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Abstract

We show that there is a sharp threshold in dimension one for the transport cost
between the Lebesgue measure λ and an invariant random measure µ of unit intensity
to be finite. We show that for any such random measure the L1 cost is infinite provided
that the first central moments E[|n− µ([0, n))|] diverge. Furthermore, we establish
simple and sharp criteria, based on the variance of µ([0, n)], for the Lp cost to be finite
for 0 < p < 1.
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1 Introduction

In [7, 6] it was shown that there is a unique optimal coupling between the Lebesgue
measure λd on Rd and an invariant random measure µ on Rd of unit intensity provided
that the asymptotic mean transportation cost

c∞ = lim inf
n→∞

inf
q∈Cpl(λd,µ)

1

nd
E

[∫
Rd×[0,n)d

ϑ(|x− y|) q(dx, dy)

]
(1.1)

is finite, where Cpl(λd, µ) denotes the set of all couplings between λd and µ and ϑ : R+ →
R+ is a strictly increasing and diverging function. Moreover, as the optimal coupling q̂ is
concentrated on the graph of a random map T , i.e. q̂ = (Id, T )∗λ

d, a posteriori it can be
shown that

c∞ = inf
S,S∗λd=µ

E[ϑ(|0− S(0)|)]. (1.2)

In principle, these results give a black box construction of allocations and invariant
couplings suitable for applications, e.g. modelling of cellular structure via Laguerre
tessellation [12] (and references therein) or the recent construction of unbiased shifts
[10]. However, both conditions (1.1) and (1.2) are difficult to verify, mainly, because
optimal couplings are highly non-local objects. For instance, consider the optimal
semicoupling (cf. Section 2) between λd and a Poisson point process on Bn = [0, n)d. It is
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Transport cost estimates in dimension one

an open problem to estimate the amount of mass that is transported from outside of Bn
into Bn, for fixed n as well as asymptotically as n tends to∞.

The aim of this note is to give in dimension one sharp and easily checkable conditions
for the asymptotic mean transportation cost to be finite. For ease of exposition, in this
note we focus on Lp cost, i.e. we consider ϑp(r) := rp for p > 0, and put

c∞(p) = inf
S,S∗λd=µ

E[ϑp(|0− S(0)|)] = inf
S,S∗λd=µ

E[|S(0)|p].

We remark that similar results can be obtained for Orlicz-type cost functions as intro-
duced in [17].

We denote by Var(Z) the variance of a random variable Z. We say that a random

measure µ satisfies a CLT if the sequence
(

(µ([0, n))− E[µ([0, n))])/
√

Var(µ([0, n)))
)
n

weakly converges to a standard normal distribution. We say a random measure µ has a
regular variance if f(n) := Var(µ([0, n))) satisfies

lim
n→∞

an
n

= 0 ⇒ lim
n→∞

f(an)

f(n)
= 0.

Our first result states

Theorem 1.1. Fix 0 < p < 1 and let µ be an invariant random measure of unit intensity.

i) If lim supn→∞
√

Var(µ([0, n))) · np−1 = 0, then c∞(q) <∞ for all 0 < q < p.

ii) Assume that µ has a regular variance and satisfies a CLT.
If lim supn→∞

√
Var(µ([0, n))) · np−1 > 0, then c∞(p) =∞.

For the question of finiteness of c∞(p) or otherwise only the tail of ϑp is relevant.
Therefore, c∞(p) =∞ implies c∞(p′) =∞ for all p′ > p (see also [7, Lemma 5.1]).

Remark 1.2. µ has a regular variance, if for example f is convex (recall f(n) =

Var(µ([0, n)))) or if f is concave and there is p > 0 such that fp is convex. Indeed,
assume that f is convex and assume for contradiction that 1 ≥ lim infn→∞

f(an)
f(n) ≥ c > 0.

Then, we have (denoting by g the concave inverse function of f , i.e. g ◦ f = f ◦ g = Id,
with f(0) = g(0) = 0) for large n and some c′ < c ≤ 1

an ≥ g(c′f(n)) = g(c′f(n) + (1− c′)0) ≥ c′g(f(n)) = c′n,

which is a contradiction to an ∈ o(n). In the second case we can use the same argument
by considering f = (fp)1/p and using the monotonicity of x 7→ x1/p.

