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Abstract

We recover the pathwise Itô solution (the solution to a rough differential equation
driven by the Itô signature) by concatenating averaged Stratonovich solutions on small
intervals and by letting the mesh of the partition in the approximations tend to zero.
More specifically, on a fixed small interval, we consider two Stratonovich solutions:
one is driven by the original process and the other is driven by the original process
plus a selected independent noise. Then by taking the expectation with respect to the
selected noise, we can recover the increment of the bracket process and so recover the
leading order approximation of the Itô solution up to a small error. By concatenating
averaged increments and by letting the mesh tend to zero, the error tends to zero and
we recover the Itô solution.
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1 Introduction

Itô calculus [11, 12] can be seen as a transformation between semi-martingales (i.e.
the map which sends the driving process to the solution of a stochastic differential
equation) and is widely used in various mathematical models. It is well-known that the
classic Itô calculus is not stable under pointwise approximations. Indeed, the Wong-
Zakai theorem ([23, 22] see also [5]) shows that, when controlled ordinary differential
equations are driven by piecewise-linear approximations to Brownian motion, their
solutions converge uniformly in probability to the Stratonovich solution as the mesh
of the partition in the approximations tends to zero. In contrast to the Stratonovich
solution, the Itô solution is not stable with respect to perturbations of the driving process
even when the perturbations are very natural.

There has been a long interest trying to develop a pathwise Itô calculus [1, 13, 4, 21],
but these attempts have their limitations. For example, the null set depends on the
integrand function, or the integral is only defined for closed one-forms (but closed
one-forms are rare in high dimensional spaces), or the convergence is in probability
(so not truly pathwise). The theory of rough paths [15, 16, 18, 8, 7] is close in spirit to
Föllmer’s approach [4], but it is a far more systematical methodology that can deal with
closed and non-closed one-forms, and applies but is not restricted to semi-martingales
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

[19, 2, 6, 10, 20]. The methodology provides a robust pathwise solution which is
continuous with respect to the driving path. It is known that the pathwise Itô resp.
Stratonovich solution in the theory of rough paths coincides almost surely with the
classical Itô resp. Stratonovich solution [15, 18, 14, 3, 7].

Unlike the Stratonovich integral, the Itô integral can not be approximated by a
sequence of classical integrals. The pathwise Itô solution is generally defined as the
Stratonovich solution to a modified equation with an additional drift term, see e.g. Lyons
and Qian [17], Lejay and Victoir [14], Friz and Victoir [7], Hairer and Kelly [9]. Other than
defining the pathwise Itô solution as the Stratonovich solution to a modified differential
equation, we would like to demonstrate that the Itô solution is almost a Stratonovich
solution, in the sense that the Itô solution can be expressed as the limit (as the mesh
of the partition tends to zero) of concatenated averaged Stratonovich solutions. More
specifically, we would need two Stratonovich solutions on a small time interval: one is
the Stratonovich solution driven by the Stratonovich signature of the original process,
and the other is the Stratonovich solution driven by the joint Stratonovich signature of
the original process plus a selected independent noise. Then by taking the expectation
of the second Stratonovich solution with respect to the selected noise, we recover the
bracket process, and by working with a chosen functional of these two Stratonovich
solutions, we get the leading order approximation of the increment of the pathwise Itô
solution with a small error. By letting the mesh of the partition tend to zero, the error
tends to zero and we recover the pathwise Itô solution. We would like to recover the Itô
solution from averaged Stratonovich solutions mainly because the Stratonovich solution
fits more naturally into the rough paths framework than the Itô solution. The averaging
effect is also related to the reverse situation where any player in a market interacts with
a random sub-sample from the stream and the actual effect on the market is the volume
weighted average. Based on our result the random interactions will generate an Itô type
correction to the equation for the aggregate behavior.

To convey the idea more explicitly, we illustrate it with a simple example. Suppose B
is a one-dimensional Brownian motion and f : R→ R is sufficiently regular. We want to
recover the solution to the Itô stochastic differential equation

dy = f (y) dB, y0 = ξ ∈ R.

Suppose W is another one-dimensional Brownian motion which is independent from B.
We define a family of Stratonovich solutions y1,s,t and y2,s,t indexed by the time intervals
{[s, t]}s<t that are defined to be the Stratonovich solution on [s, t] to the stochastic
differential equations (with ys denoting the value of y at time s)

dy1,s,tu = f
(
y1,s,tu

)
◦ dBu, y1,s,ts = ys, u ∈ [s, t] ,

dy2,s,tu = f
(
y2,s,tu

)
◦ d (Bu +Wu) , y2,s,ts = ys, u ∈ [s, t] .

We would like to identify a function F : R × R → R such that yt − ys ≈ F (y1,s,tt −
y1,s,ts , y2,s,tt − y2,s,ts ) for every small time interval [s, t]. Then by concatenating F (y1,s,tt −
y1,s,ts , y2,s,tt − y2,s,ts ) on small intervals and by letting the mesh of the partition tend to
zero, we recover y in the limit. In the real construction, the initial values of y1,s,t and
y2,s,t are not ys but the value obtained from the last step of concatenation. Here we use
ys to give an intuitive explanation.

For a small time interval [s, t], by using Euler’s approximation, we have

yt − ys ≈ f (ys) (Bt −Bs) + f ′ (ys) f (ys)
1

2

(
(Bt −Bs)2 − (t− s)

)
, (1.1)

ECP 21 (2016), paper 7.
Page 2/18

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP3795
http://www.imstat.org/ecp/


Recovering the pathwise Itô solution from averaged Stratonovich solutions

and

y1,s,tt − y1,s,ts ≈ f (ys) (Bt −Bs) + f ′ (ys) f (ys)
1

2
(Bt −Bs)2 , (1.2)

y2,s,tt − y2,s,ts ≈ f (ys) (Bt −Bs +Wt −Ws) + f ′ (ys) f (ys)
1

2
(Bt −Bs +Wt −Ws)

2 .

Since W is independent from B, if we take the expectation of y2,s,tt − y2,s,ts w.r.t. W , then
the expectation simulates the required continuous martingale correction t− s in (1.1)

and we get

EW
(
y2,s,tt − y2,s,ts

)
≈ f (ys) (Bt −Bs) + f ′ (ys) f (ys)

1

2

(
(Bt −Bs)2 + (t− s)

)
. (1.3)

Then combining (1.1), (1.2) and (1.3), we have

yt − ys ≈ 2
(
y1,s,tt − y1,s,ts

)
− EW

(
y2,s,tt − y2,s,ts

)
.

Hence, we may take F (x, y) := 2x− EW (y), ∀x, y ∈ R, (since B and W are independent,
W is fixed once and for all for almost every sample path of B). Then it can be proved
that

yt − ys = lim
|D|→0,D={tk}nk=0⊂[s,t]

∑
k,tk∈D

F (y
1,tk,tk+1

tk+1
− y1,tk,tk+1

tk
, y

2,tk,tk+1

tk+1
− y2,tk,tk+1

tk
), ∀s < t,

where D = {tk}nk=0 is a finite partition of [s, t] with s = t0 < t1 < · · · < tn = t and
|D| := maxk |tk+1 − tk| is the mesh of D. By taking the expectation with respect to
the selected independent noise W and by working with a chosen functional of the
Stratonovich solutions on a small interval, we obtain the leading order approximation of
the increment of the Itô solution y, and recover y as the limit of discrete concatenations
when the mesh tends to zero. More generally, we can replace B with a d-dimensional
continuous martingale (or even a Gaussian process, provided the joint signature of the
Gaussian process and the selected noise is well defined), and we have to estimate

∫
ydy

as well because the pathwise regularity of a continuous martingale is just above the
threshold of having finite 2-variation a.s.. While the idea is similar and captured in this
example.

