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Abstract

We obtain complementary recurrence/transience criteria for processes X = (Xn)n≥0

with values in Rd
+ fulfilling a non-linear equation Xn+1 =MXn + g(Xn) + ξn+1. Here

M denotes a primitive matrix having Perron-Frobenius eigenvalue 1, and g denotes
some function. The conditional expectation and variance of the noise (ξn+1)n≥0 are
such that X obeys a weak form of the Markov property. The results generalize criteria
for the 1-dimensional case in [5].
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1 Introduction and main results

For Markov chains with a higher-dimensional state space it is in general difficult
to obtain criteria for recurrence or transience which cover a broader class of models.
Typically this requires some specific assumptions on the type of model. In this paper we
consider discrete time stochastic processes X = (Xn)n≥0 taking values in the positive
orthant Rd+ (consisting of column vectors) with d ≥ 1, which obey non-linear equations
of the form

Xn+1 = MXn + g(Xn) + ξn+1 , n ∈ N0 . (1.1)

Here M denotes a d × d matrix with non-negative entries and g : Rd+ → Rd+ a measur-
able function. Let us successively discuss our assumptions on M , g and the random
fluctuations (ξn+1)n≥0.

We require that M is a primitive matrix meaning that for a certain power of M all
entries are (strictly) positive. Then it is known from Perron-Frobenius theory that M
has left and right eigenvectors ` = (`1, . . . , `d) and r = (r1, . . . , rd)

T belonging to some
positive eigenvalue and possessing only positive entries. We assume that this eigenvalue
is 1:

`M = ` , Mr = r .

Further ` and r are unique up to scaling factors. As is customary we choose them such
that

`r = 1 . (1.2)
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Recurrence and transience

For the function g we assume that

‖g(x)‖ = o(‖x‖) as ‖x‖ → ∞ (1.3)

with some norm ‖ ‖ on the Euclidian space Rd.
As to the random fluctuations we demand thatX is adapted to a filtration F = (Fn)n≥0

such that

E[`ξn+1 | Fn] = 0 , E[(`ξn+1)2 | Fn] = σ2(Xn) a.s. (1.4)

for some measurable function σ : Rd+ → R+ fulfilling

σ(x) = o(‖x‖) for ‖x‖ → ∞ . (1.5)

In view of applications such as branching processes we might summerize these
requirements on the whole as the assumption of near criticality. Quite a few models
fit into this framework. Here we do not dwell on them but refer to the paper [6]
and to the literature cited therein. The assumption (1.4) establishes a weak form of
the Markov property. We do not assume that X is a Markov chain but just formulate
those assumptions which are required for the martingale considerations in our proofs.
Certainly applications of our results will typically concern Markov chains.

The aim of this paper is to establish criteria which allow to decide whether ‖Xn‖ → ∞
is an event of zero probability or not. Loosely speaking these are criteria for recurrence
or transience of our models. In the univariate case d = 1 this question has been discussed
in [5]. Ignoring some side conditions the result there was as follows: If for some ε > 0

and for x sufficiently large

xg(x) ≤ 1− ε
2

σ2(x) ,

then we have recurrence. If on the other hand for some ε > 0 and for x sufficiently large

xg(x) ≥ 1 + ε

2
σ2(x) ,

then there is transience. Heuristically this can be understood as follows: In the first
regime it is the noise ξn+1 which dominates the drift g(Xn), while in the second regime it
is the other way round. We like to generalize this dichotomy to the multivariate setting.

A possible way of generalization is to suitably convert each of the two conditions to
all x ∈ Rd+ with sufficiently large norm ‖x‖, see Klebaner [7] and González et al [3]. A
relaxation of this approach for special choices of g and σ2 covering new examples has
been obtained by Adam [1]. Yet one can do with weaker assumptions. The intuition
behind this assertion is that our processes behave in a sense 1-dimensional. More
precisely, if the event ‖Xn‖ → ∞ occurs, then in view of (1.3) and (1.5) it is the term
MXn, which dominates on the right-hand side of (1.1). Thus one would expect that
Xn will escape to ∞ approximately along the ray r = {νr : ν ≥ 0} spanned by the
eigenvector r of M . This suggests that the two conditions above are required only
in certain vicinities of this ray. (The last assertion of Theorem 2 below confirms this
heuristics.)