Formally taking p = 1 in Theorem 1.1 ii) indicates that c∞(1) might be infinite if
lim supn→∞

√
Var(µ([0, n))) =∞. Unfortunately, the proof of Theorem 1.1 breaks down

at p = 1. However, following Liggett [13, Section 3] and combining this with [11,
Proposition 4.5] we get

Theorem 1.3. Let µ be an invariant random measure of unit intensity.
If lim supn→∞E[|n− µ([0, n))|] =∞, then c∞(1) =∞.

Note that if µ satisfies a CLT in L1 then E[|n− µ([0, n))|] behaves asymptotically like√
Var(µ([0, n))).

Here are a few examples to which our results apply:

i) The Poisson point process has finite transport cost iff p < 1/2. In particular, we
recover the second part of Theorem 3.1 of [13].

ii) Invariant determinantal random point fields [15] yield a wide and well studied class
of random measures to which our results apply. Many of them satisfy a central
limit theorem [16]. The behaviour of Var(µ([0, n))) can be expressed nicely via the
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Transport cost estimates in dimension one

integral kernel [15, Lemma 6]. For instance the determinantal random point field
associated to the sine kernel

K(x, y) =
sin(π(x− y))

π(x− y)

satisfies Var(µ([0, n))) ∼ log(n). Hence, the transport cost are finite iff p < 1

(see next point for the only if statement). This behaviour of the variance is not
prototypical for determinantal point processes; for each 0 < β < 1 there is a
determinantal point process with Var(µ([0, n))) ∼ nβ, see the last paragraph of
Section 3 in [15].

iii) The Sineβ point processes introduced in [20] appear as the limit of the bulk of
eigenvalues of β-ensembles. Sineβ are translation invariant, satisfy a central limit
theorem [8] and Var(µ([0, n))) ∼ 1/β log(n). From the large deviation result [3]
it is possible to deduce that the assumption of Theorem 1.3 is satisfied. Hence,
the transport cost are finite iff p < 1. Note that Sine2 is the determinantal process
associated to the sine kernel.

Holroyd and Peres [5] call X = T (0) an extra head scheme. In view of (1.2) our
results give moment properties for extra head schemes. In the case of a Poisson process
precise moment properties of extra head schemes have been established in [4, 5, 7]
in arbitrary dimensions. For other random measures (in the continuous setup of this
article) this is—to the best of our knowledge—still open.

A natural interpretation of our results is to think of p∗ := sup{p, c∞(p) < ∞} as a
measure of regularity of the random measure. For example in the case of the sine
kernel process the repulsion of the particles causes a rigid behaviour reflected in the
logarithmic growth of the variance, and hence in the transport cost estimates. Similar
estimates in higher dimensions could be very useful to detect possible phase transitions,
e.g. a phase transition in the parameter β for the equilibrium measures of the infinite
dimensional system of interacting SDEs studied by Osada [14] (in dimension one these
measures are conjectured to be—and proven to be for β = 1, 2, 4—the Sineβ processes).
Therefore we end the introduction with the following challenging open problem:

Open problem. Is it possible to establish similar results in higher dimension; e.g.
reducing the question of finiteness or infiniteness of transportation cost to the question
of aysmptotics of moments?

2 Preliminaries

We write λ1 = λ and denote by (Ω,F ,P) a generic probability space on which our
random elements are defined. Given a map S and a measure ρ we denote the push-
forward of ρ by S by S∗ρ = ρ ◦ S−1. The set of all σ- finite measures on a space X will
be denoted byM(X). For a Polish space X we denote by B(X) its Borel σ- algebra. For
X = X1 ×X2 we denote the projection on Xi by proji.