2 Definitions and notations

We recall some notations in the theory of rough paths. Let T (2)(Rd) denote the group
1 ⊕ Rd ⊕ (Rd)⊗2 with the multiplication and the inverse defined by (πk denoting the
projection to (Rd)⊗k)

g ⊗ h : = (1, π1 (g) + π1 (h) , π2 (g) + π2 (h) + π1 (g)⊗ π1 (h)) , ∀g, h ∈ T (2)
(
Rd
)
,

g−1 : =
(
1,−π1 (g) , (π1 (g))⊗2 − π2 (g)

)
, ∀g ∈ T (2)

(
Rd
)

.

(In the definition of the multiplication, the "⊗" on the l.h.s. denotes a group multiplication
and the "⊗" on the r.h.s. denotes the tensor product between two Rds.) We equip
T (2)

(
Rd
)

with1

‖g‖ := |π1 (g)|+ |π2 (g)|
1
2 , ∀g ∈ T (2)

(
Rd
)

. (2.1)

1‖·‖ is not a subadditive homogenous norm in the sense of Definition 7.34 [7] as it is not sub-additive
with respect to the multiplication, but ‖·‖ is equivalent to a subadditive homogenous norm e.g. the Carnot-
Carathéodory norm (Theorem 7.32, Theorem 7.44 [7]).
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Then (T (2)
(
Rd
)
, ‖·‖) is a topological group. For p ∈ [1,∞) and a continuous path γ

defined on [0, T ] taking values in T (2)(Rd), the p-variation of γ is defined by

‖γ‖p−var,[0,T ] :=

 sup
D⊂[0,T ]

∑
k,tk∈D

∥∥γ−1tk ⊗ γtk+1

∥∥p 1
p

,

where the supremum is taken over all finite partitions D = {tk}nk=0 of [0, T ], 0 = t0 <

t1 < · · · < tn = T , n ≥ 1.

Definition 2.1 (p-Rough Path, p ∈ [2, 3)). Suppose γ is a continuous path on [0, T ] taking
values in T (2)

(
Rd
)
. We say γ is a p-rough path for some p ∈ [2, 3) if ‖γ‖p−var,[0,T ] <∞.

Based on Lejay and Victoir [14], any p-rough path, p ∈ [2, 3), can be interpreted
as the product of a weak geometric p-rough path and another continuous path with
finite 2−1p-variation. We will use this equivalence and define the solution to a rough
differential equation driven by a p-rough path, p ∈ [2, 3), as the solution to a rough
differential equation driven by a

(
p, 2−1p

)
-rough path as in Friz and Victoir [7].

Notation 2.2. Suppose γ : [0, T ]→ T (2)
(
Rd
)

is a p-rough path for some p ∈ [2, 3). Then
we denote γ = γA + γS with continuous paths γA : [0, T ] → T (2)(Rd) and γS : [0, T ] →
(Rd)⊗2 defined by

γAt : =

(
1, π1 (γt) ,Anti

(
π2 (γt)−

1

2
(π1 (γt))

⊗2
)
+

1

2
(π1 (γt))

⊗2
)

, t ∈ [0, T ] ,

γSt : = Sym

(
π2 (γt)−

1

2
(π1 (γt))

⊗2
)

, t ∈ [0, T ] ,

where Anti (·) denotes the projection of
(
Rd
)⊗2

to span {ei ⊗ ej − ej ⊗ ei|i, j = 1, . . . , d}
and Sym (·) denotes the projection of

(
Rd
)⊗2

to span {ei ⊗ ej + ej ⊗ ei|i, j = 1, . . . , d}.
Then γA is a weak geometric p-rough path2 (a normal driving path in rough paths

theory) and γS is a continuous path with finite 2−1p-variation. The cross integrals
between π1

(
γA
)

(which is equal to π1 (γ)) and γS are well-defined as Young integrals
[24] because p−1 + 2p−1 = 3p−1 > 1, see [14] for details.

Denote by L
(
Rd,Re

)
the set of linear mappings from Rd to Re.

Definition 2.3. f : Re → L
(
Rd,Re

)
is said to be Lip (β) for β > 1, if f is bβc-times

Fréchet differentiable (where bβc denotes the largest integer which is strictly less than
β) and

|f |Lip(β) := max
k=0,1,...,bβc

∥∥Dkf
∥∥
∞ ∨

∥∥∥Dbβcf∥∥∥
(β−bβc)−Höl

<∞,

where ‖·‖∞ denotes the uniform norm and ‖·‖(β−bβc)−Höl denotes the (β − bβc)-Hölder
norm.

Let C1−var ([0, T ] ,Rd) denote the set of continuous paths of bounded variation on
[0, T ] taking values in Rd.

Definition 2.4. For x ∈ C1−var ([0, T ] ,Rd), we define S2 (x) : [0, T ]→ T (2)
(
Rd
)

by

S2 (x)t :=

(
1, xt − x0,

∫∫
0<u1<u2<t

dxu1
⊗ dxu2

)
, ∀t ∈ [0, T ] . (2.2)

The following definition is based on Definition 12.2 in [7].

2A weak geometric p-rough path is a continuous path of finite p-variation taking values in the step-[p]
nilpotent Lie group.
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Definition 2.5 (RDE Solution, p ∈ [2, 3)). Suppose γ : [0, T ] → T (2)
(
Rd
)

is a p-rough
path for some p ∈ [2, 3) with the decomposition γ = γA + γS (as in Notation 2.2), and
f : Re → L

(
Rd,Re

)
is Lip (β) for some β > p− 1. Then Y : [0, T ]→ T (2)(Re) is a solution

to the rough differential equation (RDE)

dY = f (Y ) dγ, Y0 = ξ ∈ T (2) (Re) , (2.3)

if there exist two sequences of continuous bounded variation paths xA,m ∈
C1−var ([0, T ] ,Rd) and xS,m ∈ C1−var ([0, T ] , (Rd)⊗2), m ≥ 1, such that

sup
m≥1

(∥∥xA,m∥∥
p−var,[0,T ]

+
∥∥xS,m∥∥ p

2−var,[0,T ]

)
<∞,

lim
m→∞

max
k=1,2

sup
0≤s≤t≤T

∣∣∣πk (S2

(
xA,m

)−1
s
⊗ S2

(
xA,m

)
t

)
− πk

((
γAs
)−1 ⊗ γAt )∣∣∣ = 0,

lim
m→∞

sup
0≤s≤t≤T

∣∣∣(xS,mt − xS,ms
)
−
(
γSt − γSs

)∣∣∣ = 0,

and the ODE solutions y1,m : [0, T ]→ Re and y2,m : [0, T ]→ (Re)
⊗2:

dy1,m = f
(
y1,m

)
dxA,m + (Df) (f)

(
y1,m

)
dxS,m, y1,m0 = π1 (ξ) ∈ Re,

dy2,m = y1,m ⊗ dy1,m + f
(
y1,m

)⊗2
dxS,m, y2,m0 = π2 (ξ) ∈ (Re)

⊗2 . (2.4)

such that
lim
m→∞

max
k=1,2

sup
0≤t≤T

∣∣∣yk,mt − πk (Yt)
∣∣∣ = 0.

