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Adam Osȩkowski†

Abstract

We establish a weighted maximal L1-inequality for differentially subordinate mar-
tingales taking values in Rν , ν ≥ 1, under the assumption that the weight satisfies
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1 Introduction

Let (Ω,F ,P) be a complete probability space, equipped with a continuous-time
filtration (Ft)t≥0 such that F0 contains all the events of probability 0. Suppose that X, Y
are adapted local martingales taking values inRν (for some ν ≥ 1), whose trajectories are
right-continuous and have limits from the left. We will use the notation X∗ = sups≥0 |Xs|
and X∗t = sup0≤s≤t |Xs| for the maximal and the truncated maximal function of X. Let
[X], [Y ] denote the quadratic variation processes (square brackets) of X and Y ; see
Dellacherie and Meyer [5] for details when ν = 1, and extend the definition to the
higher-dimensional setting by [X] =

∑ν
n=1[Xn], where Xn denotes the n-th coordinate

of X. Following Bañuelos and Wang [3] and Wang [17], the process Y is differentially
subordinate to X, if, with probability 1, the difference [X] − [Y ] = ([X]t − [Y ]t)t≥0 is
nonnegative and nondecreasing as a function of t. This notion arises naturally in the
context of stochastic integration. Suppose that X is a local martingale, H is a predictable
process and let Y = H ·X be the stochastic integral of H with respect to X:

Yt = H0X0 +

∫ t

0

HsdXs, t ≥ 0.

If H takes values in [−1, 1], then Y is differentially subordinate to X; this follows at once
from the identity

[X]t − [Y ]t =

∫ t

0

(1−H2
s )d[X]s, t ≥ 0.

Differential subordination of Y to X implies many interesting inequalities between
the processes (e.g., moment, weak-type, exponential, etc.), which can be applied in many
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Maximal inequalities

areas of mathematics. See e.g. the monograph [13] by the author and the papers [1],
[2], [3], [6], [16], [17] for an overview of the results in this direction. In this paper, our
particular emphasis will be put on maximal inequalities. In [4], Burkholder introduced
a general method of proving such estimates in the context of stochastic integrals and
exploited it to establish the following result.

Theorem 1.1. LetX be a real-valued martingale and Y = H ·X, whereH is a predictable
process with values in {−1, 1}. Then we have

||Y ||1 ≤ η||X∗||1,

where η = 2.536 . . . is the unique solution of the equation

η − 3 = − exp
(1− η

2

)
.

The constant is the best possible.

If the martingales X and Y are assumed to have continuous trajectories, the constant
changes. Here is the result of [12], under the less restrictive assumption of differential
subordination and in the wider context of vector-valued processes.

Theorem 1.2. If X, Y are continuous-path local martingales taking values in Rν such
that Y is differentially subordinate to X, then

||Y ||1 ≤
√

2||X∗||1. (1.1)

The constant
√

2 is optimal.

See also [10], [11] and [15] for related results and extensions. We will be interested
in the following weighted version of (1.1):

||Y ||L1(W ) ≤ C||X∗||L1(W ). (1.2)

Here W is a weight, i.e., a uniformly integrable, positive, mean-one and continuous-path
martingale W = (Wt)t≥0, and we have used the standard notation

||Y ||L1(W ) = sup
t≥0

E|Yt|W∞ and ||X∗||L1(W ) = EX∗W∞

for the weighted L1 norms of Y and X∗. It is not difficult to see that the above bound
cannot hold with some finite C for all processes W . A natural assumption on the weight
(in the context of the above L1 estimate) is that it belongs to the class A1. This class was
originally introduced by Muckenhoupt [9] in the analytic setting, and its probabilistic
counterpart is due to Izumisawa and Kazamaki. Following [7] and [8], W satisfies the A1

condition if there is a finite constant c such that P(W ∗t ≤ cWt for all t ≥ 0) = 1. The least
c with this property is denoted by [W ]A1

and called the A1 characteristics of W .
We will show that if W belongs to the class A1, then (1.2) holds for all martingales