2.1 Random measures

Let µ be a random σ- finite measure on R, i.e. a measurable map µ : Ω→M(R). We
assume that R acts on (Ω,F) via a measurable flow θt : Ω→ Ω, t ∈ R, i.e. the mapping
(ω, t) 7→ θtω is F ⊗ B(R) − F measurable with θ0 = Id and θt ◦ θs = θt+s for s, t ∈ R.
A random measure µ on R is then called invariant (sometimes also equivariant) if for
A ∈ B(R), t ∈ R and ω ∈ Ω it holds that

µ(θtω,A− t) = µ(ω,A).
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Transport cost estimates in dimension one

A random measure q on R×R will be called invariant if for all A,B ∈ B(R), t ∈ R and
ω ∈ Ω it holds that

q(θtω,A− t, B − t) = q(ω,A,B).

For an invariant measure µ we sometimes write θtµ(ω) = µ(θtω).

The intensity of an invariant random measure µ on R is defined as E[µ([0, 1))]; µ has
unit intensity if E[µ([0, 1))] = 1.

A measure P on (Ω,F) is called stationary if it is invariant under the action of θ, i.e.
P ◦ θt = P for all t ∈ R.
Remark 2.1. We can think of θtω as ω shifted by −t, see Example 2.1 in [11].

From now on we will always assume to be in the setting described above.
So, let P be a stationary probability measure and µ be an invariant random measure.

Let B ∈ B(R) with 0 < λ(B) <∞. The Palm measure Pµ of µ (with respect to P) is the
measure on (Ω,F) defined by

Pµ(A) :=
1

λ(B)
E

∫
B

1A(θtω) µ(ω, dt).

As this is independent of B, we can deduce by a monotone class argument the refined
Campbell theorem

E

∫
f(θtω, t) µ(ω, dt) =

∫
Ω

∫
R

f(η, s) ds Pµ(dη) (2.1)

for bounded and measurable f : Ω×R→ R. We refer to [19, Chapter 8] and [9] for more
details on Palm theory.

Last and Thorisson [11, Proposition 4.5] show the following remarkable result which
is crucial for the proof of Theorem 1.3.

Theorem 2.2. Consider two invariant random measures ξ and η and let T : Ω×R→ R

be measurable and satisfy

T (θtω, s− t) = T (ω, s)− t s, t ∈ R, ω ∈ Ω.

Then P-a.s. T∗ξ = η iff for all A ∈ F

Pξ(θT (0)ω ∈ A) = Pη(A).

Any map T as in the theorem will be called allocation rule or invariant transport map.

Example 2.3. If P is stationary, the constant invariant random measure λ has Palm
measure Pλ = P. In particular, given an invariant random measure µ with unit intensity
and an invariant transport map from λ to µ which is measurably dependent only on the
σ-algebra generated by µ Theorem 2.2 yields a shift-coupling, see [1] and [18], between
P and Pµ, i.e. for all A ∈ F it holds that P[θT (0)ω ∈ A] = Pµ[A]. By considering the
image measure P ◦ µ−1 we can assume w.l.o.g. that (Ω,F) is the canonical probability
space (M(R),B(M(R)) and µ the identity map. Then, Theorem 2.2 can be read as a
shift-coupling between µ and Pµ:

P[θT (0)µ ∈ ·] = Pµ[·].

2.2 Optimal transport between random measures

A semicoupling between two measures ν and η on R is a measure q on R×R such
that (proj1)∗q ≤ ν and (proj2)∗q = η. It is called coupling if additionally (proj1)∗q = ν. A
semicoupling between λ and a random measure µ is a random measure q : Ω→M(R×R)
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such that for all ω ∈ Ω the measure qω is a semicoupling between λ and µω. It is called
coupling if additionally qω is a coupling between λ and µω for all ω ∈ Ω. We denote the
set of all couplings (resp. semicouplings) between λ and µ by Cpl(λ, µ) (resp. SCpl(λ, µ)).

Considering the cost-function cp(x, y) = |x− y|p for 0 < p ≤ 1 we will be interested in
the cost functional

Wp(ν, η) := inf
q∈SCpl(ν,η)

E

∫
|x− y|p q(dx, dy).

By standard results in optimal transport, e.g. [21, Section 7.1], Wp constitutes a metric
on the space of probability measures and therefore also on the space of measures with
fixed and finite mass equal to m ∈ (0,∞).