Theorem 2.6 (Existence and Uniqueness). There exists a solution to (2.3) when f is
Lip (β) for β > p− 1, and the solution is unique when β > p.

Theorem 2.6 follows from Theorem 12.6 and Theorem 12.10 in [7]. Comparing with
Definition 12.2 in [7], we add in an extra term f(y1,m)⊗2dxS,m in (2.4) so that the second
level of the pathwise Itô solution coincides almost surely with the iterated Itô integral of
the stochastic Itô solution.

The modification we made in (2.4) will not affect this existence and uniqueness
result. Indeed, based on Theorem 12.6 [7], when f is Lip (β) for β > p − 1, {y1,m}m
are uniformly bounded in p-variation. When y1,m converge uniformly as m → ∞ to
π1 (Y ), by interpolating between the p-variation norm and the uniform norm, we have
that y1,m converge to π1 (Y ) in p′-variation for any p′ > p as m → ∞. Similarly, by
interpolating between the 2−1p-variation norm and the uniform norm, we have that
xS,m converge to γS in 2−1p′-variation for any p′ > p as m → ∞. We choose p′ ∈ (p, 3)

so that (p′)−1 + 2(p′)−1 > 1. Then by using Young integral (Theorem 1.16 [16]) the
additional term

∫ ·
0
f(y1,m)⊗2dxS,m in (2.4) converge uniformly to

∫ ·
0
f(π1 (Y ))⊗2dγS as

m → ∞. Hence, when f is Lip (β) for β > p − 1, if Y is a solution to (2.3) in the sense
of Definition 12.2 in [7], then Y +

∫ ·
0
f(π1 (Y ))⊗2dγS is a solution to (2.3) in the sense of

Definition 2.5 (i.e. with the additional term f(y1,m)⊗2dxS,m in (2.4)). When β > p, based
on Theorem 12.10 in [7], the solution in the sense of Definition 12.2 in [7] is unique, so
the path

∫ ·
0
f(π1 (Y ))⊗2dγS is unique, and we have the uniqueness of the solution to (2.3)

in the sense of Definition 2.5.

3 Recovering the pathwise Itô solution

As mentioned in the introduction, we would like to recover the pathwise Itô so-
lution by taking the average of Stratonovich solutions. The idea is simple, but the
concrete formulation needs some care. Here we try to give a sensible explanation of our
formulation.
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Suppose Z is a d-dimensional continuous martingale on [0, T ]. We denote the step-2
Stratonovich signature of Z by S2 (Z)t := (1, Zt − Z0,

∫ t
0
(Zu − Z0) ⊗ ◦dZu), t ∈ [0, T ],

and denote the step-2 Itô signature of Z by I2 (Z)t := (1, Zt − Z0,
∫ t
0
(Zu − Z0) ⊗ dZu),

t ∈ [0, T ]. The difference between them is in the definition of the iterated integral of Z,
where they are defined as Stratonovich resp. Itô integral. Both S2 (Z) and I2 (Z) are
almost surely a p-rough path for any p ∈ (2, 3) (Theorem 14.9 [7]). Usually, the pathwise
Stratonovich resp. Itô solution is the solution to a rough differential equation driven by
the Stratonovich resp. Itô signature.

Definition 3.1 (Perturbed Rough Path). Suppose γ : [0, T ] →
(
T (2)

(
Rd
)
, ‖·‖

)
is a fixed

p-rough path for some p ∈ [2, 3), φ = (φi,j)i,j=1,...d is a fixed path on [0, T ] taking value

in d× d matrices satisfying maxi,j
∫ T
0

(
φi,ju
)2
du <∞, and B is a d-dimensional Brownian

motion. Define a continuous d-dimensional martingale M by the Itô integral:

Mt :=

∫ t

0

φudBu, ∀t ∈ [0, T ] . (3.1)

We define γ(M,R) : [0, T ]→
(
T (2)

(
Rd
)
, ‖·‖

)
as a perturbed rough path, if γ(M,R) is almost

surely a p-rough path for some p ∈ (2, 3), and

γ
(M,R)
t =

(
1, π1 (γt) +Mt, π2 (γt) +

∫∫
0<u1<u2<t

◦dMu1 ⊗ ◦dMu2 +Rt

)
, ∀t ∈ [0, T ] , a.s.,

for some process R : [0, T ]→ (Rd)⊗2 satisfying

ERt = 0, ∀t ∈ [0, T ] . (3.2)

Since γ is fixed, the condition (3.2) is satisfied e.g. when the cross integrals be-
tween π1 (γ) and M (i.e. the process R) are defined as the L1 limit of piecewise linear
approximations.

Suppose Z is a d-dimensional square integrable martingale such that its bracket
process 〈Z〉 has the expression

∫
ψTuψudu for some matrix-valued process ψ, and B is a

d-dimensional Brownian motion independent from Z. We let γ = S2 (Z) and define M to
be the Itô integral

∫
ψudBu. In this case, the process R could be defined by (and there

are other possible choices)

Rt :=

∫ t

0

(Mu −M0)⊗ ◦dZu +
∫ t

0

(Zu − Z0)⊗ ◦dMu. (3.3)

The Stratonovich integrals in (3.3) are well-defined because the 2d-dimensional pro-
cess (Z,M) is a continuous martingale w.r.t. the filtration generated by Z and B

(Proposition 14.9 [7]). Then condition (3.2) is satisfied for this particular choice of
R for almost every γ because the Stratonovich integrals in (3.3) can be expressed
as the L1 limit of piecewise linear approximations and Z and B are independent.
For this selection of R, γ(M,R) is almost surely a p-rough path for any p ∈ (2, 3) for
almost every γ because γ(M,R) = S2 (Z +M) and S2 (Z +M) is almost surely a p-
rough path for any p ∈ (2, 3) for almost every sample path of Z (Theorem 14.12
[7]). We did not require that γ is a geometric rough path, so we also could let
γ = I2 (Z). Then without changing the definitions of M and of R, the conditions
in Definition 3.1 are satisfied. Indeed, condition (3.2) is satisfied as the definition
of R stays unchanged, and γ(M,R) is almost surely a p-rough path for p ∈ (2, 3) be-
cause in this case we have γ(M,R) = S2 (Z +M) + 2−1 〈Z〉 and

∥∥γ(M,R)
∥∥
p−var,[0,T ]

≤

‖S2 (Z +M)‖p−var,[0,T ] + ‖〈Z〉‖
2−1

1−var,[0,T ] <∞ a.s..
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As a specific example when γ is not a sample path of a martingale, suppose B is
a d-dimensional Brownian motion and (X,B) is a 2d-dimensional continuous Gaussian
process with independent components. When the covariance function of (X,B) has
finite ρ-variation for some ρ ∈ [1, 32 ), the process (X,B) can be lifted to a p-rough
process for any p ∈ (2ρ, 3), and the lifted rough process is the L1-limit of the signatures
of the piecewise linear approximations (Theorem 15.33 [7]). Then we could let γ be
a sample path of the rough process above X (e.g. fractional Brownian motion with
Hurst parameter H > 3−1) and let M be the Brownian motion B. Then condition (3.2)

holds because the integral between π1 (γ) and M is the L1 limit of the piecewise linear
approximations, and γ(M,R) is almost surely a p-rough path for some p ∈ (2, 3) based on
Theorem 15.33 [7].

