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Abstract

We consider the serve-the-longest-queue discipline for a multiclass queue with buffers
of equal size, operating under (i) the conventional and (ii) the Halfin-Whitt heavy
traffic regimes, and show that while the queue length process’ scaling limits are
fully determined by the first and second order data in case (i), they depend on
finer properties in case (ii). The proof of the latter relies on the construction of a
deterministic arrival pattern.
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1 Introduction

We analyze the multi-class queue in two different diffusion regimes, namely the
conventional and the Halfin-Whitt (HW) heavy traffic regimes, operating under the
serve-the-longest-queue (SLQ) scheduling policy. In both regimes the traffic intensity is
asymptotic to unity, where in conventional heavy traffic, the model is based on a single
server and the arrival rate and service time distributions are scaled up, while in the
HW regime, the arrival rate and number of servers are scaled up and the service time
distributions are kept fixed; see [2] and references therein for more on these regimes.
Our goal is to demonstrate that if the buffers are finite and of equal size, then, perhaps
counterintuitively, the first and second order data of the underlying primitive processes
do not uniquely determine the queue length asymptotics in the HW regime (the term
‘first and second order data of the underlying primitive processes’ informally means their
Law of Large Numbers and Central Limit Theorem limit laws; it is rigorously defined in
Section 2). As a result, a diffusion limit does not always exist under the ‘usual’ set of
assumptions. This stands in contrast to the conventional regime where, as we show, the
limit is fully determined by the first and second order data.

Our motivation to study systems with finite buffers stems from a recent treatment
[3], where they arise in a game-theoretic setting of customers that act strategically,
and avoid joining the queue if they expect that the delay will exceed a threshold. In
that setting, determining the diffusion-scale asymptotics of the queue length provides a
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Non-existence of Diffusion Limits for SLQ

crucial step in the analysis of a Nash equilibrium. The usual role played by finite buffers,
namely to model finite storage room, provides, of course, an additional motivation.

In Sections 2 and 3 we treat the HW and the conventional regimes, respectively,
where in the former we provide a counterexample to existence of limits, and in the
latter we determine the limit. The aforementioned counterexample is based on the
construction of a certain deterministic arrival pattern; the problem of whether existence
of limits fails under a more common model for arrivals, such as renewal processes with
no fixed times of discontinuity, is left open (see Problem 2.2).

We use the following notation. For a, b ∈ R, the maximum [resp., minimum] is denoted
by a ∨ b [resp., a ∧ b], and a+ = a ∨ 0, a− = (−a) ∨ 0. For x, y ∈ Rk (k a positive integer),
x · y and ‖x‖ denote the usual scalar product and `2 norm, respectively. Write {ei},
i = 1, . . . , k for the standard basis in Rk and 1 for

∑k
i=1 ei. Denote R+ = [0,∞), and

let ι : R+ → R+ the identity. For f : R+ → Rk, ‖f‖T = supt∈[0,T ] ‖f(t)‖, and, for θ > 0,
wT (f, θ) = sup0≤s<u≤s+θ≤T ‖fu − fs‖. For a Polish space S, let CS([0, T ]) and DS([0, T ])

denote the set of continuous and, respectively, cadlag functions [0, T ] → S. Write CS
and DS for the case where [0, T ] is replaced by R+. Endow DS with the Skorohod J1
topology. Write Xn ⇒ X for convergence in distribution. A sequence of processes Xn

with sample paths in DS is said to be C-tight if it is tight and every subsequential limit
has, with probability 1, sample paths in CS . For a positive integer k, m ∈ Rk and a
symmetric, positive matrix A ∈ Rk×k, an (m,A)-Brownian motion (BM) is a k-dimensional
BM starting from zero, having drift m and infinitesimal covariance matrix A.

