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Abstract. Mixture models provide a flexible representation of heterogene-
ity in a finite number of latent classes. From the Bayesian point of view,
Markov Chain Monte Carlo methods provide a way to draw inferences from
these models. In particular, when the number of subpopulations is consid-
ered unknown, more sophisticated methods are required to perform Bayesian
analysis. The Reversible Jump Markov Chain Monte Carlo is an alternative
method for computing the posterior distribution by simulation in this case.
Some problems associated with the Bayesian analysis of these class of mod-
els are frequent, such as the so-called “label-switching” problem. However,
as the level of heterogeneity in the population increases, these problems are
expected to become less frequent and the model’s performance to improve.
Thus, the aim of this work is to evaluate the normal mixture model fit using
simulated data under different settings of heterogeneity and prior information
about the mixture proportions. A simulation study is also presented to eval-
uate the model’s performance considering the number of components known
and estimating it. Finally, the model is applied to a censored real dataset con-
taining antibody levels of Cytomegalovirus in individuals.

1 Introduction

Mixture models are noted for their flexibility in modeling complex data and are
widely used in the statistical literature (see McLachlan and Peel (2004)). These
models provide a natural framework for modeling heterogeneity in a popula-
tion. Moreover, due to the large class of functions that can be approximated
by mixture models, they are attractive for describing non-standard distributions
and have been adopted in many areas, such as genetics, ecology, computer sci-
ence, economics, biostatistics and many others. For instance, as stated in Jordan
(2004), in genetics, location of quantitative traits on a chromosome and inter-
pretation of microarrays are both related to mixtures, while, in computer sci-
ence, spam filters and web context analysis start from a mixture assumption
to distinguish spams from regular emails and to group pages by topic, respec-
tively.

Statistical analysis of mixtures is not straightforward and the Bayesian paradigm
has been particularly suited for this purpose. This framework allows the compli-
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cated structure of a mixture model to be decomposed into a set of simpler structures
through the use of hidden or latent variables. According to Richardson and Green
(1997), when the number of components is unknown, the Bayesian paradigm is the
only sensible approach to its estimation. Thus, the Bayesian approach has enabled
mixture models to become increasingly popular in many areas. In real applications,
the number of components can have important implications regarding the problem,
so it has to be well specified or estimated, although practitioners usually have little
theoretical guidance. On the other hand, even if prior theory suggests a particu-
lar number of components, it may not be possible to reliably distinguish between
some of the components. In some cases additional components may simply reflect
the presence of outliers in the data.

When the number of subpopulations is assumed to be known, Markov Chain
Monte Carlo methods (MCMC) can be used for Bayesian estimation of the subpop-
ulation parameters. Nevertheless, this method, as originally formulated, requires
the posterior distribution to have a density with respect to some fixed measure.
When the number of components is considered unknown, that is, the size of the
parameter space is also a parameter, a problem with variable dimension appears, so
MCMC cannot be used alone and more sophisticated methods are required to per-
form the Bayesian analysis. One alternative in this case is the approach based on
Reversible Jump MCMC (RJMCMC), which was first proposed by Green (1995)
and applied in univariate normal mixture models with unknown numbers of com-
ponents by Richardson and Green (1997). The method basically consists of jumps
between the parameter subspaces corresponding to different numbers of compo-
nents in the mixture.

While MCMC provides a convenient way to draw inference from compli-
cated statistical models, there are still many, perhaps under appreciated, prob-
lems associated with the MCMC analysis of mixtures. These problems are
mainly caused by the nonidentifiability of the components under symmetric pri-
ors, which leads to the so called label-switching problem in the MCMC out-
put, discussed in Jasra, Holmes and Stephens (2005). The term describes the
invariance of the likelihood function under relabelling of the mixture compo-
nents, which can cause the posterior distribution of the parameters to be highly
symmetric and multimodal. Therefore, the component labels are mixed up and
cannot be distinguished from each other. As a result, the usual practice of sum-
marizing joint posterior distributions by marginal distributions, and for instance,
estimating parameters by their posterior mean is often inappropriate, because
the marginal on the parameters for all components is identical and the poste-
rior expectation for the parameters is identical too. A frequent response to this
problem is to remove the symmetry by using artificial identifiability constraints.
This and other alternative approaches to this problem are described by Stephens
(2000).
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The aim of this work is to review and discuss some aspects in the inference of
mixture models, in particular the normal mixture models, when applied to hetero-
geneous populations under the Bayesian approach. The main purpose is to evaluate
the model’s performance in different settings of heterogeneity, prior information
for mixture weights and when considering the number of components known or
unknown.

Most previous works, as Jasra, Holmes and Stephens (2005), in general, eval-
uate a possible improvement in the label-switching problem choosing a more ap-
propriate relabelling algorithm. However, the aim here is to verify if the label-
switching phenomena generally persists when the subpopulations are not well
separated and how the level of heterogeneity of the population affects the results.
Furthermore, we evaluate the label-switching phenomenon by assuming more in-
formative prior distributions for the mixture weights and show that in some cases
it can be more efficient than use different relabelling algorithms known in the lit-
erature.

