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Abstract

This paper proves almost-sure convergence for the self attracting diffusion on the unit
sphere

dXt = ν ◦ dWt(Xt)− a
∫ t

0

∇SnVXs(Xt)dsdt, X0 = x ∈ Sn,

where ν > 0, a < 0, Vy(x) = 〈x, y〉 is the usual scalar product on Rn+1, ◦ stands for
the Stratonovich differential and (Wt(.))t>0 is a Brownian vector field on Sn. From
this we deduce the almost-sure convergence of the real-valued self attracting diffusion

dϑt = νdWt + a

∫ t

0

sin(c(ϑt − ϑs))dsdt,

where (Wt)t>0 is a real Brownian motion and c > 0.

Keywords: reinforced processes; self-interacting diffusions; asymptotic pseudotrajectories; rate
of convergence.
AMS MSC 2010: 60K35; 60G17; 60J60.
Submitted to ECP on September 10, 2015, final version accepted on June 27, 2016.
Supersedes arXiv:1501.04827.

1 Introduction

In this paper, we are interested in the asymptotic behaviour of the solution of the
stochastic differential equation (SDE)

dXt = ν ◦ dWt(Xt)− a
∫ t

0

∇SnVXs(Xt)dsdt, X0 = x ∈ Sn, (1.1)

where ν > 0, a ∈ R, ◦ stands for the Stratonovich differential, (Wt(.))t>0 is a Brownian
vector field on Sn, ∇Sn is the gradient on Sn and Vy(x) = 〈x, y〉 where 〈., .〉 is the canonical
scalar product on Rn+1.

Let us start with a short heuristic description of the process. First of all, observe that
for x, y ∈ Sn, we have

‖x− y‖2 = 2− 2〈x, y〉 = 2− 2 cos(D(x, y)), (1.2)
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Self attracting diffusions on a sphere and application to a periodic case

where D(., .) is the geodesic distance on Sn and ‖.‖ is the standard Euclidean norm on
Rn+1. If a > 0, the drift term points in a direction that tends to increase the distance
between Xt and its past positions. In other words Xt is repelled by its past. It follows
from a more general result proved in [2] dealing with self repelling diffusions on a
compact manifold that

Theorem 1.1 (Theorem 5, [2], Benaïm, Gauthier). If a > 0, the law of Xt converges to
the uniform law on Sn.

If a < 0, Xt is attracted by its past and one may expect localization.The goal of this
paper is to prove such a result.

Theorem 1.2. If a < 0, there exists a random variable X∞ ∈ Sn such that

‖Xt −X∞‖ =

{
O
(
t−1/2

√
ln(t)

)
if n = 1

O
(
( ln(t)

t )−1/4
)

otherwise
.

We point out that the self interacting diffusion (1.1) has already received some
attention in 2002 by M.Benaïm, M.Ledoux and O.Raimond ([4]), but in the normalized
case; that is, when

∫ t
0
VXs(Xt)ds is replaced by 1

t

∫ t
0
VXs(Xt)ds. The interpretation is

therefore different. While the drift term of (1.5) can be “seen” as a summation over [0, t]

of the interaction between the current position Xt and its position at time s and thus an
accumulation of the interacting force, their drift is then an average of the interacting
force. The asymptotic behaviour is then given by the following Theorem.

Theorem 1.3 (Theorem 4.5, [4], Benaïm, Ledoux, Raimond). For a 6= 0, let (Xt)t>0 be
the solution of the SDE

dXt = ◦dWt(Xt)−
a

t

∫ t

0

∇SnVXs(Xt)dsdt, X0 = x ∈ Sn. (1.3)

Set µt = 1
t

∫ t
0
δXsds.

1. If a > −(n + 1)/2, then µt converges almost surely (for the topology of weak*
convergence) toward the Riemannian probability measure on Sn.

2. If a < −(n+1)/2, then there exists a random variable ς ∈ Sn such that µt converges
almost surely toward the measure

µc,ς(dx) =
exp(β(a)〈x, ς〉)

Za
,

where Za is the normalization constant, β(a) is the unique positive solution to the
implicit equation

2aΛ′n(β) + β = 0,

where Λn(β) = log(
∫ π
0

exp(−β cos(x))λn(dx)) and λn(dx) = (sin(x))n−1∫ π
0
(sin(x))n−1dx

dx.

