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Abstract

It is shown that
P(‖a1U1 + · · ·+ anUn‖ > u) 6 cP(a‖Zd‖ > u)

for all real u, where U1, . . . , Un are independent random vectors uniformly distributed
on the unit sphere in Rd, a1, . . . , an are any real numbers, a :=

√
(a2

1 + · · ·+ a2
n)/d,

Zd is a standard normal random vector in Rd, and c = 2e3/9 = 4.46 . . . . This constant
factor is about 89 times as small as the one in a recent result by Nayar and Tkocz,
who proved, by a different method, a corresponding conjecture by Oleszkiewicz. As
an immediate application, a corresponding upper bound on the tail probabilities for
the norm of the sum of arbitrary independent spherically invariant random vectors is
given.
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In this note, we shall present an upper bound on the tail probability for the Euclidean
norm of the weighted sum of independent random vectors distributed uniformly on the
unit sphere in Rd that is about 89 times as small as the corresponding bound recently
obtained in [8].

To provide a relevant context, let us begin by introducing the class C2
conv of all even

twice differentiable functions h : R → R whose second derivative h′′ is convex. Let
ε, ε1, . . . , εn be independent Rademacher random variables (r.v.’s), and let ξ1, . . . , ξn be
any independent symmetric r.v.’s with E ξ2i = 1 for all i.

Take any natural d. For any vectors x and y in Rd, let, as usual, x · y denote the
standard inner product of x and y, and then let ‖x‖ :=

√
x · x.

Theorem 2.3 in [9] states that Eh
(√
εAεT

)
6 Eh

(√
ξAξT

)
for any h ∈ C2

conv and any

nonnegative definite n× n matrix A ∈ Rn×n, where ε := [ε1, . . . , εn] and ξ := [ξ1, . . . , ξn].
This can be restated as the following generalized moment comparison:

Eh(‖ε1x1 + · · ·+ εnxn‖) 6 Eh(‖ξ1x1 + · · ·+ ξnxn‖) (1)

for any h ∈ C2
conv and any (nonrandom) vectors x1, . . . , xn in Rd; indeed, any nonnegative

definite matrix A ∈ Rn×n is the Gram matrix of some vectors x1, . . . , xn in Rd for some
natural d, and then ‖α1x1 + · · · + αnxn‖ =

√
αAαT for any α := [α1, . . . , αn] ∈ R1×n.

From the comparison (1) of generalized moments of the r.v.’s ‖ε1x1 + · · · + εnxn‖ and
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‖ξ1x1 + · · ·+ ξnxn‖, a tail comparison was extracted ([9, Theorem 2.4]), an equivalent
form of which is the inequality

P(‖ε1x1 + · · ·+ εnxn‖ > u) < cP(‖Zr‖ > u) (2)

for all real u, where x1, . . . , xn are any (nonrandom) vectors in Rd whose Gram matrix is
an orthoprojector of rank r, Zr is a standard normal random vector in Rr, and

c = c3 := 2e3/9 = 4.46 . . . . (3)

A special case of (2) is the inequality

P(|ε1a1 + · · ·+ εnan| > u) 6 cP(|Z1| > u) (4)

for all real u, where a1, . . . , an are any real numbers such that

a21 + · · ·+ a2n = 1.

The quoted results generalize and refine results of [4, 5]. In turn, they were further
developed in [10, 11].

A simple inductive argument, which was direct rather than based on a generalized
moment comparison, was offered in [3], where (4) was proved with c ≈ 12.01. Based in
part on that inductive argument in [3], the constant c in (4) was improved to ≈ 1.01c∗ in
[13] and then to c∗ in [2], where c∗ := P(|ε1 + ε2| > 2)/P(|Z1| >

√
2) = 3.17 . . . , so that c∗

is the best possible value of c in (4).
In [1], another kind of multidimensional generalized moment comparison was ob-

tained. A continuous function f : Rd → R is called bisubharmonic if the (Sobolev–
Schwartz) distribution ∆2f is a nonnegative Radon measure on Rd, where ∆ is the
Laplace operator on Rd. By [1, Theorem 3], for any continuous function f : Rd → R one
has

f is bisubharmonic if and only if E f(y + U
√
t) is convex in t ∈ (0,∞) for each y ∈ Rd,

(5)
where U is a random vector uniformly distributed on the unit sphere Sd−1 in Rd.

