a broad range of
CSPs and Gibbs measures on graphs. Roughly speaking, one would need to show a
corresponding bound on the second moment of the partition function and concavity
of the log-partition function. One would also need to show that the partition function
changes by a bounded amount when an edge is added and as such, our method should
be applicable to non-zero temperature models.

1.3 Outline of the proof

We begin by establishing a lower bound on the reconstruction threshold for the
d-regular tree in Section 2, proving Theorem 2. We show that when α is bounded by
the lower bound in (1.4) then even for a tree of depth 3 there is already significant loss
of information of the spin at the root. In particular we show that if the spin of the root
was 1 then the typical posterior probability that the spin of the root is 1 given the spins
at level 3 will be less than 1

2 . The result is completed by linearizing the tree posterior
probability recursion similarly to [9, 34]. In this part of the proof we closely follow the
analysis of [9] who analyzed the reconstruction problem for the Ising model with small
external field. We do not require the full strength of their analysis, however, as in our
case we are far from the Kesten-Stigum bound. We show that a quantity referred to as
the magnetization decays exponentially fast to 0. The magnetization provides a bound
on the posterior probabilities and this completes the result.

The log log d term in our bound on λR in Theorem 2 is explained as the first point
at which there is significant decay of information at level 3 on the tree. In particular
the analysis in Proposition 2.3 part c) is essentially tight. It may be possible to get
improved bounds by considering higher depth trees although the description of the
posterior distribution necessarily becomes more complex. A sharper analysis of this sort
was done in [35] for the coloring model although the method there made crucial use of
the symmetry of the states.

The bulk of the paper concerns proving local weak convergence to PTd for the
hardcore model on the random d-regular graph and this is shown in Theorem 5.4 in
Section 5. Our main tool is a new approach to the use of the second moment method.
We select say, n

3
5 randomly chosen vertices in the d-regular random graph, and consider

a “punctured” graph with the local neighborhoods of these vertices removed. The
punctured graph is used to study the partition function of the original graph conditional
on the configuration of the boundaries of these neighborhoods. The second moment
method in combination with Azuma’s inequality implies that the partition function
conditioned on a boundary configuration is within a multiplicative factor of exp(O(n

1
2 +ε))

of the expected partition function. We prove convergence in probability locally by
showing that it is extremely unlikely that a constant fraction of the n

3
5 randomly chosen

vertices have a local measure which is far from the translation invariant measure on
the tree. Indeed, we show that this would entail the existence of a set of configurations
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on the set of boundary vertices which has a constant probability under the hardcore
measure but expected probability of only exp(−cn 3

5 ). In Proposition 5.1 we show that
this is precluded by the second moment method.

One strength of our approach is that it does not require the detailed calculations of
the small graph conditioning method. In many spin systems, including the one studied
here, the ratio of the second moment of the partition function to the square of the first
moment tends to a value greater than 1 and so the second moment method cannot be
used to estimate the partition function with probability tending to 1. In this case, small
graph conditioning can be used to give estimates on the partition function [40].

The first and second moments of the hardcore partition function for a d-regular
random graph are derived in Section 3 while the calculations for the punctured random
graph appear in Section 4. The remaining proof involves establishing the requisite bound
on the second moment itself. This involves determining the maximum of a function which
corresponds to the expected log number of pairs of independent sets in a random regular
graph with a given overlap between them. In Proposition 3.2, which is proved in Section
6, we consider the scaled log-partition function, determine its maximum and show that it
decays quadratically near its maximum. This is a key fact used in relating the first and
second moments of the partition functions of the random graph in Section 4.

Acknowledgements
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2 Upper bound on the reconstruction threshold on the tree

In this section we present the proof of Theorem 2. We start by noting that for any
finite restriction of Td to its first ` levels, we can use the Markov matrix M as before to
generate an independent set σ from the hardcore measure by setting the spin of the root
to be occupied with probability α and then applying the matrix as before to generate the
spins at the children recursively until we reach the leaves of the tree.

We define the following quantities which are related to the transition probabilities of
the Markov matrix M . Let

π01 =
1− α
α

, ∆ := π01 − 1 =
1− 2α

α
, and

θ := p00 − p10 = p11 − p01 = − α

1− α
.

As mentioned in the introduction, θ, the second eigenvalue of M , plays a particularly
important role in the reconstruction problem.

For ease of notation, we will establish non-reconstruction for the model (T̃d,M)

where T̃d is the d-ary tree (where each vertex has d children) rather than on the d-regular
tree. It is not difficult to modify the recursion we will obtain for the d-ary tree to a
recursion for the (d+ 1)-regular tree, showing that non-reconstruction also holds in that
case. Finally, we can show that non-reconstruction on the d-regular tree is equivalent to
non-reconstruction on the (d + 1)-regular tree once we note that in equation (1.4) we
have that αR(d+ 1)− αR(d) = od(1) so the difference can be absorbed in the error term.
We will use T to denote a finite tree (not necessarily (d+ 1)-regular) whose root will be
denoted by x. We let PT denote the measure on independent set of T obtained using the
Markov model on the tree where the root is chosen to be occupied with probability α and
the spin of each vertex is chosen according to an independent channel M given the spin
of its parent. Let P1

T ,E
1
T (and resp. P0

T ,E
0
T and PT ,ET ) denote the probabilities and
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expectations with respect to the measure on the leaves of T obtained by conditioning on
the root x to be 1 (resp. 0, and stationary). Let L = L(`) denote the set of vertices of T
at depth ` and let σ(L) denote the configuration on level `. We will write PT (·|σ(`) = A)

to denote the measure conditioned on the leaves being in state A ∈ {0, 1}L.
As in [9] we analyze the weighted magnetization of the root of T which is a function of

the random configuration the vertices at distance ` from the root and defined as follows:

X = X(`) := (1− α)−1[(1− α)PT (σx = 1|σ(L))− αPT (σx = 0|σ(L))]

=
1

π01

(
PT (σx = 1|σ(L))

α
− 1

)
. (2.1)

Notice that since ET (PT (σx = 1|σ(L))) = PT (σx = 1) = α, by (2.1), we have that
ET (X) = 0. Also, from the first line of (2.1), it can be verified that X ≤ 1 since
PT (σx = 1|σ(L) = A) ≤ 1 for any A. We will also make use of the following second
moments of the magnetization.

X = X(`) := ET (X2), X1 = X1(`) := E1
T (X2), X0 = X0(`) := E0

T (X2) (2.2)

The following equivalent definition of non-reconstruction is well known and follows from
the definition in (1.3) using (2.1).

Proposition 2.1. Non-reconstruction for the model (T̃d,M) is equivalent to

lim
`→∞

X = 0.

In the remainder of the proof we derive bounds for X. We begin by showing that
already for a 3 level tree, X becomes small. Then we establish a recurrence along the
lines of [9] that shows that once X is sufficiently small, it must converge to 0. As this
part of the derivation follows the calculation in [9] we will adopt their notation in places.
Non-reconstruction is then a consequence of Proposition 2.1. In the next lemma we
determine some basic properties of X.

Lemma 2.2. For any finite tree T , the following relations hold:

a) ET (X) = αE1
T (X) + (1− α)E0

T (X).

b) X = αX1 + (1− α)X0.

c) E1
T (X) = π01X and E0

T (X) = −X.

Proof. Note that for any random variable Y = Y (A) which depends only on the states at
the leaves, we have ET (Y ) = αE1

T (Y ) + (1− α)E0
T (Y ). Parts a) and b) therefore follow

since X is a random variable that is a function of the states at the leaves. For part c) we
proceed as follows. The first and last equalities below follow from (2.1).

E1
T (X) = π−1

01

∑
A

PT (σ(L) = A|σx = 1)

(
PT (σx = 1|σ(L) = A)

α
− 1

)
= π−1

01

∑
A

PT (σ(L) = A)
PT (σx = 1|σ(L) = A)

α

(
PT (σx = 1|σ(L) = A)

α
− 1

)
= π−1

01

(
ET ((PT (σx = 1|σ(L)))2)

α2
− 1

)
= π01ET (X2)

The second part of c) follows by combining this with a) and the fact that ET (X) = 0.
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The following proposition estimates typical posterior probabilities which we will use
to bound X. Let T (`) denote the tree which is the restriction of T̃d to its first ` levels.
For a finite tree T , let T i denote the subtree rooted at the child of the root ui and let Li
denote the restriction of L to the subtree Ti.

Proposition 2.3. For a finite d-ary tree T we have that

a) For any configuration at the leaves A = (A1, · · · , Ad),

PT (σx = 0|σ(L) = A) =
(

1 + λ
∏
i

PT i(σui = 0|σLi = Ai)
)−1

.

b) Let G be the set of leaf configurations

G =

{
σ(L) | PT (σx = 0|σ(L)) =

1

2

(
1 +

1

1 + 2λ

)}
.

Then

P0
T (σ(L) ∈ G)

P1
T (σ(L) ∈ G)

=
α

1− α
1 + λ

λ
.

c) Let β > log 2 − log log 2 and α = 1
d

(
log d + log log d − log log log d − β

)
. Then in the

3-level d-ary tree T (3) we have that

E1
T (3)(P(σx = 1|σ(L))) ≤ 1

2
.

Proof. Part a) is a consequence of standard tree recursions for Markov models estab-
lished using Bayes rule. For part b) first note that

PT (σx = 1 | σ(L) ∈ G) = 1− PT (σx = 0 | σ(L) ∈ G)

=
1

2

(
1− 1

1 + 2λ

)
. (2.3)

Now,

P0
T (σ(L) ∈ G) =

PT (σx = 0 | σ(L) ∈ G)PT (σ(L) ∈ G)

1− α

=
α

1− α
1 + λ

λ

(
PT (σx = 1 | σ(L) ∈ G)PT (σ(L) ∈ G)

α

)
=

α

1− α
1 + λ

λ
P1
T (σ(L) ∈ G)

where the first and third equations follow by the definition of conditional probability and
the second follows from (2.3) and the definition of G which establishes b).

For part c), we start by calculating the probability of certain posterior probabilities
for trees of small depth. With our assumption on α we have that

λ =
α

1− 2α

(
1 +

α

1− 2α

)d
=

(1 + od(1))e−β log2 d

log log d
. (2.4)

Since σ(L) = {0}L under P1
T (1), by part a) we have that

P1
T (1)(σx = 0|σ(L)) =

1

1 + λ
w.p. 1.
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Also,

PT (1)(∀ i, ui = 0|σx = 0) =

(
1− 2α

1− α

)d
.

Using the two equations above, we have that

P0
T (1)(σx = 0|σ(L)) =

 1 w.p. 1−
(

1−2α
1−α

)d
1

1+λ w.p.
(

1−2α
1−α

)d
.

The first case above corresponds to leaf configurations of the tree T (1) where at least
one of the leaves is 1, while the second case corresponds to the configurations where all
the leaves are 0. Next, applying part a) to a tree of depth 2, we have

P1
T (2)(σx = 0|σ(L)) =

1

1 + λ
∏
iP

0
T (1)(σui = 0|σ(Li))

.

Using this expression we write this conditional probability based on the leaf configu-
rations of the subtrees of the root of depth 1 below.

P1
T (2)(σx = 0|σ(L)) =


1

1+λ w.p.

(
1−

(
1−2α
1−α

)d)d
1
2

(
1 + 1

1+2λ

)
w.p.

