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Abstract

Let α : [0, 1]→ [0, 1] be a measurable function. It was proved by P. Marchal [2] that
the function

φ(α)(λ) := exp

[∫ 1

0

λ− 1

1 + (λ− 1)x
α(x) dx

]
, λ > 0

is a special Bernstein function. Marchal used this to construct, on a single probability

space, a family of regenerative sets R(α) such that R(α) law
= {S(α)

t : t ≥ 0} (S(α) is the
subordinator with Laplace exponent φ(α)) and R(α) ⊂ R(β) whenever α ≤ β. We
give two simple proofs showing that φ(α) is a complete Bernstein function and extend
Marchal’s construction to all complete Bernstein functions.
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For a measurable function α : [0, 1]→ [0, 1] define

φ(α)(λ) := exp

[∫ 1

0

λ− 1

1 + (λ− 1)x
α(x) dx

]
, λ > 0. (0.1)

If α ≡ α0 is a constant function with α0 ∈ (0, 1), then φ(α) reduces to the fractional power
function λ 7→ λα0 . In a recent paper, Marchal [2] proves that for any measurable function
α : [0, 1] → [0, 1], φ(α) is a special Bernstein function, and the dual Bernstein function
λ/φ(α)(λ) is φ(1−α). As an application, Marchal constructs, on a single probability space, a

family of regenerative sets R(α) such that R(α) law
= {S(α)

t : t ≥ 0} (S(α) is the subordinator
with Laplace exponent φ(α)) and R(α) ⊂ R(β) whenever α ≤ β. In this short note, we
will go further to show that φ(α) is a complete Bernstein function for all measurable
weights α : [0, 1]→ [0, 1] and that Marchal’s construction holds for all complete Bernstein
functions. Independently of us this has been remarked by Alili, Jedidi and Rivero in [1,
Example 4.2, p. 730].

Let us first briefly recall some basic facts on Bernstein functions. We use the
monograph [3] as our standard reference for Bernstein functions. A function is called
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a Bernstein function, if f : (0,∞) → [0,∞), f ∈ C∞(0,∞) and (−1)k−1f (k) ≥ 0 for all
k ∈ N. All Bernstein functions admit a unique Lévy–Khintchine representation

f(λ) = a+ bλ+

∫
(0,∞)

(
1− e−λx

)
ν(dx), (0.2)

where a, b ≥ 0 and ν is a measure on (0,∞) satisfying
∫
(0,∞)

(x∧1) ν(dx) <∞. A Bernstein

function f is said to be a special Bernstein function if f∗(λ) := λ/f(λ) is again a Bernstein
function; in this case, f∗ is called the dual Bernstein function of f . A Bernstein function f
is a complete Bernstein function if its Lévy measure ν in (0.2) has a completely monotone
density m (i.e. m ∈ C∞(0,∞) and (−1)km(k) ≥ 0 for all k ∈ N ∪ {0}) w.r.t. Lebesgue
measure. We use BF , SBF and CBF to denote the collections of all Bernstein functions,
special Bernstein functions and complete Bernstein functions, respectively. It is known
that

CBF $ SBF $ BF ,

see [3, Propositions 11.16 and 11.17 and Example 11.18]. In contrast to SBF , the
class CBF has well-understood structural properties and many examples of complete
Bernstein functions are known, cf. [3, Chapters 6 and 16].

We can now state the main result of this note.

Theorem. For any measurable function α : [0, 1] → [0, 1], the function φ(α) defined by
(0.1) is a complete Bernstein function.

Remark 1. Let c, d ∈ R with c < d. For any measurable function α : [c, d] → [0, 1], it
follows from our theorem and a straightforward change of variables that the function

λ 7→ exp

[∫ d

c

λ− 1

(d− c) + (λ− 1)(x− c)
α(x) dx

]
, λ > 0

is also a complete Bernstein function.

Remark 2. Our second proof of the theorem shows, in particular, that – up to a multi-
plicative constant c > 0 – all complete Bernstein functions have a representation of the
form (0.1); moreover, the function α(x) is uniquely determined by the corresponding
Bernstein function and vice versa.

For this we use the following characterization of complete Bernstein functions, see [3,
Theorem 6.17]. We have f ∈ CBF if, and only if, there is some γ ∈ R and a measurable
function η : [0,∞)→ [0, 1] such that

f(λ) = exp

[
γ +

∫ ∞
0

(
t

1 + t2
− 1

λ+ t

)
η(t) dt

]
, λ > 0. (0.3)

The pair (γ, η) uniquely characterizes f ∈ CBF and vice versa.

We will see that there is a one-to-one correspondence η ↔ α given by η(t) = α
(

1
1+t

)
,

t ∈ [0,∞), while γ = γ(α). Since φ(α)(1) = 1, this means that any f ∈ CBF can be written
as f(1)× φ(α). At the level of subordinators this amounts to consider the time-changed

subordinator (S
(α)
ct )t≥0, c = f(1) > 0; obviously, {S(α)

ct : t ≥ 0} = {S(α)
t : t ≥ 0}, i.e.

Marchal’s Theorem 2 holds for all complete Bernstein functions.

