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Abstract

In the standard nearest-neighbor coarsening model with state space {−1,+1}Z
2

and
initial state chosen from symmetric product measure, it is known (see [2]) that almost
surely, every vertex flips infinitely often. In this paper, we study the modified model
in which a single vertex is frozen to +1 for all time, and show that every other site
still flips infinitely often. The proof combines stochastic domination (attractivity) and
influence propagation arguments.
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1 Introduction

As in our earlier paper [1], we study and compare the long time behavior of two
continuous time Markov coarsening models with state space Ω = {−1,+1}Zd

. One,
σ(t), is the standard model in which at time zero {σx(0) : x ∈ Zd} is an i.i.d. set with
θ ≡ P (σx(0) = +1) = 1/2 and then vertices update to agree with a strict majority of their
2d nearest neighbors or, in case of a tie, choose their value by tossing a fair coin. The
modified model, σ′(t), is the same except that σ′ at the origin (0, 0....0) is frozen to +1

for all t ≥ 0.

For d = 2, it is an old result [2] that in the standard σ(t) model, almost surely, every
vertex changes sign infinitely many times as t→∞. The main result of this paper (see
Theorem 2.7) is that the same is true for the frozen model σ′(t) on Z2. It is believed (see,
for example, Sec. 6.2 of [3]), but not proved, that the d = 2 behavior of σ remains valid
at least for some values of d > 2. If this were so, then the arguments of this paper would
show the same for the corresponding σ′ model.

In the previous paper [1] we considered models with infinitely many frozen vertices
and in this paper a model with a single frozen vertex. It would be of interest to study
models with finitely many, but more than one, frozen vertices; in this regard, see the
remark following the proof of Theorem 2.8 below.
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2 Results

In this section we fix d = 2. We also use the standard convention that the updates are
made when independent rate one Poisson process clocks at each vertex ring.

Let AT denote the event that the “right” neighbor of the origin (at x = (1, 0)) is
−1 for some t ≥ T . Let A1

T ⊂ AT denote the event that the right neighbor of the
origin is the first neighbor to be −1 at some time t ≥ T (more precisely, that no
other neighbor is −1 at an earlier time in [T,∞]). Let BL,s for s ∈ {−1,+1}ΛL (where
ΛL = {−L,−L + 1, ...., L}2) denote the event that σ′(0)|ΛL

= s and write BL,+ when
s ≡ +1. We denote the probability measure for the frozen origin σ′(·) model by P ′ and
that for the regular coarsening model σ(·) by P .

Lemma 2.1. For all L,
P (A1

0|BL,+) ≥ 1/4 .

Proof. The result is an easy consequence of symmetry among the four neighbors of the
origin and the fact that P (A0) = 1 (indeed, for all T , P (AT ) = 1 — see [2]).

Let ΣLT denote the sigma-field generated by the initial spin values and clock rings and
coin tosses up to time T inside the box ΛL.

Proposition 2.2. For any T , L,

P ′(AT |ΣLT ) ≥ 1/4 a.s. .

Proof. Let σ̃LT (.) denote the model with the spin values at all sites in ΛL frozen to +1

from time 0 up to time T and with the spin value at the origin remaining frozen at +1

thereafter. Denote the corresponding probability measure by P̃LT . Under the standard
coupling, σ̃(·) stochastically dominates σ′(·), so we have

P ′(AT |ΣLT ) ≥ P̃LT (AT ) ≥ P̃LT (A1
T ).

To continue the proof, we will use the following result about the “propagation speed”
of influence between different spatial regions:

Lemma 2.3. Let DL
T denote the event that σx(t) = +1 ∀x ∈ ΛL,∀t ∈ [0, T ]. Then

∀L, T, ε,∃L′ such that P (DL
T |BL′,+) ≥ 1− ε .

Proof. Let L′ >> L and note that given BL′,+, (DL
T )c can occur only if there is a nearest

neighbor (self-avoiding) path between the boundaries of the two sets, Z2 \ ΛL′ and ΛL,
along which there are clock rings occurring in succession between times 0 and T . Any
such path is at least of length L′ − L (i.e., contains at least L′ − L vertices besides the
starting one).

Consider a particular path γ of length m ≥ L′−L. For each m there are no more than
3m such paths from each boundary point and the time it takes for successive clock rings
along γ is at least Sm =

∑m
i=1 τi where the τi are i.i.d. exponential random variables with

parameter 1. By the exponential Markov inequality, for any α > 0,

P (

m∑
i=1

τi < T ) = P (−
m∑
i=1

τi > −T ) ≤ E(e−α
∑m

i=1 τi)

E(e−αT )
= eαTE{e−ατi}m =

eαT

(1 + α)m
.