2 A counterexample to existence of limits in the Halfin-Whitt
regime

A sequence of queueing models, indexed by n ∈ N, and defined on a probability
space (Ω,F ,P), has n identical servers and a fixed number, N ≥ 2, of buffers dedicated
to customers of N classes. For i = 1, 2, . . . , N , class-i customers arrive according to
an arrival process Eni and upon arrival go directly for service on the event that any
of the servers is available, and otherwise are queued in buffer i if the buffer is not
fully occupied. Arrivals are lost when the corresponding buffer is full. When a server
becomes available and the buffers are non-empty, it picks a customer from the buffer
with most customers, and, in case of equal maximal queue lengths, a fair N -coin is tossed
to determine which buffer to pick from. Class-i jobs take exponential time to process,
with parameter µni , where

µni = µi + n−1/2µ̂i + o(n−1/2), (2.1)

and µi > 0 and µ̂i ∈ R are constants. The arrival counting processes, Eni , are assumed
to satisfy the Law of Large Numbers,

Ēni := n−1Eni ⇒ λiι, (2.2)

where λi > 0 are constants, and the Central Limit Theorem,

Êni := n−1/2(Eni − λni ι)⇒W arr
i , (2.3)

where λni = λin+n1/2λ̂i+o(n
1/2), and W arr

i is a (0, λiσ
2
i )-BM, for constants λ̂i ∈ R, σ2

i ≥ 0.
It is also assumed that arrival processes are independent. The resulting asymptotic
traffic intensity is given by

∑
i ρi, where ρi = λi/µi, assumed to satisfy the critical load

condition
∑
i ρi = 1. The queue length processes are denoted by Qn = (Qn1 , . . . , Q

n
N ).

The number of class-i customers in the system (resp., in the buffer, in service) at time
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Non-existence of Diffusion Limits for SLQ

t is denoted by Xn
i (t) (resp., Qni (t), Ψni (t)). Note that Xn = Qn + Ψn, and 1 · Ψn ≤ n.

Diffusion scaled versions of these processes are denoted by

X̂n = n−1/2(Xn − nρ), Q̂n = n−1/2Qn, Ψ̂n = n−1/2(Ψn − nρ).

It is assumed that the initial condition X̂n(0) satisfies

X̂n(0)⇒ X0,

where X0 is an RN -valued r.v., whose distribution is denoted by m0, and, for simplicity,
the queue lengths are assumed to start at zero, that is, Qn(0) = (Qn1 (0), . . . , QnN (0)) = 0.
We will assume that the buffer sizes, denoted throughout by {βni }, are asymptotic to
{βin1/2}, where βi > 0 are constants, namely βni = βin

1/2 + o(n1/2).
The tuples (µi, λi) and (µ̂i, λ̂i, σ

2
i ,m0) are often referred to as first and second order

data, respectively. We denote them jointly by

δ = (µi, λi, µ̂i, λ̂i, σ
2
i ,m0).

Given k ∈ {1, . . . , N}, consider a stochastic differential equation (SDE) with reflection,
for a process X that lives in

Gk = {x ∈ RN : 1 · x ≤ Nβk},

and reflects on the boundary of Gk in the direction −ek. Let {W (t)} be a (λ̂, A)-BM,
where A = diag(λi(σ

2
i + 1)). Let b : RN → RN be given by

b(x) = −(µ1(x1 −N−1(1 · x)+), . . . , µN (xN −N−1(1 · x)+)). (2.4)

Let (X,L) = (X(k), L(k)) be the unique pair of processes that is adapted to the filtration
σ{X0} ∨ σ{W (u), u ≤ t}, where X has sample paths in C(R+ : Gk), L has nondecreasing
sample paths in C(R+ : R+), and the pair satisfies a.s.,

X(t) = X0 +W (t) +

∫ t

0

b(X(u))du− L(t)ek, t ≥ 0,∫
[0,∞)

1{1·X(t)<Nβk}dL(t) = 0 .

(2.5)

The existence and uniqueness of such a pair follows from Proposition 3 of [1] on noting
that b is Lipschitz continuous. We denote by X(k) the solution to the SDE (2.5).