Although works as Nobile (2004) and Richardson and Green (1997) carried
out some studies about the influence of hyperparameters specification on posterior
distribution of other parameters, different from this paper, they did not connect the
prior distribution of the weights with the label-switching problem, which is our
main result.

On the other hand, previous works that compare the results obtained under
RJMCMC with MCMC, as Richardson and Green (1997) for the univariate case
and Dellaportas and Papageorgiou (2006) for the multivariate one, use as a diag-
nostic tool mainly the predictive density and the posterior estimates of k. In this
work, we also evaluate the model’s performance under a simulation study in or-
der to verify frequentist properties of the Bayes’ estimators produced from each
method.

The paper is organized as follows. Section 2 presents the general definition of
a mixture model and discusses some aspects of inferences. A simulation study for
assessing the estimation of model parameters under different levels of heterogene-
ity is presented in Section 3. Additionally, a prior sensitivity analysis of the mixture
proportions is presented in order to see its effect under label-switching phenom-
ena. We also discuss the model fit when the number of components is known and
unknown. In Section 4, the performance of the method is assessed through an ap-
plication to a left-censored real dataset. Thus, we discuss briefly the inference in
this case. Finally, Section 5 presents some conclusions and suggestions for further
research.

We particularly used the R Core Team (2014) package called mixAK, proposed
by Komárek (2009), with routines to compute the posterior distribution through
MCMC and RJMCMC for multivariate right, left and interval-censored observa-
tions. Appendix A presents the main code that can be used to perform the experi-
ments presented here.
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2 Finite mixture models

The basic mixture model for independent scalar or vector observations Yi , i =
1, . . . , n, is a convex combination given by:

Yi ∼
k∑

j=1

wjf (· | θ j ), i = 1, . . . , n, (2.1)

where f (· | θ) is a given parameter family of densities indexed by a scalar or a
vector θ . In general, the objective of the analysis is to make inferences about the
unknowns: the number of components, k; the parameters θ = (θ1, . . . , θk) with θ j

being specific to component j ; and the components’ weights, w = (w1, . . . ,wk),
0 < wj < 1,

∑k
j=1 wj = 1. Let � = (w, θ, k) be the parametric vector of the model

(2.1).
For an observed random sample y = (y1, y2, . . . , yn)

′, the likelihood function of
� is given by:

p(y|�) =
n∏

i=1

k∑
j=1

wjf (yi |θ j ). (2.2)

The likelihood function leads to kn terms, which creates computational difficulty.
A context in which the model (2.1) can arise and we are interested in this pa-

per is when we postulate a heterogeneous population consisting of heterogeneous
groups j = 1,2, . . . , k of sizes proportional to wj , from which a random sample is
drawn. The label of the group from which each observation is drawn is unknown,
so it is natural to regard the group label zi , for the ith observation as a latent
variable and rewrite (2.1) as the following hierarchical model: for i = 1, . . . , n,
j = 1, . . . , k,

Yi | θ j , zi = j ∼ f (· | θ j ), with P(zi = j) = wj . (2.3)

By integrating z = (z1, . . . , zk) out from (2.3), we return to model (2.1). The
formulation given by (2.3) is convenient for interpretation and calculation. Latent
indicator variables usually leads to an efficient simulation algorithm that quickly
focuses on the modes of the posterior distribution, thus it will contribute to reduc-
ing the computational effort.

A Bayesian approach to inference requires the specification of a prior distribu-
tion p(·) for the parameters of the mixture model (2.1). In particular, prior elic-
itation is an important step. According to Roeder and Wasserman (1997), in a
mixture content, assuming a non-informative prior yield improper posterior dis-
tributions. Since there is always the possibility that no observations are allo-
cated to one or more components, standard choices of independent improper
non-informative prior distributions for the component parameters cannot be used.
Richardson and Green (1997) proposes an alternative in this case based on keeping
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the simple independence and define weakly informative priors, which may or not
be data dependent.

The mixture model in (2.3) is invariant to permutation of the labels j = 1, . . . , k.
Some implications of this for likelihood analysis are discussed by Redner and
Walker (1984). If we have no prior information that distinguishes between the
components of the mixture, so the prior distribution p(·) is the same for all per-
mutations of θ , then the posterior distribution will also be symmetric and, there
will be k! symmetric modes in the posterior distribution. Then, the marginal poste-
rior distributions for the parameters will be identical for each mixture component
and the posterior means of all the components are the same, thus they are poor
estimates of these parameters. Thus, if the problem is not handled properly, the
ergodic average of the MCMC samples is not appropriate for the estimation of the
parameters.

There are some suggested solutions to this problem, see Stephens (2000) for de-
tails. One common response to the label-switching problem is to impose an iden-
tifiability constraint on the parameter space. This breaks the symmetry of the prior
and thus, of the posterior distribution of the parametric vector. For example, we
can impose an ordering constraint on θj ’s, such as θ1 < θ2 < · · · < θk , if it is a
scalar.

