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Abstract

The strong continuity argument in [6] did not identify an appropriate Banach space.
We do so here. A corrected version has been uploaded to arxiv.org/abs/1512.07392.
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Lem. 3.1 of [6] should read as follows.

Lemma 3.1 (Overdamped Langevin properties). If log p ∈ C2(Rd) is strongly concave,
then the overdamped Langevin diffusion (Zt,x)t≥0 with infinitesimal generator (1.1)
and Z0,x = x is well-defined for all times t ∈ [0,∞), has stationary distribution P , and

satisfies strong continuity on L = {f ∈ C0(Rd) : |f(x)|
1+‖x‖22

→ 0 as ‖x‖2 → ∞} with norm

‖f‖L , supx∈Rd
|f(x)|
1+‖x‖22

, that is, ‖E[f(Zt,·)]− f‖L → 0 as t→ 0+ for all f ∈ L.

Proof. Consider the Lyapunov function V (x) = ‖x‖22 + 1. The strong log-concavity of p,
the Cauchy-Schwarz inequality, and the arithmetic-geometric mean inequality imply that

(AV )(x) = 〈x,∇ log p(x)〉+ d = 〈x,∇ log p(x)−∇ log p(0)〉+ 〈x,∇ log p(0)〉+ d

≤ −k‖x‖22 + ‖x‖2‖∇ log p(0)‖2 + d ≤
(
1

2
− k

)
‖x‖22 +

1

2
‖∇ log p(0)‖22 + d ≤ k′V (x)

for some constants k, k′ ∈ R. Since log p is locally Lipschitz, [5, Thm. 3.5] implies
that the diffusion (Zt,x)t≥0 is well-defined, and [7, Thm. 2.1] guarantees that P is a
stationary distribution. The argument of [4, Prop. 15] with [5, Thm. 3.5] substituted for
[5, Thm. 3.4] and [3, Sec. 5, Cor. 1.2] now yields strong continuity.

In addition the final component of the proof of Thm. 1.1 of [6] should read as follows.

Solving the Stein equation Finally, we show that uh solves the Stein equation (1.2).
Introduce the notation (Pth)(x) , E[h(Zt,x)]. Since (Pt)t≥0 is strongly continuous on the
Banach space L of Lemma 3.1 and h ∈ L, the generator A, defined in (1.1), satisfies

h− Pth = A
∫ t

0

EP [h(Z)]− Psh ds for all t ≥ 0
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by [2, Prop. 1.5]. The left-hand side limits in L to h− EP [h(Z)] as t→∞, as

|h(x)− EP [h(Z)]− (h(x)− (Pth)(x))| =
∣∣∣∣∫
Rd

E[h(Zt,y)]− E[h(Zt,x)] p(y)dy

∣∣∣∣
≤M1(h)

∫
Rd

E
[
‖Zt,y − Zt,x‖2

]
p(y)dy ≤M1(h)EP [‖Z − x‖2]e

−kt/2

for each x ∈ Rd and t ≥ 0. Here we have used the stationarity of P , the Lipschitz relation
(3.1), the first-order coupling inequality (3.7) of Lemma 3.3, and the integrability of Z [1,
Lem. 1] in turn. Meanwhile, the right-hand side limits to Auh, since A is closed [2, Cor.
1.6]. Therefore, uh solves the Stein equation (1.2).
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