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Abstract

Let X be a symmetric, pure jump, unimodal Lévy process in R with an infinite Lévy
measure. We prove that for any fixed t > 0 the survival probability P x(τ(−a,a) > t) is
nondecreasing on (−a, 0], nonincreasing on [0, a) and concave on (−a/2, a/2), where
a > 0 and τ(−a,a) is the first exit time of the process X from (−a, a). We also show a

similar statement for sets (−a, a) × F ⊂ Rd.
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1 Introduction

The main purpose of this paper is to investigate the monotonicity and concavity
properties of the survival probability for some Lévy processes in Rd. Let τD = inf{t ≥ 0 :

Xt /∈ D} be the first exit time of an open, nonempty set D ⊂ Rd of the process X. We
first formulate our result in one-dimensional setting.

Theorem 1.1. Let X be a symmetric, pure jump, unimodal Lévy process in R with an
infinite Lévy measure. Let D = (−a, a), where a > 0. Put ψDt (x) = P x(τD > t) for t ≥ 0

and x ∈ R. Then for any t > 0 the function x → ψDt (x) is nondecreasing on (−a, 0],
nonincreasing on [0, a) and concave on (−a/2, a/2).

The next theorem is the generalization of the above result to higher dimensions.

Theorem 1.2. Let X be an isotropic, pure jump, unimodal Lévy process in Rd, d ≥ 2 with
an infinite Lévy measure. Let D = (−a, a)× F , where a > 0 and F ⊂ Rd−1 be a bounded
Lipschitz domain. Put ψDt (x) = P x(τD > t) for t ≥ 0, x ∈ Rd and let e1 = (1, 0, . . . , 0) ∈ Rd.
Then for any t > 0 and x̃ ∈ {0} × F the function y → ψDt (ye1 + x̃) is nondecreasing on
(−a, 0], nonincreasing on [0, a) and concave on (−a/2, a/2).

In Section 4 we will apply these results to obtain analogous properties of first
eigenfunctions for the related Dirichlet eigenvalue problem.

Remark 1.3. The property that the function x→ ψ
(−a,a)
t (x) or y → ψ

(−a,a)×F
t (ye1 + x̃) is

concave on (−a/2, a/2) is called mid-concavity (see Definition 1.1 in [2]).
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Mid-concavity of survival probability for isotropic Lévy processes

The above results for isotropic α-stable processes in Rd (where α ∈ (0, 2]) and
intervals (−a, a) or hyperrectangles

∏d
i=1(−ai, ai) are well known. They were proved by

R. Bañuelos, T. Kulczycki and P. Méndez-Hernández in [2]. Indeed, the methods from [2]
allow to extend these results for intervals or hyperrectangles to arbitrary subordinated
Brownian motions in Rd.

The main novelty of the results in this paper is that they concern arbitrary isotropic
pure jump, unimodal Lévy processes in Rd with an infinite Lévy measure. The method
used in the proof of Theorems 1.1, 1.2 is completely different than the method used in
[2]. The key idea of the proof of Theorems 1.1, 1.2 is probabilistic. A very important step
in this proof is the use of some results concerning the so-called difference processes
which were introduced in [8].

The proof in [2] is analytical. The main idea in [2] (for D = (−a, a)) is to prove some
properties of ∫ a

−a
. . .

∫ a

−a

n∏
i=1

pti(xi−1 − xi) dx1 . . . dxn

for gaussian kernels pt(x) and then use subordination to show monotonicity and midcon-
cavity for

x→ P x(Xt1 ∈ D, . . . ,Xtn ∈ D) (1.1)

The results for P x(τD > t) in [2] follows by a limiting procedure.

Note that in this paper we do not study properties of the function (1.1) but we study
only properties of P x(τD > t).

Very recently many researchers have been studying convexity properties of solutions
of equations involving fractional Laplacians see [1], [4], [6], [7], [10]. In particular,
concavity properties of the first eigenfunction for the Dirichlet eigenvalue problem on
an interval for the fractional Laplacians have been studied in [1] and [6]. In this paper,
using a probabilistic approach, we obtain concavity properties of the first eigenfunction
for the Dirichlet eigenvalue problem on an interval for much more general nonlocal
operators, namely generators of the isotropic unimodal Lévy processes.