2.1 Inference

Since we are in a Bayesian framework, the inference consists of obtaining the
posterior distribution of the parametric vector � of model (2.3). In general, this
joint distribution cannot be obtained in closed form. One alternative, which is of-
ten used and is feasible to implement, is to generate samples from the marginal
distributions of the parameters based on the MCMC algorithm. A comprehensive
Bayesian treatment using MCMC methods was presented in Diebolt and Robert
(1994) for finite mixture models.

Nevertheless, this method, as originally formulated, requires the posterior dis-
tribution to have a density with respect to some fixed measure. Thus, in the mixture
context, the method can only be applied when the number of components k in the
model (2.3) is considered known.

However, the number k is rarely known, and setting an incorrect value can bring
important consequences to the posterior distribution. For instance, on an extremal
case, a mixture model with only one component will roughly impose zero density
to some ranges of the density, while a mixture with the number of components
equal to the number of observations, simply will over-fit the data, creating un-
necessary clusters. Thus, a halfway solution offers a trade off between these two
solutions, providing a good fit of the data, modeling well all ranges of the density,
without a wrong large number of parameters to estimate. Other times, the target of
the study is exactly the estimation of k. The approach based on RJMCMC is an al-
ternative in this case, as proposed in this context by Richardson and Green (1997).
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It operates on the augmented parameter space, where the allocation variables z are
included as unknown parameters.

The method basically consists of jumps between the parameter subspaces corre-
sponding to different numbers of components in the mixture, after updating them.
If the current model is a mixture with k > 1 components, then it is usual to reduce
the searching strategy to moves that either preserve the number of components, or
lead to a mixture with k − 1 or k + 1 components. The idea is then to supplement
each of the spaces with adequate artificial spaces in order to create a bijection be-
tween them, most often by augmenting the space of the smaller model. Jumps are
achieved by adding new components, deleting existing components, and splitting
or merging these. These moves are randomly chosen and after being drawn, it is
necessary to make corresponding changes to (θ ,w).

One can assess convergence for each mixture component parameters, however,
as mentioned before, label-switching issues lead to a type of poor mixing in the
mixture component-specific parameters, which may not impact convergence and
mixing of the induced predicitive density. In particular, due to exchangeability
of the mixture components, its marginal posterior distributions is identical for
all subgroups and hence the chains for each of the mixture component-specific
parameters have the same target distribution. For instance, in a normal mixture
model with k = 2 components, suppose one mixture component located at μ1 = 0
and the other at μ2 = −1. The Gibbs sampler for μ1 should then randomly jump
between values close to 0 and values close to −1 if mixing is good. The pos-
terior for μi , i = 1,2 has a multimodal form with one mode close to 0 and
one mode close to −1. If these modes are well separated and there is a region
of low probability density between the modes, then the Gibbs sampler will re-
main stuck for long intervals in one mode. A well-mixing Gibbs sampler should
switch between these modes often, but in practice for well separated compo-
nents, it is common to remain stuck in one labeling across all the samples are
collected.

For those reasons, it is not appropriate to simply calculate posterior summaries
based on the posterior draws of the parameters. In the two-component illustra-
tion, one would obtain the same posterior mean for μ1 and μ2 if the Gibbs sam-
pler mixed well enough and sufficiently many samples were drawn. If we could
relabel the samples so that after relabelling all the samples of (μ1, σ

2
1 ) corre-

spond to the component at μ = 0 and all the samples of (μ2, σ
2
2 ) correspond

to the component at μ = −1, then we could calculate posterior summaries of
the mixture component-specific parameters in the standard manner. This rela-
belling can be done using postprocessing algorithms or with constraints in the
prior in an attempt to make the separate mixture components distinguishable. In
this paper, we will restrict imposing an increasing order to the mixture means
in the prior distribution, so that the higher indexed components have higher
means.
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However, for any given dataset, many identifiability constraint choices can be
ineffective in removing the symmetry from the posterior distribution. For instance,
in multivariate cases it is not at all clear in most cases what type of restriction is
appropriate. Even in the univariate case, it may be that we need multiple compo-
nents with similar means but different variances to provide a good fit to the data.
If the means are close together, then label-switching can occur even if we place a
strict order restriction on the means and hence the restriction does not fully solve
the label ambiguity problem.

2.2 Normal mixture model

In this work, we are particularly interested in the univariate normal case presented
in Richardson and Green (1997), so θ j in (2.1) becomes a vector with expectation
and variance parameters (μj , σ

2
j ). The model is stated below: for i = 1, . . . , n and

j = 1, . . . , k,

Yi | μj ,σ
2
j , zi = j ∼ Normal

(
μj ,σ

2
j

)
,

(2.4)
P(zi = j) = wj .