(
1−

(
1−2α
1−α

)d)d−1 (
1−2α
1−α

)d
d

> 1
2

(
1 + 1

1+2λ

)
o.w.

(2.5)

The first case above corresponds to the situation when each subtree of the root of
depth 1 has a leaf configuration where at least one of the leaves is 1. The second case
is when one of the d subtrees has a leaf configuration where all leaves are 0, while the
remaining subtrees have leaf configurations where at least one leaf is 1. The third case
corresponds to the remaining possibilities.

By part b) and (2.5), after substituting the expressions for λ from (2.4), we have that

P0
T (2)(σ(L) ∈ G) =

α

1− α
1 + λ

λ
P1
T (2)[σ(L) ∈ G]

=
α(1 + λ)

λ(1− α)

(
1−

(
1− 2α

1− α

)d)d−1(
1− 2α

1− α

)d
d

≥ (1− od(1))
eβ log log d

d
. (2.6)

We can now calculate the values of P 1
T (3)(σx = 0|σ(L)) as follows. By part a)

P1
T (3)(σx = 0|σ(L)) =

1

1 + λ
∏
iP

0
T (2)(σui = 0|σ(Li))

.

Denote

p =
α(1 + λ)

λ(1− α)

(
1−

(
1− 2α

1− α

)d)d−1(
1− 2α

1− α

)d
d.

Thus, p is the probability that if we started with σx = 0 in T (2), the configuration at
the leaves is from G. If we start with σx = 1 in T (3), the number subtrees of the root
with leaf configurations in G is distributed binomially and will be about dp. By Chernoff
bounds, and the bound on p from (2.6),

P
(
Bin(d, p) < eβ log log d− 2

√
eβ log log d

)
<

1

3
.
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Finally, by the definition of G,

P0
T (2)(σui = 0|σ(L) ∈ G) =

1

2

(
1 +

1

1 + 2λ

)
and hence, by (2.4)

E1
T (3)(P(σx = 1|σ(L))) = E1

T (3)(1− P(σx = 0|σ(L)))

≤

(
1− 1

1 + λ(2(1− od(1)))−(eβ log log d−2
√
eβ log log d)

)
2

3
+

1

3
.

By taking d large enough above, for β as in the assumptions of the claim, the term in the
bracket above can be made arbitrarily small and thus we conclude that

E1
T (3)(P(σx = 1|σ(L))) ≤ 1

2
.

Lemma 2.4. Let β > log 2− log log 2 and α = 1
d

(
log d+ log log d− log log log d− β

)
. For d

large enough,

X(3) ≤ α

2
.

Proof. Combining (2.1), part c) of Lemma 2.2, and part c) of Proposition 2.3,

X(3) =
1

π2
01

(
E1
T3

(P(σx = 1 | σ(L)))

α
− 1

)
≤ 1

π2
01

(
1

2α
− 1

)
≤ α

2
.

Next, we present a recursion for X and complete the proof of the main result of this
section. The development of the recursion follows the steps in [9] closely. In particular,
Lemmas 2.5, 2.6, and 2.7 are from [9], so we omit some of the calculations. We refer the
reader to [9] for the complete details of the proofs.

Magnetization of a child

Let T be a finite tree with root x. Let x′ be a child of x and let T ′ be the subtree of T
rooted at x′ (see Figure 1). Let A′ be the restriction of A to the leaves L′ of T ′. Let
X ′ = X(A′) denote the magnetization at x′, the root of T ′. That is

X ′ :=
1

π01

(
PT (σx′ = 1 | σ(L′))

α
− 1

)
when σ is the independent set from the hardcore measure obtained by the Markov pro-
cess on T . Note that X ′ has the same distribution as the weighted magnetization of the
root of a tree of the same depth as T ′. We will abuse notation and use ET ′(X ′),ET ′((X ′)2

etc. to mean the moments of the weighted magnetization of the root of a tree of the
same depth as T ′.

Lemma 2.5. We have

a) E1
T (X ′) = θE1

T ′(X
′) and E0

T (X ′) = θE0
T ′(X

′).

b) E1
T ((X ′)2) = (1− θ)ET ′((X ′)2) + θE1

T ′((X
′)2).
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x

x′

T ′

Figure 1: The tree T .

T ′
T ′′

z

x, y, ŷ

Figure 2: The tree T obtained by merging T ′ and T ′′. The dashed subtree is T̂ .

c) E0
T ((X ′)2) = (1− θ)ET ′((X ′)2) + θE0

T ′((X
′)2).

The proof follows from the first part of Lemma 2.2 and the Markov property when we
condition on x.

In [9], the authors derive moment recursions for the magnetization for the Ising
model by defining an Add-Merge operation for trees. In the case of the hardcore model,
the moment recursions can be derived in exactly the same way and we describe the
sequence of intermediate results without full calculations, referring the reader to [9]
for the details. The idea is to write the effect on the magnetization of the root of a
tree when an edge is added to the root and another tree is attached to this edge by
its root. Referring to Figure 2, let T ′ (resp. T ′′) be a finite tree rooted at y (resp. z)
with the channel on all edges being given by M , leaf states A′ (resp A′′) and weighted
magnetization at the root Y (resp. Z). Add an edge (ŷ, z) to T ′′ to obtain a new tree T̂ .
Then merge T̂ with T ′ by identifying y = ŷ to obtain a new tree T . To avoid ambiguities,
denote by x the root of T and X the magnetization of the root of T . We let A = (A′, A′′)

be the leaf state of T . Let Ŷ be the magnetization of the root of T̂ .

Note: In the above construction, the vertex y is a vertex “at the same level” as x, and
not a child of x as it was in Lemma 2.5.

Lemma 2.6. With the notation above, Ŷ = θZ.

The proof follows by applying Bayes rule, the Markov property and Lemma 2.2. These
facts also imply the following result.

Lemma 2.7. For any tree T̂ ,

X =
Y + Ŷ + ∆Y Ŷ

1 + π01Y Ŷ

where ∆ := π01 − 1 = 1−2α
α .
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With these lemmas in hand we can derive a recursive upper bound on the second
moments. We will use the expansion

1

1 + r
= 1− r + r2 1

1 + r
.

Taking r = π01Y Ŷ , by Lemma 2.7 we have

X = (Y + Ŷ + ∆Y Ŷ )

(
1− π01Y Ŷ + (π01Y Ŷ )2 1

1 + π01Y Ŷ

)
= Y + Ŷ + ∆Y Ŷ − π01Y Ŷ

(
Y + Ŷ + ∆Y Ŷ

)
+ (π01)2(Y Ŷ )2X

≤ Y + Ŷ + ∆Y Ŷ − π01Y Ŷ
(
Y + Ŷ + ∆Y Ŷ

)
+ (π01)2(Y Ŷ )2 (2.7)

where the last inequality follows since X ≤ 1 with probability 1.
Let ρ′ = Y 1/Y and ρ′′ = Z1/Z. The second moments Y , Z, Y 1 and Z1 are defined

analogously to (2.2) for the variables Y and Z according to the appropriate measures
over the trees T ′ and T ′′.

The following relations can be derived by applying respectively: Lemma 2.2 (part c))
for the first two equalities, the definition of Y 1, Lemma 2.2 (part c)) in combination with
Lemma 2.6, and finally, Lemma 2.5.

E1
T (X) = π01X, E1

T (Y ) = π01Y , E1
T (Y 2) = Y ρ′

E1
T (Ŷ ) = π01θ

2Z, E1
T (Ŷ 2) = θ2Z((1− θ) + θρ′′). (2.8)

Applying (π01)−1E1
T (·) to both sides of (2.7), and using the relations (2.8), we obtain

the following inequality. Below, we have used the fact that when we condition on the
root x being 1, the magnetizations Y and Ŷ are independent.

X ≤ Y + θ2Z + θ2∆π01Y · Z − π01θ
2Y · Zρ′ − π01θ

2Y · Z((1− θ) + θρ′′)

−∆θ2Y · Zρ′((1− θ) + θρ′′) + π01θ
2Y · Zρ′((1− θ) + θρ′′)

= Y + θ2Z − π01θ
2Y Z(A−∆B)

where

A = ρ′ + (1− ρ′)((1− θ) + θρ′′),

and B = 1− (π01)−1ρ′((1− θ) + θρ′′) = 1− α

1− 2α
ρ′((1− θ) + θρ′′).

If A−∆B ≥ 0, this would already give a sufficiently good recursion to show that X(`)

goes to 0, so we will assume is negative and try to get a good (negative) lower bound.
First note that by their definition ρ′, ρ′′ ≥ 0. Further since Y = αY 1 + (1− α)Y 0,

ρ′ ≤ 1

α
.

Similarly,

ρ′′ ≤ 1

α
.

Since E1
T (Ŷ 2) and Z ≥ 0, it follows from (2.8) that (1− θ) + θρ′′ ≥ 0. Together with

the fact that ρ′ ≥ 0, this implies that B ≤ 1.
Since A is multi-linear in (ρ′, ρ′′), to minimize it, it is sufficient to consider the extreme

cases. When ρ′ = 0, A is minimized at the upper bound of ρ′′ and hence

A ≥ 1− π01
α

1− α
= 0.
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When ρ′ = 1
α ,

A =
1

α
+

(
1− 1

α

)
[1− θ(1− ρ′′)] ≥ 0.

Hence, we have

X ≤ Y + θ2Z +
1− 2α

1− α
Y · Z.

We can apply this bound to the d-ary tree k − 1 times in succession for the first k − 1

children of the root. Applying Lemma 2.6 and simplifying one can verify that

X ≤ 1− α
1− 2α

θ2

((
1 + Z

1− 2α

1− α

)k
− 1

)
.

Applying the following inequality

|(1 + x)k − 1| ≤ e|x|k − 1 =

∫ |x|k
0

es ds ≤ e|x|kk|x|

implies the recursion below.

Proposition 2.8. If for some `, X(`) ≤ α
2 , we have that

X(`+ 1) ≤ θ2

(
1− α
1− 2α

)2

e
1
2αddX(`).

Thus if
(

α
1−2α

)2

e
1
2αdd < 1 then it follows from the recursion that

lim
`→∞

X(`) = 0. (2.9)

When α = 1
d

(
log d + log log d − log log log d − β

)
and β > log 2 − log log 2, by Lemma 2.4,

for d large enough, X(3) ≤ α
2 . Hence by equation (2.9) we have that X(`) → 0 and so

by Proposition 2.1 we have non-reconstruction. Since reconstruction is monotone in λ
and hence in α it follows that we have non-reconstruction for α ≤ αR for large enough d.
This completes the proof of Theorem 2.

3 Partition function of the hardcore model for random d-regular
graph

In this section, we derive expressions for the first and second moments of the hardcore
partition function for the d-regular random graph. The calculations are along the lines
of those in [31] and we adopt their notation here. We will work with the configuration
model for random graphs, described below, in order to simplify the calculations.

3.1 Configuration model

Let H(n, d) denote the set of all d-regular (multi)graphs on n vertices and G(n, d) the
subset of d-regular simple graphs. The analysis of the properties of a random graph in
G(n, d) can often be simplified by making use of the configuration model, introduced by
Bollóbas [8]. Fix d and n such that dn is even. Define a d-regular multigraph on n vertices
via the configuration model as follows. Begin by replacing each vertex with d distinct
copies and then generate a uniformly random pairing of the dn distinct points. Finally,
collapse the d copies corresponding to each vertex back into one vertex, obtaining a
uniformly random multigraph in H(n, d). Let S be the event that the multigraph obtained
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is simple. Clearly, on the event S, the graph obtained is uniformly distributed over
G(n, d). Moreover, for fixed d,

P(S) = (1 + on(1)) exp

(
1− d2

4

)
. (3.1)

Since the probability in (3.1) is uniformly bounded away from 0, any event that holds
asymptotically with high probability for H(n, d) also holds asymptotically with high
probability when we condition on S, i.e. for G(n, d). In what follows, by “d-regular
random graph”, we will mean the multigraph generated by the configuration model,
unless mentioned otherwise.