Let µ be an invariant random measure with unit intensity. For q ∈ SCpl(λ, µ) we set

C(q) = sup
n≥1

1

n

∫
R×[0,n)

|x− y|pq(dx, dy).

By [6, Corollary 6.5], we have

c∞ := inf
q∈SCpl(λ,µ)

C(q)

= lim inf
n→∞

1

n
inf

q∈SCpl(λ,µ)

∫
R×[0,n)

|x− y|pq(dx, dy)

= inf
q∈SCpl(λ,µ)

lim inf
n→∞

1

n

∫
R×[0,n)

|x− y|pq(dx, dy).

We sometimes write c∞(p) to stress the dependence on p.

Definition 2.4. Let µ be an invariant random measure with unit intensity. A (semi)
coupling q between λ and µ is called

• asymptotically optimal if C(q) = c∞.
• optimal if it is asymptotically optimal and invariant.

The main results of [7, 6] show that there is a unique optimal coupling between
λ and µ provided that c∞ < ∞. In particular, even though there are arbitrarily many
asymptotically optimal couplings there is a unique invariant one. Moreover, the optimal
coupling q̂ is concentrated on an invariant transport map T , i.e. q̂ = (Id, T )∗λ, which is
measurably only dependent on the σ-algebra generated by the random measure µ.

3 Proof of Theorem 1.1

3.1 Proof of Theorem 1.1 i)

The strategy is to construct a coupling between λ and µ which is not optimal but
whose cost can be controlled nicely. To this end, we set Zn := µ([0, 2n)) and put

c̄n := 2−nWp(1[0,Zn)λ,1[0,2n)µ).

By invariance of λ and µ this equals 1
2 (c̄n + c̄′n) with Z ′n := µ([2n, 2n+1)) = Zn+1 − Zn and

c̄′n := 2−nWp(1[2n,2n+Z′n)λ,1[2n,2n+1)µ).

By the triangle inequality for Wp we have

Wp(1[0,Zn+1)λ,1[0,2n+1)µ)

≤Wp(1[0,Zn+1)λ,1[0,Zn)λ+ 1[2n,2n+Z′n)λ)

+Wp(1[0,Zn)λ+ 1[2n,2n+Z′n)λ,1[0,2n)µ+ 1[2n,2n+1)µ)

≤Wp(1[0,Zn+1)λ,1[0,Zn)λ+ 1[2n,2n+Z′n)λ)

+Wp(1[0,Zn)λ,1[0,2n)µ) +Wp(1[2n,2n+Z′n)λ,1[2n,2n+1)µ) ,
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Transport cost estimates in dimension one

where the last inequality comes from forcing a certain allocation of the mass of the
coupling between 1[0,Zn)λ+ 1[2n,2n+Z′n)λ and 1[0,2n+1)µ. Together with the definition of
c̄n and c̄′n this implies

2n+1(c̄n+1 − c̄n) = 2n+1(c̄n+1 −
1

2
(c̄n + c̄′n))

= Wp(1[0,Zn+1)λ,1[0,2n+1)µ)−Wp(1[0,Zn)λ,1[0,2n)µ)−Wp(1[2n,2n+Z′n)λ,1[2n,2n+1)µ)

≤Wp(1[0,Zn+1)λ,1[0,Zn)λ+ 1[2n,2n+Z′n)λ).

The last expression can be estimated as follows. As r 7→ rp is concave (recall 0 < p < 1)
the optimal coupling of two measures does not transport their common mass. Hence,
in case that Zn ≤ 2n we have to transport mass of amount 2n − Zn at most distance
2n −Zn +Z ′n. In case that Zn > 2n we have to transport mass of amount Zn − 2n at most
distance Zn − 2n + Z ′n. Using the inequality (x+ y)p ≤ xp + yp this implies

Wp(1[0,Zn+1)λ,1[0,Zn)λ+ 1[2n,2n+Z′n)λ)

≤ E [|Zn − 2n|(|Zn − 2n|+ Z ′n)p]