1 First proof

Our first proof relies on the fact that f ∈ CBF if, and only if, f has an analytic
extension onto the open upper complex half-plane H↑ := {z ∈ C : Im z > 0} such that
f : H↑ → H↑ and and f(0+) = lim(0,∞)3λ→0 f(λ) exists, see [3, Theorem 6.2].
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First proof of the main theorem. According to [4, Theorem I.4.3, p. 32], we can pick a
sequence of step functions {αn : n ∈ N} on [0, 1] of the following form

αn =

n∑
i=1

a
(n)
i 1[

t
(n)
i−1,t

(n)
i

),
where a

(n)
i ∈ [0, 1] for all i ∈ {1, . . . , n} and 0 = t

(n)
0 < t

(n)
1 < · · · < t

(n)
n = 1, such that

αn(x)→ α(x) for almost all x ∈ [0, 1] as n→∞. For n ∈ N and λ > 0, we have

φ(α)n (λ) := exp

[∫ 1

0

λ− 1

1 + (λ− 1)x
αn(x) dx

]
=exp

[
n∑
i=1

a
(n)
i

∫ t
(n)
i

t
(n)
i−1

λ− 1

1 + (λ− 1)x
dx

]

=

n∏
i=1

(
1 + (λ− 1)t

(n)
i

1 + (λ− 1)t
(n)
i−1

)a(n)
i

.

This representation allows us to extend φ(α)n analytically onto the open upper half-plane
H↑. Moreover,

lim
(0,∞)3λ→0

φ(α)n (λ) = 0 for all n ∈ N,

and by the dominated convergence theorem, one has

lim
n→∞

φ(α)n (λ) = φ(α)(λ) for all λ > 0.

Let n ∈ N and z ∈ H↑. Note that

φ(α)n (z) =

n∏
i=1

(
1 + (z − 1)t

(n)
i

1 + (z − 1)t
(n)
i−1

)a(n)
i

=
(
t
(n)
1

)a(n)
1

(
z − 1 +

1

t
(n)
1

)a(n)
1 n∏

i=2

(
t
(n)
i

t
(n)
i−1

)a(n)
i
(
z − 1 + 1/t

(n)
i

z − 1 + 1/t
(n)
i−1

)a(n)
i

=
(
t
(n)
1

)a(n)
1

(
z
(n)
1

z
(n)
0

)a(n)
1 n∏

i=2

(
t
(n)
i

t
(n)
i−1

)a(n)
i
(
z
(n)
i

z
(n)
i−1

)a(n)
i

,

where

z
(n)
0 := 1, z

(n)
i := z − 1 +

1

t
(n)
i

, i = 1, . . . , n.
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It is easy to see that Im z
(n)
i = Im z for all i ∈ {1, . . . , n}, and Re z

(n)
i−1 > Re z

(n)
i for all

i ∈ {2, . . . , n}; see the figure on the previous page.
Then we find that

arg
z
(n)
i

z
(n)
i−1

> 0 for every i ∈ {1, . . . , n}, and
n∑
i=1

arg
z
(n)
i

z
(n)
i−1

= arg z(n)n = arg z ∈ (0, π). (1.1)

If a(n)i = 0 for all i ∈ {1, . . . , n}, then φ(α)n ≡ 1, which is obviously of class CBF ; otherwise,

we obtain from (1.1) and a(n)i ∈ [0, 1] that

arg φ(α)n (z) =

n∑
i=1

a
(n)
i arg

z
(n)
i

z
(n)
i−1

∈ (0, π),

which implies that φ(α)n preserves the open upper half-plane, and so φ(α)n ∈ CBF . Thus,
we conclude that φ(α)n ∈ CBF for all n ∈ N. Since CBF is closed under pointwise limits,
cf. [3, Corollary 7.6 (ii)], it follows that φ(α) ∈ CBF .

2 Second proof

Our second proof is based on the characterization (0.3) of complete Bernstein func-
tions mentioned in Remark 2. Alili, Jedidi and Rivero have discovered the same argument,
independently of us in [1, Example 4.2, p. 730]. Since their proof appears in a different
context and contains a small mistake, we provide the short proof for the readers’ conve-
nience. We are grateful to an anonymous referee pointing out the reference [1] and we
acknowledge their priority for this argument.

Second proof of the main theorem. Observe that

log φ(α)(λ) =

∫ 1

0

λ− 1

1 + (λ− 1)x
α(x) dx

=

∫ 1

0

1

x2

(
x− 1

(1− x)/x+ λ

)
α(x) dx, λ > 0.

Changing variables according to t = (1− x)/x yields that for λ > 0

log φ(α)(λ) =

∫ ∞
0

(
1

1 + t
− 1

λ+ t

)
α

(
1

1 + t

)
dt

=

∫ ∞
0

(
1

1 + t
− t

1 + t2

)
α

(
1

1 + t

)
dt

+

∫ ∞
0

(
t

1 + t2
− 1

λ+ t

)
α

(
1

1 + t

)
dt.

Since ∣∣∣∣ t

1 + t2
− 1

λ+ t

∣∣∣∣ = ∣∣∣∣λt− 1

λ+ t

∣∣∣∣ 1

1 + t2
∈ L1((0,∞); dt) for all λ > 0,

we know that both integrals appearing in the above representation of log φ(α)(λ) are
finite. This shows that φ(α) is a complete Bernstein function of the form (0.3) with
parameters

γ :=

∫ ∞
0

(
1

1 + t
− t

1 + t2

)
α

(
1

1 + t

)
dt and t 7→ η(t) := α

(
1

1 + t

)
.
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