It follows from the results of [3] that the limits of (X̂n, Q̂n, Ψ̂n) are not uniquely
determined by δ when the buffer sizes are asymptotically equal, i.e., βi = β1 for all i.
More precisely, the following result appears in [3] (Proposition 4.3):

Assume that for some k and all i 6= k, βk < βi. Then (X̂n, Q̂n, Ψ̂n) ⇒ (X,Q, Ψ),
where X = X(k) is the unique solution of (2.5), and Q and Ψ are recovered from it via
Q = N−1(1 ·X)+ and Ψ = X −Q.

One can draw from this result the following conclusions regarding the case βi = β1
for all i ∈ {1, . . . , N}:

(i) For every k, one can choose {βni } asymptotic to {βin1/2}, in such a way that
X̂n ⇒ X, where X = X(k). Thus the first and second order data do not determine
the limits.

(ii) One can choose {βni } asymptotic to {βin1/2} in such a way that X̂n do not converge
in distribution. Thus limits need not exist.
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Indeed, (i) follows because, given k, we have X̂n ⇒ X(k) when βk = c − ε and βi = c

for all i 6= k, with c, ε > 0 fixed; hence by a diagonal argument, the same is true with ε
replaced by εn > 0, for some εn → 0. Of course, (ii) is immediate from (i).

In the present note, we are interested in the case where βni are exactly equal to each
other, for every n. Assuming in what follows that for a constant β1 > 0,

βni = βn := bβ1n1/2c, i ∈ {1, . . . , N}, n ∈ N, (2.6)

we ask whether, in this situation, the first and second order data still fall short of
determining the limit behavior. More precisely, we aim at addressing the following
assertions:

(i’) For every k one can choose {Eni } that satisfy (2.2) and (2.3), in such a way that
X̂n ⇒ X, where X = X(k).

(ii’) One can choose {Eni } that satisfy (2.2) and (2.3), in such a way that X̂n do not
converge.

An affirmative answer will confirm that the first and second order data do not determine
the limits even when the buffers are exactly equal in size. We address these questions
in the special case where N = 2, but it will be clear from the proof that analogous
treatment is possible in general.

Theorem 2.1. Consider N = 2 and assume that the buffer sizes are given by (2.6).
Fix k ∈ {1, 2}. Then one can find {En1 } and {En2 } satisfying (2.2) and (2.3), so that
X̂n ⇒ X(k), the solution of the SDE (2.5).

Note that the domain Gk does not depend on k in this case, since β1 = β2. However,
the SDEs still differ in terms in the direction of reflection, and in this situation the
solutions X(1) and X(2) are not equal in law. Hence the validity of (i’) and (ii’) is an
immediate consequence of the above result.

As mentioned earlier, the proof of the result will be based on the construction of
a deterministic arrival pattern. It is natural to ask whether the result remains valid
under the additional requirement that the arrivals follow a more common model, such as
renewals. More precisely, we formulate the following problem, that we leave open.

Problem 2.2. Determine whether existence of limits may fail when the arrivals are given
by accelerated versions of independent renewal processes (namely, Eni (t) = Ei(µ

n
i t),

t ≥ 0) with inter-renewal distributions that have density.

Proof of Theorem 2.1: The construction will be with the parameters λi = 1, λ̂i = 0,
µi = 2, µ̂i = 0, ρi = 1/2. The arrival processes we construct are deterministic, and satisfy
(2.2), as well as (2.3) with σi = 0. In particular, the driving BM in (2.5) is a (0, A)-BM
where A = diag(λi) = diag(1, 1). The construction is presented for k = 1; the case k = 2

is obtained by interchanging the roles of class 1 and class 2.

Fix a sequence mn = bnac, n ∈ N, where a ∈ (0, 12 ) is constant. For ease of notation
we suppress the index n in mn and βn (of (2.6)) and write m and β, respectively.

First, we construct Eni on the interval [0, τ ], where τ = m
n , by letting

En1 (t) =

{
0, t ∈ [0, τ),

m, t = τ,

En2 (t) =


0, t ∈ [0, τ2 ),

b2n(t− τ
2 ) + 2c, t ∈ [ τ2 , τ),

m, t = τ.