To formalize these considerations let us introduce some notation. For any x ∈ Rd let

x̂ := r`x , x̌ := (I − r`)x , thus x = x̂+ x̌ ,

with the identity matrix I. Note that x̂ is the multiple (`x)r of the vector r and thus
belongs to the ray r. From (1.2) r`r` = r` respectively ˆ̂x = x̂ meaning that r` is a
projection matrix. Moreover `x̂ = `x and `x̌ = 0. The two conditions x̂ ∈ r and `x̂ = `x

determine x̂ ∈ Rd uniquely.
For convenience we require the additional moment condition (which could be relaxed)

∃δ > 0, c <∞∀n ∈ N0 : E[‖ξn+1‖p | Fn] ≤ cσp(Xn) with p = 2 + δ . (A1)
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Recurrence and transience

Theorem 1. Let (A1) be fulfilled and let ε > 0. Assume that for every b > 0 there exists
some a > 0 such that for x ∈ Rd+

‖x‖ ≥ a , ‖x̌‖2 ≤ b‖x‖ · ‖g(x)‖ ⇒ `x · `g(x) ≤ 1− ε
2

σ2(x) . (1.6)

Then
P(‖Xn‖ → ∞) = 0 .

In the case d = 1 we have x̌ = 0 and `x · `g(x) = xg(x) such that we are back to the
result from [5]. Note that due to (1.3) the above condition ‖x̌‖2 ≤ b‖x‖ · ‖g(x)‖ applies
only to vectors x ∈ Rd+ with ‖x̌‖ = o(‖x‖) for ‖x‖ → ∞. Since also x̌ = 0 for x ∈ r, the
condition defines a certain vicinity of the ray r (depending on g). Outside this region the
relation between g and σ2 stays arbitrary.

For our second result on divergence of (Xn)n≥0 we first rule out an evident case. We
assume

∃u > 0 : P
(
Xn → X∞ with u ≤ ‖X∞‖ <∞

)
= 0 . (A2)

Moreover we strengthen (1.5) to the assumption

∃κ > 1/δ : σ(x) = O(‖x‖ log−κ ‖x‖) for ‖x‖ → ∞ , (A3)

where δ is as in assumption (A1).

Theorem 2. Let (A1) to (A3) be fulfilled and let ε > 0. Assume that for every b > 0 there
exists some a > 0 such that for x ∈ Rd+

‖x‖ ≥ a , ‖x̌‖ ≤ bσ(x) ⇒ `x · `g(x) ≥ 1 + ε

2
σ2(x) . (1.7)

Then there is a real number v ≥ 0 such that

P
(

lim sup
n
‖Xn‖ ≤ v or ‖Xn‖ → ∞

)
= 1 .

If also P(supn≥0 ‖Xn‖ > c) > 0 for every c > 0, then

P(‖Xn‖ → ∞) > 0 and P
( Xn

‖Xn‖
→ r

‖r‖

∣∣∣ ‖Xn‖ → ∞
)

= 1 .

Again we recover for d = 1 the corresponding result from [5]. Due to (A3) it is now
the condition ‖x̌‖ ≤ bσ(x) giving the vicinity of the ray r, where g(x) and σ2(x) are
interrelated.

Remark. Let us comment on the assumptions of Theorem 2.
1. Obviously (A2) is also a necessary requirement in Theorem 2. Typically it is easily

checked in concrete examples. For Markov chains with a countable discrete state space
S ⊂ Rd+ it says that away from zero there are no absorbing states. In the general case
there is the following criterion: (A2) holds if `g(x) is uniformly bounded away from zero
on sets of the form {x ∈ Rd+ : u ≤ `x ≤ u+ 1} with u > 0 sufficiently large. For the proof
of this claim adopt the arguments at the end of section 2 in [5] to the process (`Xn)n≥0.

2. Assumption (A3) cannot be weakened substantially in our general context. This
follows from example C, Section 3 in [5]. We note that (A3) is weaker than the corre-
sponding assumption in [5] for the 1-dimensional case.

