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Abstract

We prove a version of the multidimensional Fourth Moment Theorem for chaotic
random vectors, in the general context of diffusion Markov generators. In addition to
the usual componentwise convergence and unlike the infinite-dimensional Ornstein-
Uhlenbeck generator case, another moment-type condition is required to imply joint
convergence of of a given sequence of vectors.
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1 Introduction

The Fourth Moment Theorem (discovered by Nualart and Peccati in [13] and later
extended by Nualart and Ortiz-Latorre in [12]) states that, inside a fixed Wiener chaos, a
sequence of random variables (Fn, n > 1) converges in distribution towards a standard
Gaussian random variable if and only if E[F 2

n ]→ 1 and E[F 4
n ]→ 3 as n→∞. Recently, in

the pathbreaking contribution [5], Ledoux approached this Fourth Moment Phenomenon
in the more general context of diffusion Markov generators, and was able to provide
a new proof of such a result adopting a purely spectral point of view. Later on, in [1],
Azmoodeh, Campese and Poly generalized the concept of chaos originally introduced
in [5] and were able not only to obtain a more transparent proof of the classical Fourth
Moment Theorem, but also to exhibit many new situations where the Fourth Moment
Phenomenon occurs (e.g. the Laguerre or Jacobi chaoses). One should notice that the
collection of techniques introduced in [1] have also been successfully applied in other
contexts, e.g. for deducing moment conditions in limit theorems (see [2]), or in the study
of the so-called real Gaussian product conjecture (see [6]).

In this paper, we investigate a multidimensional counterpart of the Fourth Moment
Theorem by using the aforementioned approach based on Markov semigroup. In the
case of Wiener chaos, the multidimensional version of the Fourth Moment Theorem is
due to Peccati and Tudor [14], and is given by the following statement. For the rest of

the paper, the symbol ‘
d−→’ indicates convergence in distribution.
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Multivariate Gaussian approximations on Markov chaoses

Theorem 1.1 (See [14]). Let p1, ..., pd > 1 be fixed integers and Fn = (F1,n, . . . , Fd,n),
n > 1, be a sequence of vectors such that Fi,n belongs to the pith Wiener chaos of some
Gaussian field, for all i = 1, . . . , d and all n. Furthermore, assume that limn→∞ CovFn =

C, and denote by Z = (Z1, . . . , Zd) a centered Gaussian random vector with covariance
matrix C. Then, the following three assertions are equivalent, as n→∞:

(i) Fn
d−→ Z

(ii) Fi,n
d−→ Zi for all 1 6 i 6 d.

(iii) E[F 4
i,n] −→ E[Z4

i ] for all 1 6 i 6 d.

In other words, for sequences of random vectors living inside a fixed system of Wiener
chaoses, componentwise convergence implies joint convergence. Our main result is
the following analogue of Theorem 1.1 in the abstract Markov generator framework
(unexplained notation and definitions – in particular the notion of a chaotic vector – will
be formally introduced in the sequel).

Theorem 1.2. Let L be a diffusion Markov generator acting on L2(E,µ) with invariant
measure µ and discrete spectrum 0 < λ0 < λ1 < · · · , fix integers k1, ..., kd > 1, and
let Fn = (F1,n, . . . , Fd,n), n > 1, be a sequence of chaotic vectors such that Fi,n ∈
ker(L +λki Id), for 1 6 i 6 d and all n. Furthermore, assume that limn→∞ CovFn = C and
denote by Z = (Z1, . . . , Zd) a centered Gaussian random vector with covariance matrix
C (defined on some probability space (Ω,F ,P)). Consider the following asymptotic
relations (i) and (ii), for n→∞:

(i) Fn
d−→ Z,

(ii) for every 1 6 i, j 6 d, ∫
E

F 2
i,nF

2
j,n dµ −→ E[Z2

i Z
2
j ]. (1.1)

Then, (ii) implies (i), and the converse implication (i)⇒ (ii) holds whenever the sequence
(F 2
i,nF

2
j,n, n > 1) is uniformly integrable for every 1 6 i, j 6 d.