As mentioned before, we have two Stratonovich solutions on a small interval: one
is driven by the signature of the original process and the other is driven by the joint
signature of the original process plus a noise. Here the rough path γ is (a sample path
of) the signature of the original process, and γ(M,R) is the joint signature of the original
process plus a noise. Suppose f : Re → L

(
Rd,Re

)
is Lip (β) for β > p and let I2 (γ,M)

denote the p-rough path for some p ∈ [2, 3):

I2 (γ,M)t :=

(
1, π1 (γt) , π2 (γt)−

1

2
〈M〉t

)
, t ∈ [0, T ] .

(I2 (γ,M) is deterministic because 〈M〉· =
∫ ·
0
φTuφudu is deterministic as we assumed.)

We would like to express the increment on [s, t] of the solution to the RDE

dy = f (y) dI2 (γ,M) , y0 = ξ ∈ T (2) (Re) , (3.4)

in term of the increments on [s, t] of y1,s,t and y2,s,t, where yi,s,t : [0, T ] → T (2) (Re),
i = 1, 2, is the solution to rough differential equations (with ys denoting the value of y in
(3.4) at time s),

dy1,s,tu = f
(
y1,s,tu

)
dγu, y1,s,ts = ys, u ∈ [s, t] , (3.5)

dy2,s,tu = f
(
y2,s,tu

)
dγ(M,R)
u , y2,s,ts = ys, u ∈ [s, t] . (3.6)

Hence, we have a global solution y on [0, T ] and a family of solutions y1,s,t and y2,s,t

indexed by the time intervals {[s, t]}s<t. We would like to identify a function F such

that ys,t ≈ F (y1,s,ts,t , y2,s,ts,t ) (with ys,t := y−1s ⊗ yt and yi,s,ts,t := (yi,s,ts )−1 ⊗ yi,s,tt ) for every

small interval [s, t]. Then by concatenating F (y1,s,ts,t , y2,s,ts,t ) on small intervals and by
letting the mesh of the partition tend to zero, we can recover y in the limit. Yet in the
real construction, the initial values in (3.5) and (3.6) are actually not ys (which is the
pathwise Itô solution we would like to recover) but the value obtained from the last
step of discrete concatenations of {F (y1,s,ts,t , y2,s,ts,t )}[s,t]. Here we use ys for illustration
purposes, but discrete concatenations will create an error which propagates and the
analysis will need some care.

Here y1,s,t and y2,s,t are what we call the Stratonovich solutions (on the small time
interval [s, t]), and y is called the Itô solution (on the large time interval [0, T ]). They
are not necessarily the usual pathwise Stratonovich resp. Itô solution (e.g. γ could
be a Gaussian rough path as in the example given above), and the convergence holds
as long as the conditions of Theorem 3.3 below are satisfied. To recover the usual
pathwise Itô solution (the RDE solution driven by the Itô signature of a continuous
martingale), suppose Z is a square integrable continuous martingale such that its
bracket process 〈Z〉 has the expression

∫
ψTuψudu for a matrices-valued process ψ, and

B is a Brownian motion independent from Z. We let γ = S2 (Z), M· =
∫ ·
0
ψsdBs, and
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

define γ(M,R) := S2 (Z +M). In this case, y1 and y2 are pathwise Stratonovich solutions
driven by the Stratonovich signature S2 (Z) and S2 (Z +M) respectively, and I2 (γ,M)

coincides with I2 (Z) (the Itô signature of Z) so y is the pathwise Itô solution driven by
the Itô signature I2 (Z).

In the following we try to give a sketch of our idea which helps to motivate and clarify
our arguments and is also useful for picking apart the proof of Theorem 3.3. For a fixed
interval [s, t], we would like to represent the increment of y on [s, t] in (3.4) in terms of
the increment of y1,s,t and y2,s,t on [s, t] in (3.5) and (3.6). Based on Theorem 12.6 in [7],
we have (denote yi := yi,s,t and yis,t := (yis)

−1 ⊗ yit)

π1
(
y1s,t
)

≈ f (π1 (ys))π1 (γs,t) + (Df) (f) (π1 (ys))π2 (γs,t) , (3.7)

π1
(
y2s,t
)

≈ f (π1 (ys))π1

(
γ
(M,R)
s,t

)
+ (Df) (f) (π1 (ys))π2

(
γ
(M,R)
s,t

)
.

(The ” ≈ ” indicates that two values are close up to a small error in pathwise sense,
and the error will be made explicit in the proof.) Based on Definition 3.1, we have

E
(∫ t

s
(Mu −Ms)⊗ ◦dMu

)
= 2−1 〈M〉s,t (since 〈M〉s,t =

∫ t
s
φTuφudu is deterministic) and

E
(
π2(γ

(M,R)
s,t )

)
= π2 (γs,t) + 2−1 〈M〉s,t. Hence,

E
(
π1
(
y2s,t
))

≈ f (π1 (ys))π1 (γs,t) + (Df) (f) (π1 (ys))
(
π2 (γs,t) + 2−1 〈M〉s,t

)
. (3.8)

While for the increment on [s, t] of the first level of y in (3.4), we have

π1 (ys,t) ≈ f (π1 (ys))π1 (γs,t) + (Df) (f) (π1 (ys))
(
π2 (γs,t)− 2−1 〈M〉s,t

)
. (3.9)

Then based on (3.7), (3.8) and (3.9), we have

π1 (ys,t) ≈ 2π1
(
y1s,t
)
− E

(
π1
(
y2s,t
))

. (3.10)

Since we work with p ∈ (2, 3), we have to consider the second level approximation as
well. By following similar arguments as for the first level (again based on Theorem 12.6
in [7], but here we add in an extra term as in Definition 2.5), we have

π2
(
y1s,t
)

≈ f (π1 (ys))⊗ f (π1 (ys))π2 (γs,t) ,

E
(
π2
(
y2s,t
))

≈ f (π1 (ys))⊗ f (π1 (ys))
(
π2 (γs,t) + 2−1 〈M〉s,t

)
,

π2 (ys,t) ≈ f (π1 (ys))⊗ f (π1 (ys))
(
π2 (γs,t)− 2−1 〈M〉s,t

)
.

