Erratum: Nonlinear filtering for reflecting diffusions in random environments via nonparametric estimation*

Michael A. Kouritzin† Wei Sun‡ Jie Xiong§

Abstract

This is an erratum to EJP paper number 18, volume 9, Nonlinear filtering for reflecting diffusions in random environments via nonparametric estimation.

Keywords: nonlinear filtering; reflecting diffusion; random environment; nonparametric estimation; pathwise average distance; particle filter.

Submitted to EJP on December 6, 2016, final version accepted on December 19, 2016.

Equation (2.2) in [4] is incorrect, which puts the proof of Theorem 2 [4, Appendix] in doubt. The theorem is true as stated. In the following, we will revise the places in [4, Appendix] where equation (2.2) is used.

As in [4], we let $p^0(t, x, y)$ be the transition density function of X^t_0. Theorem 3.1, Theorem 3.4 and Lemma 4.3 in [2] imply that

$$
p^0(t, x, y) \leq c_1 t^{-d/2} \exp\left(-\frac{|x - y|^2}{c_2 t}\right), \quad \forall t > 0, x, y \in \overline{D},
$$

(0.1)

and

$$
p^0(t, x, y) \geq c_3 t^{-d/2}, \quad \forall t > 0, x, y \in \overline{D} \text{ such that } |x - y| \leq \varepsilon \sqrt{t},
$$

(0.2)

where $c_1, c_2, c_3, \varepsilon > 0$ are constants independent of x, y, t.

We denote by $p(t, x, y)$ the transition density function of X_t and \mathcal{E}. It is known that (0.1) and (0.2) are quasi-isometry stable (cf. the remark before Section 1.2 and the remark after Theorem 1.2 in [3]). For any $M > 0$, there exist constants $c_1(M), c_2(M), c_3(M), \varepsilon(M) > 0$ independent of x, y, t such that if $\|W\|_\infty \leq M$ then

$$
p(t, x, y) \leq c_1(M) t^{-d/2} \exp\left(-\frac{|x - y|^2}{c_2(M) t}\right), \quad \forall t > 0, x, y \in \overline{D},
$$

(0.3)

and

$$
p(t, x, y) \geq c_3(M) t^{-d/2}, \quad \forall t > 0, x, y \in \overline{D} \text{ such that } |x - y| \leq \varepsilon(M) \sqrt{t}.
$$

(0.4)

*Main article: 10.1214/EJPv9-214.
†University of Alberta, Canada. E-mail: michaelk@ualberta.ca
‡Concordia University, Canada. E-mail: wei.sun@concordia.ca
§University of Macau, China. E-mail: jiexiong@umac.mo
Erratum: Nonlinear filtering for reflecting diffusions

It is known that (0.3) and (0.4) imply that (cf. [1, Corollary 4.2]) for any $M > 0$, there exist constants $c_4(M), 0 < \alpha(M) < 1$ independent of x, x', t, such that if $\|W\|_{\infty} \leq M$ and $f \in B_b(D)$ satisfy $\|f\|_{\infty} \leq M$ then

$$\left| \int_D p(t, x, y) \mu(dy) - \int_D p(t, x', y) \mu(dy) \right| \leq c_4(M) |x - x'|^{\alpha(M)}, \quad \forall t > 0, x, x' \in \overline{D}. \quad (0.5)$$

Hence X_t is a strong Feller diffusion.

We define on $L^2(D; dx)$ the symmetric bilinear form

$$A^W(u, v) = \frac{1}{2} \int_D \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2 u W(x)}{\partial x_i \partial x_j}(x) e^{-W(x)} dx, \quad u, v \in D(A^W),$$

$$D(A^W) = \{ u \in L^2(D; dx) : u e^{W/2} \in H^{1,2}(D) \}.$$

Let $W_n \in B_b(\overline{D})$, $n \in \mathbb{N}$, satisfy $\lim_{n \to \infty} \|W_n - W\|_{\infty} = 0$. Similar to [5, Lemma, page 864], we can show that the form A^{W_n} is Mosco-convergent to the form A^W on $L^2(D; dx)$, equivalently, $(s_t^{W_n})_{t>0}$ converges to $(s_t^W)_{t>0}$ strongly on $L^2(D; dx)$, where $(s_t^{W_n})_{t>0}$ and $(s_t^W)_{t>0}$ denote the semigroups of A^{W_n} and A^W, respectively. Note that for $f \in B_b(\overline{D})$, we have

$$p_t f = e^{W/2} s_t^W (e^{-W/2} f), \quad \forall t > 0.$$

Denote by $(p_t^n)_{t>0}$ the semigroup associated with X^n. Then, we obtain by Theorem 1 in [4] that $p_t^n f$ converges to $p_t f$ on $L^2(D; dx)$ for any $f \in B_b(D)$ and $t > 0$. Therefore, we obtain by (0.5) that for any sequence $\{\nu^n\}$ of probability measures on \overline{D} converging weakly to some probability measure ν on \overline{D}, (X^n_0, X^n_1) with the initial distribution ν^n converges weakly to (X_0, X_1) with the initial distribution ν.

References