One useful property of the configuration model that we will make use of repeatedly is
that the pairings of the dn distinct points may be revealed sequentially. That is, given a
vertex v, we may reveal the pairings of its d copies one by one so that the distribution of
pairings over the remaining unmatched points remains uniform.

In the sequel, we will use f(n) = Θ̃(g(n)) to mean equality of the functions up
to polynomial factors in n. We will assume throughout that quantities of the form
an, αn, γn, εn are integers. We use “with high probability” to mean with probability going
to 1 as n→∞. We will use σu to denote the restriction of an independent set σ of the
graph to a vertex u. Finally, the restriction of σ to a subset of vertices S will be denoted
by σ(S).

3.2 The first moment of the partition function

In this section, we calculate the first moment of the partition function for the hardcore
model on the d-regular random graph. For an independent set σ ∈ I(G), let |σ| denote
the number of vertices in I. For fugacity λ, the partition function is given by

ZG = ZG(λ) =
∑

σ∈I(G)

λ|σ|.

Let 0 ≤ α ≤ 1/2 and let ZG,α = ZG,α(λ) be the contribution to the partition function from
independent sets of size αn, i.e.

ZG,α :=
∑

σ∈I(G):|σ|=αn

λαn, ZG =
∑
α

ZG,α.

The following approximation will be useful in simplifying the probabilities obtained
in the sequel. Let a > 0 be a constant. Then, by Stirling’s approximation,

an∏
j=1

j = exp

(
n

∫ a

0

log(x)dx+ an log(n) +O(log n)

)
. (3.2)

Let
H(x) = −x log(x)− (1− x) log(1− x).

Let G ∼ H(n, d). Fix λ > 0 and 0 ≤ α ≤ 1
2 . The first moment of ZG,α is given by

E (ZG,α) =

(
n

αn

)
λαn

αnd−1∏
i=0

(1− α)nd− i
nd− 1− 2i

= Θ̃(1) exp (nΦ(α)) (3.3)

where

Φ(α) = Φ(α, λ) = H(α) + α log(λ) + d

(
(1− α) log(1− α)−

(
1− 2α

2

)
log(1− 2α)

)
.

(3.4)
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The first equality in (3.3) follows by calculating the probability in the configuration model
that a given subset of αn vertices is an independent set, i.e. that the vertices in the
subset are not matched to vertices in the subset itself. The second equality follows by
(3.2).

For λ > 0, it can be verified that the maximum of Φ is achieved at α∗ = α∗(λ, d),
which is the solution to the equation

λ
1− α
α

(
1− 2α

1− α

)d
= 1 (3.5)

which is obtained by differentiating Φ. Solving, we obtain that

α∗(λ, d) = (1 + ε(λ, d))
log(λd/ log(λd))

d

where ε(λ, d) tends to 0 as d tends to∞. Notice that the relation (3.5) between α, λ and
d is equivalent to (1.2).

3.3 The second moment of the partition function

To estimate the second moment E((ZG,α)2), we consider the contributions from pairs
of independent sets σ′, σ′′ each of size αn. We divide this according to the size of the
overlap |σ′ ∩ σ′′| = γn and according to the number εn of edges of the graph which go

from each of σ′, σ′′ to the complement V \ (σ′ ∪ σ′′). Call this contribution Z(2)
G,α,γ,ε. That

is, for (α, γ, ε) in the region

R =

{
(α, γ, ε) : 0 ≤ α, γ, ε ≤ 1

2
, α− γ − ε ≥ 0, 1− 2α− 2ε ≥ 0

}
, (3.6)

we define

Z
(2)
G,α,γ,ε := λ2αn

∣∣∣{σ′, σ′′ ∈ I(G) : |σ′| = |σ′′| = αn, |σ′ ∩ σ′′|

= γn, |EG(σ′, V \ (σ′ ∪ σ′′))| = |EG(σ′′, V \ (σ′ ∪ σ′′))| = εn
}∣∣∣

and
E((ZG,α)2) =

∑
γ,ε

E
(
Z

(2)
G,α,γ,ε

)
.

Calculating the probability in the configuration model that a pair of subsets of vertices
σ′ and σ′′ as above are both independent sets, we have that for G ∼ H(n, d),

E
(
Z

(2)
G,α,γ,ε

)
= λ2αn

(
n

αn

)(
αn

γn

)(
(1− α)n

(α− γ)n

)

γnd−1∏
i=0

(1− 2α+ γ)dn− i

γnd−1∏
i=0

dn− 1− 2i

×

×


εdn−1∏
i=0

((1− 2α)dn− i) ·
(α−γ−ε)dn−1∏

i=0

(α− γ)dn− i

(α−γ)dn−1∏
i=0

((1− 2γ)dn− 1− 2i)

·

εdn−1∏
i=0

(1− 2α− ε)dn− i

εdn−1∏
i=0

(1− 2α)dn− 1− 2i

 . (3.7)

The following function arises in the approximation of the expression in (3.7)

f(α, γ, ε) = 2α log(λ) +H(α) +H1(γ, α) +H1(α− γ, 1− α) + dΨ2(α, γ, ε)
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where
H1(x, y) = −x(log(x)− log(y)) + (x− y)(log(y − x)− log(y))

and

Ψ2(α, γ, ε) = H1(ε, α− γ) +

∫ γ

0

log(1− 2α+ γ − x)dx−
∫ γ

0

log(1− 2x)dx

+

∫ ε

0

log(1− 2α− x)dx+

∫ α−γ−ε

0

log(α− γ − x)dx−
∫ α−γ

0

log(1− 2γ − 2x)dx

+

∫ ε

0

log(1− 2α− ε− x)dx−
∫ ε

0

log(1− 2α− 2x)dx.

In particular, in Section 6 we will show that the logarithm of E(Z
(2)
G,α,γ,ε) scaled by n

is well approximated by f , and for λ < λc, f decays quadratically around its maximum.

Proposition 3.1. Let G ∼ H(n, d) and 0 ≤ α ≤ 1
2 . Then,

E
(
Z

(2)
G,α,γ,ε

)
= exp (nf(α, γ, ε) +O(log(n))) .

For any α, define γ̂ = γ̂(α) := α2 and ε̂ = ε̂(α) := α(1 − 2α). We will also use the
shorthand γ∗ := γ̂(α∗) and ε∗ := ε̂(α∗).

Proposition 3.2. Let λ < λc, and (α, γ, ε) ∈ R. Then, the function f(α, γ, ε) attains
its maximum at (α∗, γ∗, ε∗) and is strictly concave at this point. In particular for some
C = C(d, λ),

f(α∗, γ∗, ε∗)− f(α, γ, ε) ≥ C(|α− α∗|2 + |γ − γ∗|2 + |ε− ε∗|2).

Finally, the following second moment-type bound is also proved in Section 6.

Proposition 3.3. Let G ∼ H(n, d) and λ < λc. Then,

E((ZG)2) = Θ̃(1)(E(ZG))2.

4 Partition function of a punctured random graph

In this section we study the effect on the hardcore measure of a d-regular random
graph of conditioning on the spins of a small number of the vertices. In order to do
this, we analyze the partition function of a punctured graph G̃ obtained from a d-regular
random graph G by deleting a small fraction of vertices and their neighborhoods. Define
the following quantities with respect to a graph G = (V,E). Let d(u, v) = dG(u, v) denote
the distance between two vertices u, v ∈ V . For a vertex u ∈ V and integer r, the
r-neighborhood of u, denoted Br(u) and its (vertex) boundary are defined as

Br(u) := {v ∈ V : d(u, v) ≤ r}, ∂Br(u) := Br(u) \Br−1(u).

Lemma 4.1. Let G = (V,E) ∼ H(n, d). Let S ⊂ V be a random subset of vertices with
|S| = n3/5 and let r be some large constant. Then, the expected number of u ∈ S such
that the neighborhood Br(u) contains another vertex in S is O(n1/5) and the probability
of a neighbourhood with 3 vertices in S is O(n−1/5). Furthermore, with high probability,
for all u ∈ S the neighbourhood Br(u) is a tree.

Proof. The first claim follows by linearity of expectation. By the independence of the
choice of S and the graph G, we can first choose the graph and then choose which
vertices are in S. Choose the edges of the graph, fix a random vertex u and consider the
neighborhood Br(u). It can be calculated that the chance that another vertex in S is in
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Br(u) is O(n−2/5) (where the constant may depend on d as well as r). Summing over the
n3/5 vertices of S, we obtain the claimed bound.

The probability that there is a neighborhood with 3 vertices of S can be bounded by
the union bound. We make use of the independence of S and G as before to choose the
random graph first. The probability that a fixed neighborhood around a vertex u has 2
other vertices of S can be calculated to be bounded by O(n−4/5).

Finally, the number of cycles of length at most 2r has constant expected value and
thus with high probability no neighborhood of a vertex in S contains such a cycle as n
tends to∞.

Let G = (V,E) ∼ H(n, d) and fix a large constant r. Let S ⊂ V be a uniformly
chosen set of vertices with |S| = n3/5. Let G̃ = (Ṽ , Ẽ) be the graph obtained by
deleting from V the set of vertices ∪v∈SBr−1(v) and any edges adjacent to these vertices.
Define

B := G̃
⋂(⋃

u∈S
∂Br(u)

)
. (4.1)

Let

S′ = {s ∈ S : ∀s′ ∈ S \ {s}, Br(s) ∩Br(s′) = ∅, Br(s) is a tree} (4.2)

Let k = |S′|. Let s1, . . . , sk be an arbitrary ordering of the elements of S′ and for 1 ≤ i ≤ k
define Wi := ∂Br(si). Define Wk+1 := B \ ∪ki=1Wi.

Corollary 4.2. The vertices of B have degree d− 1 or d− 2 in G̃ with high probability.
With high probability, the number of vertices in G̃ of degree d−2 is O(n

1
5 ) and the number

of vertices of degree d− 1 is n
3
5 (1− on(1))d(d− 1)r. The size of S′, k = (1− on(1))n

3
5 with

high probability.

Proof. Suppose a vertex v ∈ B is in ∂Br(u1) ∩ ∂Br(u2) for some u1, u2. We know that
with high probability it is not in any third ∂Br(u3), otherwise there are 3 centers close
together contradicting Lemma 4.1. Further, by Lemma 4.1, with high probability in
G the neighborhood around every vertex of S is a tree. Thus, there are at most two
vertices adjacent to v in ∪u∈SBr−1(u) and its degree in G̃ is at least d − 2. In the
other case, v ∈ ∂Br(u) for a unique vertex u ∈ S and hence its degree in G̃ is d − 1.
The bounds on the numbers of these vertices follow by Lemma 4.1 and applying the
second moment method. The bound on the size of k then follows immediately from
Lemma 4.1.