Then
π2 (ys,t) ≈ 2π2

(
y1s,t
)
− E

(
π2
(
y2s,t
))

. (3.11)

Combining (3.10) and (3.11), we have that the linear expression holds:

ys,t ≈ 2y1s,t − E
(
y2s,t
)

. (3.12)

There are other possible expressions of ys,t in term of y1s,t and y2s,t. For example,

ys,t ≈ y1s,t ⊗ E
(
y2s,t
)−1 ⊗ y1s,t , (3.13)

which constitutes another approximation that is equivalent to (3.12) at leading order.
Indeed,

π1

(
y1s,t ⊗ E

(
y2s,t
)−1 ⊗ y1s,t) = 2π1

(
y1s,t
)
− E

(
π1
(
y2s,t
))

,

π2

(
y1s,t ⊗ E

(
y2s,t
)−1 ⊗ y1s,t) = 2π2

(
y1s,t
)
− E

(
π2
(
y2s,t
))

+
(
π1
(
y1s,t
)
− E

(
π1
(
y2s,t
)))⊗2

,
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and (3.13) holds because
(
π1
(
y1s,t
)
− E

(
π1
(
y2s,t
)))⊗2

is small (based on (3.7) and (3.8)).
Then it can be proved that, by concatenating the increments either in the form of (3.12)
or in the form of (3.13) and by letting the mesh of the partition tend to zero, one will
recover y (the solution to (3.4)) in the limit and the analysis in both cases are similar.
There is some freedom to choose the expression of ys,t in term of y1s,t and y2s,t, and the
convergence will hold as long as the error is small. We will work with small increments
in the form of (3.13).

Definition 3.2. Suppose γ and γ(M,R) are defined as in Definition 3.1, f : Re →
L
(
Rd,Re

)
is Lip (β) for β > p and ξ ∈ T (2) (Re). For a finite partitionD = {tj}nj=0 of [0, T ],

define the piecewise-constant process yD : [0, T ]→ T (2) (Re) by (with ys,t := y−1s ⊗ yt)

yD0 := ξ, yDt := yDtj ⊗ y
1,j
tj ,tj+1

⊗ E
(
y2,jtj ,tj+1

)−1
⊗ y1,jtj ,tj+1

, t ∈ (tj , tj+1], (3.14)

where y1,j and y2,j denote the solution to the rough differential equations on [tj , tj+1]:

dy1,ju = f
(
y1,ju

)
dγu, y1,jtj = yDtj , u ∈ [tj , tj+1] , (3.15)

dy2,ju = f
(
y2,ju

)
dγ(M,R)
u , y2,jtj = yDtj , u ∈ [tj , tj+1] .

It is worth noting that, (since γ is fixed) yD is deterministic for each D.

Theorem 3.3. Suppose γ and γ(M,R) are defined as in Definition 3.1 and p ∈ (2, 3).
Denote p-rough path I2 (γ,M) : [0, T ]→

(
T (2)

(
Rd
)
, ‖·‖

)
by

I2 (γ,M)t :=

1, π1 (γt) , π2 (γt)−
1

2

d∑
i,j=1

〈
M i,M j

〉
t
ei ⊗ ej

 , t ∈ [0, T ] .

Suppose f : Re → L
(
Rd,Re

)
is Lip (β) for β > p. If we assume that,

E

(∥∥∥γ(M,R)
∥∥∥2p
p−var,[0,T ]

)
<∞, (3.16)

then for ξ ∈ T (2) (Re), yD (defined in (3.14)) converge uniformly as |D| → 0 to the unique
solution to the rough differential equation

dY = f (Y ) dI2 (γ,M) , Y0 = ξ. (3.17)

More specifically,
lim
|D|→0

max
k=1,2

sup
0≤t≤T

∣∣πk (yDt )− πk (Yt)∣∣ = 0. (3.18)

The proof of Theorem 3.3 starts from page 13.

Remark 3.4. Based on the proof of Theorem 3.3, E(
∥∥γ(M,R)

∥∥q
p−var,[0,T ]

) < ∞ for some

q > p is sufficient for the convergence of the first level in (3.18).

For a continuous martingale Z, let γ be a sample path of the Stratonovich signature
of Z. Then by choosing a specific noise and by applying Theorem 3.3, we can recover
the pathwise Itô solution.

Definition 3.5. Suppose Z is a continuous d-dimensional martingale in L2 on [0, T ] and
there exists a d× d-matrices-valued adapted process ψ in L2 on [0, T ] such that

〈Z〉t =
∫ t

0

ψTs ψsds, ∀t ∈ [0, T ] , a.s..

Suppose B is a d-dimensional Brownian motion, independent from Z. Define a continuous
martingale M : [0, T ]→ Rd by the Itô integral:

Mt :=

∫ t

0

ψsdBs, t ∈ [0, T ] . (3.19)
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Corollary 3.6. Suppose Z is a continuous d-dimensional martingale on [0, T ] in L4+ε for
some ε > 0, and f : Re → L

(
Rd,Re

)
is Lip (β) for β > 2. Denote by Y the solution to the

rough differential equation:

dY = f (Y ) dI2 (Z) , Y0 = ξ ∈ T (2) (Re) . (3.20)

For almost every sample path of Z, if we let γ := S2 (Z) and γ(M,R) := S2(Z +M) (with
M defined in (3.19)), then yD (defined in (3.14)) converge to Y uniformly as |D| → 0.

Corollary 3.6 follows from Theorem 3.3 and is proved on page 17.

Remark 3.7. By using the classical relationship between the Itô solution and the
Stratonovich solution, it can be checked that Y in (3.20) satisfies Yt = ξ ⊗ I2 (y)0,t,
∀t ∈ [0, T ], a.s., with y denotes the unique strong continuous solution to the stochastic
differential equation dy = f (y) dZ, y0 = π1 (ξ).

4 Proofs

Our constants may implicitly depend on dimensions (d and e). We specify the depen-
dence on other constants (e.g. Cp), but the exact value of constants may change from
line to line.

4.1 Results from rough paths theory

The Theorem below follows from Theorem 14.12 in [7] and Doob’s maximal inequality.

Theorem 4.1. Suppose M is a d-dimensional continuous martingale. Then for q > 1 and

p > 2, E (|MT −M0|q), E
(
|〈M〉T |

2−1q
)

and E
(
‖S2 (M)‖qp−var,[0,T ]

)
are equivalent up to

a constant depending on p, q, d.

Suppose γ = γS + γA (Notation 2.2) is a p-rough path on [0, T ] for some p ∈ [2, 3).
Then, (see [14])

‖γ‖pp−var,[s,t] ≤
∥∥γA∥∥p

p−var,[s,t] +
∥∥γS∥∥2−1p

2−1p−var,[s,t] ≤ Cd ‖γ‖
p
p−var,[s,t] , ∀s ≤ t. (4.1)

Theorem 4.2. Suppose γ is a p-rough path on [0, T ] for some p ∈ [2, 3) taking values in
T (2)

(
Rd
)

and f : Re → L
(
Rd,Re

)
is Lip (β) for β ∈ (p− 1, 2]. If Y : [0, T ]→ T (2) (Re) is a

solution to the rough differential equation

dY = f (Y ) dγ, Y0 = ξ ∈ T (2) (Re) , (4.2)

then with ω (s, t) := ‖γ‖pp−var,[s,t] for any s ≤ t we have (Ys,t := Y −1s ⊗ Yt, γs,t := γ−1s ⊗ γt)

‖Y ‖p−var,[s,t] ≤ Cp,β,f
(
ω (s, t)

1
p ∨ ω (s, t)

)
, (4.3)

|π1 (Ys,t)− f (π1 (Ys))π1 (γs,t)− (Df) (f) (π1 (Ys))π2 (γs,t)| ≤ Cp,β,fω (s, t)
β+1
p , (4.4)∣∣∣π2 (Ys,t)− f (π1 (Ys))⊗2 π2 (γs,t)∣∣∣ ≤ Cp,β,fω (s, t)

β+1
p ∨ ω (s, t)