(2.7)
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Thus, for each class, m arrivals occur during [0, τ ], where class-1 customers all arrive at
time τ , whereas class-2 arrivals are at τ

2 ,
τ
2 + 1

2n ,
τ
2 + 2

2n , . . . ,
τ
2 + m−1

2n . Beyond [0, τ ], the
pattern defined on (0, τ ] repeats itself with period τ . Namely, En is given by

En(t+ jτ) = En(jτ) + En(t), t ∈ (0, τ ], j ∈ N.

Note that for both i = 1, 2, (2.2) holds with λi = 1, and (2.3) holds with λni = n and σ2
i = 0

(thus W arr
i = 0 a.s.). The parameters µni are given by µni = 2 for n ∈ N, i = 1, 2.

We need some additional notation. Denote by Rni the counting process for class-i
losses since time 0, by Bni the counting process for class-i customers sent to the service
pool since time 0, by Dn

i the counting process for class-i departures from service, and by
S a unit-rate Poisson process representing potential service. Namely,

1 ·Dn(t) = S
(

2

∫ t

0

1 · Ψn(u)du
)
. (2.8)

We have the following balance equations

Qni (t) = Qni (0) + Eni (t)−Bni (t)−Rni (t) , (2.9)

Ψni (t) = Ψni (0) +Bni (t)−Dn
i (t) . (2.10)

Denote R̂n = n−1/2Rn. The main estimate will be to show that R̂n2 ⇒ 0. Fix T and note
that

ERn2 (T ) ≤
bT/τc∑
j=0

E[Rn2 (jτ + τ)−Rn2 (jτ)] ≤
bT/τc∑
j=0

mP[ sup
t∈[jτ+ τ

2 ,jτ+τ)

Qn2 (t) = β], (2.11)

where we used the fact that a class-2 loss can only occur if a customer arrives when the
buffer is full (that is, Qn2 = β), that class-2 arrivals occur only within [jτ + τ

2 , jτ + τ), and
that the total number of losses over each such interval is bounded by m.

Towards bounding the RHS of (2.11), note that, by construction, for each n, the tuple
Σn := (Qn1 , Q

n
2 , Ψ

n) forms an inhomogeneous Markov process on the state space

Sn := {(q1, q2, ψ) ∈ Z3
+ : q1 ∨ q2 ≤ β, ψ ≤ n, (q1 + q2) ∧ (n− ψ) = 0},

where the first constraint expresses the buffer limit, the second states that the number
of jobs in service does not exceed the number of servers, and the last corresponds to the
non-idling condition (the inhomogeneity is due to the structure of arrivals). Denote by
Pnx , x ∈ Sn, the corresponding Markov family, where x serves as the initial condition, i.e.,
Pnx(Σn(0) = x) = 1. Although Σn is not a homogeneous Markov process, The path-valued
Markov chain {Σn|(jτ,jτ+τ ]}, j ∈ N is homogeneous by construction, and in particular,

P[ sup
t∈[jτ+ τ

2 ,jτ+τ)

Qn2 (t) = β|Σn(jτ) = x] = Pnx( sup
t∈[ τ2 ,τ)

Qn2 (t) = β). (2.12)

Below, we show that
sup
x∈Sn

Pnx( sup
t∈[ τ2 ,τ)

Qn2 (t) = β) ≤ c1e−c2m, (2.13)

where c1, c2 > 0 are constants that do not depend on n or k. (Note that the initial
condition x could have q2 = β, but this does not contradict (2.13) which is a statement
regarding the times [τ/2, τ).) Combining (2.12) with the estimates (2.11) and (2.13)
gives

ERn2 (T ) ≤ c1
T

τ
me−c2m = c1Tne

−c2m.
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Recalling that m = bnac, where a > 0, gives Rn2 (T ) ⇒ 0 as n → ∞, and therefore
R̂n2 (T )⇒ 0.