An intermediate framework between those considered in Theorem 1.2 and Theorem
1.3 is to add a time-dependent weight g(t) to the normalized case that increases to
infinity, but “not too fast”, when time increases. In that case, O.Raimond proved the
following Theorem.

Theorem 1.4 (Theorem 3.1, [12], Raimond). Let (Xt)t>0 be the solution of the SDE

dXt = ◦dWt(Xt)−
g(t)

t

∫
Sn
VXs(Xt)dsdt, X0 = x ∈ Sn, (1.4)

where g is an increasing function such that limt→∞ g(t) =∞. Assume that there exists
positive constants c, t0 such that for t > t0, g(t) 6 c log(t) and |g′(t)| = O(t−γ), with
γ ∈]0, 1].
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Self attracting diffusions on a sphere and application to a periodic case

Then, there exists a random variable X∞ in Sn such that almost surely, µt = 1
t

∫ t
0
δXsds

converges weakly towards δX∞ .

As an easy application of Theorem 1.2, we obtain the almost-sure convergence with a
rate of convergence of the solution of the real-valued SDE

dϑt = νdWt + a

∫ t

0

sin(c(ϑt − ϑs))dsdt, ϑ0 = 0, (1.5)

where (Wt)t is a real Brownian motion, a < 0 and ν, c > 0.
In 1995, M.Cranston and Y. Le Jan proved an almost-sure convergence result in [5]

in the cases where a sin(cx) is replaced by f(x) = ax (linear case) or f(x) = a× sgn(x)

(constant case) with a < 0. This last case was extended in all dimension by O.Raimond in
[11] in 1997. A few years later, S.Herrmann and B.Roynette weakened the condition of
the profile function f around 0 and were still able to get almost-sure convergence (see
[6]) for the solution of the stochastic differential equation

dϑt = νdWt +

∫ t

0

f(ϑt − ϑs)dsdt. (1.6)

Rate of convergence were given in [7] by S.Herrmann and M.Scheutzow. For the linear
case, they proved that the optimal rate of convergence is O

(
t−1/2

√
log(t)

)
(Proposition 4

in [7]).
However, a common fundamental property of these three papers lies in the fact that

the associated profile function f is monotone.

1.1 Reformulation of the problem

From now on, we assume that a < 0 and that n is fixed. Since the values of ν and
a do not play any particular role, we assume without loss of generality that ν = 1 and
a = −1. Thus (1.1) becomes

dXt = ◦dWt(Xt) +

∫ t

0

∇SnVXs(Xt)dsdt, X0 = x ∈ Sn (1.7)

with Vy(x) = 〈x, y〉 =: V (x, y). Because the law of the process (Xt)t>0 is the same for any
Brownian vector field on Sn, we assume from now on and without loss of generality that
Wt(x) = Bt − 〈x,Bt〉x, where (Bt)t>0 is a standard Brownian motion on Rn+1.

Since V satisfies Hypothesis 1.3 and 1.4 in [4], then (1.7) admits a unique strong
solution by Proposition 2.5 in [4]. We recall that for a function F : Rn+1 → R, we have

∇Sn(F|Sn )(x) = ∇Rn+1F (x)− 〈x,∇Rn+1F (x)〉x; x ∈ Sn. (1.8)

For x ∈ Sn, we let u 7→ P (x, u) be the orthogonal projection on TxSn given by

P (x, u) = u− 〈x, u〉x.

Following the same idea as in [2], we set Ut :=
∫ t
0
Xsds ∈ Rn+1 in order to get the SDE

on Sn ×Rn+1: {
dXt = P (Xt, ◦dBt + Utdt)

dUt = Xtdt
(1.9)

with initial condition (X0, U0) = (x, 0).

Remark 1.5. We have P (Xt, ◦dBt + Utdt) = P (Xt, dBt + Utdt)− n
2Xtdt,

The paper is organised as follows. In Section 2, we present the detailed strategy used
for proving Theorem 1.2 and prove the application to a periodic case whereas the more
technical proofs are presented in Section 3.
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2 Guideline of the proof of Theorem 1.2

Set Rt = ‖Ut‖ and define Vt ∈ Sn and Ct ∈ [−1, 1] as follows:

Vt =

{
Ut/Rt if Rt > 0

Xt otherwise
(2.1)

and
Ct = 〈Vt, Xt〉. (2.2)

With these notations, we have
RtCt = 〈Ut, Xt〉. (2.3)

Since the coordinates functions

ej : Sn ⊂ Rn+1 → R : x 7→ xj , for j = 1, · · · , n+ 1,

are eigenfunctions for the Laplacian operator on Sn associated to the eigenvalue −n
(see Chapter 3, Section C in [1]), then by Lemma 3 and Lemma 5 in section 4 of [2], the
system (1.9) satisfies the Hörmander condition (also called condition (E) in [2] and [8]).