3. Remarkably, condition (1.7) cannot be relaxed in our general context. It is not
enough to require (1.7) just for some b > 0 as we shall see at the end of this paper by
means of a counterexample. It is tempting to conjecture that condition (1.6) cannot be
weakened, too.
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Recurrence and transience

So far we have not specified any choice of the norm ‖ ‖ on Rd. This was not
necessary so far, since as is well-known all norms on a finite dimensional Euclidean space
are equivalent, and one easily convinces oneself that all our conditions or statements
involving norms are preserved if one passes to an equivalent norm. Thus, in examples
one may work with the most convenient one, e.g. the l1- or l2-norm. For our proofs these
norms are not appropriate. We shall utilize a norm specificially suited for our purposes.
This norm is introduced in section 2. The proofs of the theorems are then presented in
section 3 and 4. They use ideas from [5] and [8] and are based on the construction of
Lyapunov functions of the form

lα,β,γ,j(x) = (1 + γxj/`x)
‖x̌‖2

(`x)2
(log `x)−β−1 + α(log `x)−β

with x = (x1, . . . , xd)
T ∈ Rd+, 1 ≤ j ≤ d, α > 0, γ ≥ 0 and either β = −1 or β > 0.

Section 5 contains the counterexample.
For notational convenience we use the symbol c for a positive constant which may

change its value from line to line.

2 A useful norm

Let us briefly put together the facts on matrices which we are going to use. Recall
that M is a primitive matrix with Perron-Frobenius eigenvalue 1 and corresponding left
and right eigenvectors ` and r. Then as is well-known from Perron-Frobenius theory (see
[9])

max{|η| : η is an eigenvalue of M − r`} < 1 .

This maximum is called the spectral radius of the matrix M − r`. It follows from matrix
theory (see [4], Lemma 5.6.10) that one can construct a matrix norm ||| ||| on the space of
all d× d matrices such that

ρ := |||M − r`||| < 1 .

From this matrix norm we obtain (see [4], Theorem 5.7.13) a functional ‖ ‖ on Rd via

‖x‖ := |||Cx||| , x ∈ Rd ,

where Cx denotes the d× d matrix having all columns equal to x. ‖ ‖ is a norm, since the
properties of norms transfer from ||| ||| directly to ‖ ‖. This is the norm we are going to
work with in the sequel. It has the property

‖Ax‖ ≤ |||A||| · ‖x‖ (2.1)

for x ∈ Rd and any d × d matrix A. Indeed CAx = ACx and the property |||CAx||| ≤
|||A||| · |||Cx||| of matrix norms gives the claim. In particular

‖(M − r`)x‖ ≤ ρ‖x‖ . (2.2)

Thus M − r` induces a contraction in the norm ‖ ‖.
By equivalence of norms we may change from ‖ ‖ to any other norm. In particular

there is a constant λ <∞ such that

‖x̌‖ ≤ λ `x for all x ∈ Rd+ . (2.3)

To see this observe that from the inequality (2.1) we have ‖x̌‖ ≤ γ‖x‖ with γ = |||I − r`|||.
Also ‖x‖′ := `1|x1| + · · · + `d|xd| defines a norm on Rd, since `i > 0 for all i = 1, . . . , d.
Thus by equivalence of norms we arrive at (2.3).
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In order to apply these results to our process (Xn)n≥0 note that we have (I − r`)M =

M − r` = M(I − r`) and `X̌n = 0, thus

X̌n+1 = (I − r`)(MXn + g(Xn) + ξn+1)

= (M − r`)X̌n + (I − r`)(g(Xn) + ξn+1) .

From (2.2) to (2.3) it follows that

‖X̌n+1‖ ≤ ρ‖X̌n‖+ c `g(Xn) + c ‖ξn+1‖ (2.4)

for some c <∞. (Here we need that g(x) has only non-negative components.) Further
observe that for any µ > 0 and a, b ≥ 0 we have

(a+ b)2 ≤ (1 + µ)a2 + (1 + µ−1)b2 . (2.5)

Applying this estimate twice to the right-hand side of (2.4) we obtain for any µ > 0

‖X̌n+1‖2 ≤ (1 + µ)ρ2‖X̌n‖2 + c (`g(Xn))2 + c ‖ξn+1‖2 (2.6)

with a suitable c <∞.