X, Y satisfying the differential subordination. Actually, we will additionally study the
following aspect of the weighted bound. Namely, there is a very interesting question of
extracting the sharp dependence of the constant C on the characteristics [W ]A1

. More
precisely: what is the least exponent κ for which there exists an absolute constant C̃
such that

||Y ||L1(W ) ≤ C̃[W ]κA1
||X||L1(W )

for all W and all X, Y satisfying the differential subordination?
The main result of this paper gives a full answer to this question.
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Theorem 1.3. Let X, Y be continuous-path martingales such that Y is differentially
subordinate to X. Then for any A1 weight W we have

||Y ||L1(W ) ≤ C[W ]A1
||X∗||L1(W ), (1.3)

where C = 5 + 2 ln(3/2) = 5.81093 . . .. The dependence on the A1 characteristics of the
weight is optimal in the sense that for any κ < 1 and any K > 0, there is a weight W , a
real-valued martingale X and a predictable sequence H with values in {−1, 1} such that
the stochastic integral Y = H ·X satisfies

||Y ||L1(W ) > K[W ]κA1
||X∗||L1(W ).

We should emphasize here that the constant C we obtain above is not sharp, however,
we believe that it is not far from the optimal one.

There is a well-known method of proving maximal inequalities for stochastic integrals
and differentially subordinate martingales. This method, invented by Burkholder in
[4] and modified by the author in [12, 13], allows to deduce a given estimate from
the existence of a certain special function, enjoying appropriate majorization and con-
cavity. However, we should stress here that all the works in which the method has
been successfully implemented, concerned the unweighted setting. To the best of our
knowledge, this paper contains the first example in which Burkholder’s method has
been successfully applied to yield a nontrivial weighted maximal bound for differentially
subordinate martingales.

The inequality (1.3) is proved in the next section. The optimality of the exponent 1 is
studied in Section 3. In the final part of the paper we sketch some ideas leading to the
special function U on which the proof of (1.3) rests.

2 Proof of the maximal inequality

Let c ≥ 1 be a fixed parameter and consider the set

D = {(x, y, z, w, v) ∈ Rν ×Rν × (0,∞)3 : |x| ≤ z, c−1 ≤ w/v ≤ 1}.

As we have mentioned in the introduction, a crucial role in the proof of (1.3) is played by
a special function. Let U = U (c) : D → R be given by

U (c)(x, y, z, w, v) =
|y|2v ln

(√
2c−1w/v + 1− c−2

)
− γ|x|2v

z
− γzv, (2.1)

where γ = 2 + ln(3/2). Let us study some crucial properties of the special function.
Recall that C is the constant appearing in (1.3).

Lemma 2.1. (i) For any x, y ∈ Rν satisfying |y| ≤ |x| and any w, v > 0 with c−1 ≤ w/v ≤
1, we have

U(x, y, |x|, w, v) ≤ 0. (2.2)

(ii) For any (x, y, z, w, v) ∈ D, we have

U(x, y, z, w, v) ≥ |y|w − Cczw. (2.3)

(iii) For any x ∈ Rν \ {0} and y ∈ Rν and any w, v > 0 satisfying c−1 ≤ w/v ≤ 1, we
have

Uz(x, y, |x|, w, v) ≤ 0. (2.4)

(iv) For any x, y ∈ Rν , z > 0 (satisfying z ≥ |x|) and w > 0, we have

Uv(x, y, z, w,w) ≤ 0. (2.5)
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(v) For any (x, y, z, w, v) ∈ D, the (ν + 1)× (ν + 1) matrix

M(x, y, z, w, v) =

[
(Uxx + Uyy)(x, y, z, w, v) Uyw(x, y, z, w, v)

Uwy(x, y, z, w, v) Uww(x, y, z, w, v)

]
is nonpositive-definite. (Here Uxx + Uyy denotes the matrix [Uxixj + Uyiyj ]1≤i,j≤ν , and
Uyw, Uwy stand for column and vector with entries Uy1w, Uy2w, . . ., Uyνw, respectively).