The paper is organized as follows. In Section 2 we present notation and collect some
known facts needed in the rest of the paper. Section 3 contains proofs of Theorems 1.1,
1.2. In Section 4 we present regularity results of the first eigenfunction for the related
Dirichlet eigenvalue problem.

A very interesting open issue is a question about concavity properties of a survival
probability for a Lévy process on an arbitrary convex domain in Rd when d ≥ 2. The
question seems to be very hard (cf. [7, Open problem]). A natural conjecture is that for
any isotropic unimodal Lévy process in Rd, d ≥ 2, any convex domain D ⊂ Rd and any
t > 0 the survival probability P x(τD > t) is quasiconcave on D as a function of x.

2 Preliminaries

For x ∈ Rd and r > 0 we let B(x, r) = {y ∈ Rd : |y − x| < r}. A Borel measure on Rd

is called isotropic unimodal if on Rd \ {0} it is absolutely continuous with respect to the
Lebesgue measure and has a finite radial, radially nonincreasing density function (such
measures may have an atom at the origin).

A Lévy process X = (Xt, t ≥ 0) in Rd is called isotropic unimodal if its transition
probability pt(dx) is isotropic unimodal for all t > 0. When additionally X is a pure-jump
process then the following Lévy-Khintchine formula holds for t > 0 and ξ ∈ Rd,

E0eiξXt =

∫
Rd

eiξxpt(dx) = e−tψ(ξ) where ψ(ξ) =

∫
Rd

(1− cos(ξx))ν(dx).
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Mid-concavity of survival probability for isotropic Lévy processes

ψ is the characteristic exponent of X and ν is the Lévy measure of X. E0 is the expected
value for the process X starting from 0. Recall that a Lévy measure is a measure
concentrated on Rd \ {0} such that

∫
Rd(|x|2 ∧ 1)ν(dx) <∞. Isotropic unimodal pure-jump

Lévy measures are characterized in [12] by unimodal Lévy measures ν(dx) = ν(x) dx =

ν(|x|) dx.
Unless explicitly stated otherwise in what follows we assume that X is a pure-jump

isotropic unimodal Lévy process in Rd with (isotropic unimodal) infinite Lévy measure
ν. Then for any t > 0 the measure pt(dx) has a radial, radially nonincreasing density
function pt(x) = pt(|x|) on Rd with no atom at the origin. However, it may happen that
pt(0) =∞, for some t > 0. As usual, we denote by P x and Ex the probability measure
and the corresponding expectation for the the process starting from x ∈ Rd.

Let D ⊂ Rd be an open, nonempty set. We define a killed process XD
t by XD

t = Xt

if t < τD and XD
t = ∂ otherwise, where ∂ is some point adjoined to D. The transition

density for XD
t on D is given by

pD(t, x, y) = pt(x− y)− Ex(pt−τD (X(τD)− y), t > τD), x, y ∈ D, t > 0, (2.1)

that is for any Borel set A ⊂ Rd we have

P x(XD
t ∈ A) =

∫
A

pD(t, x, y) dy, x ∈ D, t > 0.

We have pD(t, x, y) = pD(t, y, x), x, y ∈ D, t > 0. We define the Green function for XD
t by

GD(x, y) =

∫ ∞
0

pD(t, x, y) dt, x, y ∈ D,

GD(x, y) = 0 if x /∈ D or y /∈ D.
Let D ⊂ Rd be an open, nonempty set. The distribution P x(X(τD) ∈ ·) is called the

harmonic measure with respect to X. The harmonic measure for Borel sets A ⊂ (D)c is
given by the Ikeda-Watanabe formula [5],

P x(X(τD) ∈ A) =

∫
A

∫
D

GD(x, y)ν(y − z) dy dz, x ∈ D. (2.2)

When D ⊂ Rd is a bounded, open Lipschitz set then we have [11], [9],

P x(X(τD) ∈ ∂D) = 0, x ∈ D. (2.3)

It follows that for every such set D the Ikeda-Watanabe formula (2.2) holds for any Borel
set A ⊂ Dc. Let D ⊂ Rd be an open, nonempty set. For any s > 0, x ∈ D, z ∈ (D)c put

hD(x, s, z) =

∫
D

pD(s, x, y)ν(y − z) dy. (2.4)

By the Ikeda-Watanabe formula [5] for any Borel sets A ⊂ (0,∞), B ⊂ (D̄)c we have

P x(τD ∈ A,X(τD) ∈ B) =

∫
A

∫
B

hD(x, s, z) dz ds, x ∈ D. (2.5)

If (2.3) holds then we can take B ⊂ Dc in (2.5).