3 Proof of Theorem 1

First observe that if we replace Xn by Xn := Xn + r for all n ≥ 0 then equations
(1.1) and (1.4) as well as assumption (A1) still hold, if g(x) and σ2(x) are replaced by
g(x) := g(x− r) and σ2(x) := σ2(x− r). Note that the assumptions (1.3) and (1.5) are not
affected if g and σ2 are substituted by g and σ2, and the same holds true for the conditions
formulated in Theorem 1 if one replaces ε by ε/2. Thus without loss of generality we may
assume `Xn ≥ 1 for all n ≥ 0 throughout the proof. Then for any α > 0

Ln :=
‖X̌n‖2

(`Xn)2
+ α log `Xn , n ∈ N0 ,

is a sequence of non-negative random variables. We show that for large α it possesses a
supermartingale property. The proof uses the following estimate, where I(A) denotes
the indicator variable of an event A.

Lemma 1. For all t > 0, h > −t and η > 0

log(t+ h) ≤ log t+
h

t
− 1

2(1 + η)

h2

t2
I(h ≤ ηt) .

Proof. See formula (2) in [5].

Lemma 2. If α is chosen large enough, then there is a number s > 0 such that

`Xn ≥ s ⇒ E[Ln+1 | Fn] ≤ Ln a.s.

Proof. Since `M = ` we have the equation

`Xn+1 = `Xn + `g(Xn) + `ξn+1 . (3.1)

Thus `ξn+1 ≥ −µ `Xn implies `Xn+1 ≥ (1 − µ) `Xn. Together with (2.6) and (2.3) this
entails

‖X̌n+1‖2

(`Xn+1)2
≤ (1 + µ)ρ2‖X̌n‖2 + c (`g(Xn))2 + c ‖ξn+1‖2

(1− µ)2(`Xn)2
+ λ2I(`ξn+1 < −µ `Xn) (3.2)
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Recurrence and transience

for some sufficiently large c <∞. Now ρ < 1, thus, if µ is sufficiently close to 0,

‖X̌n+1‖2

(`Xn+1)2
≤ (1− µ)

‖X̌n‖2

(`Xn)2
+ c

(`g(Xn))2 + ‖ξn+1‖2

(`Xn)2
+ λ2

(`ξn+1)2

µ2(`Xn)2
.

In view of (A1), if we further enlarge c,

E
[ ‖X̌n+1‖2

(`Xn+1)2
∣∣ Fn] ≤ (1− µ)

‖X̌n‖2

(`Xn)2
+ c

(`g(Xn))2 + σ2(Xn)

(`Xn)2
a.s. (3.3)

Next from (3.1) and Lemma 1 (with t = `Xn + `g(Xn) and h = `ξn+1) for η > 0

log `Xn+1 ≤ log(`Xn + `g(Xn))

+
`ξn+1

`Xn + `g(Xn)
− (`ξn+1)2

2(1 + η)(`Xn + `g(Xn))2
I
(
`ξn+1 ≤ η(`Xn + `g(Xn))

)
.

Using the inequality log(1 + x) ≤ x we get

log `Xn+1 ≤ log `Xn +
`g(Xn)

`Xn

+
`ξn+1

`Xn + `g(Xn)
− (`ξn+1)2

2(1 + η)(`Xn + `g(Xn))2
+

(`ξn+1)2

(`Xn)2
I(`ξn+1 > η `Xn).

By means of (1.3), (1.4), (A1) and the Markov inequality and choosing η sufficiently small
it follows for `Xn sufficiently large

E[log `Xn+1 | Fn] ≤ log `Xn +
`g(Xn)

`Xn
− (1− ε/3)σ2(Xn)

2(`Xn)2
+ c

σp(Xn)

(`Xn)p
a.s.

with some c <∞. Because of (1.5) there is a number s > 0 such that for `Xn ≥ s

E[log `Xn+1 | Fn] ≤ log `Xn +
`g(Xn)

`Xn
− (1− ε/2)σ2(Xn)

2(`Xn)2
a.s. (3.4)

Now combining (3.3) and (3.4) and using (1.3) we get

E[Ln+1 | Fn] ≤ Ln − µ
‖X̌n‖2

(`Xn)2
+ (α+ c)

`g(Xn)

`Xn
−
(1− ε/2

2
α− c

)σ2(Xn)

(`Xn)2
a.s.

for `Xn ≥ s and s sufficiently large. If we let α ≥ 6c/ε− c we arrive at

E[Ln+1 | Fn] ≤ Ln − µ
‖X̌n‖2

(`Xn)2
+ (α+ c)

(`g(Xn)

`Xn
− 1− ε

2

σ2(Xn)