Thus, for all t > 0, the law of (Xt, Ut) has a smooth density with respect to the
Lebesgue measure on Sn ×Rn+1 (see Theorem 3.(i) in [8]). Hence for all t > 0,

P
(
C2
t = 1 or Rt = 0

)
= P

(
Ut is parallel to Xt

)
= 0. (2.4)

Since
∫ t
0
〈P (Xs, dBs), Vs〉 is a martingale whose quadratic variation is

∫ t
0
(1− C2

s )ds, then
the process (Wt)t>0 defined by W0 = 0 and, for t > 0, by

Wt =

∫ t

0

1{C2
s<1 and Rs>0}

〈P (Xs, dBs), Vs〉√
1− C2

s

, (2.5)

is a standard Brownian motion on R.

Lemma 2.1. ((Ct, Rt))t>0 is solution to{
dCt =

√
1− C2

t dWt + [(Rt + 1
Rt

)(1− C2
t )− n

2Ct]dt

dRt = Ctdt
(2.6)

whenever Rt > 0.

Proof. Since dR2
t = 2〈Ut, dUt〉 = 2RtCtdt, then, as long as Rt > 0, we have

dRt = Ctdt. (2.7)

Hence,

dVt =
1

Rt
(Xt − CtVt)dt. (2.8)

Therefore, by Itô’s formula

dCt = 〈Xt, dVt〉+ 〈Vt, P (Xt, dBt + Utdt)〉 −
n

2
〈Vt, Xt〉dt

=
√

1− C2
t dWt + (Rt +

1

Rt
)(1− C2

t )dt− n

2
Ctdt. (2.9)

A first important result, whose proof is postponed to Section 3, is

Lemma 2.2. One has lim inft→∞
Rt√
t
> 2√

n
almost surely.

From this lemma, we prove in Section 3
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Lemma 2.3. The processes (Ct)t>0 and (Rtt )t>0 converge almost surely to 1. Further-
more

|Ct − 1| =

{
O
( ln(t)

t

)
if n = 1

O
(√ ln(t)

t

)
otherwise

.

Thanks to this lemma, we obtain

Lemma 2.4. Vt converges almost surely.

Proof. Since

‖Xt − CtVt‖ =
√

1− C2
t , (2.10)

it follows from Lemma 2.3

1

Rt
‖Xt − CtVt‖ = O

(
t−5/4 ln1/4(t)

)
, (2.11)

which is an integrable quantity. Hence the result follows from (2.8) and (2.11).

We can now prove the main result.

Proof of Theorem 1.2

By Lemmas 2.3 and 2.4, there exists a random variableX∞ ∈ Sn such that limt→∞ CtVt =

X∞.
The rate of convergence follows from the triangle inequality, (2.8), (2.10), (2.11) and

Lemma 2.3.
As an application of Theorem 1.2, we have the following result.

Theorem 2.5. Let (ϑt)t>0 be the solution of the SDE

dϑt = νdWt + a

∫ t

0

sin(c(ϑt − ϑs))dsdt, ϑ0 = 0, (2.12)

where (Wt)t is a real Brownian motion, a < 0 and ν, c > 0. Then there exists a random

variable ϑ∞ such that |ϑt − ϑ∞| = O(
√

ln(t)
t ).

Proof. First of all (2.12) admits a unique strong solution because the function sin(.) is
Lipschitz continuous (see for example Proposition 1 in [6]).

Set ϑ(c)t = cϑt. Hence (ϑ
(c)
t )t>0 solves the SDE

dϑ
(c)
t = cνdWt + ac

∫ t

0

sin(ϑ
(c)
t − ϑ(c)s )dsdt, ϑ

(c)
0 = 0. (2.13)

Letting Xt =
(

cos(ϑ
(c)
t ), sin(ϑ

(c)
t )
)
, it follows that (Xt)t>0 is a solution of (1.1) when n = 1.

Because ac < 0, there exists, by Theorem 1.2, X∞ ∈ S1 such that

‖Xt −X∞‖ = O
(
t−1/2

√
log(t)

)
.