Proof. The proof of (2.2) is very simple: since ln(1 + s) ≤ s for any positive s, we may
write

ln
(√

2c−1w/v + 1− c−2
)
≤
√

2c−1w/v ≤
√

2c−1 ≤ γ

and hence

U(x, y, z, w, v) ≤ (|y|2 − |x|2)γv

z
≤ 0.

To show (2.3), note that ln(1 + s) ≥ s/(1 + s) for all s > 0, which implies

ln
(√

2c−1w/v + 1− c−2
)
≥

√
2c−1w/v − c−2

1 +
√

2c−1w/v − c−2
.

But c−2 ≤ c−1w/v and

1 +
√

2c−1w/v − c−2 ≤ 1 +
√

2c−1 − c−2 ≤ 3/2, (2.6)

so the preceding estimate gives

ln
(√

2c−1w/v + 1− c−2
)
≥ (
√

2− 1)c−1w/v

3/2
≥ c−1

4

w

v
.

Therefore, the majorization (2.3) will be established if we manage to show that

c−1w

4
|y|2 − |y|zw + Ccz2w ≥ γ(|x|2 + z2)v.

But observe that

c−1w

4
|y|2 − |y|zw + Ccz2w =

c−1w

4
(|y| − 2cz)

2
+ (Cc− c)z2w

≥ (C − 1)cz2w = 2γcz2w ≥ 2γz2v ≥ γ(|x|2 + z2)v.

The inequality (2.4) is evident once one computes the partial derivative with respect to
z:

Uz(x, y, |x|, w, v) = −|y|
2v ln(

√
2c−1w/v + 1− c−2)

z2
.

To show (2.5), we derive that

zUv(x, y, z, w,w) = |y|2
[

ln(
√

2c−1 + 1− c−2)−
√

2c−1√
2c−1 + 1− c−2

]
− γ|x|2 − γz2

and hence we will be done if we show that the expression in the square brackets is
nonpositive. This is elementary: substitute a = c−1 ∈ [0, 1] and consider the function

ξ(a) = ln(
√

2a+ 1− a2)−
√

2a√
2a+ 1− a2

.

It suffices to note that ξ(0) = 0 and

ξ′(a) =
2a2(−2

√
2 + a)

(
√

2a+ 1− a2)2
≤ 0
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provided a ∈ (0, 1). This yields (2.5). Finally, we turn our attention to the property (v).
We easily check thatM(x, y, z, w, v) equals

2v(ln(
√

2c−1w/v + 1− c−2)− γ)

z
· Id 2

√
2yc−1

z(
√

2c−1w/v + 1− c−2)
2
√

2yc−1

z(
√

2c−1w/v + 1− c−2)
− 2c−2|y|2

zv(
√

2c−1w/v + 1− c−2)2

 ,
where Id denotes the identity matrix of dimension ν × ν. Since ln(

√
2c−1 + 1 − c−2) ≤√

2c−1 ≤ γ, it is enough to prove that (−1)ν+1 detM(x, y, z, w, v) ≥ 0, by virtue of
Sylvester’s criterion. Most of the entries of the matrix are zero, and it is not difficult to
compute the determinant. If we substitute A = (2v(ln(

√
2c−1w/v + 1− c−2)− γ))/z < 0,

and use cofactor expansion along the last row, we see that

(−1)ν+1 detM(x, y, z, w, v)

= (−1)ν+1

[
−Aν · 2|y|2c−2

zv(
√

2c−1w/v + 1− c−2)2
−Aν−1 · 8|y|2c−2

z2(
√

2c−1w/v + 1− c−2)2

]
=

4|y|2c−2(−A)ν−1

z2(
√

2c−1w/v + 1− c−2)2

[
γ − ln(

√
2c−1w/v + 1− c−2)− 2

]
.