(`Xn)2

)
a.s.

for `Xn ≥ s. We are now ready for the conclusion:
If (α+ c)`g(Xn) · `Xn ≤ µ‖X̌n‖2 , then obviously E[Ln+1 | Fn] ≤ Ln a.s. for `Xn ≥ s.
If on the other hand µ‖X̌n‖2 ≤ (α + c) `g(Xn) · `Xn then by equivalence of norms

there is a b <∞ such that ‖X̌n‖2 ≤ b ‖g(Xn)‖ · ‖Xn‖. Now the assumption of Theorem 1
comes into play, and again E[Ln+1 | Fn] ≤ Ln a.s., if only `Xn is large enough. Thus the
claim of the lemma follows.

We complete the proof of Theorem 1 now as in [5]. Suppose that the event ‖Xn‖ → ∞
has positive probability. Then the same holds for the event Ln →∞, and there is natural
number N such that P(E) > 0 for the event

E = { inf
n≥N

Ln ≥ s, Ln →∞} .

Define the stopping time
TN := min{n ≥ N : Ln < s} .

In view of Lemma 2 the process (Ln∧TN
)n≥N is a supermartingale. It is non-negative

and thus a.s. convergent. However, on the event E we have TN =∞ and Ln →∞ and
consequently Ln∧TN

→∞. This contradicts the assumption P(E) > 0, and the proof is
finished.

ECP 22 (2017), paper 7.
Page 6/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP39
http://www.imstat.org/ecp/


Recurrence and transience

4 Proof of Theorem 2

Here we may replace Xn by Xn + 3r. Therefore without loss of generality we assume
`Xn ≥ 3 for all n ∈ N0. Now we consider the processes L = Lα,β,γ,j given by

Ln = Lα,β,γ,jn :=
(1 + γXn,j/`Xn)‖X̌n‖2

(`Xn)2(log `Xn)β+1
+ α(log `Xn)−β , n ∈ N0 ,

with the jth component Xn,j of Xn, 1 ≤ j ≤ d, and with α, β > 0 and γ ≥ 0. In view of
the Jensen inequality we may without loss of generality restrict ourselves to the case
2 < p ≤ 3, in which the following estimate is valid.

Lemma 3. Let β > 0 and 2 < p ≤ 3. Set f(t) := (log t)−β . Then there is a constant c <∞
such that for all t ≥ 3 and h > 3− t

f(t+ h) ≤ f(t) + f ′(t)h+
1

2
f ′′(t)h2 +

c|h|p

(log t)β+1tp
+ I(h ≤ −t/2) .

Proof. See formula (6) in [5].

Lemma 4. Let 0 < β < κδ − 1 and γ ≥ 0 such that (1 + γ/`j)ρ
2 < 1. Then, if α is

sufficiently large, there is a real number s > 0 such that

`Xn ≥ s ⇒ E[Lα,β,γ,jn+1 | Fn] +
σ(Xn)p

(`Xn)p
≤ Lα,β,γ,jn a.s.

Proof. We proceed similarly as in the proof of Lemma 2. Here instead of (3.2) we have
the estimate

(1 + γXn+1,j/`Xn+1)
‖X̌n+1‖2

(`Xn+1)2(log `Xn+1)β+1

≤ (1 + γ/`j)
(

(1 + γXn,j/`Xn)
(1 + µ)ρ2‖X̌n‖2 + c (`g(Xn))2 + c ‖ξn+1‖2

(1− µ)2(`Xn)2(log `Xn + log(1− µ))1+β

+ λ2I(`ξn+1 < −µ `Xn)
)

By assumption on γ and for µ > 0 sufficiently small this implies

E
[ (1 + γXn+1,j/`Xn+1)‖X̌n+1‖2

(`Xn+1)2(log `Xn+1)β+1

∣∣ Fn] (4.1)

≤ (1− µ)
(1 + γXn,j/`Xn)‖X̌n‖2

(`Xn)2(log `Xn)β+1
+ c

(`g(Xn))2 + σ2(Xn)

(`Xn)2(log `Xn)β+1
+ c

σp(Xn)

(`Xn)p
a.s.

with some c <∞.
Next from Lemma 3 with t = `Xn and h = `g(Xn) + `ξn+1, from (2.5) and (3.1) and

from `g(Xn) ≥ 0

f(`Xn+1) ≤ f(`Xn) + f ′(`Xn)(`g(Xn) + `ξn+1)