The intuitive explanation of (2.13) is simple. During the first half of the period,
(0, τ/2), there are no arrivals, and both queue lengths drop dramatically below the buffer
size β, regardless of their initial condition. On [τ/2, τ), there are still no class-1 arrivals,
and so if Qn2 comes near β, it is necessarily the longer among the two queues. At these
times, class-2 jobs receive all service effort, which again causes Qn2 to drop.

To prove (2.13), fix x ∈ Sn. Denote θ = inf{t ∈ [τ/2, τ) : Qn2 (t) = β}. The event
indicated in (2.13) can be written as {θ <∞} (equivalently, {θ ≤ τ}). Note first that on
that event, it is impossible to have 1 · Ψn(s) < n for some s ∈ [0, θ], when n is sufficiently
large. Namely, if n is large then m = mn = bnac < β = βn = bβ1n1/2c. Note that
non-idling condition can be expressed as

for every t, 1 ·Qn(t) > 0 implies 1 · Ψn(t) = n.

Hence the existence of such s implies Qn2 (s) = 0, and thus by (2.9),

β − 0 = Qn2 (θ)−Qn2 (s) ≤ En2 (θ)− En2 (s) ≤ m,

that contradicts m < β. As a result, using also (2.8), on the event {θ <∞}, one has

1 ·Dn(t) = S(2nt), t ≤ θ. (2.14)

Next, on the time interval [0, τ ], all class-1 arrivals occur at time τ , thus if there are
any losses at this class, they also occur at that time. Thus, by (2.9),

Qn1 (t) = Qn1 (0)−Bn1 (t), t ∈ [0, τ). (2.15)

As for Qn2 , the same is true regarding the interval [0, τ2 ). Thus

Qn2 (t) = Qn2 (0)−Bn2 (t), t ∈ [0,
τ

2
).

Hence
1 ·Qn(

τ

2
−) = 1 ·Qn(0)− 1 ·Bn(

τ

2
−) = 1 ·Qn(0)− S(m),

where we used (2.10) and (2.14). Now, using the fact that each queue length is bounded
above by β, it follows from the property of the policy to always offer service to the longer
queue that, for any ` ∈ N, once 2` jobs are removed from the buffers and sent to service,
each of the queue lengths is bounded above by β − `. As we have just argued, on the
event {θ <∞} there are S(m) such removals during [0, τ/2), hence

Qn1 (
τ

2
−) ∨Qn2 (

τ

2
−) ≤ β −

⌊S(m)

2

⌋
.

If indeed θ < ∞, namely, Qn2 reaches β during [ τ2 , τ), then there must exist a time
u ∈ [τ/2, θ] such that

Qn2 (u−) = β −
⌊S(m)

2

⌋
, β −

⌊S(m)

2

⌋
< Qn2 (t) < β, t ∈ [u, θ).

Using (2.9), noting there are no losses on this interval,⌊S(m)

2

⌋
= Qn2 (θ)−Qn2 (u−) = En2 (θ)− En2 (u−)−Bn2 (θ) +Bn2 (u−).

Also Qn2 > Qn1 must hold on the interval [u, θ), since by (2.15), Qn1 can only decrease from
Qn1 ( τ2−). Thus the increment of Bn2 equals that of 1 · Bn. In turn, using (2.10) and the
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fact that 1 · Ψn = n on this interval, this increment is equal to the increment of 1 ·Dn,
which, by (2.14) is given by S(2nθ)− S(2nu−). We thus obtain⌊S(m)

2

⌋
= En2 (θ)− En2 (u−)− S(2nθ) + S(2nu−).

By (2.7),
|En2 (θ)− En2 (u−)− 2n(θ − u)| ≤ 3.

Recalling that, on θ <∞, u, θ ∈ [τ/2, τ ], it follows that

Pnx(θ <∞) ≤ P
(

sup
s,t∈[m,2m]

|S(t)− S(s)− (t− s)| ≥ S(m)

2
− 5
)
.

Denoting S̄m(t) = S(mt)−mt
m , we have

Pnx(θ <∞) ≤ P
(S(m)

2
− 5 <

m

4

)
+ P

(
sup

s,t∈[1,2]
|S̄m(t)− S̄m(s)| ≥ 1

4

)
≤ P

(
S̄m(1) < −1

2
+

10

m

)
+ P

(
sup
t∈[0,2]

|S̄m(t)| ≥ 1

8

)
.