In what follows we will sometimes work in the conditional space of the configuration
model where G is such that the high probability conclusions of Lemma 4.1 and Corollary
4.2 hold for G̃. Since the configuration model allows us to expose edges and maintain the
uniform distribution over pairings of the unmatched pairs, under the conditioning, G̃ is a
graph chosen according to the configuration model where the degrees of the vertices
are modified appropriately, and we denote this set of graphs by Ĥ(n, d). We use P̂ and Ê
to denote the corresponding conditional expectation and probabilities.

4.1 The first moment of the partition function of G̃

Let B be the subset of vertices defined in (4.1) and let σ ∈ {0, 1}B. Define ZG,σ to be
the partition function over independent sets of G whose restriction to B is σ, i.e.,

ZG,σ :=
∑

ω∈I(G):ω(B)=σ

λ|ω|.
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Similarly, define

ZG̃,σ :=
∑

ω∈I(G̃):ω(B)=σ

λ|ω|.

In this section, we will show that in expectation, for the boundary B as defined in
(4.1) and any σ ∈ {0, 1}B, ZG̃,σ is essentially proportional to a product measure on B.

Let m = |V (G̃) \B|. Define ZG̃,α,σ to be the partition function for independent sets of G̃

whose restriction to B is σ ∈ {0, 1}B and for which α fraction of the vertices V (G̃) \ B
are in the independent set

ZG̃,α,σ :=
∑

ω∈I(G̃):ω(B)=σ,
∑
v∈V \B ωv=αm

λ|ω|.

Fix an independent set ω of G̃ whose restriction to B is σ such that
∑
v∈V (G̃)\B ωv = αm.

Let L = |σ| and let Li be the number of vertices in σ of degree d − i for i = 1, 2. Let
Mi denote the number of vertices of B of degree d − i for i = 1, 2. We can calculate
the expectation of the partition function as before using the exploration process in the
configuration model. Let N1 = (d− 1)L1 + (d− 2)L2 + dαm be the number of half-edges
adjacent to a vertex in the independent set. Let NT = (d− 1)M1 + (d− 2)M2 + dm be the
total number of half-edges overall. Calculating the probability that the pairing of the
half edges does not pair vertices which are in the independent set, we have

Ê
(
ZG̃,α,σ

)
= λL1+L2+αm

(
m

αm

)N1−1∏
i=0

(NT −N1 − i)

N1−1∏
i=0

(NT − 1− 2i)

. (4.3)

In what follows, let G ∼ H(n, d) and let G̃ be defined as above. Recall that α∗ is given
by the solution to (3.5). Let σ0 denote the empty independent set on B.

Proposition 4.3. Fix λ > 0.

(1) For all σ ∈ {0, 1}B, and 0 ≤ α ≤ 1
2 ,

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = exp
(
O(n

1
5 )
)(

λ

(
1− 2α

1− α

)d−1
)|σ|

.

(2) Let α be such that |α− α∗| < Cn−
2
5 for a constant C > 0. Then,

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = exp
(
O(n

1
5 )
)
χ(σ)

where

χ(σ) =

(
λ

(
1− 2α∗

1− α∗

)d−1
)|σ|

.

Proof. We compare the formula (4.3) for σ and σ0. Let N ′1, N
′
T be the corresponding

quantities for σ0 as defined before. Note that for i = 1, 2, L′i = 0 and N ′T = NT .
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Comparing the numerators and denominators of the fraction in (4.3) we obtain that

Ê(ZG̃,α,σ)

Ê(ZG̃,α,σ0
)

= λL1+L2

N1−N ′1−1∏
i=0

(NT − 2N ′1 − 2i)

N1−N ′1−1∏
i=0

(NT −N ′1 − i)

= λL1+L2

(
1− 2α

1− α

)N1−N ′1
×

×

N1−N ′1−1∏
i=0

(
1 +

1

(1− 2α)dm
((d− 1)M1 + (d− 2)M2 − 2i)

)
N1−N ′1−1∏

i=0

(
1 +

1

(1− α)dm
((d− 1)M1 + (d− 2)M2 − i)

)

= λL1+L2

(
1− 2α

1− α

)N1−N ′1
exp

(
O

(
(N1 −N ′1)n

3
5 )

dm

))
,

where the last line follows since M1 = O(n
3
5 ) and M2 = O(n

1
5 ). Since N1 − N ′1 =

(d− 1)L1 + (d− 2)L2 = O(n
3
5 ) and m = n(1− on(1)), we obtain that

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = λL1+L2 exp
(
O(n

1
5 )
)(1− 2α

1− α

)(d−1)L1+(d−2)L2

= exp
(
O(n

1
5 )
)(

λ

(
1− 2α

1− α

)d−1
)|σ|(

1− 2α

1− α

)−L2

= exp
(
O(n

1
5 )
)(

λ

(
1− 2α

1− α

)d−1
)|σ|

.

The last bound follows since L2 = O(n
1
5 ) by the assumed conditioning, giving part (1)

of the proposition. Finally, by the assumption that |α− α∗| ≤ Cn− 2
5 the last expression

above can be bounded by

= exp
(
O(n

1
5 )
)(

λ

(
1− 2α∗

1− α∗

)d−1
)|σ|

,

completing part (2) of the proposition.

Proposition 4.4. For all σ ∈ {0, 1}B, and for large enough constant C = C(λ, d),

Ê(ZG̃,σ) = (1− o(1))
∑

α:|α−α∗|≤Cn−
2
5

Ê(ZG̃,α,σ).

Corollary 4.5. For any σ ∈ {0, 1}B,

Ê(ZG̃,σ) = exp
(
O(n

1
5 )
)
χ(σB)Ê(ZG̃,σ0

).

Proof. The claim follows by putting together part (2) of Proposition 4.3 and Proposition
4.4. In particular, taking C to be large enough as in Proposition 4.4,

Ê(ZG̃,σ) = (1− on(1))
∑

α:|α−α∗|≤Cn−
2
5

Ê(ZG̃,α,σ)

= exp
(
O(n

1
5 )
)
χ(σ)

∑
α:|α−α∗|≤Cn−

2
5

Ê(ZG̃,σ0
)

= exp
(
O(n

1
5 )
)
χ(σ)Ê(ZG̃,σ0

).
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To prove Proposition 4.4, we need a few intermediate results. Let Gm ∼ H(m, d)

where m = |V (G̃) \ B|, as defined above. Define the partition functions ZGm,α and

Z
(2)
Gm,α,γ,ε

as ZG,α and Z(2)
G,α,γ,ε were defined respectively, with G = Gm.

Lemma 4.6. For any 0 ≤ α ≤ 1
2 ,

Ê(ZG̃,α,σ0
)

Ê(ZG̃,α∗,σ0
)

=
E(ZGm,α)

E(ZGm,α∗)
exp

(
O(n

3
5 |α− α∗|)

)
.

Proof. Let N1 and NT be defined as in (4.3). Define N∗1 and N∗T analogously for α∗.
Note that for the configuration σ0, Li = 0 for i = 1, 2 and NT = N∗T . Comparing the
expressions in (4.3) and (3.3), we have that

Ê(ZG̃,α,σ0
)

Ê(ZG̃,α∗,σ0
)

=
E(ZGm,α)

E(ZGm,α∗)
×

dαm−1∏
i=0

dm− 2i− 1

dm+ (d− 1)M1 + (d− 2)M2 − 2i− 1

dα∗m−1∏
i=0

dm− 2i− 1

dm+ (d− 1)M1 + (d− 2)M2 − 2i− 1

×

×

dαm−1∏
i=0

(1− α)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− α)dm− i

dα∗m−1∏
i=0

(1− α∗)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− α∗)dm− i

=
E(ZGm,α)

E(ZGm,α∗)
exp

(
O(n

3
5 |α− α∗|)

)
where the last line follows by the bounds on m and Mi for i = 1, 2.

Lemma 4.7. For 0 ≤ α ≤ 1
2 , there is a constant C = C(λ, d) > 0 such that

E(ZGm,α)

E(ZGm,α∗)
= Θ̃ (1) exp

(
−Cn|α− α∗|2

)
.

Proof. Recall the expression (3.4) for Φ(α). Writing the Taylor expansion for Φ(α) around
α∗ and noting that Φ′(α∗) = 0, we have

Φ(α)− Φ(α∗) =
∂Φ(α∗)

∂α
|α− α∗|+ 1

2

∂2Φ(α∗)

∂α2
|α− α∗|2 + o

(
|α− α∗|2

)
= −

(
1

α∗(1− α∗)
+

d

(1− α∗)(1− 2α∗)

)
|α− α∗|2 + o

(
|α− α∗|2

)
and therefore

E(ZGm,α)

E(ZGm,α∗)
= Θ̃ (1) exp (m (Φ(α)− Φ(α∗))) = Θ̃ (1) exp

(
−Cn|α− α∗|2

)
.

Proof of Proposition 4.4. Combining part (1) of Proposition 4.3, Lemma 4.6 and Lemma
4.7, we have that for any 0 ≤ α ≤ 1

2 ,

Ê(ZG̃,α,σ)

Ê(ZG̃,α∗,σB )
=
Ê(ZG̃,α,σ)

Ê(ZG̃,α,σ0
)
·
Ê(ZG̃,α,σ0

)

Ê(ZG̃,α∗,σ0
)
·
Ê(ZG̃,α∗,σ0

)

Ê(ZG̃,α∗,σB )

= exp
(
O
(
n

1
5 − Cn|α− α∗|2 + n

3
5 |α− α∗|

))
.

EJP 21 (2016), paper 9.
Page 22/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3552
http://www.imstat.org/ejp/


Decay of correlations for the hardcore model

When |α − α∗| > Cn−
2
5 , for a large enough constant C = C(λ, d), the second term in

the parenthesis above dominates and right hand side can be made arbitrarily small.
Therefore

Ê(ZG̃,σ) =
∑

α:|α−α∗|>Cn−2/5

Ê(ZG̃,α,σ) +
∑

α:|α−α∗|≤Cn−2/5

Ê(ZG̃,α,σ)

= (1− on(1))
∑

α:|α−α∗|≤Cn−2/5

Ê(ZG̃,α,σ).

4.2 The second moment of the partition function of G̃

As before, we divide the second moment E((ZG̃,α,σ)2) into the contribution from

pairs of independent sets σ′ and σ′′ of G̃ whose restriction to B is σ,
∑
v∈V \B σ

′
v =∑

v∈V \B σ
′′
v = αm and |(σ′ ∩ σ′′) \B| = γm. We can further divide according the number

εdm of half-edges which are paired from each of σ′ and σ′′ to V (G̃) \ (σ′ ∪ σ′′). Denote

this contribution by Z(2)

G̃,α,γ,ε,σ
. Thus, we can write

E
(

(ZG̃,α,σ)2
)

=
∑
γ,ε

E
(
Z

(2)

G̃,α,γ,ε,σ

)
.