2 . (4.5)

Theorem 4.2 follows from Theorem 12.6 in [7]. Since we added an extra term on
the second level of (4.2) as in Definition 2.5, we check that the extra term can be
estimated similarly. We only modified the second level, so we can use estimates of the
first level. Suppose γ = γS+γA as in Notation 2.2. For the extra term

∫
f (π1 (Yu))

⊗2
dγSu

and any [s, t] ⊆ [0, T ], based on estimates of Young integral in Theorem 1.16 [16] and
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∥∥γS∥∥
2−1p−var,[s,t] ≤ Cd ‖γ‖

2
p−var,[s,t] = Cdω (s, t)

2
p as in (4.1), we have∥∥∥∫ ts f (π1 (Yu))⊗2 dγSu − f (π1 (Ys))⊗2 (γSt − γSs )∥∥∥

≤ Cp,f ‖π1 (Y )‖p−var,[s,t]
∥∥γS∥∥

2−1p−var,[s,t] ≤ Cp,β,f
(
ω (s, t)

1
p ∨ ω (s, t)

)
ω (s, t)

2
p

≤ Cp,β,fω (s, t)
β+1
p ∨ ω (s, t)

2 .

The Theorem below follows from Theorem 12.10 in [7].

Theorem 4.3. Suppose γ is a p-rough path for some p ∈ [2, 3) on [0, T ] taking values in(
T (2)

(
Rd
)
, ‖·‖

)
, and f : Re → L

(
Rd,Re

)
is Lip (β) for β > p. Suppose Y i, i = 1, 2, is the

solution to the rough differential equations:

dY i = f
(
Y i
)
dγ, Y i0 = ξi ∈ T (2) (Re) . (4.6)

Then with ω (s, t) := ‖γ‖pp−var,[s,t] we have (with Y is,t :=
(
Y is
)−1 ⊗ Y it )

max
k=1,2

sup
0≤s≤t≤T

∣∣πk (Y 1
s,t

)
− πk

(
Y 2
s,t

)∣∣
ω (s, t)

k
p

≤ Cp,β,f
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T )) . (4.7)

Similar as for Theorem 4.2, we have to check that the extra term satisfies (4.7) as well.
Indeed, based on the estimate of

∣∣π1 (Y 1
s,t

)
− π1

(
Y 2
s,t

)∣∣ in (4.7) and that ω is a control, we
have, for any [s, t] ⊆ [0, T ],∥∥π1 (Y 1

)
− π1

(
Y 2
)∥∥
p−var,[s,t] ≤ Cp,β,fω (s, t)

1
p
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T ))

≤ Cp,β,f
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T )) ,

and for any s ∈ [0, T ],∣∣π1 (Y 1
s

)
− π1

(
Y 2
s

)∣∣
≤

∣∣π1 (ξ1)− π1 (ξ2)∣∣+ Cp,β,fω (0, s)
1
p
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T ))

≤ Cp,β,f
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T )) .

Then since f is Lip (β) for β > p ≥ 2 combined with Lemma 10.22 [7] and (4.3), we have∥∥∥f (π1 (Y 1
))⊗2 − f (π1 (Y 2

))⊗2∥∥∥
p−var,[s,t]

≤ Cp,f
∥∥π1 (Y 1

)
− π1

(
Y 2
)∥∥
p−var,[s,t]

+ Cp,f

(∑
i=1,2

∥∥π1 (Y i)∥∥p−var,[s,t] supu∈[s,t] ∣∣π1 (Y 1
u

)
− π1

(
Y 2
u

)∣∣)
≤ Cp,β,f

(
1 + ω (s, t)

1
p ∨ ω (s, t)

) ∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T ))

≤ Cp,β,f
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T )) .

Hence, based on Young integral and that
∥∥γS∥∥

2−1p−var,[s,t] ≤ Cdω (s, t)
2
p as in (4.1), we

have ∥∥∥∫ ts f (π1 (Y 1
u

))⊗2
dγSu −

∫ t
s
f
(
π1
(
Y 2
u

))⊗2
dγSu

∥∥∥
≤ Cp

∥∥∥f (π1 (Y 1
))⊗2 − f (π1 (Y 2

))⊗2∥∥∥
p−var,[s,t]

∥∥γS∥∥ p
2−var,[s,t]

+ Cf
∣∣π1 (Y 1

s

)
− π1

(
Y 2
s

)∣∣ ∥∥γS∥∥ p
2−var,[s,t]

≤ Cp,β,fω (s, t)
2
p
∣∣π1 (ξ1)− π1 (ξ2)∣∣ exp (Cp,β,fω (0, T )) .
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4.2 Proofs of Theorem 3.3 and Corollary 3.6

Before proceeding to details of the proof of Theorem 3.3, we first give a sketch of
the proof which may help to make the idea clearer. When f is Lip (β) for β > p, for
η ∈ T (2) (Re), we denote by

πf (s, η)

the unique solution to the RDE:

dY = f (Y ) dI2 (γ,M) , ys = η. (4.8)

For a finite partition D = {tj}nj=0 of [0, T ], suppose yD is defined as in (3.14). Since yD

by definition is piecewise constant and Y is continuous, to prove the uniform convergence
of yD to Y as |D| → 0 it is sufficient to prove that yD converge to Y uniformly on {tj}nj=0.

For each finite partition D = {tj}nj=0 of [0, T ], we generate a sequence of RDE solutions
driven by the same rough path I2 (γ,M) along the same vector field f but with different
starting time tj and with different initial value yDtj , j = 0, 1, . . . , n. Then Y resp. yD is the

first resp. last solution in the sequence, and if we want to compare yDtj with Ytj then we
rewrite

yDtj − Ytj =
j−1∑
i=0

(
πf

(
ti+1, y

D
ti+1

)
tj
− πf

(
ti, y

D
ti

)
tj

)
. (4.9)

Since the solution is unique, we have

πf
(
ti, y

D
ti

)
tj

= πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
tj

,

and the difference between two adjacent solutions can be expressed as:

πf

(
ti+1, y

D
ti+1

)
tj
− πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
tj

(4.10)

= yDti+1
⊗
(
πf

(
ti+1, y

D
ti+1

)
ti+1,tj

− πf
(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

)
(4.11)

+ yDti ⊗
(
yDti,ti+1

− πf
(
ti, y

D
ti

)
ti,ti+1

)
⊗ πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

.

Based on Theorem 4.3, the difference between the two increments in the first term in
(4.11) can be relegated to the difference between their first level initial values:

π1

(
yDti+1

)
− π1

(
πf
(
ti, y

D
ti

)
ti+1

)
= π1

(
yDti,ti+1

)
− π1

(
πf
(
ti, y

D
ti

)
ti,ti+1

)
.

Then combined with the expression of the second term in (4.11), we would need two
elements in our proof:

(1) an estimate of εi :=
∣∣∣yDti,ti+1

− πf
(
ti, y

D
ti

)
ti,ti+1

∣∣∣ for all i,

(2) the uniform boundedness of yD inD so that based on (4.9) and (4.11) the difference
between Y and yD can be bounded by a term comparable to

∑
i εi.