Let U1, . . . , Un be independent copies of U . Theorem 1 in [1] states that

E f(a1U1 + · · ·+ anUn) 6 E f(b1U1 + · · ·+ bnUn), (6)

where f is a bisubharmonic function and a1, . . . , an, b1, . . . , bn are real numbers such that
the n-tuple (b21, . . . , b

2
n) is majorized by (a21, . . . , a

2
n) in the sense of the Schur majorization

(see e.g. [7]).
One may note that, whereas in (1) each of the random summands ε1x1, . . . , εnxn,

ξ1x1, . . . , ξnxn is distributed on a straight line through the origin, each of the random
summands a1U1, . . . , anUn, b1U1, . . . , bnUn in (6) is uniformly distributed on a sphere
centered at the origin.

Since the distributions of the random vectors a1U1 + · · ·+ anUn and b1U1 + · · ·+ bnUn

are clearly spherically invariant, without loss of generality one may assume that the
function f in (6) is spherically invariant as well, that is, f(x) depends on x ∈ Rd only
through ‖x‖. If f is indeed a spherically invariant bisubharmonic function, it then follows
from (6) and [1, formulas (1.2), (1.3)] that

E f(a1U1 + · · ·+ anUn) 6 E f(aZd), (7)

where

a :=
√

(a21 + · · ·+ a2n)/d; (8)

cf. [1, Corollary 1].
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Let C2
conv(H) denote the class of all spherically invariant twice differentiable functions

f from a Hilbert space H to R whose second derivative f ′′ is convex in the sense that
the function H 3 x 7→ f ′′(x; y, y) is convex for each y ∈ H, where f ′′(x; y, y) is the value
of the second derivative of the function R 3 t 7→ f(x + ty) at t = 0. The class C2

conv(H)

was characterized in [12], with some applications. Clearly, C2
conv(R) coincides with the

class C2
conv defined in the beginning of this note.

K. Oleszkiewicz conjectured [8] that

P(‖a1U1 + · · ·+ anUn‖ > u) 6 cP(a‖Zd‖ > u) (9)

for some universal constant c and all real u, where a1, . . . , an, a, U1, . . . , Un, Zd are as
before; clearly, (9) is a generalization of (4). This conjecture was proved in [8] with
c = 397 based, in part, on the idea from [3].

Using inequality (2.6) in [9], one can improve the lower bound 1/397 in [8, Lemma
1] to 1/e2 and thus improve the constant c in (9) from 397 to e2 = 7.38 . . . . Indeed, let,
as usual, Φ denote the standard normal distribution function. Then, by inequality (2.6)
in [9], g(d) := P(‖Zd‖ >

√
d+ 2 ) > 1− Φ

(
(
√
d+ 2−

√
d− 1 )

√
2
)

=: q(d), which latter is
clearly increasing in d, with q(4) > 1/e2, whence g(d) > 1/e2 for d = 4, 5, ..., whereas
g(2) = 1/e2 < g(3). So, P(‖Zd‖ >

√
d+ 2 ) = g(d) > 1/e2 for d = 2, 3, .... Similarly,

P(‖Zd‖ >
√
d ) > 1/e for d = 2, 3, ... (but a lower bound on P(‖Zd‖ >

√
d ) is not really

needed in the proof of the main result in [8]).
The aim of this note is to point out that, based on the generalized moment comparison

(7) and results in [9, 10], one can further improve the constant c in (9):

Theorem 1. Inequality (9) holds (for all real u) with c as in (3). The strict version of (9),
again with c as in (3), also holds.

Our method is quite different from that of [8]. In view of (7), Theorem 1 is an
immediate corollary of the following two lemmas.

Lemma 1. For any function h ∈ C2
conv, the function f : Rd → R defined by the formula

f(x) := h(‖x‖) for x ∈ Rd is a spherically invariant bisubharmonic function.

Lemma 2. Let ξ be any nonnegative r.v. such that

Eh(ξ) 6 Eh(‖Zd‖) for all h ∈ C2
conv. (10)

Then
P(ξ > u) < c3 P(‖Zd‖ > u) (11)

for all real u, with c3 defined in (3).