3 The monotonicity and midconcavity

We will prove both Theorems 1.1, 1.2 simultaneously. LetX be an isotropic, pure jump,
unimodal Lévy process in Rd, d ≥ 1 with an infinite Lévy measure. Let D = (−a, a)× F ,
where a > 0 and F ⊂ Rd−1 is a bounded Lipschitz domain (or D = (−a, a) when d = 1).
Put e1 = (1, 0 . . . , 0) ∈ Rd. Note that for any x ∈ D we have P x(X(τD) ∈ ∂D) = 0.

The key point in this section is the following result.
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Proposition 3.1. Let U = (b, c)×F (or U = (b, c) when d = 1), where −a ≤ b < c ≤ a. Put
l(U) = b, r(U) = c, m(U) = (b+ c)/2, U− = (b,m(U))× F , U+ = (m(U), c)× F , H−(U) =

(−∞,m(U)) × Rd−1, H+(U) = (m(U),∞) × Rd−1 (or U− = (b,m(U)), U+ = (m(U), c),
H−(U) = (−∞,m(U)), H+(U) = (m(U),∞) when d = 1). For any x = (x1, . . . , xd) ∈ Rd
let

TU (x) = x+ 2e1(m(U)− x1),

(this is the reflection with respect to the hyperplane x1 = m(U), or with respect to a
point m(U) when d = 1). For any s > 0, x ∈ U+, z ∈ (U)c put

fUs (x, z) =

∫
U+

(pU (s, x, y)− pU (s, TU (x), y)) (ν(y − z)− ν(TU (y)− z)) dy.

For any x ∈ U+, t > 0 we have

ψDt (x)− ψDt (TU (x)) =

∫
Uc

∫ t

0

fUs (x, z)ψDt−s(z) ds dz, (3.1)

fUs (x, z) ≥ 0 for s > 0, z ∈ H+(U) \ U+, (3.2)

fUs (x, z) ≤ 0 for s > 0, z ∈ H−(U) \ U−. (3.3)

Proof. By the strong Markov property and (2.5) for any x ∈ U , t > 0 we have

ψDt (x) = P x(τD > t)

= P x(τU > t) + Ex
(
τU ≤ t,

[
PX(τU )(τD > t− s)

]
s=τU

)
= ψUt (x) +

∫
U

∫ t

0

pU (s, x, y)

∫
Uc

ψDt−s(z)ν(y − z) dz ds dy.

It follows that

ψDt (x)− ψDt (TU (x)) = ψUt (x)− ψUt (TU (x)) (3.4)

+

∫
U

∫ t

0

(pU (s, x, y)− pU (s, TU (x), y))

∫
Uc

ψDt−s(z)ν(y − z) dz ds dy. (3.5)

For any x ∈ U+, t > 0 by the symmetry of the process X and the definition of TU (x) we
have

ψUt (x) = ψUt (TU (x)). (3.6)

For any x ∈ U+, t > 0, z ∈ (U)c we also have∫
U

(pU (s, x, y)− pU (s, TU (x), y)) ν(y − z) dy

=

∫
U+

(pU (s, x, y)− pU (s, TU (x), y)) ν(y − z) dy

+

∫
U−

(pU (s, x, y)− pU (s, TU (x), y)) ν(y − z) dy

=

∫
U+

(pU (s, x, y)− pU (s, TU (x), y)) ν(y − z) dy

+

∫
U+

(pU (s, x, TU (y))− pU (s, TU (x), TU (y))) ν (TU (y)− z) dy

=

∫
U+

(pU (s, x, y)− pU (s, TU (x), y)) (ν(y − z)− ν (TU (y)− z)) dy,
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(where in the last equality we used pU (s, TU (x), TU (y)) = pU (s, x, y)). Applying this,
(3.4-3.5) and (3.6) we get (3.1).