Remark 1.3. The additional mixed moment condition (ii) has no counterpart in the
statement of Theorem 1.1: indeed, whenever the components of the vectors Fn belong
to the Wiener chaos of some Gaussian field, we will explain in detail in Section 3 why
(1.1) is automatically satisfied for every 1 6 i 6= j 6 d when it holds for 1 6 i = j 6 d. We
also observe that a sufficient condition for the class

(F 2
i,nF

2
j,n, n > 1),

to be uniformly integrable for every i, j, is that, for some ε > 0,

sup
n

∫
E

|Fi,n|4+ε dµ <∞, for every i = 1, . . . , d. (1.2)

Finally, if the sequence (Fn, n > 1) lives in a fixed sum of Gaussian chaoses, then (1.2)
is automatically implied by the relation limn→∞CovFn = C, by virtue of a standard
hypercontractivity argument – see e.g. [8, Section 2.8.3]. General sufficient conditions
for the semigroup associated with L to be hypercontractive can be found e.g. in [3].

As in the one-dimensional case, it is possible in our abstract framework to provide a
proof of Theorem 1.2 that is not based on the use of product formulae, and that exploits
instead the spectral information embedded into the underlying generator L.

The rest of this paper is organized as follows. In Section 2, we will introduce
the abstract Markov generator setting and recall the main one-dimensional findings
from [1]. In Section 3, we will define multidimensional chaos and present the proof of
Theorem 1.2; we also provide a careful analysis of the additional condition (ii)b appearing
in our Theorem 1.2.
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2 Preliminaries

In this section, we introduce the general diffusion Markov generator setting. For a
detailed treatment, we refer to the monograph [4].

Throughout the rest of the paper, we fix a probability space (E,F , µ) and a symmetric
Markov generator L with state space E and invariant measure µ. We assume that L

has discrete spectrum S = {−λk : k > 0} and order its eigenvalues by magnitude, i.e.
0 = λ0 < λ1 < λ2 < . . . . In the language of functional analysis, L is a self-adjoint, linear
operator on L2(E,µ) with the property that L 1 = 0. By standard spectral theory, L is
diagonalizable and we have that

L2(E,µ) =

∞⊕
k=0

ker(L +λk Id).

We denote by L−1 the pseudo-inverse of L, defined on L2(E,µ) by L−11 = 0 and L−1F =

− 1
λF for any F ∈ ker(L +λ Id) such that λ 6= 0. It is immediate to check that L L−1 F =

F −
∫
E
F dµ for every F ∈ L2(E,µ). The associated bilinear carré du champ operator Γ

is defined by

Γ(F,G) =
1

2
(L(FG)− F LG−GLF ) ,

whenever the right-hand side exists. This is in particular the case when F and G

are two jointly chaotic eigenfunctions in the sense of the forthcoming Definition 3.3.
Furthermore, as L is self-adjoint and L 1 = 0, we immediately deduce the integration by
parts formula ∫

E

Γ(F,G) dµ = −
∫
E

F LGdµ = −
∫
E

GLF dµ. (2.1)

A symmetric Markov generator is called diffusive, if it satisfies the diffusion property

Lφ(F ) = φ′(F ) LF + φ′′(F )Γ(F, F )

for all smooth test functions φ : R → R and any F ∈ L2(E,µ). Equivalently, Γ is a
derivation i.e.

Γ(φ(F ), G) = φ′(F )Γ(F,G). (2.2)

Considering vectors F = (F1, . . . , Fd) and test functions ϕ : Rd → R, the diffusion and
derivation properties yield that

Lφ(F ) = Lφ(F1, . . . , Fd) =

d∑
i=1

∂ϕ

∂xi
(F ) LFi +

d∑
i,j=1

∂2

∂xi∂xj
(F ) Γ(Fi, Fj)

and

Γ(ϕ(F ), G) =

d∑
i=1

∂ϕ

∂xi
(F ) Γ(Fi, G),

respectively. In [1], the following definition of chaos was given.