Proof of Lemma 1. Let U be as in (5) and then let ε be a Rademacher r.v. independent of
U . For all t ∈ (0,∞) and y ∈ Rd

E f(y + U
√
t) = E f(y + εU

√
t) = Eh(‖y + εU

√
t‖) = EEU gbU ,h(βU + ε

√
t), (12)

where EU denotes the conditional expectation given U , gb,h(u) := h
(√
u2 + b

)
for b ∈

[0,∞) and u ∈ R, βU := y ·U , and bU := ‖y‖2−(y ·U)2 > 0, so that the r.v. ε is independent
of the pair (bU , βU ), which latter is a function of U . By [9, Lemma 3.1], gb,h ∈ C2

conv for
each b ∈ [0,∞). Hence, by [14, Lemma 3.1] or [9, Proposition A.1], EU gbU ,h(βU + ε

√
t)

is convex in t ∈ (0,∞). So, in view of (12), E f(y + U
√
t) is convex in t ∈ (0,∞). Now it

follows by (5) that the function f is indeed bisubharmonic. That f is spherically invariant
is trivial.

Proof of Lemma 2. Taken almost verbatim, the proof of Theorem 2.4 in [9] (based on
Theorem 2.3 in [9]) can also serve as a proof of Lemma 2. Indeed, no properties of the
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r.v. εΠεT were used in the proof of [9, Theorem 2.4] except that this nonnegative r.v.
satisfies the inequality in [9, Theorem 2.3] with A = Π and ξ = Zn, which can then be
written as (10) with ξ =

√
εΠεT and d equal the rank of Π. (Note here a typo in [9]: in

place of “Theorem 2.3” in line 7- on page 363 there, it should be “Theorem 2.4”.)
Instead of following the entire proof of [9, Theorem 2.4], one can alternatively reason

as follows. Let ξ be any nonnegative r.v. such that (10) holds. Then [9, Lemma 3.5]
holds with ξ2 in place of εΠεT . So, in view of [9, formula (3.11)] and [10, formula (22) in
Theorem 3.11], inequality (11) holds for u > µr, with r := d and µr defined on page 362
in [9]. The cases r1/2 6 u 6 µr and 0 6 u 6 r1/2 are considered as was done at the end
of the proof of [9, Lemma 3.6], starting at the middle of page 365 in [9]. The case u < 0

is trivial.

An immediate application of Theorem 1 is

Corollary 1. Let X1, . . . , Xn be any independent spherically invariant random vectors in
Rd, which are also independent of the Gaussian random vector Zd. Then

P(‖X1 + · · ·+Xn‖ > u) <
2e3

9
P
(√
‖X1‖2 + · · ·+ ‖Xn‖2 ‖Zd‖ > u

)
(13)

for all real u.

This corollary follows from Theorem 1 by the conditioning on ‖X1‖, . . . , ‖Xn‖, because
for each i = 1, . . . , n the conditional distribution of the spherically invariant random
vector Xi given ‖Xi‖ = ai is the distribution of aiUi.

In the case when the independent spherically invariant random vectors X1, . . . , Xn

are bounded almost surely by positive real numbers b1, . . . , bn, respectively, one can
obviously replace

√
‖X1‖2 + · · ·+ ‖Xn‖2 in the bound in (13) by

√
b21 + · · ·+ b2n. The

resulting bound, but with the constant factor 397 in place of 2e3

9 = 4.46 . . . , was obtained
in [8].

Similarly to the extension (13) of inequality (9), one can extend (7) as follows:

E f(X1 + · · ·+Xn) 6 E f
(√
‖X1‖2 + · · ·+ ‖Xn‖2 Zd

)
(14)

for any spherically invariant bisubharmonic function f , where X1, . . . , Xn are as in
Corollary 1.

A related result was obtained in [6]: if X1, . . . , Xn are independent identically dis-
tributed spherically invariant random vectors in Rd such that Eh(‖X1‖2) 6 Eh(‖Zd‖2)

for all nonnegative convex functions h : R→ R, then

E ‖a1X1 + · · ·+ anXn‖p 6 E ‖aZd

√
d‖p (15)

for real p > 3, where a1, . . . , an, a are as in (7)–(8).
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