Note that pU (s, x, y)− pU (s, TU (x), y) is the transition density of the so-called differ-
ence process (with respect to the hyperplane x1 = m(U) or the point m(U) when d = 1)
killed on exiting U+ (see Section 4 in [8] for more details). By (19) in [8] and the first
formula after the proof of Lemma 4.3 in [8] we obtain that pU (s, x, y)−pU (s, TU (x), y) ≥ 0

for any s > 0, x, y ∈ U+. By unimodality of ν(x) we obtain that ν(y−z)−ν (TU (y)− z) ≥ 0

for any y ∈ U+, z ∈ H+(U) \ U+ and ν(y − z) − ν (TU (y)− z) ≤ 0 for any y ∈ U+,
z ∈ H−(U) \ U−. This gives (3.2) and (3.3).

Now we will show our main results.

proof of Theorems 1.1, 1.2. First we study monotonicity of ψDt . Fix x̃ ∈ {0} × F and
−a < x′1 < x′′1 ≤ 0. Put x′ = x′1e1 + x̃, x′′ = x′′1e1 + x̃ (or x′ = x′1, x′′ = x′′1 when d = 1). Let
b = −a, x∗ = (x′1 +x′′1)/2, c = −a+ 2(x∗− (−a)) = a+x′1 +x′′1 , U = (b, c)×F (or U = (b, c)

when d = 1). Note that m(U) = x∗ and TU (x′′) = x′. By (3.1) for any t > 0 we get

ψDt (x′′)− ψDt (x′) = ψDt (x′′)− ψDt (TU (x′′)) (3.7)

=

∫
Uc

∫ t

0

fUs (x′′, z)ψDt−s(z) ds dz (3.8)

=

∫
D\U

∫ t

0

fUs (x′′, z)ψDt−s(z) ds dz. (3.9)

Note that D \U = (c, a)×F (or D \U = (c, a) when d = 1) and c = a+ x′1 + x′′1 > m(U) =

(x′1 + x′′1)/2 so D \ U ⊂ H+(U) \ U+. This, (3.7-3.9) and (3.2) give ψDt (x′′) ≥ ψDt (x′). It
follows that the function y → ψDt (ye1 + x̃) (or y → ψDt (y) when d = 1) is nondecreasing
on (−a, 0]. By symmetry of the process X and the domain D the function y → ψDt (ye1 + x̃)

(or y → ψDt (y) when d = 1) is nonincreasing on [0, a).

Now we will study midconcavity of the function ψDt . Fix x̃ ∈ {0}×F and −a/2 < x′1 <

x′′1 < x′′′1 ≤ 0 such that x′′1 −x′1 = x′′′1 −x′′1 . Put x′ = x′1e1 + x̃, x′′ = x′′1e1 + x̃, x′′′ = x′′′1 e1 + x̃

(or x′ = x′1, x
′′ = x′′1 , x′′′ = x′′′1 when d = 1). As above, let b = −a, x∗ = (x′1 + x′′1)/2,

c = −a+ 2(x∗ − (−a)) = a+ x′1 + x′′1 , U = (b, c)× F (or U = (b, c) when d = 1). We have
m(U) = x∗ and TU (x′′) = x′. Note that l(U) = −a and r(U) = c = a + x′1 + x′′1 ∈ (0, a)

(because −a/2 < x′1 < x′′1 < 0).

Let v1 = x′′1 − x′1 and v = v1e1. Put

W = U + v.

Note that W = (b+v1, c+v1)×F (or W = (b+v1, c+v1) when d = 1), m(W ) = m(U)+v1,
l(W ) = l(U) + v1, r(W ) = r(U) + v1 = a+ 2x′′1 ∈ (0, a).

We have

TW (x) = x+ 2e1(m(W )− x1).

It follows that

TW (x′′′) = x′′′ + 2e1(m(W )− x′′′1 )

= x′′′ + 2e1

(
x′′′1 + x′′1

2
− x′′′1

)
= x′′′ + e1(x′′1 − x′′′1 )

= x′′.