The result follows from the continuity of t 7→ ϑ
(c)
t .

3 Proofs of Lemma 2.2 and Lemma 2.3

3.1 Proof of Lemma 2.2

Set Mt = −2
∫ t
0
Rs
√

1− C2
sdWs, where Wt is defined by (2.5), and let
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EM (t) = exp
(
Mt −

1

2
〈M〉t

)
. (3.1)

Because

〈M〉t = 4

∫ t

0

R2
s(1− C2

s )ds 6 4

∫ t

0

R2
sds 6 4

∫ t

0

s2ds =
4t3

3
, (3.2)

Mt satisfies the Novikov Condition (see [10], Chapter V, section D, page 198). Therefore
EM (t) is a positive martingale having 1 as expectation. Thus, it converges almost surely
to a nonnegative integrable random variable EM (∞).

Hence, there exists a random variable K <∞, such that almost surely, for all t > 0,

ln(EM (t)) 6 2K.

By Itô’s formula and Lemma 2.1, we have

d(RtCt) = C2
t dt+Rt

√
1− CtdWt + (R2

t + 1)(1− C2
t )dt− n

2
RtCtdt

= −1

2
dMt +

1

4
d〈M〉t −

n

2
RtCtdt+ dt. (3.3)

Since dR2
t = 2RtCtdt, we obtain

RtCt +
n

4
R2
t = −1

2
ln(EM (t)) + t

> t−K. (3.4)

Because Ct 6 1, we have for t > K

n

2
Rt > −1 +

√
n(t−K). (3.5)

This completes the proof.

3.2 Proof of Lemma 2.3

Before starting the proof of Lemma 2.3, let us recall the Definition of an asymptotic
pseudotrajectory introduced by Benaïm and Hirsch in [3].

Definition 3.1. Let (M,d) be a metric space and Φ a semiflow; that is

Φ : R+ ×M →M : (t, x) 7→ Φ(t, x) = Φt(x)

is a continuous map such that

Φ0 = Id and Φt+s = Φt ◦ Φs

for all s, t ∈ R+.
A continuous function X : R+ →M is an asymptotic pseudotrajectory for Φ if

lim
t→∞

sup
06h6T

d(Xt+h,Φh(Xt)) = 0 (3.6)

for any T > 0. In other words, it means that for each fixed T > 0, the curve X : [0, T ]→
M : h 7→ Xt+h shadows the Φ-trajectory over the interval [0, T ] with arbitrary accuracy
for sufficiently large t.

If X is a continuous random process, then X is an almost sure asymptotic pseudotra-
jectory for Φ if (3.6) holds almost surely.

Theorem 3.2 (Theorem 1.2 in [3]). Suppose that X([0,∞)) has compact closure in M

and set L(X) =
⋂
t>0X

(
[t,∞)

)
. Let A be an attractor for Φ with basin W. If Xtk ∈ W

for some sequence tk →∞, then L(X) ⊂ A.
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Let (xzt )t>0 be the solution of the SDE

dxzt = h(t, xzt )dBt + g(xzt )dt, x
z
0 = z ∈ R (3.7)

where (Bt)t>0 is a Brownian motion, g : R→ R is a Lipschitz function and h : R+×R→ R

a continuous function.
The next Theorem gives a sufficient condition on h to ensure that (xzt )t>0 is an almost

sure asymptotic pseudotrajectory for the flow induced by the ODE

ẏ = g(y). (3.8)

Theorem 3.3 (Proposition 4.1 in [3]). Assume there exists a non-increasing function
ε : R+ → R+ such that h2(t, x) 6 ε(t) for all (t, x) and such that

∀k > 0,

∫ ∞
0

exp(−k/ε(t))dt <∞1. (3.9)

Then, for all z ∈ R, (xzt )t>0 is an almost sure asymptotic pseudotrajectory for the flow
induced by (3.8).

Remark 3.4. The same result holds if (xt)t>0 solves the SDE

dxt = h(t, xt)dBt + δ(t)h2(xt)dt+ g(xt)dt,

where h2 is a bounded function and δ is a random adapted function with limt→∞ δ(t) = 0

almost surely.

Proof of Lemma 2.3

The proof is divided into two parts.