Assuming that the parameters in � are prior independent and identically dis-
tributed and that k is unknown, the prior distribution is given by: for i = 1, . . . , n

and j = 1, . . . , k,

w ∼ Dirichlet(γ ),

μj ∼ Normal
(
μa,σ

2
a

)
, j = 1, . . . , k,

σ−2
j ∼ Gamma(α,β), j = 1, . . . , k, (2.5)

β ∼ Gamma(g,h),

k ∼ Uniform{1, kmax},
where Dirichlet(a) generically denotes the symmetric Dirichlet distribution with
parameter a. The symmetric Dirichlet distributions are often used, since there typ-
ically is no prior knowledge favoring one component over another. Since all ele-
ments of the parameter vector have the same value, the distribution is alternatively
parameterized by a single scalar value a. Gamma(a, b) represents the gamma dis-
tribution with mean a/b and variance a/b2 and Uniform{a, . . . , b} is the uniform
distribution defined on the integers {a, . . . , b}. Moreover, for identifiability, we can
use for example that the μj are in increasing numerical order, thus the joint prior
distribution of � is k! times the product of their marginal prior distributions.

In this paper, as done in Richardson and Green (1997) we consider the Bayesian
estimation in the set-up where we do not have strong prior information about the
mixture parameters. Thus, we use weakly informative priors and the default hy-
perparameter choices can be seen with further details in Richardson and Green
(1997).
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As mentioned in Section 2.1, in this work the unique labeling is achieved by im-
posing a restriction on μj . We use that in which the μj are in increasing numerical
order; so the joint prior distribution of the parameters is k! times the prior density,
restricted to the set μ1 < μ2 < · · · < μk . When the means are well separated, labels
of the realizations from the posterior by ordering their means generally coincide
with the population ones. As the separation gets small, label-switching can occur.
This problem can be also minimized by choosing to order other parameters of the
mixture components, for example, the variance, weights or some combination of
all three parameters.

3 Simulation study

To assess the convergence of the MCMC and RJMCMC estimation, we gener-
ated some samples under different settings. We obtained samples from the pos-
terior distributions of the model parameters, supposing k known and estimat-
ing it. The population estimates were then compared with the true values to
evaluate the model’s performance. The aim was to evaluate the performance
of the normal mixture model varying the level of heterogeneity and the prior
information elicited for the mixture proportions. Furthermore, we also com-
pared the results obtained under each simulation method considered, MCMC and
RJMCMC.

3.1 Assessment of RJMCMC and MCMC under different scenarios

To check the convergence of the RJMCMC and MCMC estimations, we gen-
erated one sample with n = 100 observations under two levels of heterogene-
ity, the first one with well-separated groups, which we call the more heteroge-
neous sample, and the other with groups less well separated, which represents the
more homogeneous one. In both scenarios, we fixed k = 5, σ 2 = (σ 2

1 , . . . , σ 2
5 ) =

(0.22,1.95,0.92,0.74,1.13) and w = (w1, . . . ,w5) = (0.17,0.21,0.34,0.12,

0.16). With these values fixed for w, we expected to have groups with a rea-
sonable number of observations, so we did not consider scenarios with groups
outliers. The heterogeneous scenario was obtained by fixing μ = (μ1, . . . ,μ5) =
(−3,0,4,11,16) and the homogeneous by setting μ = (μ1, . . . ,μ5) = (0,2,4,

6,8). Figure 1 presents the distribution of both datasets generated. The aim of
this study is to verify how the level of heterogeneity of the population affects the
results, mainly regarding the label-switching problem.

The prior distribution considered are described in (2.5), and we elicited the
prior for μj and σ 2

j using the same idea of weakly informative prior suggested
by Richardson and Green (1997). Moreover, we sort all components according to
increasing order of magnitude of the posterior means to avoid the label switching
phenomenon.
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Figure 1 Histograms with the distribution of the samples generated.

First, we assumed k unknown and in its prior distribution presented in (2.5) we
assumed kmax = 10, thus RJMCMC was used to obtain samples from the posterior
distribution. We also did a brief prior sensitivity analysis assuming two values of
the Dirichlet prior distribution for each dataset: γ ∈ {1,4} for the heterogeneous
case and γ ∈ {1,4,10} for the homogeneous case. To assume γ = 1 is equivalent
to assuming a uniform distribution over all points in its support. On the other hand,
the parameter value above 1 gives some information that all sample proportions in
subpopulations are similar to each other.

For the RJMCMC simulations, we generated, respectively for the homogeneous
and heterogeneous cases, 350,000 and 70,000 samples from the posterior distribu-
tion, discarded the first 10,000 and 20,000, and then thinned the chain by taking
every 10th sample value. Figure 2 displays the histogram with the posterior densi-
ties of k for some values of γ . It should be noted that for the heterogeneous case
the parameter k is well estimated, but when γ = 4, the estimate is more accurate.
On the other hand, k is underestimated when assuming γ = 4 with the homoge-
neous sample. The same happens with γ = 1 or any value less than 4. In this case,
when γ = 10 the value of k is well estimated.

Figure 3 shows the trace plot with the posterior distribution of parameters μj

conditional on the posterior samples, whose estimated value of k is the one with
highest posterior probability. Here we also considered the value of k known and
fixed it as the true value used to generate the samples, so MCMC was also used
to generate samples from the posterior distribution. For the MCMC simulations,
we generated 70,000 samples from the posterior distribution, discarded the first
20,000, and then thinned the chain by taking every 10th sample value, for both
datasets generated.