ECP 21 (2016), paper 29.
Page 5/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4591
http://www.imstat.org/ecp/


Mid-concavity of survival probability for isotropic Lévy processes

Using this and Proposition 3.1 applied to W we get for any t > 0

ψDt (x′′′)− ψDt (x′′) = ψDt (x′′′)− ψDt (TW (x′′′)) (3.10)

=

∫
W c

∫ t

0

fWs (x′′′, z)ψDt−s(z) ds dz. (3.11)

Note that W+ = U+ + v and x′′′ = x′′ + v. Using this and the definition of fWs (x, z) we
get for any s > 0, z ∈W c

fWs (x′′′, z) (3.12)

=

∫
W+

(pW (s, x′′′, y)− pW (s, TW (x′′′), y)) (ν(y − z)− ν(TW (y)− z)) dy (3.13)

=

∫
U++v

(pW (s, x′′ + v, y)− pW (s, TW (x′′ + v), y)) (3.14)

× (ν(y − z)− ν(TW (y)− z)) dy. (3.15)

Using substitution q = y − v this is equal to∫
U+

(pW (s, x′′ + v, q + v)− pW (s, TW (x′′ + v), q + v)) (3.16)

× (ν(q + v − z)− ν(TW (q + v)− z)) dq. (3.17)

For any s > 0, q ∈ U+ we have

pW (s, x′′ + v, q + v) = pU+v(s, x
′′ + v, q + v) = pU (s, x′′, q).

By the definition of TW and the equality m(W ) = m(U) + v1 we get

TW (x′′ + v) = x′′ + v + 2e1(m(W )− x′′1 − v1) = x′′ + 2e1(m(U)− x′′1) + v = TU (x′′) + v.

Hence for any s > 0, q ∈ U+ we obtain

pW (s, TW (x′′ + v), q + v) = pU+v(s, TU (x′′) + v, q + v) = pU (s, TU (x′′), q).

By similar arguments as above for any q ∈ U+ we get TW (q + v) = TU (q) + v. Hence for
any q ∈ U+ and z ∈W c we obtain

ν(q + v − z)− ν(TW (q + v)− z) = ν(q − (z − v))− ν(TU (q)− (z − v)).

Using this, (3.12-3.15) and (3.16-3.17) we get for any s > 0, z ∈ (W )c

fWs (x′′′, z)

=

∫
U+

(pU (s, x′′, q)− pU (s, TU (x′′), q)) (ν(q − (z − v))− ν(TU (q)− (z − v))) dq

= fUs (x′′, z − v).

Using this, the fact that W c = U c + v and (3.10-3.11) we get for any t > 0

ψDt (x′′′)− ψDt (x′′) =

∫
W c

∫ t

0

fUs (x′′, z − v)ψDt−s(z) ds dz (3.18)

=

∫
Uc

∫ t

0

fUs (x′′, z)ψDt−s(z + v) ds dz. (3.19)

Put
L(U) = (−∞, l(U))× F ⊂ H−(U), R(U) = (r(U),∞)× F ⊂ H+(U),
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(or L(U) = (−∞, l(U)) ⊂ H−(U), R(U) = (r(U),∞) ⊂ H+(U) when d = 1). By (3.7-3.8)
and (3.18-3.19) we get for any t > 0

ψDt (x′′)− ψDt (x′)

=

∫
L(U)

∫ t

0

fUs (x′′, z)ψDt−s(z) ds dz +

∫
R(U)

∫ t

0

fUs (x′′, z)ψDt−s(z) ds dz

= I + II,

ψDt (x′′′)− ψDt (x′′)

=

∫
L(U)

∫ t

0

fUs (x′′, z)ψDt−s(z + v) ds dz +

∫
R(U)

∫ t

0

fUs (x′′, z)ψDt−s(z + v) ds dz

= III + IV.

Since l(U) = −a we get I = 0. Since L(U) + v ⊂ H−(U) and by (3.3) fUs (x′′, z) ≤ 0 for
z ∈ H−(U) we get III ≤ 0. Recall that r(U) > 0 so monotonicity of y → ψDt (ye1 + x̃)

(or y → ψDt (y) when d = 1) implies that for any z ∈ R(U), t > 0, s ∈ (0, t) we have
ψDt−s(z + v) ≤ ψDt−s(z) so IV ≤ II. Hence for any t > 0 we get

ψDt (x′′)− ψDt (x′) ≥ ψDt (x′′′)− ψDt (x′′).