Proof of the convergence First we prove that Ct converges almost surely to 1. Recall
that

dCt =
√

1− C2
t dWt + [(Rt +

1

Rt
)(1− C2

t )− n

2
Ct]dt. (3.10)

Define α(t) = ( 3
2 t)

2
3 so that α̇(t) = α−

1
2 (t). Set Zt = Cα(t) and Mt = Wα(t). Thus

(Mt)t>0 is a martingale with respect to the filtration Gt = σ{Ws | 0 6 s 6 α(t)}, whose

quadratic variation at time t is α(t) =
∫ t
0
(
√
α̇(s))2ds.

Define B(α)
t =

∫ t
0

dMs√
α̇(s)

, so that (B
(α)
t )t>0 is a Brownian motion. Then

Zt =

∫ t

0

√
α̇(s)

√
1− Z2

sdB
(α)
s +

∫ t

0

Rα(s) + 1
Rα(s)√

α(s)
(1− Z2

s )ds− n

2

∫ t

0

α̇(s)Zsds. (3.11)

For y ∈ [−1, 1] and σ > 0, let (Y σ,yt )t>σ be the solution to the SDE on [−1, 1] dY σ,yt =
√
α̇(t)

√
1− (Y σ,yt )2dB

(α)
t + [ 1√

n

(
1− (Y σ,yt )2

)
− n

2 α̇(t)Y σ,yt ]dt

Y σ,yσ = y
. (3.12)

We divide the proof of the convergence in two steps. In the first one, we prove that for all
y ∈ [−1, 1] and σ > 0, Y σ,yt converges almost surely to 1; and then prove the convergence
of Zt to 1 in the second one.

Step I: Let y ∈ [−1, 1] and assume without loss of generality σ = 0. In order to lighten
the notation, we omit the superscripts y and σ in Y σ,yt during this step. We start by

1For example ε(t) = O(1/(log(t))α) with α > 1.
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proving that Yt is an almost sure asymptotic pseudotrajectory for the flow induced by
the ODE

ẋ =
1√
n

(1− x2). (3.13)

In order to achieve it, we use Theorem 3.3. Since x 7→ (1− x2) is Lipschitz continuous on
[−1, 1] and that Yt ∈ [−1, 1] for all t > 0, it remains to verify the hypothesis concerning
the noise term.

Set

ε(t) = α̇(t) = (
3

2
t)−

1
3 . (3.14)

It is then obvious that ε(t) satisfies (3.9). Because Yt ∈ [−1, 1] for all t > 0, it is clear that
the conditions in Remark 3.4 are satisfied. Consequently, by Theorem 3.3, (Yt)t is an
almost sure asymptotic pseudotrajectory for the flow induced by (3.13).

Because {1} is an attractor for the flow induced by (3.13) with basin ]− 1, 1] and that
almost surely Yt ∈]− 1, 1] infinitely often, then

lim
t→∞

Yt = 1 a.s (3.15)

by Theorem 3.2.
Step II: Our goal is to prove

P( lim
t→∞

Zt = 1) = 1. (3.16)

Define the stopping times σ0 = 0,

τj = inf
(
t > σj−1 |

Rα(t)√
α(t)

=
1√
n

)
, j > 1 (3.17)

and

σj = inf
(
t > τj |

Rα(t)√
α(t)

=
3

2
√
n

)
, j > 1 (3.18)

with the convention inf ∅ = +∞.
By Lemma 2.2, we have

P
( ⋃
j>1

{τj =∞}
)

= 1 and for all j > 1, P
(
σj <∞ | τj <∞

)
= 1. (3.19)

Let us start by estimating P(limt→∞ Zt = 1, τj+1 = ∞ | σj < ∞). For s ∈ [σj , τj+1], we
have

Rα(s) + 1
Rα(s)√

α(s)
>

1√
n
.

So, by Ikeda-Watanabe’s comparison result (see Theorem 1.1, Chapter VI in [9]),

P
(
Z(t+σj)∧τj+1

> Y
σj ,Zσj
(t+σj)∧τj+1

, ∀t > 0 | σj <∞
)

= 1. (3.20)

As a consequence, we have

P
(

lim
t→∞

Zt = 1, τj+1 =∞ | σj <∞
)

> P
(

lim
t→∞

Y
σj ,Zσj
t+σj = 1, τj+1 =∞ | σj <∞

)
= P

(
τj+1 =∞ | σj <∞

)
. (3.21)

where the last equality follows from Step I.
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Since ({τj =∞})j>1 is an increasing family of events such that