≤ E
[
|Zn − 2n|1+p + |Zn − 2n|(Z ′n)p

]
Using Jensen and Cauchy-Schwarz this can be further estimated by

E
[
|Zn − 2n|1+p + |Zn − 2n|(Z ′n)p

]
≤ Var(Zn)(1+p)/2 + Var(Zn)1/2E[(Z ′n)2p]1/2

≤ Var(Zn)(1+p)/2 + Var(Zn)1/2(Var(Zn) + E[Zn]2)p/2

≤ Var(Zn)(1+p)/2 + Var(Zn)(1+p)/2 + Var(Zn)1/22np,

where we used the identity Var(Z) = E[Z2]− E[Z]2 in the second to last inequality and
(x+ y)p ≤ xp + yp in the last inequality. Therefore, we get

c̄n+1 − c̄n ≤ 2−n Var(Zn)(1+p)/2 +
1

2
Var(Zn)1/22n(p−1),

which readily implies the following lemma.

Lemma 3.1. If
∑
n≥1

(
2−n Var(Zn)(1+p)/2 + Var(Zn)1/22n(p−1)

)
<∞ then c∞(p) <∞.

Proof. Put

cn := inf
q∈SCpl(λ,µ)

2−n · E

[∫
R×[0,2n)

|x− y|p q(dx, dy)

]
.

Then, we have cn ≤ c̄n and hence c∞ = lim infn→∞ cn ≤ lim infn→∞ c̄n =: c̄∞. Therefore,
it is sufficient to show that c̄∞ <∞. However, this follows from

lim inf c̄n ≤ c̄1 +
∑
k≥1

(
2−k Var(Zk)(1+p)/2 + Var(Zk)1/22k(p−1)

)
which is finite by assumption.

Proof of Theorem 1.1 i). Assume that lim supn→∞
√

Var(µ([0, n))) · np−1 = 0. We have to
verify the condition of Lemma 3.1. By our assumption there is N ∈ N such that for all
n ≥ N we have Var(Zn) = Var(µ([0, 2n))) ≤ 22n(1−p). Hence, for 0 < q < p we have∑

k≥N

(
2−k Var(Zk)(1+q)/2 + Var(Zk)1/22k(q−1)

)
≤
∑
k≥N

(
2−k2k(1−p)(1+q) + 2k(q−1)−k(p−1)

)
=
∑
k≥N

(
2k((1−p)(1+q)−1) + 2k(q−p)

)
<∞,
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because (1− p)(1 + q) < (1− p)(1 + p) = 1− p2 < 1 and q < p. Hence, c̄∞(q) <∞.

Remark 3.2. Note that we have just shown that an equivalent condition in Lemma
3.1 would be that

∑
k≥1 Var(Zk)1/22k(p−1) < ∞. It is also not hard to see that the

convergence of
∑
k≥1 Var(Zk)1/22k(p−1) is strictly stronger than the convergence of∑

k≥N 2−k Var(Zk)(1+q)/2 in the sense that the convergence of the second sum does not
imply the convergence of the first.

3.2 Proof of Theorem 1.1 ii)

Denote by qn the optimal semicoupling between λ and 1[0,n)µ. By Proposition 4.2 in
[6], there is a transport map Tn and a random density ρn such that qn = (Id, Tn)∗(ρnλ).
Put ln := inf{x : ρn(x) > 0} and rn := sup{x : ρn(x) > 0}. If ln < 0 (resp. rn > n) it
follows by optimality that ρn = 1 on [ln, 0] (resp. [n, rn]). In that case, we put

an := Tn(ln/2), (resp. bn := Tn(n+
1

2
(rn − n)).

If ln ≥ 0 (resp. rn ≤ n) we put an = 0 (resp. bn = n).
We claim that there exists a sequence of events (An)n s.t.

a) lim infn→∞P[An] ≥ c > 0

b) on An either |ln| ≥ 2
√

Var(µ([0, n)) or |rn − n| ≥ 2
√

Var(µ([0, n))

c) on An there exists 1 > κ > 0 such that for large n either an ≥ κn or cn := n− bn ≥
κn, i.e. lim infn→∞(an + cn)/n ≥ κ.