Thus, we must prove that the expression in the square brackets is nonnegative. But this
is immediate when one recalls the definition of γ and notes that by (2.6), ln(

√
2c−1w/v +

1− c−2) ≤ ln(3/2).

The proof is complete.

Proof of (1.3). Fix an arbitrary ε > 0 and pick martingales X, Y , W as in the statement.
Let c = [W ]A1

. We will apply Itô’s formula to the composition of U (c) and the process
Pt = (Xt, Yt, X

∗
t ∨ ε,Wt,W

∗
t ), t ≥ 0. For any t ≥ 0 we have X∗t ∨ ε > 0 and W ∗t ≤ cWt,

by the very definition of [W ]A1
. Hence the process P takes values in the domain of U

and the composition U(P ) makes sense. Furthermore, U has the necessary regularity:
actually, the formula (2.1) can be used for all (x, y, z, w, v) ∈ Rν×Rν×(0,∞)3 and defines
a C∞ function there, so the use of Itô’s formula is permitted. As the result, we obtain

U(Pt) = I0 + I1 + I2 + I3/2,

where

I0 = U(P0),

I1 =

∫ t

0

Ux(Ps) · dXs +

∫ t

0

Uy(Ps) · dYs +

∫ t

0

Uw(Ps)dWs,

I2 =

∫ t

0

Uz(Ps)d(X∗s ∨ ε) +

∫ t

0

Uv(Ps)dW
∗
s ,

I3 =

∫ t

0

Uxx(Ps)d[X]s +

∫ t

0

Uyy(Ps)d[Y ]s +

∫ t

0

Uww(Ps)d[W ]s

+ 2

∫ t

0

Uyw(Ps)d[Y,W ]s.

Here
∫ t
0
Uxx(Ps)d[X]s is the shortened notation for

∑ν
i,j=1

∫ t
0
Uxixj (Ps)d[Xi, Xj ], and sim-

ilarly for
∫ t
0
Uyy(Ps)d[Y ]s and

∫ t
0
Uyw(Ps)d[Y,W ]s. Note that the remaining second-order

terms are equal to 0, either due to vanishing of the corresponding partial derivatives,
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or to the fact that the processes X∗ ∨ ε, W ∗ are nondecreasing (and hence of finite
variation). Let us analyze the terms I0 through I3 separately. First, observe that

I0 = U(X0, Y0, |X0| ∨ ε,W0,W0) ≤ 0,

due to (2.2). The term I1 is a local martingale, by the properties of stochastic integrals.
To handle I2, note that by the continuity of paths, the times at which the process
X∗ ∨ ε increases are contained in the set {s : |Xs| = X∗s }; however, for such s we have
Uz(Ps) ≤ 0, by virtue of (2.4), so the first integral in I2 is nonpositive. An analogous
reasoning exploiting (2.5) shows that the second integral also has this property and
hence I2 ≤ 0. To deal with I3, observe that Uxx = [Uxixj ]1≤i,j≤ν is a negative multiple of
the identity matrix and hence, by the differential subordination of Y to X,∫ t

0

Uxx(Ps)d[X]s ≤
∫ t

0

Uxx(Ps)d[Y ]s.

Furthermore, by Lemma 2.1 (v), we have∫ t

0

[Uxx(Ps) + Uyy(Ps)]d[Y ]s +

∫ t

0

Uww(Ps)d[W ]s + 2

∫ t

0

Uyw(Ps)d[Y,W ]s ≤ 0,

which implies I3 ≤ 0. Putting all the above facts together, if (τn)n≥1 denotes the localizing
sequence for the local martingale I1, then

EU(Pτn∧t) ≤ 0, n = 1, 2, . . . .