Note that the expression on the RHS does not depend on x. Moreover, by the sample
path large deviations principle satisfied by S̄m, each of the two terms above is bounded
by c1e−c2m, for constants c1, c2 > 0 that do not depend on m. This completes the proof of
(2.13). As we have argued above, this gives R̂n2 ⇒ 0.

Based on the above, the completion of the proof follows closely along the lines of
Section 4 of [3]. Thus, for this part, we only provide a sketch. First, the model (2.8) for
departures, based on the primitive data S, can alternatively be represented in terms of a
pair of potential service processes, namely two rate-1 Poisson processes S1 and S2, that
are mutually independent, and independent of the system’s initial condition:

Dn
i (t) = Si

(
µi

∫ t

0

Ψni (u)du
)
.

Next, the balance equations (2.9) and (2.10) translate to the diffusion scale as

Q̂ni (t) = Q̂ni (0) + Êni (t)− B̂ni (t)− R̂ni (t) , (2.16)

Ψ̂ni (t) = Ψ̂ni (0) + B̂ni (t)− Ŝni
(
µi

∫ t

0

Ψ̄ni (u)du
)
− µi

∫ t

0

Ψ̂ni (u)du , (2.17)

where

Ψ̄ni = n−1Ψni , Ŝni = n−1/2(Si(nι)− nι), B̂ni = n−1/2(Bni − nλiι).

Hence

X̂n
i = Q̂ni + Ψ̂ni = X̂n

i (0) + Ŵn
i − µi

∫ ·
0

(X̂n
i (u)− Q̂ni (u))du− R̂ni , (2.18)

where

Ŵn
i = Êni − Ŝni

(
µi

∫ ·
0

Ψ̄ni (u)du
)
. (2.19)

Fix a sequence kn, n ∈ N, such that limn−1/2kn = ∞ and limn−1kn = 0, and, given
T <∞, define Tn = inf{t : 1 ·Rn(t) ≥ kn} ∧ T . Lemma 4.2 of [3] states that, for i = 1, 2,
‖Q̂ni − N−1(1 · X̂n)+‖Tn → 0, and ‖Ψ̄ni (t) − ρi‖Tn → 0, in probability, as n → ∞. In the
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proof of Proposition 4.3 of [3] it is shown that P(Tn < T )→ 0 as n→∞. As a result, in
the above two statements, Tn can be replaced by T , namely, for any T <∞, for i = 1, 2,

‖Q̂ni −N−1(1 · X̂n)+‖T → 0, ‖Ψ̄ni − ρi‖T → 0, in probability, as n→∞. (2.20)

By the central limit theorem, (Ŝn1 , Ŝ
n
2 )⇒W , where W is a (0, A)-BM, with A = diag(1, 1).

Since µi = 2 and ρi = 1/2, it follows that Ŵn ⇒W .
Define Γ : DR2([0, T ])→ DR2([0, T ]) by

Γ (f)(t) = f(t)− g(t)e1 , g(t) = sup
0≤u≤t

(2β − 1 · f(u))− . (2.21)

The following two properties follow directly from the definition, namely there exists a
constant C such that

‖Γ (f)− Γ (f̃)‖T ≤ C‖f − f̃‖T , f, f̃ ∈ DR2([0, T ]), (2.22)

and
wT (Γ (f), ·) ≤ CwT (f, ·), f ∈ DR2([0, T ]). (2.23)

Given z ∈ DR2 , z(0) ∈ G := {x ∈ R2 : 1 · x ≤ 2β}, we say that (y, `) ∈ DR2 ×DR solves the
Skorohod problem (SP) in G, with reflection in the direction −e1, for data z, if y(t) ∈ G
for all t, ` is nonnegative and nondecreasing, and

y = z − `ek,
∫
[0,∞)

1{1·y<2β}d` = 0.