+
1

2
f ′′(`Xn)((1 + µ)(`ξn+1)2 + (1 + µ−1)(`g(Xn))2)

+ c
(`g(Xn))p + |`ξn+1|p

(log `Xn)β+1(`Xn)p
+ I(`ξn+1 ≤ −`Xn/2)

for a suitable c > 0. Since f ′′(t) ∼ β(log t)−β−1t−2 for t→∞,

E[f(`Xn+1) | Fn] ≤ f(`Xn)− β `g(Xn)

(log `Xn)β+1`Xn
+
β

2

(1 + 2µ)σ2(Xn) + c(`g(Xn))2

(log `Xn)β+1(`Xn)2

+ c
(`g(Xn))p + σp(Xn)

(log `Xn)β+1(`Xn)p
+ c

σp(Xn)

(`Xn)p
a.s.
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for `Xn sufficiently large. Combining this estimate with (4.1) and rearranging terms we
get

E[Ln+1 | Fn] +
σp(Xn)

(`Xn)p
≤ Ln − µ

‖X̌n‖2

(`Xn)2(log `Xn)β+1
+ ((α+ 1)c+ 1)

σp(Xn)

(`Xn)p

−
(
αβ −

(
c+

1

2
αβc

)`g(Xn)

`Xn
+ αc

(`g(Xn))1+δ

(`Xn)1+δ

) `g(Xn)

(log `Xn)β+1`Xn

+
(
c+ αβ

1 + 2µ

2
+ αc

σ(Xn)δ

(`Xn)δ

) σ2(Xn)

(log `Xn)β+1(`Xn)2

Now choose α so large that c + αβ(1 + 2µ)/2 < αβ(1 + 3µ)/2. Then, after another
rearrangement of terms, we obtain in view of (1.3) and (1.5) for `Xn sufficiently large

E[Ln+1 | Fn] +
σp(Xn)

(`Xn)p
≤ Ln − µ

‖X̌n‖2

(`Xn)2(log `Xn)β+1
+ ((α+ 1)c+ 1)

σp(Xn)

(`Xn)p

− αβ

(log `Xn)β+1

(
(1− µ)

`g(Xn)

`Xn
− 1 + 3µ

2

σ2(Xn)

(`Xn)2

)
a.s.

From (A3) we have for 0 < β < κδ − 1

σp(x)

(`x)p
= O

( σ2(x)

(`x)2(log x)κδ
)

= o
( σ2(x)

(`x)2(log x)β+1

)
for ‖x‖ → ∞ .

Therefore for 0 < µ < 1 sufficiently small

E[Ln+1 | Fn] +
σp(Xn)

(`Xn)p
≤ Ln − µ

‖X̌n‖2

(`Xn)2(log `Xn)β+1

− αβ(1− µ)

(log `Xn)β+1

(`g(Xn)

`Xn
− 1 + ε

2

σ2(Xn)

(`Xn)2

)
a.s.

if `Xn is large enough. We come to the conclusion:
If ‖X̌n‖ ≥ bσ(Xn) with some sufficiently large b, then the last estimate implies the

claim E[Ln+1 | Fn] + σp(Xn)/(`Xn)p ≤ Ln. If on the other hand ‖X̌n‖ ≤ bσ(Xn), then the
assumption of Theorem 2 applies and again the claim follows.

For the proof of Theorem 2 we again construct a supermartingale, this time from
L = Lα,β,γ,j . Observe that for some s > 0 and for m,m′ > 0 and t > s fulfilling

α(log s)−β ≥ m > m′ ≥ (1 + γ/`j)λ
2(log t)−β−1 + α(log t)−β

with λ > 0 from formula (2.3) we have

Ln ≤ m ⇒ `Xn ≥ s ,
Ln ≥ m′ ⇒ `Xn ≤ t .

If we choose α, β, γ and s as demanded in Lemma 4, then (m ∧ Ln)n≥0 becomes a
non-negative supermartingal, which thus is a.s. convergent. Then up to a null-event
there arise three possibilities. Either Ln → 0, then `Xn →∞. Or lim infn Ln ≥ m, then
lim supn `Xn ≤ t. Or else Ln has a limit 0 < L∞ < m, then s ≤ lim infn `Xn <∞.