Recall that −a/2 < x′1 < x′′1 < x′′′1 ≤ 0, where x′′1 − x′1 = x′′′1 − x′′1 . Since x′1, x
′′′
1 could be

chosen arbitrarily we get that y → ψDt (ye1 + x̃) (or y → ψDt (y) when d = 1) is concave on
(−a/2, 0]. By the symmetry we obtain that y → ψDt (ye1 + x̃) (or y → ψDt (y) when d = 1) is
concave on [0, a/2).

4 The shape of the first eigenfunction

Let us recall that X is a pure-jump isotropic unimodal Lévy process in Rd with an
infinite Lévy measure ν, ψ is the characteristic exponent of X and pt is its transition
density. In this section we additionally assume that

lim
|x|→∞

ψ(x)

log |x|
=∞. (4.1)

This guarantees that for any t > 0 the function pt is continuous and bounded on Rd.
Let D ⊂ Rd be a bounded open set. The condition (4.1) and formula (2.1) imply

that for any fixed t > 0, x ∈ D the function y → pD(t, x, y) is continuous on D. Since
pD(t, x, y) = pD(t, y, x), t > 0, x, y ∈ D we obtain that for any fixed t > 0, y ∈ D the
function x → pD(t, x, y) is continuous on D. The transition operator PDt for the killed
process XD

t is defined by

PDt f(x) =

∫
D

pD(t, x, y)f(y) dy, x ∈ D, t > 0.

Now we introduce the Dirichlet eigenvalue problem on D for the Lévy process X.
Such problem is well known in the literature see e.g. [3]. {PDt }t≥0 forms a strongly
continuous semigroup on L2(D). Since pD(t, x, y) ≤ pt(x − y), ‖pt‖∞ < ∞ and D ⊂ Rd
is bounded we obtain that for any t > 0 the operator PDt is a Hilbert-Schmidt operator.
From the general theory of semigroups there exists an orthonormal basis {ϕn}∞n=1 in
L2(D) and a corresponding sequence

0 < λ1 < λ2 ≤ λ3 ≤ . . . , lim
n→∞

λn =∞,
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such that for any n ∈ N, t > 0, x ∈ D we have

PDt ϕn(x) = e−λntϕn(x). (4.2)

λ1 has multiplicity one and we may assume that ϕ1 > 0 on D. By properties of pD(t, x, y)

all eigenfunctions ϕn are bounded and continuous on D. It is well known that

pD(t, x, y) =

∞∑
n=1

e−λntϕn(x)ϕn(y), t > 0, x, y ∈ D.

It follows that for any t > 0 and x ∈ D we have

P x(τD > t) =

∫
D

pD(t, x, y) dy

=

∞∑
n=1

e−λntϕn(x)

∫
D

ϕn(y) dy.

Hence for any x ∈ D we have

lim
t→∞

eλ1tP x(τD > t) = ϕ1(x)

∫
D

ϕ1(y) dy.

Using this and Theorems 1.1, 1.2 we immediately obtain the following results.

Corollary 4.1. Let X be a symmetric, pure jump, unimodal Lévy process in R satisfying
(4.1) with an infinite Lévy measure. Let D = (−a, a), where a > 0. Let ϕ1 be the first
eigenfunction of the spectral problem (4.2) on D for the process X. Then for any t > 0

the function x→ ϕ1(x) is nondecreasing on (−a, 0], nonincreasing on [0, a) and concave
on (−a/2, a/2).

Corollary 4.2. Let X be an isotropic, pure jump, unimodal Lévy process in Rd, d ≥ 2

satisfying (4.1) with an infinite Lévy measure. Let D = (−a, a) × F , where a > 0 and
F ⊂ Rd−1 be a bounded Lipschitz domain. Let ϕ1 be the first eigenfunction of the
spectral problem (4.2) on D for the process X. Let e1 = (1, 0, . . . , 0) ∈ Rd. Then for
any t > 0 and x̃ ∈ {0} × F the function y → ϕ1(ye1 + x̃) is nondecreasing on (−a, 0],
nonincreasing on [0, a) and concave on (−a/2, a/2).
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