All the results were obtained for each scenario and value of γ considered. The
black trace represents the posterior density when setting γ = 1, the blue trace
when γ = 4 in both scenarios and γ = 10 is represented by the red trace in the
homogeneous case. The gray line represents the true value of each μj . Note that
in the homogeneous case, when RJMCMC is used, there is only a red trace for μ5.
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Figure 2 Posterior densities of the parameter k for each value of γ considered in the prior distri-
bution of the mixture proportions. The gray point represents the true value fixed in the simulation.

The reason is that the posterior for k favors the value 5 only when γ = 10. When
analyzing Figure 3, we can see that the raw samples jump around between dif-
ferent symmetric regions in the trace plots, which explains the multimodalities of
the marginal densities for raw samples. Thus, the effects of label-switching can
be seen in the sampled values of the component means for many cases, even
in the heterogeneous case. However, this behavior improves when giving some
prior information about the mixture proportions. It is also possible to observe that
in the homogeneous case it is necessary to increase the value of γ even more,
that is, to give more prior information that the proportions observed in groups
are similar, in order to minimize the label-switching effects and attain the conver-
gence.

The results obtained indicate that the RJMCMC and MCMC chains converged
in some cases, but in others the label-switching phenomenon appears significantly,
so estimating the means on the basis of the RJMCMC and MCMC output is not
straightforward. However, as the value of γ increases this behavior improves. If the
number of iterations increases, and so does the lag of the chain, the convergence
can also improve, but this would require high computational effort. Thus, we sug-
gest careful elicitation of the prior distribution to have better estimates. Almost all
the mean parameters are well estimated when γ = 4 and γ = 10 in the heteroge-
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Figure 3 Trace plots with the posterior densities of the parameters of μ obtained from fitting the
normal mixture model under the different priors considered for w and the two samples. We also
assumed the value of k to be unknown (RJMCMC) and known (MCMC). The black trace is obtained
assuming γ = 1, the blue one when γ = 4 and the red with γ = 10. The gray line represents the true
value of each μj , j = 1, . . . ,5.

neous and homogeneous case, respectively. The traces and density estimates for
the mixture proportions and variances present this same behavior.

In general, MCMC and RJMCMC present similar behavior, mainly for the het-
erogeneous sample generated. A more interesting comparison between the two
approaches is presented in the next subsection.

Figure 4 shows summary statistics of the posterior distributions of the mean
parameters after reaching the supposed convergence for each of the scenarios and
prior assumed, when assuming k unknown. The crosses represent the true value,
the lines the 95% credibility interval and the points are the posterior mean. Also,
the results in black are obtained assuming γ = 1, the blue one when γ = 4 and the
red when γ = 10. In almost all the cases, the intervals contain the true value. It is
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Figure 4 Summary measurements for the point and 95% credibility interval estimates of the mean
parameters model for a heterogeneous and homogeneous sample under three prior distributions for
w: the results in black are obtained assuming γ = 1, the blue one when γ = 4 and the red when
γ = 10. Here it was considered the value of k unknown, so RJCMC was used. The crosses represent
the true value, the lines the 95% credibility interval and the points are the posterior mean.

possible to observe the impact of the label-switching, which hampers estimating
the parameters, but also the improvement in the results when assuming a more
informative prior to w.

Therefore, we conclude that in the cases considered here, the identifiability
problem can be minimized under more informative priors and it is not necessary
to use other alternative approaches to deal with the identifiability problem, like
those described in Jasra, Holmes and Stephens (2005). Although we named that
as an informative prior distribution for the mixture weights, its elicitation does
not necessarily need prior information about the weights. In practice, we elicited
its hyperparameters based on the MCMC performance and the distribution of the
dataset among the groups.

The prior distribution of w seems to have strong impact on the posterior distri-
bution, improving the results, even in the homogeneous case. Furthermore, as the
degree of heterogeneity increases, the mixture model’s performance improves con-
siderably even under less prior information. The same conclusions were attained
when estimating the value of k or considering it known.

Additionally, Figure 5 shows the predictive densities for the two datasets gen-
erated, for all the prior distributions considered for w, represented by the solid
(γ = 1), dashed (γ = 4) and dotted (γ = 10) lines, respectively. The predictive
densities in black are those obtained when the value of k is estimated, so RJM-
CMC was used, and the red ones are obtained when the value of k is fixed at the
true value, so MCMC was used. The densities obtained under RJMCMC are con-
ditional on the posterior samples, whose sampled value of k is equal to the value
with highest posterior probability among all the samples. In contrast with the above
results, an estimate of the predictive density based on the RJMCMC and MCMC
outputs is unaffected by the label-switching problem, since it does not depend on
how the components are labeled. The predictive density is better estimated in the
heterogeneous sample than the homogeneous one and the prior distribution does
not affect the estimates. Moreover, the results obtained in the estimation consider-
ing k unknown and fixed are very similar to each other.
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Figure 5 Predictive densities considering different prior distributions for w and estimating the
value of k (RJMCMC) and fixing it on its true value (MCMC).

