ELECTRONIC COMMUNICATIONS in PROBABILITY

Erratum: Multivariate Stein factors for a class of strongly log-concave distributions*

Lester Mackey[†] Ja

Jackson Gorham[†]

Abstract

The strong continuity argument in [6] did not identify an appropriate Banach space. We do so here. A corrected version has been uploaded to arxiv.org/abs/1512.07392.

Keywords: Erratum. AMS MSC 2010: 60J60; 62E17; 60E15. Submitted to ECP on November 23, 2016, final version accepted on November 24, 2016.

Lem. 3.1 of [6] should read as follows.

Lemma 3.1 (Overdamped Langevin properties). If $\log p \in C^2(\mathbb{R}^d)$ is strongly concave, then the overdamped Langevin diffusion $(Z_{t,x})_{t\geq 0}$ with infinitesimal generator (1.1) and $Z_{0,x} = x$ is well-defined for all times $t \in [0,\infty)$, has stationary distribution P, and satisfies strong continuity on $L = \{f \in C^0(\mathbb{R}^d) : \frac{|f(x)|}{1+||x||_2^2} \to 0 \text{ as } ||x||_2 \to \infty\}$ with norm $\|f\|_L \triangleq \sup_{x \in \mathbb{R}^d} \frac{|f(x)|}{1+||x||_2^2}$, that is, $\|\mathbb{E}[f(Z_{t,\cdot})] - f\|_L \to 0 \text{ as } t \to 0^+$ for all $f \in L$.

Proof. Consider the Lyapunov function $V(x) = ||x||_2^2 + 1$. The strong log-concavity of p, the Cauchy-Schwarz inequality, and the arithmetic-geometric mean inequality imply that

$$\begin{aligned} (\mathcal{A}V)(x) &= \langle x, \nabla \log p(x) \rangle + d = \langle x, \nabla \log p(x) - \nabla \log p(0) \rangle + \langle x, \nabla \log p(0) \rangle + d \\ &\leq -k \|x\|_2^2 + \|x\|_2 \|\nabla \log p(0)\|_2 + d \leq \left(\frac{1}{2} - k\right) \|x\|_2^2 + \frac{1}{2} \|\nabla \log p(0)\|_2^2 + d \leq k' V(x) \end{aligned}$$

for some constants $k, k' \in \mathbb{R}$. Since $\log p$ is locally Lipschitz, [5, Thm. 3.5] implies that the diffusion $(Z_{t,x})_{t\geq 0}$ is well-defined, and [7, Thm. 2.1] guarantees that P is a stationary distribution. The argument of [4, Prop. 15] with [5, Thm. 3.5] substituted for [5, Thm. 3.4] and [3, Sec. 5, Cor. 1.2] now yields strong continuity.

In addition the final component of the proof of Thm. 1.1 of [6] should read as follows.

Solving the Stein equation Finally, we show that u_h solves the Stein equation (1.2). Introduce the notation $(P_th)(x) \triangleq \mathbb{E}[h(Z_{t,x})]$. Since $(P_t)_{t\geq 0}$ is strongly continuous on the Banach space L of Lemma 3.1 and $h \in L$, the generator \mathcal{A} , defined in (1.1), satisfies

$$h - P_t h = \mathcal{A} \int_0^t \mathbb{E}_P[h(Z)] - P_s h \, ds \quad \text{for all} \quad t \ge 0$$

^{*}Main article: 10.1214/16-ECP15.

[†]Department of Statistics, Stanford University. E-mail: lmackey@stanford.edu

Erratum: Multivariate Stein factors for a class of strongly log-concave distributions

by [2, Prop. 1.5]. The left-hand side limits in L to $h - \mathbb{E}_P[h(Z)]$ as $t \to \infty$, as

$$|h(x) - \mathbb{E}_{P}[h(Z)] - (h(x) - (P_{t}h)(x))| = \left| \int_{\mathbb{R}^{d}} \mathbb{E}[h(Z_{t,y})] - \mathbb{E}[h(Z_{t,x})] p(y) dy \right|$$

$$\leq M_{1}(h) \int_{\mathbb{R}^{d}} \mathbb{E}[\|Z_{t,y} - Z_{t,x}\|_{2}] p(y) dy \leq M_{1}(h) \mathbb{E}_{P}[\|Z - x\|_{2}] e^{-kt/2}$$

for each $x \in \mathbb{R}^d$ and $t \ge 0$. Here we have used the stationarity of P, the Lipschitz relation (3.1), the first-order coupling inequality (3.7) of Lemma 3.3, and the integrability of Z [1, Lem. 1] in turn. Meanwhile, the right-hand side limits to Au_h , since A is closed [2, Cor. 1.6]. Therefore, u_h solves the Stein equation (1.2).

References

- [1] M. Cule and R. Samworth, Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density, Electron. J. Stat. 4 (2010), 254–270. MR-2645484
- [2] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. MR-838085
- [3] A. Friedman, Stochastic differential equations and applications. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Probability and Mathematical Statistics, Vol. 28. MR-0494490
- [4] J. Gorham, A. Duncan, S. Vollmer, and L. Mackey, Measuring sample quality with diffusions, arXiv:1611.06972 (2016).
- [5] R. Khasminskii, Stochastic stability of differential equations, second ed., Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, 2012, With contributions by G. N. Milstein and M. B. Nevelson. MR-2894052
- [6] L. Mackey and J. Gorham, Multivariate Stein factors for a class of strongly log-concave distributions, Electron. Commun. Probab. 21 (2016), 14 pp.
- [7] G. Roberts and R. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli 2 (1996), no. 4, 341–363. MR-1440273

Acknowledgments. The authors thank Andrew Duncan and Sebastian Vollmer for highlighting the need to identify an appropriate Banach space.