By (2.3), this yields E|Yτn∧t|Wτn∧t ≤ CcEX∗τn∧tWτn∧t for all n. But W is uniformly
integrable, so

E|Yτn∧t|W∞ = E|Yτn∧t|Wτn∧t ≤ CcEX∗τn∧tWτn∧t = CcEX∗τn∧tW∞ ≤ CcEX
∗W∞.

Letting n→∞ and applying Fatou’s lemma, we get E|Yt|W∞ ≤ C[W ]A1
EX∗W∞. Since t

was arbitrary, the claim follows.

3 On the optimality of the exponent

Let c > 1 be a fixed parameter, take a large positive integer N and set δ = c/N . Let
B be a standard, one-dimensional Brownian motion starting from 1. Consider the family
(τn)Nn=0 of stopping times given by τ0 ≡ 0 and

τn = inf{t : Bt ≤ c−1(1 + δ)n−1 or Bt = (1 + δ)n}, n = 1, 2, . . . , N.

Let W = (BτN∧t)t≥0 and let X, Y be martingales starting from 0, satisfying

dXt = (−1)n−1dYt =
(−1)n−1

(1 + δ)n−1
dWt

for t ∈ [τn−1, τn), n = 1, 2, . . . , N . Finally, put Xt = XτN− and Yt = YτN− for t ≥ τN .
Let us gain some intuition about the processes introduced above. Let us first look

at W . Clearly, this process is a weight and it behavior is as follows. It starts from 1,
and, on the time interval [τ0, τ1), it evolves until it reaches c−1 or 1 + δ. If the first
possibility occurs, the process W stops; otherwise, it continues its evolution on [τ1, τ2)

until it reaches c−1(1 + δ) or (1 + δ)2. In the first case the process terminates, while in
the second it continues its movement on [τ2, τ3) until it reaches c−1(1 + δ)2 or (1 + δ)3,
and so on, until N steps of this type are conducted. The above description immediately
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implies that [W ]A1
≤ c(1 + δ). Indeed, we have W0 = W ∗0 and, for any n = 1, 2, . . . , N , if

t ∈ (τn−1, τn], then Wt ≥ c−1(1 + δ)n−1 and W ∗t ≤ (1 + δ)n.
Now, let us look at the pair (X,Y ). It starts from (0, 0) and, for t ∈ [τ0, τ1), we have

dXt = dYt = dWt or, equivalently, Xt = Yt = Wt − 1. So, the pair (X,Y ) moves along the
line of slope 1 until it reaches one of the points (c−1 − 1, c−1 − 1), (δ, δ). If it visits the
first of these points (which means that Wτ1 = c−1), then the pair stops, since so does W .
However, if (Xτ1 , Yτ1) = (δ, δ), then the time interval [τ1, τ2) is nonempty: for t belonging
to this interval we have dXt = −dYt = −dWt/(1 + δ), or

Xt = δ − Wt −Wτ1

1 + δ
, Yt = δ +

Wt −Wτ1

1 + δ
.

Therefore, on [τ1, τ2), (X,Y ) evolves along the line of slope −1 until it visits (δ + 1 −
c−1, δ − 1 + c−1) or (0, 2δ). If the first possibility occurs, the pair terminates; but if
(Xτ2 , Yτ2) = (0, 2δ), the movement is continued. In general, if n is an odd integer,
then on [τn−1, τn) the process (X,Y ) moves along a line segment of slope 1 joining
(c−1 − 1, c−1 − 1 + (n − 1)δ) and (δ, nδ); it is killed when hitting the first point, and
continues otherwise. If n is even, then for t ∈ [τn−1, τn) the pair (X,Y ) evolves along a
line segment of slope −1, with endpoints (1− c−1 + δ, (n− 1)δ− 1 + c−1), (0, nδ) (the first
of which is absorbing, while the second is not). Directly from this description, we see
that X∗ ≤ 1− c−1 + δ, and hence X∗ ≤ 1 provided N is sufficiently large. This implies
||X∗||L1(W ) ≤ EW∞ = 1.