The estimate of εi mainly follows from Theorem 4.2. The uniform boundedness of
yD in D can be proved by mathematical induction. The reason that we can employ
induction is that based on (4.11) only the first (k − 1) levels of yD contribute to the kth
level difference in (4.10) because the 0th level of any solution is identically 1. Hence, by
using the uniform boundedness of the first (k − 1) levels of yD, we can prove the kth
level convergence of yD to Y as |D| → 0, which implies the uniform boundedness of the
kth level of yD in D.
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Proof of Theorem 3.3. Define ωi : {(s, t) |0 ≤ s ≤ t ≤ T} → R+, i = 1, 2, by, for any
0 ≤ s ≤ t ≤ T ,

ω1 (s, t) := ‖γ‖pp−var,[s,t] + ‖〈M〉‖
p
2

1−var,[s,t] , ω2 (s, t) :=
∥∥∥γ(M,R)

∥∥∥p
p−var,[s,t]

.

Then ω1 is deterministic and ω1 (0, T ) < ∞ (since γ is a p-rough path and 〈M〉 is of
bounded variation). Based on the assumption (3.16) (on p9), we have

E
(
ω2 (0, T )

2
)
<∞. (4.12)

For 0 ≤ s ≤ t ≤ T , we denote yDs,t :=
(
yDs
)−1 ⊗ yDt . Recall

{
yi,j
}
i=1,2

in (3.15):

dy1,j = f
(
y1,j

)
dγ, y1,jtj = yDtj ,

dy2,j = f
(
y2,j

)
dγ(M,R), y2,jtj = yDtj ,

and we have

yDtj ,tj+1
= y1,jtj ,tj+1

⊗ E
(
y2,jtj ,tj+1

)−1
⊗ y1,jtj ,tj+1

, j ≥ 0. (4.13)

Based on (4.13), we have

π1

(
yDtj ,tj+1

)
= 2π1

(
y1,jtj ,tj+1

)
− E

(
π1

(
y2,jtj ,tj+1

))
.

Since f is Lip (β) for β > p ≥ 2, f is Lip (2). By using the Euler estimate of solution to
RDE ((4.4) in Theorem 4.2), we have, on any [tj , tj+1],∣∣∣∣π1 (yDtj ,tj+1

)
− π1

(
πf

(
tj , y

D
tj

)
tj ,tj+1

)∣∣∣∣
=

∣∣∣∣2π1 (y1,jtj ,tj+1

)
− E

(
π1

(
y2,jtj ,tj+1

))
− π1

(
πf

(
tj , y

D
tj

)
tj ,tj+1

)∣∣∣∣
≤ Cp,f

(
ω1 (tj , tj+1)

3
p + E

(
ω2 (tj , tj+1)

3
p

))
+

∣∣∣∣∣(Df) (f) (π1 (Ytj))
(
E

(∫ tj+1

tj

(
Mu −Mtj

)
⊗ ◦dMu

)
− 1

2
〈M〉tj ,tj+1

)∣∣∣∣∣ .
Since M =

∫
φdB with φ a fixed path taking values in d× d matrices, we have

E

(∫ tj+1

tj

(
Mu −Mtj

)
⊗ ◦dMu

)
=

1

2
E
(
〈M〉tj ,tj+1

)
=

1

2
〈M〉tj ,tj+1

.

Hence, for any tj ∈ D,∣∣∣∣π1(yDtj ,tj+1
− πf

(
tj , y

D
tj

)
tj ,tj+1

)∣∣∣∣ ≤ Cp,f (E(ω2 (tj , tj+1)
3
p

)
+ ω1 (tj , tj+1)

3
p

)
. (4.14)

For the second level, based on (4.13), we have

π2

(
yDtj ,tj+1

)
(4.15)

= π2

(
y1,jtj ,tj+1

⊗ E
(
y2,jtj ,tj+1

)−1
⊗ y1,jtj ,tj+1

)
= 2π2

(
y1,jtj ,tj+1

)
− E

(
π2

(
y2,jtj ,tj+1

))
+
(
π1

(
y1,jtj ,tj+1

)
− π1

(
E
(
y2,jtj ,tj+1

)))⊗2
.
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

Then, by using (4.15), combined with (4.3), (4.4) and (4.5) in Theorem 4.2, we get,∣∣∣∣π2 (yDtj ,tj+1

)
− f

(
π1(y

D
tj )
)⊗2(

π2
(
γtj ,tj+1

)
− 1

2
〈M〉tj ,tj+1

)∣∣∣∣ (4.16)

≤ Cp,f

(
E
(
ω2 (tj , tj+1)

3
p ∨ ω2 (tj , tj+1)

2
)
+ ω1 (tj , tj+1)

3
p ∨ ω1 (tj , tj+1)

2
)

(4.17)

+

∣∣∣∣12 (Df) (f) (ξj) 〈M〉tj ,tj+1

∣∣∣∣2 + Cp,f

(
E
(
ω2 (tj , tj+1)

3
p

)
+ ω1 (tj , tj+1)

3
p

)2
+ Cp,f

(
E
(
ω2 (tj , tj+1)

3
p

)
+ ω1 (tj , tj+1)

3
p

)
×
(
E
(
ω2 (tj , tj+1)

1
p ∨ ω2 (tj , tj+1)

)
+ ω1 (tj , tj+1)

1
p ∨ ω1 (tj , tj+1)

)
,

where (4.17) estimates the error created by replacing 2π2(y
1,j
tj ,tj+1

) − E(π2(y2,jtj ,tj+1
)) by

the corresponding Euler approximations, and the three lines after (4.17) estimate
(π1(y

1,j
tj ,tj+1

) − π1(E(y2,jtj ,tj+1
)))⊗2 based on (4.3) and (4.4) in Theorem 4.2. On the other

hand, based on (4.5) in Theorem 4.2, we have,∣∣∣∣π2(πf (tj , yDtj)
tj ,tj+1

)
− f

(
π1(y

D
tj )
)⊗2(

π2
(
γtj ,tj+1

)
− 1

2
〈M〉tj ,tj+1

)∣∣∣∣
≤ Cp,f ω1 (tj , tj+1)

3
p ∨ ω1 (tj , tj+1)

2 .

Hence, combined with (4.16), we get,∣∣∣∣π2 (yDtj ,tj+1

)
− π2

(
πf

(
tj , y

D
tj

)
tj ,tj+1

)∣∣∣∣ (4.18)

≤ C
(
p, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)
×
(
E
(
ω2 (tj , tj+1)

3
p ∨ ω2 (tj , tj+1)

2
)
+ ω1 (tj , tj+1)

3
p ∨ ω1 (tj , tj+1)

2
)

.

Combining (4.14) and (4.18), if we define ω̃k : {(s, t) |0 ≤ s ≤ t ≤ T} → R+, k = 1, 2, by

ω̃k (s, t) :=

 E
(
ω2 (s, t)

3
p

)
+ ω1 (s, t)

3
p , k = 1

E
(
ω2 (s, t)

3
p ∨ ω2 (s, t)

2
)
+ ω1 (s, t)

3
p ∨ ω1 (s, t)

2
, k = 2

, (4.19)

then ∣∣∣∣πk (yDtj ,tj+1

)
− πk

(
πf

(
tj , y

D
tj

)
tj ,tj+1

)∣∣∣∣ (4.20)

≤ C
(
p, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)
ω̃k (tj , tj+1) , ∀j ≥ 0, k = 1, 2.