3.2 Comparison between RJMCMC and MCMC

To examine the performance of the Bayesian estimators obtained under each sim-
ulation method, we generated two artificial samples of size n = 100, fixing k at
two different values, k = 3 and k = 5, in order to evaluate the results when vary-
ing the value of k. Then, we obtained samples from the posterior distribution
of the parametric vector, assuming k known (MCMC) and estimating it (RJM-
CMC). In the MCMC simulation we particularly set k for each case at three dif-
ferent values: we assumed it to be 2, 3 and 4 for the first sample and 4, 5 and
6 for the second one. We assumed here the same prior distribution used in Sec-
tion 3.1. Thus, we are interested in evaluating the method’s performance when
we fix k as its true value, or a smaller or a greater value than the true one, and
when it is estimated. For the RJMCMC and MCMC simulations, we generated
70,000 samples from the posterior distribution, discarded the first 10,000, then
thinned the chain by taking every 10th sample value, and the convergence was
achieved.

Figure 6 presents the posterior distribution of k obtained in the RJMCMC simu-
lation and the predictive densities obtained for each sample generated. It should be
noted that k is well estimated and all predictive densities are very similar, except
when we fixed k lower than the true value. Moreover, setting k higher than the true
value does not affect the results.

Selecting a suitable number of mixture components if it is not known in ad-
vance, coincides with the problem of model selection. A general approach to com-
parison of complex models based on the samples from the posterior distribution
has been suggested by Spiegelhalter et al. (2002) who introduced the Deviance
Information Criterion (DIC). Nevertheless, its use in mixture models is controver-
sial, because the posterior expectation is not a suitable plug-in estimate for the
model parameters since it lies in between multiple modes of the posterior density,
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Figure 6 Predictive densities considering k known (MCMC) and fixing it at k, k − 1, k + 1 and
estimating it (RJMCMC).

and alternative plug-in estimators are hard to define. Other versions of DIC for
mixture and in general missing data models have been discussed by Celeux et al.
(2006). DIC is computed as DIC = D̄ +pD , such as pD = D̄ − D̃, where D̄ is the
approximation to the posterior mean of the deviance, D̃ is the deviance evaluated
in the “estimate” to the model parameters and pD is the effective dimension of
parameters.

Plummer (2008) suggested to use penalized loss function for Bayesian model
comparison and showed that DIC is an approximation to a penalized loss function
based on the deviance, with a penalty derived from a cross-validation argument.
Particularly in mixture context, Plummer (2008) recommends to use the Penalized
Expected Deviance (PED), which is computed as PED = D̂e + p̂opt, where D̂e

is the estimated expected deviance, where the estimate is based on two parallel
chains, p̂opt is the estimated penalty, where the estimate is based on simple MCMC
average based on two parallel chains.

Tables 1 and 2 shows the value of DIC3 presented in Celeux et al. (2006) and
PED, respectively, for each approach considered in this study. As both evaluates
the goodness of fit of the model, so the model with the smallest DIC and PED
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Table 1 DIC measurements for each model considered

k = 3 k = 5

DIC D̄ pD DIC D̄ pD

RJMCMC 438.91 431.83 7.08 557.26 546.30 10.96
MCMC (k − 1) 518.09 497.03 21.06 571.38 563.39 7.99
MCMC (k) 437.60 431.15 6.45 555.34 545.35 9.99
MCMC (k + 1) 439.80 432.29 7.51 558.12 546.53 11.59

Table 2 PED measurements for each model considered

k = 3 k = 5

PED D̂e p̂opt PED D̂e p̂opt

RJMCMC 448.30 431.29 17.00 588.50 545.73 42.76
MCMC (k − 1) 642.81 486.45 156.36 585.34 563.43 21.91
MCMC (k) 447.20 431.05 16.15 573.27 545.30 27.97
MCMC (k + 1) 452.14 432.26 19.88 579.22 546.11 33.11

Table 3 Computational time in seconds spent in each models’ fit

RJMCMC MCMC (k − 1) MCMC (k) MCMC (k + 1)

k = 3 3.63 1.38 1.99 2.77
k = 5 3.02 1.97 2.31 2.76

should have the best fit. It is possible to observe that, for both criteria, the model
with k fixed in the true value seems to fit the data better than its counterparts.
However, the results are very similar, even when k is estimated, increasing the size
of the parametric vector, except when k is fixed below the true value. The same
conclusion is observed for both value fixed for k.

Table 3 shows the computational time in seconds spent in the fit of each model.
As expected, RJMCMC requires more computational effort than its counterparts,
although the difference is not so significant. Furthermore, the computational time
increases as k is fixed in a higher value, except when k is estimate.