Now, take a look at the event A = {WτN = (1 + δ)N}. It follows from the above
analysis that on this set we have Wτn = (1 + δ)n for all n = 1, 2, . . . , N . Consequently,

P(A) =

N∏
n=1

P(Wτn = (1 + δ)n|Wτn−1
= (1 + δ)n−1)

=

N∏
n=1

(1 + δ)n−1 − (1 + δ)n−1c−1

(1 + δ)n − c−1(1 + δ)n−1
=

(
1− c−1

1− c−1 + δ

)N
.

Next, the above discussion concerning the behavior of (X,Y ) implies that on the set A
we have Yτn = nδ for all n = 1, 2, . . . , N , which implies

||Y ||L1(W ) ≥ EY∞W∞1A = Nδ(1 + δ)N ·
(

1− c−1

1− c−1 + δ

)N
.

Now recall that we have put δ = c/N . Therefore, if N is sufficiently large, the latter
expression can be made arbitrarily close to c exp(−(1 − c−1)−1). Therefore, for any
exponent κ < 1, we have

||Y ||L1(W )

||X∗||L1(W )[W ]κA1

≥ c1−κ · exp(−(1− c−1)−1)

2
,

for huge N . But the right-hand side explodes as c→∞; this proves that the exponent 1

in (1.3) is indeed the best possible.

4 On the search of a suitable function

The purpose of this section is to present some informal reasoning which has led
us to the discovery of the special function U = U (c) satisfying the properties listed in
Lemma 2.1. We would like to stress here that we have not tried to optimize the choice
of various parameters that will arise below (which might lead to a slight improvement
of the constant C in the statement of our main theorem). Instead, we rather focused

ECP 21 (2016), paper 23.
Page 7/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4586
http://www.imstat.org/ecp/


Maximal inequalities

on obtaining a relatively simple formula, for which the calculations will be not too
complicated. It is convenient to split the search into several steps.

Step 1. It suffices to consider the case ν = 1. The passage to higher dimensions
will just require some minor and natural changes (one has to replace x2, y2 by |x|2 and
|y|2, respectively). As a starting point, one looks at the appropriate function from the
unweighted setting: as proved in [12], it is given by

U(x, y, z) =
y2

z
− x2

z
− z,

up to a multiplicative constant. It seems natural to expect that the function U we search
for has a somewhat similar formula. A little thought and a look at (2.3) suggest that if we
want to pass to the weighted setting, then each summand above should be multiplied a
nonnegative expression depending on w and v, which is homogeneous of order 1: that is,

U(x, y, z, w, v) =
y2v

z
ϕ1(w/v)− x2v

z
ϕ2(w/v)− zvϕ3(w/v),

for some ϕi : [c−1, 1]→ R to be found, i = 1, 2, 3.
Step 2. Let us try to guess the functions ϕi. The first idea is to consider constant

functions, but then the property (v) of Lemma 2.1 is not satisfied. The second thought is
to assume that exactly two of ϕi’s are constant, and it turns out that the choice ϕ2 ≡ β,
ϕ3 ≡ γ will do the job. Plugging this above and applying (2.4), we get

−y
2v

z2
ϕ1(w/v) + βv − γv ≤ 0.

The left-hand side is the largest when y = 0, and then the inequality is equivalent to
β ≤ γ. Let us assume that we actually have equality here, and let us write ϕ instead of
ϕ1. Then the formula for U becomes

U(x, y, z, w, v) =
y2v

z
ϕ(w/v)− γx2v

z
− γzv.

Step 3. The next step is to find the formula for ϕ. An application of (2.5) enforces the
condition

y2(ϕ(1)− ϕ′(1)) ≤ γx2 + γz2,

to be valid for all x, y ∈ R and positive z ≥ |x|. Taking y = 1, x = z and letting z → 0

yields the inequality
ϕ(1) ≤ ϕ′(1). (4.1)

Now, let us look at the condition (v). The matrixM becomes

M(x, y, z, w, v) =
1

z

[
−2γv + 2vϕ(w/v) 2yϕ′(w/v)

2yϕ′(w/v) y2v−1ϕ′′(w/v)

]
.