Based on our assumption (4.12) and that p ∈ [2, 3), we have

lim
|D|→0

∑
tj∈D

ω̃k (tj , tj+1) = 0, k = 1, 2. (4.21)

Since f is Lip (β) for β > p, denote by Y the unique solution to the RDE

dY = f (Y ) dI2 (γ,M) , Y0 = ξ ∈ T (2) (Re) .

We want to prove
lim
|D|→0

max
k=1,2

sup
0≤t≤T

∣∣πk (yDt )− πk (Yt)∣∣ = 0. (4.22)
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

It is clear that
π0
(
yDt
)
= π0 (Yt) ≡ 1,

so (4.22) holds trivially at level 0. For integer k = 1, 2, suppose (4.22) holds for level
l ≤ k − 1, we want to prove (4.22) at level k. Based on our inductive hypothesis, we have

sup
D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣ <∞. (4.23)

For tj ∈ D, when j = 0, yD0 = Y0 = ξ. When j = 1, based on (4.20), we have

∣∣πk (yDt1 − Yt1)∣∣ =

k−1∑
l=0

|πl (ξ)|
∣∣πk−l (yD0,t1 − Y0,t1)∣∣

≤ C
(
p, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)(
max

0≤l≤k−1
|πl (ξ)|

) k∑
l=1

ω̃l (0, t1) .

When j ≥ 2, we have∣∣∣πk (yDtj − Ytj)∣∣∣ (4.24)

=

j−1∑
i=0

∣∣∣∣πk (πf (ti+1, y
D
ti+1

)
tj
− πf

(
ti, y

D
ti

)
tj

)∣∣∣∣
≤

j−2∑
i=0

∣∣∣∣πk (πf (ti+1, y
D
ti+1

)
tj
− πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
tj

)∣∣∣∣
+

∣∣∣∣πk (yDtj − πf (tj−1, yDtj−1

)
tj

)∣∣∣∣ .
Then for each i = 0, 1, . . . , j − 2,

πf

(
ti+1, y

D
ti+1

)
tj
− πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
tj

= yDti+1
⊗ πf

(
ti+1, y

D
ti+1

)
ti+1,tj

− πf
(
ti, y

D
ti

)
ti+1
⊗ πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

= yDti+1
⊗
(
πf

(
ti+1, y

D
ti+1

)
ti+1,tj

− πf
(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

)
+ yDti ⊗

(
yDti,ti+1

− πf
(
ti, y

D
ti

)
ti,ti+1

)
⊗ πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

.

By using (4.23), Theorem 4.3 on p11 and (4.20) (ω̃1 defined at (4.19)), we have, for
i = 0, 1, . . . , j − 2,∣∣∣∣πk (yDti+1

⊗
(
πf

(
ti+1, y

D
ti+1

)
ti+1,tj

− πf
(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

))∣∣∣∣
≤

(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)

×

(
k∑
l=1

∣∣∣∣πl(πf (ti+1, y
D
ti+1

)
ti+1,tj

− πf
(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

)∣∣∣∣
)

≤ C (p, β, f, ω1 (0, T ))

(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
) ∣∣∣π1 (yDti,ti+1

− πf
(
ti, y

D
ti

)
ti,ti+1

)∣∣∣
≤ C

(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)
ω̃1 (ti, ti+1)
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

On the other hand, by using (4.23), (4.3) in Theorem 4.2 on p10 and (4.20) (ω̃l defined at
(4.19)), we have∣∣∣∣πk (yDti ⊗ (yDti,ti+1

− πf
(
ti, y

D
ti

)
ti,ti+1

)
⊗ πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
ti+1,tj

)∣∣∣∣
≤ C

(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)

k∑
l=1

ω̃l (ti, ti+1) .

Therefore, we have, for any i = 0, 1, . . . , j − 2,∣∣∣∣πk (πf (ti+1, y
D
ti+1

)
tj
− πf

(
ti+1, πf

(
ti, y

D
ti

)
ti+1

)
tj

)∣∣∣∣
≤ C

(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)

k∑
l=1

ω̃l (ti, ti+1) .

As a result,

j−2∑
i=0

∣∣∣∣πk (πf (ti+1, y
D
ti+1

)
tj
− πf

(
ti, y

D
ti

)
tj

)∣∣∣∣ (4.25)

≤ C
(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)
×

(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)
j−2∑
i=0

(
k∑
l=1

ω̃l (ti, ti+1)

)
.

On the other hand, for the term left in (4.24),∣∣∣∣πk (yDtj − πf (tj−1, yDtj−1

)
tj

)∣∣∣∣ (4.26)

=

∣∣∣∣πk (yDtj−1
⊗
(
yDtj−1,tj − πf

(
tj−1, y

D
tj−1

)
tj−1,tj

))∣∣∣∣
≤ C

(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)
×

(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)

k∑
l=1

ω̃l (tj−1, tj) .

Therefore, combining (4.24), (4.25) and (4.26), we have∣∣∣πk (yDtj − Ytj)∣∣∣ ≤ C
(
p, β, f,E

(
ω2 (0, T )

2
)
, ω1 (0, T )

)
×

(
sup

D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣
)
j−1∑
i=0

(
k∑
l=1

ω̃l (ti, ti+1)

)
Then, based on (4.21) and the inductive assumption

sup
D⊂[0,T ]

max
0≤l≤k−1

sup
0≤t≤T

∣∣πl (yDt )∣∣ <∞,

we have
lim
|D|→0

max
tj∈D

∣∣∣πk (yDtj)− πk (Ytj)∣∣∣ = 0.

Since Y is continuous and yD is piecewise-constant, we have

lim
|D|→0,D⊂[0,T ]

sup
0≤t≤T

∣∣πk (yDt )− πk (Yt)∣∣ = 0.
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Recovering the pathwise Itô solution from averaged Stratonovich solutions

Proof of Corollary 3.6. (Z,M) is a 2d-dimensional continuous martingale w.r.t. the fil-
tration generated by Z and B, so can be enhanced by their Stratonovich integrals to a
process whose sample paths are almost surely p-rough paths for any p ∈ (2, 3). Suppose
Z is in L4+ε for some ε > 0. Based on Theorem 4.1 (on page 10), we get (let p := 2+2−1ε)

E
(
‖S2 (Z +M)‖2pp−var,[0,T ]

)
≤ Cd,pE (|〈Z +M〉T |

p
) ≤ Cd,pE (|〈Z〉T |

p
)

≤ Cd,pE
(
|ZT − Z0|2p

)
= Cd,pE

(
|ZT − Z0|4+ε

)
<∞.

The second inequality holds because M is defined to be the Itô integral
∫
ψdB for the

matrices-valued process ψ satisfying
∫
ψTψdu = 〈Z〉 and the d-dimensional Brownian

motion B is independent from Z so we have 〈Z,M〉T = 0 a.s. and 〈M〉T = 〈Z〉T a.s..
As a result, we have

E
(
‖S2 (Z +M)‖2pp−var,[0,T ]

∣∣∣Z) <∞ a.s..

On the other hand, the Stratonovich integrals satisfy

E

(∫ t

0

(Zu − Z0)⊗ ◦dMu +

∫ t

0

(Mu −M0)⊗ ◦dZu
∣∣∣Z) = 0, ∀t ∈ [0, T ] , a.s..

Based on Theorem 3.3, Corollary holds.
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