As before, let L denote |σ| with Li denoting the numbers of vertices of B in the inde-
pendent set of degrees d − i for i = 1, 2. Define Mi as before and let Ki = Mi − Li.
Calculating the probability in the configuration model that a pair of subsets σ′ and σ′′ as
above are independent sets we obtain

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
= λ2αm+2(L1+L2)

(
m

αm

)(
αm

γm

)(
(1− α)m

(α− γ)m

)
×

×


γmd+(d−1)L1+(d−2)L2−1∏

i=0

(1− 2α+ γ)dm+ (d− 1)K1 + (d− 2)K2 − i

γmd+(d−1)L1+(d−2)L2−1∏
i=0

dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

×

×


εdm−1∏
i=0

(1− 2α)dm+ (d− 1)K1 + (d− 2)K2 − i ·
(α−γ−ε)dm−1∏

i=0

(α− γ)dm− i

(α−γ)dm−1∏
i=0

(1− 2γ)dm+ (d− 1)(M1 − 2L1) + (d− 2)(M2 − 2L2)− 1− 2i

×

×

εdm−1∏
i=0

(1− 2α− ε)dm+ (d− 1)K1 + (d− 2)K2 − i

εdm−1∏
i=0

(1− 2α)dm+ (d− 1)(M1 − 2L1) + (d− 2)(M2 − 2L2)− 1− 2i

 . (4.4)

In the main result of this section, we show in Proposition 4.15, that the second
moment Ê

(
(ZG,σ)2

)
is roughly the square of the first moment Ê (ZG,σ) by an analysis

similar to that in [31, Theorem 6.11] and [36, Lemma 3.5]. We begin with a series of
intermediate results that are needed for the proof.

Proposition 4.8. Let (α, γ, ε) ∈ R. Then, for any σ ∈ {0, 1}B,

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
= exp

(
O
(
n

1
5

))
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

)
.
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To prove Proposition 4.8, we need a few intermediate lemmas.

Lemma 4.9. Let (α, γ, ε) ∈ R. Then, for some C = C(λ, d) > 0

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

Ê(Z
(2)

G̃,α∗,γ∗,ε∗,σ0
)

≤ exp
(
−Cn

(
|α−α∗|2 + |γ− γ∗|2 + |ε− ε∗|2

)
+O

(
n

3
5 (|α−α∗|+ |γ− γ∗|+ |ε− ε∗|)

))
.

Proof. For the configuration σ0, for i = 1, 2, Li = 0 and Ki = Mi. Comparing the
expressions (3.7) and (4.4), we obtain that for Gm ∼ H(m, d),

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

Ê(Z
(2)

G̃,α∗,γ∗,ε∗,σ0
)

=
E(Z

(2)
Gm,α,γ,ε

)

E(Z
(2)
Gm,α∗,γ∗,ε∗

)
×

×

γmd−1∏
i=0

(1− 2α+ γ)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α+ γ)dm− i

γ∗md−1∏
i=0

(1− 2α∗ + γ∗)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α∗ + γ∗)dm− i

×

×

γ∗md−1∏
i=0

dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

dm− 1− 2i

γmd−1∏
i=0

dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

dm− 1− 2i

×

×

εmd−1∏
i=0

(1− 2α)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α+ γ)dm− i

ε∗md−1∏
i=0

(1− 2α∗)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α∗)dm− i

×

×

(α∗−γ∗)md−1∏
i=0

(1− 2γ∗)dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

(1− 2γ∗)dm− 1− 2i

(α−γ)md−1∏
i=0

(1− 2γ)dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

(1− 2γ)dm− 1− 2i

×

×

εmd−1∏
i=0

(1− 2α− ε)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α− ε)dm− i

ε∗md−1∏
i=0

(1− 2α∗ − ε∗)dm+ (d− 1)M1 + (d− 2)M2 − i
(1− 2α∗ − ε∗)dm− i

×

×

ε∗md−1∏
i=0

(1− 2α∗)dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

(1− 2α∗)dm− 1− 2i

εmd−1∏
i=0

(1− 2α)dm+ (d− 1)M1 + (d− 2)M2 − 1− 2i

(1− 2α)dm− 1− 2i

= exp (m (f(α, γ, ε)− f(α∗, γ∗, ε∗)) +O(log(m)))×

× exp
(
O
(
n

3
5 (|α− α∗|+ |γ − γ∗|+ |ε− ε∗|)

))
.
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The final equality follows by Proposition 3.1 and the bounds on the sizes of m,M1 and
M2 by the assumed conditioning. By Proposition 3.2, we have that for some constant C,
possibly depending on d and λ,

f(α, γ, ε)− f(α∗, γ∗, ε∗) ≤ −C
(
|α− α∗|2 + |γ − γ∗|2 + |ε− ε∗|2

)
.

Therefore, we obtain that

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

Ê(Z
(2)

G̃,α∗,γ∗,ε∗,σ0
)

≤ exp
(
−Cn

(
|α−α∗|2 + |γ− γ∗|2 + |ε− ε∗|2

)
+O

(
n

3
5 (|α−α∗|+ |γ− γ∗|+ |ε− ε∗|)

))
.

Lemma 4.10. Let (α, γ, ε) ∈ R. For any σ ∈ {0, 1}B,

Ê(Z
(2)

G̃,α,γ,ε,σ
)

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

= (χ(σ))
2

exp
(
O
(
|α− α∗|+ |γ − γ∗|+ |ε− ε∗|)n 3

5 + n
1
5

))
.

Proof. Using the expression (4.4) for each of E(Z
(2)

G̃,α,γ,ε,σ0
) and E(Z

(2)

G̃,α,γ,ε,σ
) and taking

ratios of the numerators and denominators separately for each of the products, we have

Ê(Z
(2)

G̃,α,γ,ε,σ
)

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

= λ2|σ| exp
(
O(n

1
5 )
)
×

×
(

(1− 2α)2

(1− 2α+ γ)(1− 2γ)1/2

(1− 2α− ε)
(1− 2α)

(1− 2γ)1/2

(1− 2α)1/2
×

× (1− 2α− 2ε)

(1− 2α− ε)
(1− 2α)1/2

(1− 2α− 2ε)1/2

)(d−1)L1+(d−2)L2

= λ2|σ| exp
(
O(n

1
5 )
)
·
(

(1− 2α)(1− 2α− 2ε)1/2

(1− 2α+ γ)

)(d−1)L1+(d−2)L2

= λ2|σ| exp
(
O
(
n

1
5 + n

3
5 (|α− α∗| − |γ − γ∗|+ |ε− ε∗|)

))
×

×
(

(1− 2α∗)(1− 2α∗ − 2ε∗)1/2

(1− 2α∗ + γ∗)

)(d−1)L1+(d−2)L2

.

Since γ∗ = (α∗)2, ε∗ = α∗(1− 2α∗) and |σ| = L1 + L2, the last line gives that

Ê(Z
(2)

G̃,α,γ,ε,σ
)

Ê(Z
(2)

G̃,α,γ,ε,σ0
)

=

(
λ

(
1− 2α∗

1− α∗

)d−1
)2|σ|

exp
(
O
(
|α− α∗|+ |γ − γ∗|+ |ε− ε∗|)n 3

5 + n
1
5

))
and the lemma follows.

Putting these results together we now prove Proposition 4.8.

Proof of Proposition 4.8. Let σ ∈ {0, 1}B and write

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

) =
Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
Ê
(
Z

(2)

G̃,α,γ,ε,σ0

) Ê
(
Z

(2)

G̃,α,γ,ε,σ0

)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

) Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

) .
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Applying Lemmas 4.9 and 4.10 to the terms in the product above, we have that

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

) ≤ exp
(
O
(
n

3
5 (|α− α∗|+ |γ − γ∗|+ |ε− ε∗|) + n

1
5

)
− Cn

(
|α− α∗|2 + |γ − γ∗|2 + |ε− ε∗|2

) )
. (4.5)

For a constant C, define the set

RC =
{

(α, γ, ε) ∈ R s.t. |α− α∗|, |γ − γ∗|, |ε− ε∗| ≤ Cn− 2
5

}
.

Note that for some sufficiently large C, if (α, γ, ε) ∈ RC , the the right-hand side of (4.5)

can be bounded by exp
(
O(n

1
5 )
)

. On the other hand, if (α, γ, ε) 6∈ RC for any constant

C, then the right-hand side of (4.5) can be made arbitraily small and therefore, for any
(α, γ, ε) ∈ R and σ

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
= exp

(
O(n

1
5 )
)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

)
.

Proposition 4.11. For any σ ∈ {0, 1}B,

Ê
(
Z2
G̃,σ

)
= exp

(
O(n

1
5 )
)

(χ(σ))
2
Ê
(
Z2
G̃,σ0

)
.

Proof. Applying the Cauchy-Schwarz inequality, Proposition 4.8 and Lemma 4.10, we
have

Ê
(
Z2
G̃,σ

)
= Ê

(∑
α

ZG̃,α,σ

)2
 = Θ̃(1)

∑
α

Ê
(
Z2
G̃,α,σ

)
= Θ̃(1)

∑
α,γ,ε

Ê
(
Z

(2)

G̃,α,γ,ε,σ

)
=

= exp
(
O(n

1
5 )
)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ

)
= exp

(
O(n

1
5 )
)

(χ(σ))
2
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

)
=

= exp
(
O(n

1
5 )
)

(χ(σ))
2
∑
α,γ,ε

Ê
(
Z

(2)

G̃,α,γ,ε,σ0

)
=

= exp
(
O(n

1
5 )
)

(χ(σ))
2
∑
α

Ê
(
Z2
G̃,α,σ0

)
=

= exp
(
O(n

1
5 )
)

(χ(σ))
2
Ê

(∑
α

ZG̃,α,σ0

)2
 =

= exp
(
O(n

1
5 )
)

(χ(σ))
2
Ê
(
Z2
G̃,σ0

)
.

The next step is to show a bound on the second moment of ZG̃,σ0
by the square of the

first moment, and we begin with the following intermediate result.

Lemma 4.12.

Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

)
= exp

(
O(n

1
5 )
)(
Ê(ZG̃,α∗,σ0

)
)2

.

Proof. As before, we note that for the configuration σ0, for i = 1, 2, Li − 0 and Ki = Mi.
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Comparing the expressions (3.7) and (4.4) we obtain that

Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

)
E
(
Z

(2)
Gm,α∗,γ∗,ε∗

) = exp
(
O(n

1
5 )
)
×

×

(
(1− 2α∗ + γ∗)(1− 2γ∗)

1
2

(1− 2α∗)

(1− 2α∗)(1− 2α∗)
1
2

(1− 2α∗ − ε∗)(1− 2γ∗)
1
2

×

× (1− 2α∗)(1− 2α∗ − ε∗) 1
2

(1− 2α∗ − 2ε∗)(1− 2α∗)
1
2

)(d−1)K1+(d−2)K2

= exp
(
O(n

1
5 )
)( (1− α∗)2

1− 2α∗

)(d−1)K1+(d−2)K2

(4.6)

where the last equality follows by canceling terms and using the fact that γ∗ = (α∗)2 and
ε∗ = α∗(1− 2α∗). Similarly, comparing (3.3) and (4.3), we obtain that

Ê(ZG̃,α∗,σ0
)

E(ZGm,α∗)
= exp

(
O(n

1
5 )
)( 1− α∗

(1− 2α∗)
1
2

)(d−1)K1+(d−2)K2

. (4.7)

Combining Proposition 3.1, (3.3), and Lemma 6.2, we have that

Ê
(
Z

(2)
Gm,α∗,γ∗,ε∗

)
(
Ê(ZGm,α∗)

)2 = exp
(
O(n

1
5 )
) exp (mf(α∗, γ∗, ε∗) +O(logm))

exp (2nΦ(α∗))
= exp

(
O(n

1
5 )
)
. (4.8)

Finally, putting together (4.6), (4.7) and (4.8) proves the lemma.

Proposition 4.13.

Ê
(
Z2
G̃,σ0

)
= exp

(
O(n

1
5 )
)(
Ê
(
ZG̃,σ0

))2

.