Definition 2.1 (See [1]). Let L be a symmetric Markov generator with discrete spectrum
S, and let F ∈ ker(L +λp Id) be an eigenfunction of L (with eigenvalue λp ∈ S). We say
that F is chaotic, or a chaos eigenfunction, if

F 2 ∈
⊕

k:λk62λp

ker(L +λk Id). (2.3)
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Condition (2.3) means that, if F is a chaos eigenfunction of L with eigenvalue λp (say),
then the (orthogonal) decomposition of its square along the spectrum of L only contains
eigenfunctions associated with eigenvalues that are less than or equal to twice λp. Note
that this property is satisfied by all eigenfunctions of L in many crucial instances, e.g.
when L is the generator of the Ornstein-Uhlenbeck semigroup, the Laguerre generator
or the Jacobi generator (see [1]). Starting from this definition, and by only using the
spectral information embedded into the generator L, the authors of [1] were able to
deduce Fourth Moment Theorems for sequences of chaotic eigenfunctions and several
target distributions, drastically simplifying all known proofs. The analogue in this
framework of the classical Fourth Moment Theorem reads as follows.

Theorem 2.2 (Abstract Fourth Moment Theorem, see [1]). Let L be a symmetric diffusion
Markov generator with discrete spectrum S and let (Fn, n > 1) be a sequence of chaotic
eigenfunctions of L with respect to the same (fixed) eigenvalue, such that

∫
E
F 2
n dµ→ 1,

n→∞. Consider the following three conditions, as n→∞:

(i) Fn
d−→ Z, where Z ∼ N (0, 1),

(ii)
∫
E
F 4
n dµ→ 3,

(iii) Var(Γ(Fn))→ 0.

Then, the implications (ii) ⇒ (iii) ⇒ (i) hold. Furthermore, if the sequence (F 4
n , n > 1)

is uniformly integrable, one has that (i) ⇒ (ii).

The next section is devoted to the proof of our main results.

3 Main results

Let us begin by noting the general fact that (under standard regularity assumptions)
the distance between the distribution of a random vector F = (F1, . . . , Fd) and a multi-
variate Gaussian law is controlled by the expression

∑d
i,j=1 Var Γ(Fi,−L−1Fj). This fact

can either be shown by using the characteristic function method (see [12]), quantitatively
by Stein’s method (see [9]) or by means of the so-called “smart path” technique (see [7]).
The proofs carry over to our setting almost verbatim, by replacing the integration by
parts formula of Malliavin calculus with the analogous relation (2.1) for the carré du
champ operator Γ.

In order to keep our paper as self-contained as possible, instead of using the above
mentioned bounds, in the sequel we shall exploit the following estimate involving
characteristic functions: the proof is a Fourier-type variation of the smart path method.

Proposition 3.1. Let F = (F1, . . . , Fd) be such that Fj ∈ L2(E,µ) and
∫
E
Fj dµ = 0

for 1 6 j 6 d. Assume furthermore the existence of a finite N > 1 such that Fj ∈⊕N
k=0 ker(L +λk Id) for all 1 6 j 6 d. Let γd be the law of a d-dimensional centered

Gaussian random variable with covariance matrix C. Then, for any t ∈ Rd it holds that

∣∣∣∣∫
E

ei〈t,F 〉2 dµ−
∫
Rd
ei〈t,x〉2 dγd(x)

∣∣∣∣ 6 ‖t‖22
√√√√ d∑
i,j=1

∫
E

(
Cij − Γ(Fi,−L−1 Fj)

)2
dµ.