{τj =∞} = Nj ∪
j−1⋃
k=0

{τk+1 =∞, σk <∞},

where Nj is an event of probability 0, we obtain from (3.19) and (3.21)

P
(

lim
t→∞

Zt = 1
)

=
∑
j>0

P
(

lim
t→∞

Zt = 1, τj+1 =∞ and σj <∞
)

>
∑
j>0

P
(
τj+1 =∞ and σj <∞

)
= 1. (3.22)

Consequently, Ct converges almost surely to 1. Therefore, so does

Rt
t

=
1

t

∫ t

0

Csds. (3.23)

Proof of the rate of convergence Set σ0 = 0 and define the stopping times

τj = inf
(
t > σj−1 | Ct = 0 or

Rt
t

=
1

2

)
, j > 1 (3.24)

and

σj = inf
(
t > τj | Ct >

1

2
and

Rt
t

>
3

4

)
, j > 1 (3.25)

with the convention inf ∅ = +∞. So, by the previous part,

P
( ⋃
j>1

{τj =∞}
)

= 1 and for all j > 1, P
(
σj <∞ | τj <∞

)
= 1. (3.26)

Case n > 2: Set Zt = 1−Ct and define the process (ϑt)t>0 by ϑ0 = 2, ϑt = Zt−Zτj+ϑτj
for t ∈ [τj , σj ] and

ϑt = ϑσj −
∫ t

σj

√
1− C2

sdWs −
1

2

∫ t

σj

sϑsds+
n

2
(t− σj) (3.27)

for t ∈ [σj , τj+1]. Thanks to (3.10), one can also write Zt, for σj 6 t 6 τj+1,

Zt = Zσj −
∫ t

σj

√
1− C2

sdWs −
∫ t

σj

((
Rs +

1

Rs

)
(1 + Cs) +

n

2

)
Zsds+

n

2
(t− σj). (3.28)

Moreover, for such times t, we have(
Rt +

1

Rt

)
(1 + Ct) >

t

2
.

Hence, from Ikeda-Watanabe comparison’s result

P(Zt 6 ϑt, ∀t > 0) = 1. (3.29)

Since 1− C2
t ∈ [0, 1], we have by Proposition A.1

P
(
ϑt = O

(
t−1/2

√
ln(t)

)
, τj+1 =∞ | σj <∞

)
= P

(
τj+1 =∞ | σj <∞

)
. (3.30)

By the same argumentation as in Step II of the proof of the convergence, one obtains

1− Ct = O
(
t−1/2

√
ln(t)

)
a.s. (3.31)
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Case n = 1: Set θt = arccos(Ct) ∈ [0, π]. Then, as long as Rt > 0, θt solves

dθt = −dWt − (Rt +
1

Rt
) sin(θt)dt+ dLt(0)− dLt(π), (3.32)

where (Lt(0))t>0 (resp. (Lt(π))t>0) is a process of finite variation that increases when
θt = 0 (resp. θt = π).

Because Ct converges almost surely to 1, then, from the second order Taylor expan-
sion of cos(.) about 0, an estimate of its rate of convergence is given by the one of θ2t to
0.

Set Θt = θ2t . Then, as long as Rt > 0, it solves

dΘt = −2
√

ΘtdWt − 2(Rt +
1

Rt
)
√

Θt sin(
√

Θt)dt+ dt− 2
√

ΘtdLt(π). (3.33)

Note that Lt(π) increases only when Θt = π2.

Following the same methodology as for the case n > 2, define a process (Ψt)t>0 as
follows: Ψ0 = π2, Ψt = Θt −Θτj + Ψτj if t ∈ [τj , σj ] and for t ∈ [σj , τj+1],

Ψt = Ψσj − 2

∫ t

σj

√
ΨsdWs − 2

∫ t

σj

s

π
Ψsds+ (t− σj). (3.34)

Because for t ∈ [σj , τj+1], we have

(Rt +
1

Rt
) >

t

2
and

√
Θt sin(

√
Θt) >

2

π
Θt,

it follows from Ikeda-Watanabe’s comparison result

P(Θt 6 Ψt, ∀t > 0) = 1. (3.35)

Since (Ψt∧τj+1
)t>σj has the same law as (Z2

t∧τj+1
)t>σj , where (Zt)t>σj is the solution of

the SDE

dZt = dWt −
t

π
Ztdt, Zσj = θσj , (3.36)

it follows from Proposition A.1

P
(

Ψt = O
(
t−1 ln(t)

)
, τj+1 =∞ | σj <∞

)
= P

(
τj+1 =∞ | σj <∞

)
.