Proof. Applying the Cauchy-Schwartz inequality, we have

Ê
(
Z2
G̃,σ0

)
= Ê

(∑
α

ZG̃,α,σ0

)2
 ≤ Θ̃(1)

∑
α

Ê
(
Z2
G̃,α,σ0

)
= Θ̃(1)

∑
α,γ,ε

Ê
(
Z

(2)

G̃,α,γ,ε,σ0

)
=

= exp
(
O(n

1
5 )
)
Ê
(
Z

(2)

G̃,α∗,γ∗,ε∗,σ0

)
= exp

(
O(n

1
5 )
)(
Ê
(
ZG̃,α∗,σ0

))2

=

= exp
(
O(n

1
5 )
)(
Ê
(
ZG̃,σ0

))2

where the third equality is by Proposition 4.8 and the fourth equality is by Lemma
4.12.

Define ZG,α,σ to be the partition function over independent sets of G whose restriction
to B is σ and for which α fraction of the vertices in V (G̃) \B are in the independent set.
That is,

ZG,α,σ :=
∑

ω∈I(G):ω(B)=σ,
∑
v∈V (G̃)\B ωv=αm

λ|ω|.

Lemma 4.14. For any σ ∈ {0, 1}B and 0 ≤ α < 1
2 , the partition functions for G and G̃

can be related by
ZG,σ = κ(σ)ZG̃,σ

and
ZG,α,σ = κ(σ)ZG̃,α,σ
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where κ(σ) is a constant depending only on the configuration σ and has a product
structure

κ(σ) =

k+1∏
i=1

κi(σ(Wi)).

and κi = κj for 1 ≤ i, j ≤ k.

Proof. By the Markov property.

Putting these results together, we obtain the following.

Proposition 4.15. For any σ ∈ {0, 1}B,

Ê((ZG,σ)2) = exp(O(n
1
5 ))(Ê(ZG,σ))2.

Proof.

Ê((ZG,σ)2) = Ê((ZG̃,σ)2(κ(σ))2) (by Lemma 4.14)

= exp
(
O(n

1
5 )
)
Ê((ZG̃,σ0

)2(χ(σ)κ(σ))2) (by Proposition 4.11 )

= exp
(
O(n

1
5 )
)

(Ê(ZG̃,σ0
χ(σ)κ(σ)))2 (by Proposition 4.13)

= exp
(
O(n

1
5 )
)

(Ê(ZG,σ))2. (by Corollary 4.5 and Lemma 4.14)

5 Local weak convergence to the free measure on the tree

The first result in this section shows that there does not exist a “bad set” of neighbor-
hoods with large stationary probability where the partition function is much larger than
the expected partition function. In the sequel, we will show that if on a constant fraction
of the n

3
5 random neighborhoods, the local measure is far from the free measure on the

tree, then such a bad set exists with high probability.

Proposition 5.1. Let c > 0 and suppose that G ∼ Ĥ(n, d). The probability that there
exists a set of independent set configurations B ⊂ {0, 1}B such that

E1(B) :=

{∑
σ∈B

ZG,σ > exp
(
cn

3
5

)∑
σ∈B

Ê (ZG,σ)

}
(5.1)

and

E2(B) :=

{∑
σ∈B

ZG,σ > exp
(
−n 4

7

)
Ê (ZG)

}
(5.2)

is at most exp
(
−n 3

5 (c− on(1))
)

.

The choice of 4
7 could be replaced with any constant less than 3

5 and greater than 1
2 .

Proof. In what follows, let B be a fixed set vertices, rather than a random set as defined
in (4.1). Since the claim holds for each fixed B, it holds for random B. Suppose that
there is a set B of boundary configurations such that E1(B) and E2(B) hold. Define the
set of configurations

D :=

{
σ ∈ B : ZG,σ >

1

3
exp

(
cn

3
5

)
Ê (ZG,σ)

}
.
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Suppose it was the case that ∑
σ∈B\D

ZG,σ >
1

2

∑
σ∈B

ZG,σ.

Then,

1

3
exp

(
cn

3
5

) ∑
σ∈B\D

Ê(ZG,σ) >
∑

σ∈B\D

ZG,σ >
1

2

∑
σ∈B

ZG,σ.

This contradicts (5.1) (that E1(B) holds) and thus we may assume that∑
σ∈D

ZG,σ >
1

2

∑
σ∈B

ZG,σ.

Therefore, by (5.2) (that E2(B) holds) we have∑
σ∈D

ZG,σ >
1

2

∑
σ∈B

ZG,σ >
1

2
exp

(
−n 4

7

) ∑
σ∈{0,1}B

Ê (ZG,σ) . (5.3)

By (5.3), and Markov’s inequality,

P̂ (∃B s.t. E1(B) ∩ E2(B)) ≤ P̂

∑
σ∈D

ZG,σ >
1

2
exp

(
−n 4

7

) ∑
σ∈{0,1}B

Ê (Zσ)

 ≤

≤

2Ê

(∑
σ∈D

ZG,σ

)
exp

(
−n 4

7

) ∑
σ∈{0,1}B

Ê (Zσ)
. (5.4)

By the definition of D and Proposition 4.15 we have

Ê

(∑
σ∈D

ZG,σ

)
< 3 exp

(
−cn 3

5

)
Ê

(∑
σ∈D

ZG,σ
ZG,σ

Ê (ZG,σ)

)
≤

≤ 3 exp
(
−cn 3

5

)
Ê

 ∑
σ∈{0,1}B

ZG,σ
ZG,σ

Ê (ZG,σ)

 ≤
≤ exp

(
−cn 3

5

)
exp

(
O(n

1
5 )
) ∑
σ∈{0,1}B

Ê (ZG,σ) . (5.5)

Putting together (5.4) and (5.5), we obtain that

P̂ (∃B s.t. E1(B) ∩ E2(B)) ≤ exp
(
−n 3

5 (c− o(1))
)
,

which completes the proof of Proposition 5.1.

Recall the definition of the set of vertices S′ from (4.2) and recall that for each si ∈ S′,
Wi is the set of vertices on the boundary ∂Br(si) and |S′| = k. Fix 1 ≤ i ≤ |S′|. Let
T1, . . . , T|Wi| be (d− 1)-ary trees and let T̃ be their union. Let PT̃ be the product of the
free measures on the trees. Let us identify the roots u(i) = {u1, . . . , u|Wi|} of these trees

with the vertices of Wi. Let T be the tree obtained by joining to T̃ a d-ary tree of depth r
whose leaves are identified with the ui.

EJP 21 (2016), paper 9.
Page 29/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3552
http://www.imstat.org/ejp/


Decay of correlations for the hardcore model

Lemma 5.2. Define the distribution ν on {0, 1}B by

ν(A) :=

∑
σ∈A

χ(σ)κ(σ)∑
σ∈{0,1}B

χ(σ)κ(σ)
.

If σ ∼ ν, then for each 1 ≤ i ≤ k, the σ(Wi) are independent and

ν(σ(Wi) ∈ ·) = PT (σ(u(i)) ∈ ·) = PTd(Br(x) ∈ ·). (5.6)

Proof. By relating the occupation probability of the root for the free measure for the
d-regular tree and the occupation probability of the root of the free measure on the
(d− 1)-ary tree, it can be verified that

PT̃ (σ(Wi) = ω) ∝ χ(ω).

By the Markov property,
PT (σ(Wi) = ω) ∝ χ(ω)κ(ω).

Therefore

ν(σ(Wi) = ω) = PT (σ(u(i)) = ω) (5.7)

and (5.6) follows.

Let PGn denote the hardcore measure on the random d-regular graph of size n.
Recall that we have local weak convergence to the free measure if for all all r, with high
probability over a uniformly chosen vertex u, for ε > 0, as n→∞,

P (dtv(PGn(σ(Br(u)) ∈ ·),PTd(σ(Br(x)) ∈ ·) > ε))→ 0. (5.8)

The following lemma will be used in the next result.

Lemma 5.3. Let I be an index set, (Xi)i∈I random variables and (ai)i∈I constants.
Suppose that for each i,

P(Xi < ai) ≤ ε

for some ε > 0. Then,

P

(∑
i∈I

Xi <
1

2

∑
i∈I

ai

)
≤ 2ε.

Proof. We show first that∑
i

Xi <
1

2

∑
i

ai ⇒
∑
i

ai1Xi>ai <
1

2

∑
i

ai ⇔
∑
i

ai1Xi≤ai ≥
1

2

∑
i

ai.

The equivalence above is immediate and the first implication can be seen as follows:

1

2

∑
i

ai >
∑
i

Xi ≥
∑
i

Xi1Xi>ai ≥
∑
i

ai1Xi>ai .

Applying Markov’s inequality, we have

P

(∑
i

Xi <
1

2

∑
i

ai

)
≤ P

(∑
i

ai1Xi≤ai ≥
1

2

∑
i

ai

)
≤ 2ε.
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We will show the following result which in turn implies (5.8), since with high proba-
bility k = (1− on(1))n3/5.

Theorem 5.4. Let G ∼ H(n, d). Let ω be an independent set drawn according to the
hardcore measure on G. For any ε > 0,

|{1 ≤ i ≤ k : dtv(PGn(ω(Wi)) ∈ ·),PTd(Br(x) ∈ ·)) > ε}|
k

P→ 0 , (5.9)

as n→∞.

Proof. Let E be the event that the left hand side of (5.9) is at least δ > 0. If E occurs,
then by the definition of total variation distance, there exists a set J of indices of size δk
and Ai ∈ {0, 1}Wi for i ∈ J such that

PG (ω(Wi) ∈ Ai)− PT (ω(u(i)) ∈ Ai) > ε ∀i ∈ J.

This implies

E

(∑
i∈J

1(ω(Wi) ∈ Ai)

)
−
∑
i∈J

PT (ω(u(i)) ∈ Ai) ≥ εδk. (5.10)

Using the fact that
∑
i∈J

1(ω(Wi) ∈ Ai) ≤ δk, we obtain that

E

(∑
i∈J

1(ω(Wi) ∈ Ai)

)
−
∑
i∈J

PT (ω(u(i)) ∈ Ai) ≤

≤ εδn
3
5

2
+ δkP

(∑
i∈J

1(ω(Wi) ∈ Ai) >
εδn

3
5

2
+
∑
i∈J

PT (ω(u(i)) ∈ Ai)

)
.

(5.11)

Combining (5.10) and (5.11) and using the fact that k ≥ (1− o(1))n
3
5 , we get

P

(∑
i∈J

1(ω(Wi) ∈ Ai) >
εδn

3
5

2
+
∑
i∈J

PT (ω(u(i)) ∈ Ai)

)
≥ ε

3
. (5.12)

Define the set of configurations

B :=

{
σ ∈ {0, 1}∪iWi s.t.

∑
i∈J

1(σ ∈ Ai) >
εδn

3
5

2
+
∑
i∈J

PT (σ ∈ Ai)

}
.