Thus, if the number of components is unknown and we use the MCMC algo-
rithm to sample from the posterior distribution of the parametric vector, better
results are attained by setting it greater than or equal to the true value. On the other
hand, estimating the value of k and using the RJMCMC method is a good alterna-
tive in this case, having similar performance to the case when we fixed k at its true
value.
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Table 4 Summary measurements for the point and 95% credibility interval estimates of the model
parameters over 1,000 simulations considering k unknown (RJMCMC) and known (MCMC)

μ1 μ2 μ3 σ 2
1 σ 2

2 σ 2
3 w1 w2 w3

RJMCMC
SRMSE 0.10 0.48 0.45 0.11 0.81 0.38 0.05 0.05 0.08
MAE 0.08 0.36 0.22 0.07 0.63 0.18 0.05 0.04 0.05
Cov. (%) 96.7 94.1 90.0 92.0 96.2 97.6 100.0 99.9 90.6
Wid. 0.45 1.96 0.84 0.39 4.08 1.23 0.16 0.22 0.25

MCMC
SRMSE 0.10 0.48 0.14 0.11 0.96 0.18 0.05 0.06 0.03
MAE 0.08 0.36 0.11 0.07 0.70 0.15 0.05 0.04 0.03
Cov. (%) 96.9 94.0 96.1 92.0 95.8 96.9 100.0 98.9 99.9
Wid. 0.45 1.96 0.59 0.40 4.19 0.81 0.16 0.23 0.25

Finally, we also generated 1,000 samples fixing the parameters at the previous
values and obtained samples from the posterior distribution of the parametric vec-
tor, supposing k known and fixed at the true value, 3, in the MCMC and estimating
it using the RJMCMC algorithm. The estimates were then compared with the true
values to evaluate the model’s performance.

First, in 89.9% of the 1,000 samples the value of k was correctly esti-
mated when using RJCMC to sample from the posterior distribution. Table 4
shows summary statistics with some frequentist measures of the posterior dis-
tribution of the model parameters after reaching convergence. It reports the
square root of the mean square error (SRMSE), the mean absolute error (MAE),
the empirical nominal coverage of the 95% credibility intervals measured in
percentages (Cov.) and the respective widths averaged over the 1,000 simula-
tions (Wid.). In particular, the summary statistics of the components parame-
ters are obtained conditioning on k at the value with highest posterior probabil-
ity.

The parameters are well estimated in both cases and the results are very similar
considering each approach, except the parameters σ 2

2 and σ 2
3 , which were slightly

better estimated under the RJMCMC and MCMC approaches, respectively. The
coverage of the 95% credibility intervals is close to the nominal level. These results
indicate that similar results can be achieved considering k unknown and fixing it at
the true value. Although the MCMC algorithm has certain advantages with respect
to computational cost compared to the RJMCMC, the number of components is
generally unknown and estimating it can be a practical interest in the problem.
Therefore, the RJMCMC is a reasonable alternative to sample from the posterior
distribution in this case.
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4 Application to a real dataset

We applied the method to a real dataset that concerns antibody levels of Cy-
tomegalovirus (CMV) in 5126 individuals, both males and females, from 6 years
to 49 years old. This dataset was extracted from the 2003–2004 National Health
and Nutrition Examination Survey (NHANES).1

The CMV is a member of the Herpesviridae family of viruses and according to
Kusne, Shapiro and Fung (1999), it is a common virus that occurs widely through-
out the population but rarely causes noticeable symptoms or significant health
problems.

One method of detecting a CMV infection is by antibody testing of blood sam-
ples. This can also be used to determine if someone has had recent or past expo-
sure. There are two types of CMV antibodies that are produced in response to a
CMV infection, IgM and IgG, and one or both can be detected in the blood. IgM
antibodies are the first to be produced by the body in response to a CMV infec-
tion and they are present in most individuals within a week or two after the initial
exposure. On the other hand, IgG antibodies are produced by the body several
weeks after the initial CMV infection and provide protection from primary infec-
tions. Levels of IgG rise during the active infection, then stabilize as the CMV
infection resolves and the virus becomes inactive. After a person has been ex-
posed to CMV, the person will have some measurable amount of CMV IgG an-
tibodies in his/her blood for the rest of the lifetime. CMV IgG antibody testing
can be used, along with IgM testing, to help confirm the presence of a recent or
previous CMV infection. Particularly, this dataset consists of the IgG levels of
CMV.

The range of values for the antibody levels CMV IgG are from 0.048 to 3.001.
For the values reported as “out of range” (i.e., over the detectable range, >3.00)
the survey specialists usually assign the value of 3.001. Thus, the observations are
left-censored at 3.001 and there are many individuals with this particular value in
the dataset. Figure 7 shows the antibody levels of CMV IgG distribution for 5126
individuals infected and not infected. The interest here is in identifying subgroups
of IgG as a marker of the presence of the disease.