In order to transfer these alternatives to the process (Xn)n≥0 we choose different
β1, β2 > 0 and a γ > 0 fitting the assumptions of Lemma 4. We consider the processes

L0 := Lα,β1,0,1 , L1 := Lα,β1,γ,1 , . . . , Ld := Lα,β1,γ,d , Ld+1 := Lα,β2,0,1
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and for some s, t,m > 0 the events

E := {`Xn →∞} , E′ := {lim sup
n

`Xn ≤ t} ,

E′′ :=

d+1⋂
i=0

{s ≤ lim inf
n

`Xn <∞, Lin → Li∞ with 0 < Li∞ < m} .

We let α, s, t large and m small enough such that the above conclusion for L = (Ln)n≥0
applies simultaneously to all processes L0, . . . , Ld+1. Then P(E ∪ E′ ∪ E′′) = 1.

Let us show that P(E′′) = 0 for s sufficiently large. We have

L0
n = Ld+1

n (log `Xn)β2−β1 .

Thus the sequence `Xn is convergent on E′′ with s ≤ limn `Xn < ∞. This means that
the random variables X̂n = r`Xn converge on E′′. Next from the definition of L0 it
follows that the sequence ‖X̌n‖ converges on the event E′′ with some limit Z. If Z = 0

then X̌n → 0, and we obtain that Xn = X̂n + X̌n is convergent on E′′. If on the other
hand Z > 0, then we see from the convergence of L1

n, . . . , L
d
n that the components

Xn,1, . . . , Xn,d all converge on E′′. Again we conclude that Xn is a convergent sequence
on the event E′′. Let X∞ be the limit.

Now, given u > 0, if we choose s sufficiently large then from s ≤ limn `Xn <∞ on E′′

we obtain u ≤ ‖X∞‖ <∞ by equivalence of norms. Therefore assumption (A2) may be
applied and we obtain P(E′′) = 0 and consequently P(E ∪ E′) = 1. By equivalence of
norms this translates into the first assertion of Theorem 2.

For the second assertion we switch back to the supermartingale m ∧ L with γ = 0.
Let c > t be such that

α(log c)−β + λ2(log c)−β−1 < α(log t)−β .

From the assumption of this assertion and by equivalence of norms there is a natural
number N such that P(`XN > c) > 0. It follows

E[m ∧ LN ; `XN > c] < α(log t)−βP(`XN > c) .

From the supermartingale property of m ∧ L and Fatou’s Lemma

E[lim
n
m ∧ Ln; `XN > c] < α(log t)−βP(`XN > c) .

If now P(E′) = 1, then limnm∧Ln ≥ α(log t)−β a.s. which contradicts the last inequality.
Therefore it follows P(E) > 0. This gives the second assertion.

For the last assertion we first show that

‖ξn+1‖ = o(‖Xn‖) a.s. on the event ‖Xn‖ → ∞ . (4.2)

Define

L′n := Ln +

n−1∑
k=0

σp(Xk)

(`Xk)p

and for a natural number N

TN := min{n ≥ N : `Xn < s} .

If again α, β, γ and s are chosen in accordance with Lemma 4 then (L′n∧TN
)n≥0 is a

non-negative supermartingal and thus a.s. convergent. It follows

∞∑
k=0

σp(Xk)

(`Xk)p
<∞ a.s. on the event TN =∞ .
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Now in view of the first assertion of this theorem {TN =∞} ↑ {`Xn →∞} for N →∞, if
only s is sufficiently large. Therefore

∞∑
k=0

σp(Xk)

(`Xk)p
<∞ a.s. on the event ‖Xn‖ → ∞ .

Because of (A1) and the Markov inequality this entails for every η > 0

∞∑
k=0

P(‖ξk+1‖ > η `Xk | Fk) <∞ a.s. on the event ‖Xn‖ → ∞ ,

and the martingale version of the Borel-Cantelli Lemma (see [2], Theorem 5.3.2) implies
(1.5).

Now from (2.4), (1.3) and (4.2) we obtain that

‖X̌n+1‖ ≤ ρ‖X̌n‖+ Yn with Yn = o(‖Xn‖) a.s. on ‖Xn‖ → ∞ .

By induction

‖X̌n+1‖ ≤ ‖X̌0‖+

n∑
k=0

ρn−kYk .