By (5.12), on the event E ∑
σ∈B

ZG,σ ≥
ε

3
ZG. (5.13)

In particular, (5.13) holds when G ∼ Ĥ(n, d). By Proposition 4.15, for any σ ∈ {0, 1}B
and G ∼ Ĥ(n, d),

Ê(Z2
G,σ)

(Ê(ZG,σ))2
≤ exp

(
O(n

1
5 )
)
,

so that by the Paley-Zygmund inequality,

P̂

(
ZG,σ >

1

2
Ê(ZG,σ)

)
≥ exp

(
−O(n

1
5 )
)
.
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Indeed, by Markov’s inequality, it follows that for any κ > 0

P̂

(
ZG,σ ∈

[
Ê(ZG,σ)

2
, en

κ

Ê(ZG,σ)

])
≥ exp

(
−O(n

1
5 )
)
. (5.14)

On the other hand, by Azuma’s inequality, for all κ > 0,

P̂
(
| logZG,σ − Ê(logZG,σ)| ≥ n 1

2 +κ
)
≤ exp

(
−n

1+2κ

2ndλ

)
≤ exp(−n2κ). (5.15)

Together, (5.14) and (5.15) imply that the interval

[log(Ê(ZG,σ)− log 2, nκ + log Ê(ZG,σ)] ∩ [Ê(logZG,σ)− n1/2+κ, Ê(logZG,σ) + n1/2+κ]

is non-empty and hence

|Ê(logZG,σ)− log(Ê(ZG,σ))| ≤ 2n
1
2 +κ.

Plugging this into (5.15), we obtain that for each fixed σ,

P̂
(
ZG,σ ≥ exp

(
−O(n

1
2 +κ)

)
Ê(ZG,σ)

)
≥ 1− exp(−n2κ).

By Lemma 5.3,

P̂

(∑
σ∈B

ZG,σ ≥ exp
(
−O(n

1
2 +κ)

)∑
σ∈B

Ê(ZG,σ)

)
≥ 1− 2 exp(−n2κ)

and combining with (5.13), we have that

P̂

(∑
σ∈B

ZG,σ ≥ exp
(
−O(n

1
2 +κ)

)
Ê(ZG)

)
≥ 1− 2 exp(−n2κ).

That is, we have shown that the event E2(B), as defined in Proposition 5.1 holds with
high probability on the event E . By Corollary 4.5 and Lemma 4.14 for each σ ∈ B, we
have

Ê(ZG,σ) = exp
(
O(n

1
5 )
)
χ(σ)κ(σ)Ê(ZG,σ0

).

Summing this over all possible σ, we have

Ê(ZG) =
∑

σ∈{0,1}B
exp

(
O(n

1
5 )
)
χ(σ)κ(σ)Ê(ZG,σ0

),

and comparing these two equalities, we obtain that

∑
σ∈B

Ê(ZG,σ) = exp
(
O(n

1
5 )
) ∑

σ∈B
χ(σ)κ(σ)∑

σ∈{0,1}B
χ(σ)κ(σ)

Ê(ZG) = exp
(
O(n

1
5 )
)
ν(B)Ê(ZG). (5.16)

By Lemma 5.2 and Azuma-Hoeffding,

ν(B) = ν

(∑
i∈J

1(σ ∈ Ai) >
εδn

3
5

2
+
∑
i∈J

PT (σ ∈ Ai)

)

= ν

(∑
i∈J

1(σ ∈ Ai)− ν

(∑
i∈J

1(σ ∈ Ai)

)
>
εδn

3
5

2

)
≤ exp

(
−cn 3

5

)
.
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Combining the above bound with (5.16), we obtain that∑
σ∈B

Ê(ZG,σ) ≤ exp
(
−cn 3

5

)
Ê(ZG). (5.17)

Using (5.17), we have that if E and E2(B) hold, then∑
σ∈B

ZG,σ > exp
(
−O(n

1
2 +κ)

)
Ê(ZG) ≥ exp

(
cn

3
5

)
Ê

(∑
σ∈B

ZG,σ

)
,

and therefore, the event E1(B) as defined in Proposition 5.1 holds. Therefore, on the
event {E ∩ E2(B)}, E1(B) holds with probability at least 1− 2 exp(−n2κ).

To summarise, we have shown that on the event E , the event {E1(B) ∩ E2(B)} holds
with high probability. Applying Proposition 5.1,

exp(−cn 3
5 ) ≥ P̂(E1(B) ∩ E2(B)) ≥ P̂(E1(B) ∩ E2(B)|E)P̂(E) ≥ (1− o(1))P̂(E).

Thus, P̂(E)→ 0 as n→∞. Since G ∼ Ĥ(n, d) with high probability, P(E)→ 0 as n→∞
and the claim follows.

Theorem 5.4 implies (5.8), which establishes local weak convergence to the free
measure, proving Theorem 1. Given local weak convergence, the equivalence of the
reconstruction thresholds and hence Theorem 3, follow.

6 Technical lemmas about the partition function

In this section we show that the second moment E(Z2
G) is close to the the square of

the first moment E(ZG) and satisfies a quadratic decay property. Let

H1(x, y) = −x(log(x)− log(y)) + (x− y)(log(y − x)− log(y)).

Recall that

E
(
Z

(2)
G,α,γ,ε

)
= λ2αn

(
n

αn

)(
αn

γn

)(
(1− α)n

(α− γ)n

)

γnd−1∏
i=0

(1− 2α+ γ)dn− i

γnd−1∏
i=0

dn− 1− 2i

×

×


εdn−1∏
i=0

(1− 2α)dn− i ·
(α−γ−ε)dn−1∏

i=0

(α− γ)dn− i

(α−γ)dn−1∏
i=0

(1− 2γ)dn− 1− 2i

·

εdn−1∏
i=0

(1− 2α− ε)dn− i

εdn−1∏
i=0

(1− 2α)dn− 1− 2i

 . (6.1)

We also recall that the following function arises naturally in the estimation of the
second moment:

f(α, γ, ε) = 2α log(λ) +H(α) +H1(γ, α) +H1(α− γ, 1− α) + dΨ2(α, γ, ε) ,

where

Ψ2(α, γ, ε) = H1(ε, α− γ) +

∫ γ

0

log(1− 2α+ γ − x)dx−
∫ γ

0

log(1− 2x)dx

+

∫ ε

0

log(1− 2α− x)dx+

∫ α−γ−ε

0

log(α− γ − x)dx−
∫ α−γ

0

log(1− 2γ − 2x)dx

+

∫ ε

0

log(1− 2α− ε− x)dx−
∫ ε

0

log(1− 2α− 2x)dx. (6.2)
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Using (3.2) to compare terms in (6.1) and (6.2) proves Proposition 3.1 showing that

E
(
Z(2)
α,γ,ε

)
= exp(nf(α, γ, ε) +O(log n)).

Thus the second moment depends on the behavior of the function f . We will show a
series of technical lemmas showing that f attains its maximum at (α∗, γ∗, ε∗) and decays
quadratically around this point. Define

αc :=
(2− δd) log(d)

d
,

where δd = C log log d+1
log d → 0 as d→∞ and C > 3.

Lemma 6.1. For each fixed α, γ in the region R, the function f has a local maximum at

ε = ε(α, γ) =
1

2

(
1− 2γ −

√
(1− 2α)2 + 4(α− γ)2

)
.

Proof. Differentiating (6.2), we have that the derivative of f is given by

∂f

∂ε
= d log

(
(α− γ − ε)(1− 2α− ε)(1− 2α− 2ε)2

ε2(1− 2α− ε)(1− 2α− 2ε)

)
.

Since the hardcore model is a permissive model, we may assume that the local maxima
of f are in the interior of R (see e.g. [13, Proposition 3.2]. Solving for ε by setting
∂f
∂ε = 0, gives that the unique solution in the interior of R is ε = ε. Further, we check
that the second derivative

∂2f

∂ε2
= −d

(
1

α− γ − ε
+

2

1− 2α− 2ε
+

2

ε

)
< 0,

and hence ε is a maximum.

We will also use the following technical lemma.

Lemma 6.2. For any 0 ≤ α ≤ 1
2 ,

2Φ(α) = f(α, γ̂, ε̂).

Proof. Substituting γ̂ = α2 and ε̂ = α(1 − 2α) in the expression for f(α, γ, ε), and
simplifying, we have

2Φ(α)− f(α, γ̂, ε̂) = 2d

(
(1− α) log(1− α)− 1− 2α

2
log (1− 2α)− 2

)
− dΨ2(α, γ̂, ε̂)

+H(α) +H1(α2, α) +H1(α(1− α), 1− α) = 0.

Define the function
g(α, γ) ≡ f(α, γ, ε(α, γ))

and consider its extremal values for fixed α in the region where α, γ ≥ 0 and α− γ ≥ 0.
The derivative of g is given by

∂g

∂γ
(α, γ) =

∂f

∂γ
(α, γ, ε(α, γ)) , (6.3)

while its second derivative is

∂2g

∂γ2
(·, ·) =

∂f

∂2γ
(·, ε) +

∂ε

∂γ

∂f

∂γ∂ε
(·, ·, ε). (6.4)

We establish the behavior of the function f near its maximum by showing several
facts about g.
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Proof of Proposition 3.2. By Lemma 6.1, for fixed α and γ, f has a maximum at ε(α, γ).
Thus, it remains to find the maximum of g(α, γ). In what follows we will show that for
fixed α, g is maximized at (α, α2). Noting that ε(α, γ̂) = α(1 − 2α), it follows that f is
maximized at (α∗, γ∗, ε∗) since by Lemma 6.2, f(α, α2, α(1− 2α)) = 2Φ(α), and by (3.5),
Φ is maximized at α∗.

We can verify that (α, α2) is a stationary point of g by computing the first derivative.
In what follows, we establish that for fixed α < αc, (α, α2) is a global maximizer of g(α, γ)

by considering several possible ranges for γ. This will consist of two main steps. The
first is to show that (α, α2) is a maximum and the second is to show that the function g is
larger at (α, α2) than at any other possible maximum. Let γi := ci

α
log(α−1) for i = 1, 2, 3

with the constants ci to be set later.

Computing the derivatives using equations (6.3) and (6.4) gives that

∂2g

∂γ2
=−

(
2

α− γ
+

1

γ
+

1

1− 2α+ γ

)
+ d

(
1

1− 2α+ γ
+

2

α− γ
− 2(α− γ)

(α− γ − ε)
√

(1− 2α)2 + 4(α− γ)2

)
. (6.5)
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Figure 3: Second derivative of g(α, γ) with respect to γ.

1) Let d be sufficiently large so that by the assumption that α < αc, we have that
d < 3α−1 log(α−1). Let d also be large enough so that for a small constant c1 to be
chosen later, α2 < c1α/ log(α−1). We show that there is a constant c1 so that for

γ ∈ [0, γ1], ∂2g
∂γ2 < 0 (see Figure 3) and hence the stationary point (α, α2) of g is a

maximum (see Figures 4 and 5).

Note that the first term of the second derivative (6.5) is negative and has magnitude
at least 1/γ ≥ α−1 log(α−1)/c1 for this range of γ. The term on the second line of (6.5)
is positive, but we will argue that its magnitude is O(α−1 log(α−1)). The claim will
follow by taking the constant c1 to be small enough.

The terms in the second bracket of (6.5) can be bounded by O(1) as can be seen
below from the series expansion in Mathematica (note that this calculation does not
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Figure 4: First derivative of g(α, γ) with respect to γ.
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Figure 5: The function g(α, γ).

depend on the size of γ or on c1).

1

1− 2α+ γ
+

2

α− γ
− 2(α− γ)√

(1− 2α)2 + 4(α− γ)2

(
α− γ −

(
1−2γ−

√
(1−2α)2+4(α−γ)2

)
2

)
=
(
1 + 4α+O(α2)

)
+
(
−3− 12α+O(α2)

)
γ +O(γ2) . (6.6)

Therefore
∂2g

∂γ2
< − 1

γ
+ Cd < − 1

c1
α−1 log(α−1) + Cα−1 log(α−1) ,

where above the particular value of C may change in each appearance. Hence by
choosing c1 to be sufficiently small, the claim follows.