As a consequence of concavity of r 7→ rp we have Tn(x) ≥ Tn(y) for all ln ≤ x ≤ y ≤ 0

(resp. Tn(x) ≤ Tn(y) for all n ≤ y ≤ x ≤ rn), see e.g. [2]. Hence, assuming a),b) and c),
we can argue

c∞ ≥ lim inf
n→∞

1

n
E

[
1An

∫
[ln,

ln
2 ]∪[n+ rn−n

2 ,rn]

|x− Tn(x)|pλ(dx)

]

≥ lim inf
n→∞

1

n
κpnp

√
Var(µ([0, n))P[An]

≥ lim inf
n→∞

κpnp−1
√

Var(µ([0, n)) · c =∞,

by assumption. Hence, it remains to establish the claim.
We put Yn := µ([0, n)) and set

Ãn = {Yn ≥ n+ 4
√

Var(Yn)}.

By the CLT, it follows that lim infn→∞P[Ãn] ≥ c̃ > 0 so that a) holds. On Ãn we have
to transport mass of amount at least 4

√
Var(Yn) into the interval [0, n]. Hence, either

|ln| ≥ 2
√

Var(Yn) or |rn − n| ≥ 2
√

Var(Yn) so that b) holds also. It remains to show c).
We will show that on Ãn it is not possible that both (ak)k ∈ o(k) and (ck)k ∈ o(k). Put
Yan = µ([0, an)) and Y ′cn = µ([bn, n)). Then, we have

P[Ãn, (ak)k ∈ o(k), (ck)k ∈ o(k)]

≤ P[Yan + Y ′cn ≥ an + cn + 2
√

Var(Yn), (ak)k ∈ o(k), (ck)k ∈ o(k)],

since on Ãn there is no transport from outside of (Tn(ln), Tn(rn)) into (Tn(ln), Tn(rn)), by
concavity of the cost function, and at most half of the Lebesgue mass that is transported
from outside of [0, n] (the total excess is at least 4

√
Var(µ([0, n))) is transported into
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(ãn, T (ln)] ∪ [T (rn), b̃n) (where ãn = an if an > 0 and ãn = T (ln) otherwise and similarly
for b̃n). Hence,

P[Ãn, (ak)k ∈ o(k), (ck)k ∈ o(k)]

≤ P[Yan ≥ an +
√

Var(Yn), (ak)k ∈ o(k)] + P[Y ′cn ≥ cn +
√

Var(Yn), (ck)k ∈ o(k)]

We consider these two terms separately and start with the first one. We put Pan :=

(an)∗(1(ak)k∈o(k)P) and set a∗n := sup{x : x ∈ supp(Pan)} ∈ o(n). Then, we have

P[Yan ≥ an +
√

Var(Yn), (ak)k ∈ o(k)]

≤ 1

Var(Yn)
E[(Yan − an)2, (ak)k ∈ o(k)]

≤ 1

Var(Yn)

∫
Var(Yt) P

a
n(dt)

≤ Var(Yan∗)

Var(Yn)
=
f(a∗n)

f(n)
,

which goes to zero by the assumption that µ has a regular variance.
The term P[Y ′cn ≥ cn +

√
Var(Yn), (ck)k ∈ o(k)] can be treated analogously. Hence,

P[Ãn, (ak)k ∈ o(k), (ck)k ∈ o(k)]→ 0.

By making the sets Ãn slightly smaller yielding sets A′n we can therefore assume that
for large n, say n > N , on A′n either (ak)k ∈ Θ(k) or (ck)k ∈ Θ(k) (since an, cn ≤ n),
property b) holds and lim inf P [A′n] ≥ c̃/2 = c′. This means that for any ω ∈ A′n there
is κ′(ω) > 0 such that for large n we have either an(ω) ≥ κ′(ω)n or cn(ω) ≥ κ′(ω)n. In
particular, {κ′ > 0} ⊃ Ãn for all n > N . Take κ > 0 such that P[κ′ < κ] ≤ c′/2 and set
An := A′n ∩ {κ′ ≥ κ}. Then (An)n≥N satisfy the required properties a),b) and c).