Proof. Fix t ∈ Rd and define Ψ(θ) = e
θ2

2 t
∗Ct
∫
E
eiθ〈t,F 〉2 dµ for θ ∈ [0, 1]. It is straightfor-

ward to verify that Ψ is differentiable on (0, 1), so that∫
E

ei〈t,F 〉2 dµ−
∫
Rd
ei〈t,x〉2 dγd(x) = e−

1
2 t

∗Ct
(
Ψ(1)−Ψ(0)

)
= e−

1
2 t

∗Ct

∫ 1

0

Ψ′(θ) d θ,
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and that the derivative of Ψ is given by

Ψ′(θ) = e
θ2

2 t
∗Ct

(
θ t∗Ct

∫
E

eiθ〈t,F 〉2 dµ+ i

∫
E

〈t, F 〉2 eiθ〈t,F 〉2 dµ

)
. (3.1)

Using both the integration by parts formula (2.1) and the diffusion property (2.2) for Γ

yields that

Ψ′(θ) = θe
θ2

2 t
∗Ct

d∑
i,j=1

titj

∫
E

(Cij − Γ(Fi,−L−1 Fj)) e
iθ〈t,F 〉2 dµ. (3.2)

The conclusion follows from an application of the Cauchy-Schwarz inequality.

Remark 3.2. In the previous statement, to require the existence of a finite N > 1 such
that Fj ∈

⊕N
k=0 ker(L +λk Id) for all 1 6 j 6 d is for simplicity only. It is enough for our

purpose and it prevents us to impose conditions for carrying out the interchange of
derivative and integration and the integration-by-parts.

Definition 3.3 (Jointly chaotic eigenfunction).

1. For 1 6 i, j 6 d and λki ∈ S, let Fi ∈ ker(L +λki Id) and Fj ∈ ker(L +λkj Id) be two
eigenfunctions of L. We say that Fi and Fj are jointly chaotic, if

FiFj ∈
⊕

r:λr6λki+λkj

ker(L+ λr Id). (3.3)

2. Let F = (F1, . . . , Fd) be a vector of eigenfunctions of L, such that Fi ∈ ker(L +λki Id)

for 1 6 i 6 d. Whenever any two of its components (possibly the same) are jointly
chaotic, we say that F is chaotic. In particular, this implies that each component of
a chaotic vector is chaotic in the sense of Definition 2.1.

Note that if a vector F = (F1, . . . , Fd) is chaotic in the sense of Definition 3.3, then in
particular each component Fi, 1 6 i 6 d, is chaotic in the sense of Definition 2.1. Indeed,
as Fi is by definition jointly chaotic with itself, statement (3.3) of Definition 3.3 exactly
becomes statement (2.3) of Definition 2.1:

F 2
i ∈

⊕
r : λr62λki

ker(L+ λr Id).,

We also observe that, in many important examples, all vectors of eigenfunctions are
chaotic. In particular, this is the case for Wiener, Laguerre and Jacobi chaos (see [1]). A
crucial ingredient for the proof of our main result is the following result, whose short
proof can be found in [1].

Theorem 3.4 ([1, Thm. 2.1]). Fix an eigenvalue −λ = −λn ∈ S and assume that
F ∈

⊕n
k=0 ker (L +λk Id). Then it holds that, for any η > λn,∫

E

F (L +η Id)
2

(F ) dµ 6 η

∫
E

F (L +η Id) (F ) dµ.

We are now ready to prove our main Theorem 1.2.

Proof of Theorem 1.2. Since the remaining parts of the statement are straightforward,
we will only prove the implication (ii)⇒ (i). Throughout the proof, we will denote the
covariance matrix of Fn by Cn = (Cij,n)ni,j=1, so that thus Cn → C as n→∞. According
to Proposition 3.1, it suffices to show that, if (ii) is satisfied then, for 1 6 i, j 6 d,∫

E

(
Γ
(
Fi,n,−L−1 Fj,n

)
− Cij

)2
dµ→ 0, (3.4)
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as n → ∞. It holds that Γ(Fi,n,−L−1 Fj,n) = 1
λkj

Γ(Fi,n, Fj,n) and
∫
E

Γ(Fi,n, Fj,n) dµ =

λkjCij,n. The integral in (3.4) can thus be rewritten as

1

λ2kj
Var Γ(Fi,n, Fj,n) + (Cij − Cij,n)2. (3.5)

For i = j, the quantity in (3.5) tends to zero thanks to the one-dimensional Fourth
Moment Theorem 2.2.