To check whether this matrix is nonpositive-definite, we apply Sylvester’s criterion. After
some easy calculations, we see that (v) will hold if

ϕ′′(s) ≤ 0 and (−γ + ϕ(s))ϕ′′(s) ≥ 2(ϕ′(s))2 (4.2)

for all s ∈ (c−1, 1). Which function ϕ satisfies (4.1) and (4.2)? After some attempts, the
author guessed that ϕ(s) = log(as+ b) was a good choice, for some constants a = a(c),
b = b(c) to be found.

Step 4. Let us try to find the parameters a, b and γ, working with (4.1), (4.2) and the
majorization condition (2.3). By the latter inequality, we have that ϕ > 0 on [c−1, 1] (take
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x = z → 0 and y = 1 in the majorization). Thus in particular we see that ϕ(1) > 0, which
gives a+ b > 1, and ϕ(c−1) > 0, which is equivalent to

ac−1 + b ≥ 1. (4.3)

Next, (4.1) yields

log(a+ b)− a

a+ b
≤ 0, (4.4)

which combined with a+ b > 1 implies that a is positive. Let us further exploit the two
inequalities above: they yield some crucial information on a and b. First, (4.4) implies
that b < 1: indeed, for b = 1 the inequality does not hold, and the left-hand side is an
increasing function of b. Thus, we have b = 1− ε for some ε = ε(c) > 0; then (4.3) gives
a ≥ cε, and since the left-hand side of (4.4) is an increasing function of a, we get that

log(1 + (c− 1)ε) ≤ cε

1 + (c− 1)ε
.

Let us try to extract some information on the size of ε from this estimate. We must have
ε = o(c−1) as c→∞, since otherwise letting c→∞ above gives a contradiction. Now,
transform the latter bound into the equivalent form

log(1 + (c− 1)ε)− (c− 1)ε

(c− 1)2ε2
· (1 + (c− 1)ε) ≤ 1

(c− 1)2ε
− 1.

Letting c→∞, we see that the left-hand side converges to −1/2 and therefore we have
lim supc→∞(c− 1)2ε ≤ 2. This suggests to take ε = c−2 and, in the light of (4.3), a = αc−1

for some α = α(c) ≥ 1. We assume that α is a constant function and come back to (4.4),
obtaining that α must satisfy

log(αc−1 + 1− c−2)− αc−1

αc−1 + 1− c−2
≤ 0 for c ≥ 1,

or, if we substitute a = c−1 ∈ [0, 1], then

ξ(a) := log(αa+ 1− a2)− αa

αa+ 1− a2
≤ 0

(a similar function, also denoted by ξ, has already appeared in Section 2). Since ξ(0) = 0,
we see that the above inequality enforces ξ′(a) ≤ 0 for a sufficiently close to 0. However,
since

ξ′(a) =
a(α2 − 2− 4αa+ 2a2)

(αa+ 1− a2)2
,

the latter requirement will hold if α ≤
√

2. This leads us to the choice α =
√

2.
Finally, it remains to choose γ. The second inequality in (4.2) can be transformed

into γ − log(as + b) ≥ 2, and this requirement is most restrictive when s = 1: γ ≥
2 + log(

√
2c−1 + 1 − c−2). One easily checks that the function c 7→

√
2c−1 + 1 − c−2,

c ∈ [1,∞), attains its maximal value 3/2 for c =
√

2. This leads to our final choice
γ = 2 + log(3/2), which produces the function U used in Section 2.
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[14] Osȩkowski, A.: Sharp logarithmic inequalities for Riesz transforms. J. Funct. Anal. 263 (2012),
89-108. MR-2920841
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