We now divide the analysis showing that γ = α2 corresponds to a global maximum
into two cases based on the size of α.

2) When α is small enough, we show that g has no stationary point for γ ∈ (α2, α]. Sup-
pose that α < ε log(d)/d for ε sufficiently small. Then, for some ε′, d < ε′α−1 log(α−1).
Expanding the terms in the second bracket of (6.5) as in (6.6), and recalling that
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∂g(α, α2)/∂γ = 0, we have that for γ > α2,

∂g

∂γ
(α, γ) <

∫ γ

α2

(−1

s
+ Cd)ds < log

(
α2

γ

)
+ Cε′α−1 log(α−1)(γ − α2). (6.7)

We claim that the bound on the right hand side of (6.7) is maximized at the end points
of the interval [α2, α]. Indeed, differentiating the bound with respect to γ, the only
stationary point in the interval is at γ = α/(Cε′ log(α−1)). Furthermore, the second
derivative of the bound is positive so that the stationary point can only be a minimum.

At γ = α2, the bound evaluates to 0. Evaluating (6.7) at γ = α, we obtain that

∂g

∂γ
(α, α) < log(α) + Cε′α−1 log(α−1)(α− α2) ≤ log(α)(1− Cε′) < 0

since ε′ can be made arbitrarily small by our choice of ε. It follows that ∂g(α, γ)/∂γ < 0

in (α2, α] and the interval does not contain any stationary points.

When α ≥ ε log(d)/d, there may be a second stationary point near (α, α) and the
values of g at the stationary points must be compared to show that (α, α2) is the
global maximum. This will be done in the points that follow.

3) We show that there is a constant c2 > c1 so that for γ ∈ (α2, γ2], ∂g∂γ < 0. Thus, for this
range of γ there are no stationary points of g (see Figure 4). Integrating the second
derivative in this range we obtain that

∂g

∂γ
(α, γ2) =

∫ γ1

α2

∂2g(α, s)

∂s2
ds+

∫ γ2

γ1

∂2g(α, s)

∂s2
ds ≤ −

∫ γ1

α2

1

2s
ds+

∫ γ2

γ1

Cdds

=
1

2
log

(
α2

γ1

)
+ Cd(γ2 − γ1) ≤ 1

2
log

(
α log(α−1)

c1

)
+ C(c2 − c1).

The upper bounds in the first line above follow by the arguments similar to those of
1) and 2) above. In particular, c1 can be chosen small enough so that the first bound
follows. The last inequality follows since α < αc which implies d < 3α−1 log(α−1). As
d→∞, α→ 0 and therefore for large enough d, the first derivative will be negative
as claimed.

4) There are constants c2, c3 such that c2 > c1 and for γ ∈ [γ2, α− γ3], ∂2g
∂γ2 > 0 (see

Figure 3). This implies that g does not have a maximum in this range.

For this range of γ, the first term of ∂2g
∂γ2 in (6.5) can be bounded as

−
(

2

α− γ
+

1

γ
+

1

1− 2α+ γ

)
≥ −

(
2

c3
+

1

c2

)
α−1 log(α−1). (6.8)

The second term can be bounded below as follows. We use the Taylor series expansion

√
x+ y =

√
x+

∞∑
i=1

x
1
2−iyi

(
i∏

k=1

(
3

2
− k
)

1

i!

)

to expand as follows with x = (1− 2α)2 and y = 4(α− γ)2:

ε = (α− γ)− 1

2

∞∑
i=1

(1− 2α)1−2i(2(α− γ))2i

(
i∏

k=1

(
3

2
− k
)

1

i!

)
.
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Rearranging, we have

α− γ − ε =
1

2

∞∑
i=1

(2(α− γ))2i

(1− 2α)2i−1

(
i∏

k=1

(
3

2
− k
)

1

i!

)
.

Similarly,

√
(1− 2α)2 + 4(α− γ)2 =

∞∑
i=0

(2(α− γ))2i

(1− 2α)2i−1

(
i∏

k=1

(
3

2
− k
)

1

i!

)
.

Therefore, the second term of (6.5) can be bounded as follows

d

(
1

1− 2α+ γ
+

2

α− γ
− 2(α− γ)

(α− γ − ε)
√

(1− 2α)2 + 4(α− γ)2

)

= d

1 +
2

α− γ

1− 1(
1

1−2α −
(α−γ)2

(1−2α)3 + · · ·
)(

(1− 2α) + 2(α−γ)2

1−2α − 2(α−γ)4

(1−2α)3 + · · ·
)


= d

1 +
2(α− γ)

(1− 2α)2

1− 4 (α−γ)2

(1−2α)2 · · ·

1 + (α−γ)2

(1−2α)2 − 4 (α−γ)4

(1−2α)4 · · ·


≥ d

(
1 +

2(α− γ)

(1− 2α)2

(
1− 5

(α− γ)2

(1− 2α)2

))
≥ d. (6.9)

Combining (6.8) and (6.9) we see that to prove the claim it is enough to choose

constants c2 and c3 to satisfy
(

2
c3

+ 1
c2

)
α−1 log(α−1) < d. Recall that we are now in

the case that d > ε′α−1 log(α−1). Thus, the claim follows by choosing c2 > c1 and c2
and c3 large enough.

5) Lastly, we show that for γ ∈ [α − γ3, α], the maximum obtained has a smaller value
than the maximum at γ = α2 (see Figure 5). By (6.5) we have

∂g2

∂γ2
≥ − 2

α− γ

(
1 +

α− γ
γ

)
≥
−2
(

1 + c3
log(α−1)−c3

)
α− γ

.

Suppose that γ4 is any maximum of g in this interval so that ∂g(α, γ)/∂γ = 0. We can
bound the first derivative as follows.

∂g(α, γ)

∂γ
=

∫ γ

γ4

∂2g(α, s)

∂s2
ds ≥ −2

(
1 +

c3
log(α−1)− c3

)∫ γ

γ4

1

α− s
ds

= −2

(
1 +

c3
log(α−1)− c3

)
log

(
α− γ4

α− γ

)
.

Now, using the above bound, we integrate to obtain

g(α, α)− g(α, γ4) =

∫ α

γ4

∂g(α, s)

∂s
ds ≥ −2

(
1 +

c3
log(α−1)− c3

)
(α− γ4)

> −2(1 + εd)(α− γ4)

⇒ g(α, γ4) < g(α, α) + 2(1 + εd)(α− γ4) ,

where εd = 1/(log d− log log d). We would like to show that g(α, α2) > g(α, γ4). Thus
it suffices to show that g(α, α2)− g(α, α) > 2(1 + εd)(α− γ4). Roughly, g(α, α) should
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behave like Φ, the first moment, while g(α, α2) is 2Φ. Recall that g(α, α) = f(α, α, 0)

since ε(α, α) = 0. Comparing (3.3) and (3.7), we have

exp (nf(α, α, 0)) = λαnenΦ(α)

⇒ g(α, α) = f(α, α, 0) = α log(λ) + Φ(α) .

Also,

Φ(α) = α log(λ) +
1

n
log(|{σ : |σ| = αn}|) .

Therefore,

g(α, α2)− g(α, α) = 2Φ(α)− α log(λ)− Φ(α)

=
1

n
log(|{σ : |σ| = αn}|)

= H(α) + d

(
(1− α) log(1− α) + (α− 1

2
) log(1− 2α)

)
. (6.10)

Using Mathematica to expand the terms of the expression in (6.10), we obtain for
α < αc,

H(α) + d

(
(1− α) log(1− α) + (α− 1

2
) log(1− 2α)

)
= (1− log(α))α− d+ 1

2
α2 −

(
d

2
+

1

6

)
α3 +O(α4)

> 2(1 + εd)α > 2(1 + εd)(α− γ4) ,

for d sufficiently large.

The first part of Proposition 3.2 follows by the five facts above. Next we show that
f(α, γ, ε) decays quadratically near α∗, γ∗, ε∗. We start by calculating the Hessian matrix
for f . The partial second mixed derivatives of f(α, γ, ε) evaluated at γ̂ = α2 and ε̂ =

α(1− 2α) are given by:

∂2f

∂α2
=
α2(6− 21d) + 2α4(−4 + d)− d+ 16α3d+ α(−2 + 8d)

(1− 2α)2(−1 + α)2α2

∂2f

∂α∂γ
=
α(2− 4d) + d+ α2d

(−1 + α)2α2

∂2f

∂α∂ε
=

(
1− 4α+ 2α2

)
d

(1− 2α)2α2

∂2f

∂γ2
=
−1 +

(
−1 + 4α− 2α2

)
d

(−1 + α)2α2

∂2f

∂γ∂ε
= − d

α2

∂2f

∂ε2
= −

(
1− 2α+ 2α2

)
d

(1− 2α)2α2
.

Using Mathematica to calculate the characteristic polynomial of the Hessian matrix, we
obtain

1

(1− α)3α5(1− 2α)3

(
(2d− 8αd+ 12α2d− 8α3d+ 2αd2 − 6α2d2 + 8α3d2 − 2α3d3)
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+ (2α2 − 12α3 + 24α4 − 16α5 + 2αd− 14α2d+ 50α3d− 102α4d+ 120α5d− 92α6d

+ 40α7d+ 2α3d2 − 10α4d2 + 10α5d2 + 16α6d2 − 20α7d2)x

+ (α3 − 5α4 + 6α5 + 2α6 + 4α7 − 24α8 + 16α9 + 3α3d− 29α4d+ 116α5d− 236α6d

+ 246α7d− 116α8d+ 16α9d)x2

+ (α5 − 9α6 + 33α7 − 63α8 + 66α9 − 36α10 + 8α11)x3
)
.

Recall that α = O(log d/d). Thus by taking d sufficiently large, it is enough to consider
only the leading terms in the coefficients of the characteristic polynomial. Recall also
that α ≤ 1/2. First, note that the value of the polynomial at x = 0 which is given by the
constant coefficient is positive. Secondly, each of the other coefficients is also positive,
so that for all x > 0, the derivative of the characteristic polynomial is positive. Hence
the polynomial itself has only real negative roots and the Hessian is negative definite.
Thus, f is strictly concave at α∗, γ∗, ε∗ and must decay quadratically around its maximum.
Hence we have that for any (α, γ, ε),

f(α∗, γ∗, ε∗)− f(α, γ, ε) ≥ C(|α− α∗|2 + |γ − γ∗|2 + |ε− ε∗|2).

We conclude by establishing Proposition 3.3 which says that second moment of the
partition function can be bounded by the square of the first moment up to a polynomial
term.

Proof of Proposition 3.3. Applying the Cauchy-Schwartz inequality we have

E((ZG)2) =
∑
α,α′

E (ZG,αZG,α′) = Θ̃(1)
∑
α

E((ZG,α)2)

= Θ̃(1)
∑
α,γ,ε

EZ
(2)
G,α,γ,ε ≤ exp(nf(α∗, γ∗, ε∗) +O(log n))

= exp(2Φ(α∗)n+O(log n)) = Θ̃(1)(EZG)2 ,

where the inequality is by Proposition 3.1 while the penultimate equality is by Lemma (6.2).
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