Let us thus assume that i 6= j. By definition of Γ, we can write

Γ(Fi,n, Fj,n)− λkjCij,n =
1

2

(
L +(λki + λkj ) Id

)
(Fi,nFj,n − aijCij,n) ,

where aij =
2λkj

λki+λkj
. Inserting the definition of the carré du champ operator, we get that

∫
E

(
Γ(Fi,n,− L−1 Fj,n)− Cij,n

)2
dµ

=
1

λ2kj

∫
E

(
Γ(Fi,n, Fj,n)− λkjCij,n

)2
dµ

=
1

4λ2kj

∫
E

((
L +(λki + λkj ) Id

)
(Fi,nFj,n − aijCij,n)

)2
dµ

=
1

4λ2kj

∫
E

(Fi,nFj,n − aijCij,n)
(
L +(λki + λkj ) Id

)2
(Fi,nFj,n − aijCij,n) dµ.

Therefore, by Theorem 3.4 and the fact that
∫
E

Γ(Fi,n, Fj,n) dµ = λkjCij,n, it holds that∫
E

(
Γ(Fi,n,− L−1 Fj,n)− Cij,n

)2
dµ

6
λki + λkj

4λ2kj

∫
E

(Fi,nFj,n − aijCij,n)
(
L +(λki + λkj ) Id

)
(Fi,nFj,n − aijCij,n) dµ

=
1

aijλkj

∫
E

(Fi,nFj,n − aijCij,n)
(
Γ(Fi,n, Fj,n)− λkjCij,n

)
dµ

=
1

aijλkj

(∫
E

Fi,nFj,nΓ(Fi,n, Fj,n) dµ− λkjC2
ij,n.

)
(3.6)

Now, by the diffusion property (2.2), the integration by parts formula (2.1) and the
Cauchy-Schwarz inequality, we have∫

E

Fi,nFj,nΓ(Fi,n, Fj,n) dµ =
1

4

∫
E

Γ(F 2
i,n, F

2
j,n) dµ = −1

4

∫
E

F 2
i,n L(F 2

j,n) dµ

= −1

2

∫
E

F 2
i,n (Fj,n LFj,n + Γ(Fj,n, Fj,n)) dµ

=
λkj
2

∫
E

F 2
i,nF

2
j,n dµ− 1

2

∫
E

F 2
i,nΓ(Fj,n, Fj,n) dµ

=
λkj
2

∫
E

F 2
i,n

(
F 2
j,n − Cjj,n

)
dµ− 1

2

∫
E

F 2
i,n

(
Γ(Fj,n, Fj,n)− λkjCjj,n

)
dµ

6
λkj
2

∫
E

F 2
i,n

(
F 2
j,n − Cjj,n

)
dµ+

1

2

√
m4(Fi,n)

√
Var(Γ(Fj,n, Fj,n))

=
λkj
2

(∫
E

F 2
i,nF

2
j,n dµ− Cii,nCjj,n

)
+

1

2

√
m4(Fi,n)

√
Var(Γ(Fj,n, Fj,n)).
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Plugging such an estimate into (3.6), we can thus write∫
E

(
Γ(Fi,n,−L−1 Fj,n)− Cij,n

)2
dµ

6
1

2λkjaij

(√
m4(Fi,n)

√
Var(Γ(Fj,n, Fj,n)) + λkjRi,j(n)

)
,

where

Rij(n) =

∫
E

F 2
i,nF

2
j,n dµ− Cii,nCjj,n − 2C2

ij,n.

By virtue of Theorem 2.2 and (3.5), we are now left to show that Rij(n)→ 0, as n→∞.
This follows immediately from E[Z2

i Z
2
j ] = E[Z2

i ]E[Z2
j ] + 2E[Zij ]

2 and our assumption
Cn → C.

Remark 3.5. In the framework of the classical Theorem 1.1, where L is the infinite-
dimensional Ornstein-Uhlenbeck generator and its eigenfunctions are multiple Wiener-
Itô integrals, componentwise Gaussian convergence in distribution always yields joint
Gaussian convergence. From our abstract point of view, we can explain (and generalize)
this phenomenon by means of the next result.