Therefore, since there are at most CL′ possible starting points (for some constant C),

P ((DL
T )c|BL′,+) ≤ C L′

∞∑
m=L′−L

3m
eαT

(1 + α)m
= C(α, T, L)L′(

3

1 + α
)L
′
,

where C(α, T, L) is a constant depending on α, T and L. Taking α > 2 and the limit as
L′ →∞ completes the proof of the lemma.
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Proof. (Continuation of proof of Proposition 2.2.)
Pick ε > 0 and fix T and L. By Lemma 2.3, ∃ L′ such that

P (DL
T |BL′,+) ≥ 1− ε .

Therefore, given BL′,+, with probability at least 1− ε, σt(·) positively dominates σ̃TL (·) for
0 ≤ t < S, where S = inf{t > 0 |σt(0, 0) = −1}, and so

P̃TL (A1
T ) ≥ P (A1

T |BL′,+)− ε ≥ 1/4− ε .

Taking the limit as ε→ 0 completes the proof of Proposition 2.2.

Now let ΣT denote the sigma field generated by the initial assignment of spins on Z2

and the clock rings and coin tosses on Z2 up to time T .

Proposition 2.4. For all T ,
P ′(AT |ΣT ) ≥ 1/4 a.s.

Proof. For L ≥ 1 let XL = P ′(AT |ΣLT ). {ΣLT , L ≥ 1} is an increasing filtration of sigma
fields, and E(XL+1|ΣLT ) = XL. By the martingale convergence theorem, limL→∞(XL) =

X∞ = P ′(AT |ΣT ) and since XL ≥ 1/4 for all L, we have P ′(AT |ΣT ) ≥ 1/4.

Let AT,T ′ denote the event that the right neighbor of the origin is −1 for some time
t ∈ [T, T ′]. The following is immediate from Proposition 2.4.

Corollary 2.5.
lim
T ′→∞

P ′(AT,T ′ |ΣT ) ≥ 1/4 a.s. .

Lemma 2.6. For any T ≥ 0 and γ > 0, ∃ a deterministic T ′ such that

P{ω : P ′(AT,T ′ |ΣT ) ≥ 1/8} ≥ 1− γ .

Proof. This is a straightforward consequence of the preceding corollary.

Theorem 2.7. For any T ,

P ′(AT ) = 1, and henceP ′(∩T>0AT ) = 1 .

It follows that with probability one, σ′(1,0)(t) changes sign infinitely many times as t→∞.

Proof. Given T and ε > 0 construct a sequence of deterministic times {Ti; i ≥ 0} so that
1. T0 = T , and
2. P ′{ω : P ′(ATi−1,Ti |ΣTi−1) ≥ 1/8} ≥ 1− ε

2i .
Condition now on the event (of probability at least 1 −

∑∞
i=1

ε
2i = 1 − ε) that

P ′(ATi−1,Ti
|ΣTi−1

) ≥ 1/8 for all i. On this conditioned probability space, letting W̃i = 1

(and otherwise 0) if ATi−1,Ti occurs, we note that the W̃i’s stochastically dominate i.i.d.
{0, 1}-valued Wi’s with Prob(Wi = 1) = 1/8. Thus

P ′(ATi−1,Ti
occurs for only finitely many i) ≤ ε .

Letting ε→ 0 completes the proof of the first part of the theorem. The second part then
follows because by stochastic domination (attractivity) and the results of [2], σ′(0,0)(ti)

equals +1 for an infinite sequence of ti →∞.

The next theorem follows from a modified version of the proof of Theorem 2.7.

Theorem 2.8. Every site in Z2\{(0, 0)} flips infinitely many times in σ′(·) with probability
one.
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Proof. For any site z other than the origin, and for L much larger than say the Euclidean
norm of z, we consider the unfrozen σ model in which at time zero all the vertex values
are set to +1 in the box of side length 2L, centered at z/2 (so that the origin and z are
located symmetrically with respect to this box). Then with probability 1/2 the vertex at
z flips to −1 before the one at the origin flips and until just after that time, there is no
difference between the frozen (at the origin) σ′ model and the unfrozen σ model. Hence
there is probability at least 1/2 in σ′ that z will flip to minus. By applying the methods
used in the proof of Theorem 2.7 (but with 1/4 now replaced by 1/2), we conclude that z
will flip infinitely many times with probability one.

We note that the line of reasoning in the proof of the last theorem could have also
been used to give a modified proof of Theorem 2.7 with 1/4 replaced by 1/2. A more
interesting remark is the following.

Remark 2.1. For the process σ′′ with some finite set S of vertices frozen to +1, it is
possible to show by an extension of the arguments used in this paper that there is a
finite deterministic S ′ ⊇ S such that all sites in Z2 \ S ′ flip infinitely many times in
σ′′(·) with probability one. In some cases, S ′ must be strictly larger than S — e.g.,
when S = {(−L,−L), (−L+ L), (+L,−L), (+L,+L)}, S ′ includes all of ΛL. One may also
consider processes where some vertices are frozen to −1 and some to +1. We expect to
to pursue these issues in a future paper.
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