It is well known that for z as above, a necessary and sufficient condition for (y, `) to be a
solution is that y = Γ (z).

Based on the fact that R̂n2 ⇒ 0 and (2.20), there exists a process X̃n such that
X̃n − X̂n ⇒ 0, X̃n(t) ∈ G for all t, and

X̃n = X̂n(0) + Ŵn +

∫ ·
0

b(X̃n(u))du− R̂n1e1 + εn,

where εn is a sequence of processes converging to 0 in probability, and
∫

1{1·X̃n<2β}dR̂
n
1 =

0. As a result,

X̃n = Γ
(
X̂n(0) + Ŵn +

∫ ·
0

b(X̃n(u))du+ εn
)
. (2.24)

Taking limits, using properties (2.22) and (2.23) gives the convergence result.

3 A limit result in conventional heavy traffic

In this section we show that in conventional heavy traffic, the first and second order
data of the primitives fully determine the diffusion-scale behavior, and in particular,
the diffusion limit exists. The purpose of presenting this result is mainly to contrast it
with the previous section’s counterexample. An important distinction between the two
regimes is that the HW regime gives rise to a nondegenerate N -dimensional diffusion
process (such as (2.5)), whereas in the conventional regime the limit is a 1-dimensional
diffusion. It therefore comes as no surprise that the reflection due to the buffer size
constraint can only occur according to the 1-dimensional Skorohod map. While the result
appears to be standard, we have not been able to find it in the literature.

The model is similar to the one considered in Section 2, but has only one sever. The
probabilistic assumptions regarding arrivals are as before, namely they satisfy (2.2) and
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(2.3). The service time distribution is general. With Sni denoting the potential service
counting process for class-i customers, it is assumed, analogously to (2.2) and (2.3),
that n−1Sni ⇒ µiι, and Ŝni := n−1/2(Sni − nµiι) ⇒ W ser

i , where W ser
i is a (0, µiγ

2
i )-BM,

and µi > 0, γi ≥ 0 are constants. For each n, the 2N processes (Ani , S
n
i ) are mutually

independent.
As before, the sequence of queueing networks approaches heavy traffic, i.e., the

limiting traffic intensity
∑
ρi = 1, where ρi = λi/µi, the scheduling is according to SLQ,

and server is non-idling. We also assume that the system is initially empty. The number of
class-i customers in the system at time t is denoted by Xn

i (t). If Tni (t) is the service time
devoted to class-i customers up to time t and Rni (t) counts the number of lost arrivals up
to time t then we have

Xn
i (t) = Eni (t)− Sni (Tni (t))−Rni (t) . (3.1)

The ith buffer size is given by βni = βn1/2 + εni n
1/2, where εni → 0 for each i, and β > 0 is

a constant. Denote the diffusion-scale versions of the processes by X̂n
i = n−1/2Xn

i and
R̂ni = n−1/2Rni . Straightforward calculation gives

X̂n
i = Ŵn

i + Ŷ ni − R̂ni , (3.2)

where
Ŵn
i (t) = Êni (t)− Ŝni (Tni (t)) + λ̂ni t , Ŷ ni = µin

1/2(ρiι− Tni ) , (3.3)

and λ̂ni := (λni − nλi)n−1/2 → λ̂i, by the assumption made following equation (2.3). The
following is often referred to as a state space collapse result.

Lemma 3.1. The scaled number of customers in the various classes are asymptotically
equal. Namely, maxi,j ‖X̂n

i − X̂n
j ‖T ⇒ 0, for any T <∞.

Proof. The proof follows along the lines of Proposition 1 in [5], with minor modifications
for finite buffers.

For a > 0, the Skorohod map on the interval [0, a] will be denoted by Γ[0,a]. It maps DR
to itself, and is characterized as the first component of the solution map ψ → (ϕ, η1, η2)

to the problem of finding, for a given ψ, a triplet (ϕ, η1, η2), such that

ϕ = ψ + η1 − η2, ϕ(t) ∈ [0, a] for all t,

ηi are nonnegative and nondecreasing, ηi(0−) = 0, and∫
[0,∞)

1(0,a](ϕ)dη1 =

∫
[0,∞)

1[0,a)(ϕ)dη2 = 0.