Since ρ < 1 it follows

‖X̌n‖ = o(‖Xn‖) a.s. on the event ‖Xn‖ → ∞ .

On the other hand X̂n/‖X̂n‖ = r/‖r‖. This yields the last claim of Theorem 2.

5 A counterexample

We discuss an example in dimension d = 2, which can be easily lifted to higher
dimensions. In this section we use the l1-norm ‖x‖ := |x1|+ |x2| for x = (x1, x2)T . Let

M =
1

2

(
1 1

1 1

)
, r =

(
1

1

)
, ` =

1

2

(
1, 1
)
.

Let g(t), σ(t), t ≥ 0, be two functions such that σ is differentiable and for t ≥ 0

lim
t→∞

σ′(t) = 0 and ∀t > 0 : 0 < g(t) ≤ σ(t) ≤ t/2 , |σ′(t)| < 1

2
.

(For definiteness make (0, 0)T an absorbing state.) Define for x ∈ R2
+

σ(x) := σ(`x) , g(x) :=

{
g(`x)r if ‖x̌‖ ≤ σ(x)

(0, 0)T else .

Let χn, ζn, n ≥ 1, be independent, R2-valued random variables with

P(χn = (1, 1)T ) = P(χn = −(1, 1)T ) = P(ζn = (1,−1)T ) = P(ζn = (−1, 1)T ) =
1

2
.

Define the Markov chain X = (Xn)n≥0 inductively by X0 = r,

ξn+1 := σ(Xn)χn+1 + σ(Xn)ζn+1I(‖X̌n‖ ≤ σ(Xn))

and (1.1). Note that M is the orthogonal projection on the subspace spanned by r. This
together with the condition σ(x) = σ(`x) ≤ `x/2 guarantees that the process X never
exits from the quadrant R2

+. The conditions assumptions (1.3), (1.4), (1.5) and (A1)
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are fulfilled, and the same is true for (A2) and (A3) under mild conditions on g and σ.
However, due to the definition of g(x), the condition (1.7) will never be satisfied for b > 1,
no matter how g and σ are chosen. We shall see that indeed the conclusion of Theorem 2
fails, even though (1.7) can be achieved for b ≤ 1 (but not all b). The reason is that the
process X again and again leaves the region defined by the inequality ‖x̌‖ ≤ σ(x).

To prove this claim notice that from our assumptions for t > 0

σ(t+ g(t)± σ(t)) < σ(t) + 1
2 (g(t) + σ(t)) ≤ 2σ(t) .

If now X̌n = 0 then from the definitions

`Xn+1 = `Xn + g(`Xn) + σ(`Xn)`χn+1 and ‖X̌n+1‖ = σ(`Xn)‖ζn+1‖ = 2σ(Xn) .

From the previous inequality it follows σ(Xn+1) < 2σ(Xn). Thus σ(Xn+1) < ‖X̌n+1‖ and
consequently from our definitions X̌n+2 = 0.

Therefore, since we started with X̌0 = 0, we have X̌2n = 0 and ‖X̌2n+1‖ > σ(X2n+1)

for all n ∈ N0. Then X̂2n, n ≥ 0, or (what amounts to the same thing) Xn := `X2n, n ≥ 0,
is a Markov chain. Inserting our definitions we get

Xn+1 = Xn + g(Xn) + ξn+1 with ξn+1 := σ(Xn)`χ2n+1 + σ(`X2n+1)`χ2n+2 .

Letting Fn := F2n

E[ξn+1 | Fn] = 0 , E[ξ
2

n+1 | Fn] = τ2(Xn)

with

τ2(t) = σ2(t) + E[σ2(`X1) | `X0 = t, X̌0 = 0]

= σ2(t) +
1

2
σ2(t+ g(t) + σ(t)) +

1

2
σ2(t+ g(t)− σ(t))

From our assumptions
τ2(t) ∼ 2σ2(t) for t→∞ .

Thus we are ready to apply our theorems (with d = 1) to the process X = (Xn)n≥0
and see that we have recurrence if tg(t) ≤ (1 − ε)σ2(t) for large t. Note the the factor
1/2 dropped out on the right-hand side. Thus there are cases, where the statement is
false that there is transience for tg(t) ≥ (1 + ε)σ2(t)/2. This shows that the assertion of
Theorem 2 cannot be applied to the process X.
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