4 Proof of Theorem 1.3

As indicated in the introduction the proof follows from the reasoning as in Section 3
of [13] together with Proposition 4.5 of [11]. Let X be some real valued random variable
and P′ := (θ−X)∗P = P ◦ θX , i.e. P and P′ are shift-coupled by X (cf. [1, 19]). Then we
have for any measurable f : Ω→ [−1, 1]∣∣∣∣1t

∫ t

0

f(ω) ((θ−s)∗P(dω)− (θ−s)∗P
′(dω)) ds

∣∣∣∣
=

∣∣∣∣1t
∫ t

0

E [f(θ−sω)− f(θ−s−Xω)] ds

∣∣∣∣
=

∣∣∣∣1tE
[∫
R

f(θ−sω)(1[0,t](s)− 1[X,X+t](s))ds

]∣∣∣∣
≤ 1

t
E

[∫
R

∣∣1[0,t](s)− 1[X,X+t](s)
∣∣ ds]

=
2

t
E[|X| ∧ t].

Hence, we have derived the shift-coupling inequality (cf. [18] and [19, p. 166])∥∥∥∥1

t

∫ t

0

((θ−s)∗P)− (θ−s)∗P
′)ds

∥∥∥∥ ≤ 2

t
E[|X| ∧ t],

where ‖ · ‖ denotes the total variation distance.
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By Theorem 2.2, any invariant transport map T balancing λ and µ, i.e. trans-
porting λ to µ, induces a shift-coupling of P with its Palm-measure Pµ. By (1.2),
c∞ = infT,T∗λ=µE[|T (0)|] and, by the results of [6], the infimum is attained by a unique
map T̂ which is measurably dependent only on the σ- algebra generated by µ. Hence,
X := T̂ (0) shift-couples P and Pµ and, by (1.2), we need to show that E[|X|] =∞.

By stationarity of P we have 1
t

∫ t
0
(θ−s)∗Pds = P and by the refined Campbell theorem

(2.1) it follows that for any bounded and non-negative measurable function f : Ω→ R

and g(ω, s) := 1[0,t](s)f(θ−sω) we have∫
Ω

∫ t

0

f(ω) (θ−s)∗Pµ(dω)ds =

∫
Ω

∫ t

0

f(θ−sω) Pµ(dω)ds

=

∫
Ω

∫
R

g(ω, s) Pµ(dω)ds =

∫
f(ω)µω([0, t]) P(dω)

Hence, we have
∫ t

0
(θ−s)∗Pµ(dω)ds = µω([0, t])P(dω). Putting everything together, we get

(recall ‖fdν − gdν‖ =
∫
|f − g|dν)∥∥∥∥1

t

∫ t

0

((θ−s)∗P− (θ−s)∗Pµ)ds

∥∥∥∥ = E

[∣∣∣∣1− µ([0, t])

t

∣∣∣∣] ≤ 2

t
E[|X| ∧ t].

By assumption, we have lim supt→∞E [|t− µ([0, t])|] =∞. This implies

E[|X|] ≥ lim sup
t→∞

E[|X| ∧ t] ≥ lim sup
t→∞

1

2
E [|t− µω([0, t])|] =∞,

which proves the result.

Remark 4.1. Following the argumentation in [13, Section 3] we can recover the as-
sertion of Theorem 1.1 ii) in the setting of Theorem 1.3 assuming additionally that
E[|t− µ([0, t))|] ∼

√
Var(µ([0, t))) for large t. Indeed, we have with Yt = µ([0, t))

2

t
E[|X| ∧ t] ≥ 1

t
E[|t− Yt|] ∼

1

t

√
Var(Yt).

By assumption, we have lim supt→∞
√

Var(Yt)t
p−1 ≥ C > 0. Therefore, we have for t

large enough √
Var(Yt) ≥ C ′t1−p.

This implies

0 < C ′ ≤ E
[
|X| ∧ t
t1−p

]
≤ E[|X|p],

since |X|∧t
t1−p ≤ |X|p. Assuming E[|X|p] < ∞ implies by the dominated convergence

theorem that

0 < C ′ ≤ E
[
|X| ∧ t
t1−p

]
→ 0 as t→∞,

which is a contradiction.
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