Arguing like in Step II of the proof of the convergence, one obtains

Θt = O
(
t−1 ln(t)

)
a.s.

Thus

1− Ct = O
(
t−1 ln(t)

)
a.s.

Remark 3.5. Following the proof of the rate of convergence from the case n = 1, one
proves that the rate of convergence to 1 of the solution of the SDE dC

(n)
t =

√
n

√
1− (C

(n)
t )2dWt + [(Rt + 1

Rt
)
(
1− (C

(n)
t )2

)
− n

2C
(n)
t ]dt

C
(n)
0 = y

(3.37)

is O
(
t−1 ln(t)

)
. Therefore, we conjecture that so does Ct for any n > 2.
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4 Conclusion

The motivating model of this work was the real-valued self attracting diffusion

dXt = νdWt + a

∫ t

0

sin(Xt −Xs)dsdt, X0 = 0

with ν > 0 and a < 0. Identifying it with (cos(Xt), sin(Xt)), we had that the almost sure
convergence of Xt was an immediate consequence of the more general diffusion on the
n−dimensional unit sphere Sn

dXt = ν ◦ dWt(Xt)− a
∫ t

0

∇SnVXs(Xt)dsdt, X0 = x ∈ Sn

with Vy(x) = 〈x, y〉.
It would now be interesting to study the self interacting diffusion

dXt = νdWt +

n∑
k=1

kak

∫ t

0

sin(k(Xt −Xs))dsdt,

where the coefficient ak 6= 0 are such that
∑n
k=1 k

2ak < 0.
Because

∑n
k=1 k

2ak = (
∑n
k=1 kak sin(k.))′(0) and that it has to play a more and more

important role if (Xt)t localizes, it sounds reasonable to formulate the following conjec-
ture:

Conjecture 4.1. Let (Xt)t>0 be the solution of the self interacting diffusion

dXt = νdWt +

n∑
k=1

kak

∫ t

0

sin(k(Xt −Xs))dsdt, X0 = x.

If
∑n
k=1 k

2ak < 0 (resp.
∑n
k=1 k

2ak > 0), then Xt converges almost-surely (resp.
lim suptXt > lim inftXt).

A Almost sure convergence for a time-inhomogeneous linear SDE

In this paper, we needed to use the rate of convergence to 0 for the solution of the
SDE

dXt = gtdWt + µtdt− (1 + α)λtαXtdt, (A.1)

when t 7→ µt is a deterministic constant, α = 1 and (gt)t>0 is an adapted process bounded
by 1. Here, (Wt)t>0 stands for a real Brownian motion and λ > 0.

Proposition A.1. Let Xt be the solution of (A.1) with initial condition X0 = x. Assume
that (gt)t>0 and (µt)t>0 are adapted processes bounded by some deterministic constant
K and let α > 0. Then

Xt = O
(
t−α/2

√
log(t)

)
a.s.

Proof. The solution of Equation (A.1) with initial condition X0 = x is

Xt = e−λt
1+α
(
x+

∫ t

0

eλs
1+α

gsdWs +

∫ t

0

eλs
1+α

µsds
)

= e−λt
1+α
(
x+Mt +

∫ t

0

eλs
1+α

µsds
)
. (A.2)

Since

e−λt
1+α
∣∣∣ ∫ t

0

eλs
1+α

µsds
∣∣∣ 6 Ke−λt

1+α

∫ t

0

eλs
1+α

ds = O
(
t−α
)
, (A.3)
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then, on the event {〈M〉∞ :=
∫∞
0
e2λs

1+α

g2sds <∞}, the result is immediate because in
that case, Mt converges almost surely. In the sequel, we assume that we are on the
event {〈M〉∞ =∞}.

By the Dubins-Schwarz Theorem (see Theorem 4.6 in [10], Chapter 3) with the law of
Iterated Logarithm for Brownian motion (see Theorem 9.23 in [10], Chapter 2), we have

Mt = O
(√
〈M〉t log log(〈M〉t)

)
. (A.4)

By the hypothesis on gt, we have

〈M〉t =

∫ t

0

e2λs
1+α

g2sds 6 K2

∫ t

0

e2λs
1+α

ds.

Therefore,

〈M〉t = O
(
e2λt

1+α

t−α
)
. (A.5)

The desired result follows from (A.2)–(A.5).
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