Existence and uniqueness of solutions are well-known (see eg. [4]).
Denote α =

(∑N
i=1 µ

−1
i

)−1
. Let W̃ be a (one-dimensional) (m̃, Ã)-BM, where m̃ =

α
∑N
i=1

λ̂i
µi

and Ã = α2
∑N
i=1

λi
µ2
i
(σ2
i + γ2i ). Then the process X̃ := Γ |[0,β](W̃ ) is a reflected

BM on [0, β].

Theorem 3.2. We have (X̂n
1 , . . . , X̂

n
N )⇒ (X̃, . . . , X̃).

Proof. Define X̃n = α
∑N
i=1 µ

−1
i X̂n

i . It follows from Lemma 3.1 that there exists a
sequence δ̄n → 0, such that, with

Ωn = {max
i
‖X̂n

i − X̃n‖T < δ̄n},

one has P(Ωn)→ 1 as n→∞. Now, by (3.2), X̃n = W̃n + Ỹ n − R̃n, where

W̃n = α

N∑
i=1

Ŵn
i

µi
, Ỹ n = αn1/2

(
ι−

N∑
i=1

Tni

)
, R̃n = α

N∑
i=1

R̂ni
µi
.
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Note that t−
∑N
i=1 T

n
i (t) gives the cumulative idleness time of the server by time t. As

a result, the process Ỹ n is non-decreasing, Ỹ n(0) = 0, and by the non-idling condition,
increases only when X̃n = 0. Moreover, R̃n, is non-decreasing, starts from 0 and since
arriving jobs are lost only when the corresponding buffer is full, this process increases
only when maxi X̂

n
i ≥ β − δn, where we denote δn = maxi |εni |. As a result, on the event

Ωn, R̃n increases only when X̃n ≥ an := β − δn − δ̄n. On Ωn we have

X̃n(t) = α

N∑
i=1

X̂n
i (t)

µi
≤ α 1

α
(β + δn) = β + δn .

Defining X∗,n = X̃n ∧ an, we have X∗,n = X̃n + en1 , where en1 is a process that satisfies
|en1 (t)| ≤ 2δn + δ̄n for all t, on Ωn. Since P(Ωn)→ 1, en1 converges to zero in probability.
By the discussion above, we also have on Ωn,

X∗,n = en1 + W̃n + Ỹ n − R̃n, X∗,n(t) ∈ [0, an] for all t,∫
[0,∞)

1(0,an](X
∗,n)dỸ n =

∫
[0,∞)

1[0,an)(X
∗,n)dR̃n = 0.

As a result, X∗,n = Γ[0,an](e
n
1 + W̃n) on Ωn. It follows from the explicit expression for the

Skorohod map, provided in [4], that ‖Γ[0,a1](ψ)− Γ[0,a2](ψ)‖T ≤ a2 − a1, for any T <∞,

0 < a1 < a2 < ∞ and ψ. As a result, X∗,n = Γ[0,β](e
n
1 + W̃n) + en2 , holds on Ωn, where

‖en2‖T ≤ δn + δ̄n. Hence, on all of Ω,

X̃n = Γ[0,β](e
n
1 + W̃n) + en3 , (3.4)

where en3 converges to zero in probability. By (3.3) and the assumed convergence of the
processes Êni , Ŝni and constants λ̂ni , it follows that W̃n is a C-tight sequence of processes.
As a result of relation (3.4) and the continuity of Γ[0,β] as a map from DR([0, T ]) (for

arbitrary T ), equipped with the uniform topology, to itself, (X̃n, Ỹ n, R̃n) is also a C-tight
sequence. Hence we obtain from (3.3) that Tni ⇒ ρiι. It follows that W̃n ⇒ W̃ . Arguing
again by the continuity of the Skorohod map, we obtain X̃n ⇒ Γ[0,β](W̃ ). The result now
follows.
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