Proposition 3.6. In the setting and with the notation of Theorem 1.2, assume in addition
that

1. L is ergodic, i.e. its kernel only consists of constant functions.

2. For 1 6 i, j 6 d such that λki = λkj , it holds that∫
E

π2λki (F
2
i,n)π2λki (F

2
j,n) dµ− 2

(∫
E

Fi,nFj,n dµ

)2

−→ 0, (3.7)

where πλ denotes the orthogonal projection onto ker(L +λ Id).

Then, the following two assertions are equivalent.

(i) Fn
d−→ Z

(ii) For 1 6 i 6 d it holds that
∫
E
F 4
i,n dµ −→ E[Z4

i ].

Proof. In view of Theorem 1.2, we have only to show that condition (ii) implies∫
E

F 2
i,nF

2
j,n dµ→ E[Z2

i Z
2
j ]

or equivalently (as E[Z2
i Z

2
j ] = E[Z2

i ]E[Z2
j ] + 2E[ZiZj ]

2) that∫
E

F 2
i,nF

2
j,n dµ−

∫
E

F 2
i,n dµ

∫
E

F 2
j,n dµ− 2

(∫
E

Fi,nFj,n dµ

)2

→ 0

for 1 6 i, j 6 d. To do so, we first note that, by the definition of Γ and the chaotic property
of Fi,n, it holds that

Γ(Fi,n, Fi,n) =
1

2
(L +2λki Id) (F 2

i,n) =
1

2

∑
r∈N

λr<2λki

(2λki − λr)πλr (F 2
i,n).

Therefore, by the orthogonality of the projections corresponding to different eigenvalues
and by the one-dimensional Fourth Moment Theorem 2.2,

∫
E
F 4
i,n dµ −→ E[Z4

i ] implies
that ∫

E

πλr (F
2
i,n)2 dµ→ 0, for all r such that 0 < λr < 2λki . (3.8)
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We exploit this fact by writing∫
E

F 2
i,nF

2
j,n dµ =

∫
E

π0
(
F 2
i,n

)
F 2
j,n dµ+

∑
r∈N

0<λr<2λki

∫
E

πλr
(
F 2
i,n

)
F 2
j,n dµ

+

∫
E

π2λki
(
F 2
i,n

)
F 2
j,n dµ.

Assume without loss of generality that λkj 6 λki . The ergodicity assumption on L forces
π0(F 2

i,n) to be constant and thus∫
E

π0(F 2
i,n)F 2

j,n dµ = π0(F 2
i,n)

∫
E

F 2
j,n dµ =

∫
E

F 2
i,n dµ

∫
E

F 2
j,n dµ.

By Cauchy-Schwarz and (3.8), all integrals
∫
E
πλr (F

2
i,n)F 2

j,n dµ inside the sum in the
middle vanish in the limit. Finally, assumption (3.7) ensures that the third term (which is
zero if λki 6= λkj ), exhibits the wanted asymptotic behaviour.

Remark 3.7. As already mentioned, both of these additional assumptions are always
verified in the case of the infinite-dimensional Ornstein-Uhlenbeck generator (see for
example [8] or [11] for any unexplained notation). While the ergodicity is immediate,
more effort is needed to show (3.7). For a multiple integral Ip(f) with f ∈ H�p, the well
known product formula yields that π2p(Ip(f)2) = I2p(f⊗̃f). If Ip(g), g ∈ H�p is another
multiple integral, one can show (see for example [10, Lemma 2.2(2)]) that

E[I2p(f⊗̃f)I2p(g⊗̃g)] = 2E[Ip(f)Ip(g)]2 +

p−1∑
r=1

p!2
(
p

r

)2

〈f ⊗r f, g ⊗r g〉H⊗2p .

Replacing the kernels f and g by two sequences (fn) and (gn), the classical Fourth
Moment Theorem implies that scalar products inside the sum vanish in the limit if (at
least one of) the two sequences Ip(fn) and Ip(gn) converges in distribution towards a
Gaussian.
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