As shown in Figure 7, some heterogeneous subpopulations can be identified,
so it is reasonable to fit the normal mixture model (2.1) to this dataset. However,
in this particular case it is necessary to incorporate left-censoring. It is done as-
suming that we observe also (li, ui) associated to each yi , for i = 1, . . . , n. Note
that yi = li = ui if the observation is not censored, −∞ < li < ui < ∞ indicates

1Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS).
National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of
Health and Human Services, Centers for Disease Control and Prevention [2003–2004] [http://www.
cdc.gov/nchs/nhanes].

http://www.cdc.gov/nchs/nhanes
http://www.cdc.gov/nchs/nhanes
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Figure 7 Distribution of antibody levels of CMV IgG (units/ml) for 5126 individuals infected by
the virus or not.

interval-censored observation, −∞ < li < ui = ∞ indicates right-censored obser-
vation and −∞ = li < ui < ∞ indicates left-censored observation, which is our
particular case. It will be treated in the inference, through the likelihood function,
which will be written now including the censor to the expression (2.2) in the fol-
lowing way:

p(y|�) =
n∏

i=1

∫ ui

li

k∑
j=1

wjf (yi |θ j ),

with the convention that
∫ u
l f (y) dy = f (l) = f (u) whenever l = u (uncensored

observation).
Regarding inference, we also considered both estimating k and fixing it on three

different values, that are 2, 3 and 4. We worked with a subsample of size 1,000 se-
lected from the complete data. For the RJMCMC and MCMC simulations, we gen-
erated 50,000 samples from the posterior distribution, discarded the first 10,000,
then thinned the chain by taking every 10th sample value. Figures 9, 10, 11 and 12
in Appendix B presents the trace plot with the posterior distribution of the compo-
nents of μ and σ 2 for each MCMC and RJMCMC simulations. Analyzing them
leads us to conclude that convergence seems to be reached for all the parame-
ters.

Figure 8 displays the posterior distribution of k and predictive densities of anti-
body levels when estimating k (RJMCMC) and fixing it (MCMC), represented by
the dashed and dotted lines, respectively. The posterior distribution of k obtained
from RJMCMC simulation favors 4 components. The predictive plots for RJM-
CMC and MCMC with k fixed in 4 are very similar, showing good performance
even when k is estimated.

Table 5 presents the value of DIC3 and PED for each approach considered in
this study. Note that, different from previous studies, the model with k unknown
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Figure 8 Posterior distribution of k and predictive densities for the real dataset.

Table 5 DIC and PED measurements for the models considered in the real dataset

DIC D̄ pD PED D̂e p̂opt

RJMCMC 1826.97 1784.97 42.00 1731.00 1696.45 34.55
MCMC (k = 2) 1956.46 1912.94 43.52 1856.94 1845.74 11.19
MCMC (k = 3) 1916.36 1876.77 39.59 1801.89 1774.89 27.01
MCMC (k = 4) 1830.53 1788.18 42.35 1729.87 1697.75 32.12

presents smaller DIC than the approach which considered k fixed in 4, although
PED be smaller for this one. Thus, using a censored dataset, we observe more
benefits in considering k unknown and using RJMCMC.

5 Conclusions and suggestions for future work

We considered the problem of the fit of mixture models for heterogeneous popu-
lations under different levels of heterogeneity. We concluded that in some cases
it is not necessary to choose other relabeling algorithms, as described in Stephens
(2000), in order to improve the label-switching problem. To assign a weakly infor-
mative prior distribution for the mixture proportions, even for more homogeneous
populations, was efficient in many cases.

We also evaluated the inference of the model when the number of components
is unknown and RJMCMC maybe used and when it is fixed at a known value. We
concluded that when the number of mixture components is unknown, the RJM-
CMC is a feasible alternative, achieving similar results when this number is fixed
at the true value. Nevertheless, it requires slightly greater computational effort than
MCMC. On the other hand, when not interesting in estimating this number, setting
it at a value smaller than the true one will generate poor estimates, although, sim-
ilar results are obtained when fixing it at the true value or greater than this. We
also studied the frequentist properties of the Bayes estimators obtained from the
fits, through a simulation study and we also observed similar results in both ap-
proaches.
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We applied the methodology to a left-censored real dataset with antibody levels
of Cytomegalovirus (CMV) in individuals. We concluded here that estimating the
value of k was necessary because the distribution of the dataset does not provide
much information about 4 subgroups. Thus, it would be possible here to fix k in
a small value, and to underestimate the predictive densities. Furthermore, differ-
ent from previous studies, in this case, DIC indicates as the best model the one
with k unknown. So, we suggest in problems with censored dataset the use of
RJMCMC.

Finally, the main findings of this work encourage an extension of this study to
other mixture distributions, as the Poisson model discussed in Viallefont, Richard-
son and Green (2002).

Appendix A: R code to perform the experiments

All the previous experiments were done using the R package mixAK. Follow we
have the main code needed to reproduce the research paradigm for μ and σ 2. To
reproduce it for w, follow the same steps considered for σ 2.

A.1 R code to reproduce studies in Section 3

# *************************
# Generation of the dataset

# *************************
k <- 5

n <- 100

sigma2 <- c(0.22, 1.95, 0.92, 0.74, 1.13)

w <- c(0.17, 0.21, 0.34, 0.12, 0.16)

mu <- y <- list()

mu[[1]] <- c(-3, 0, 4, 11, 16) # heterogeneous population mean

mu[[2]] <- c(0, 2, 4, 6, 8) # homogeneous population mean

z <- sample(1:k,n,prob=w,replace=TRUE) # weights of the subgroups

for(j in 1:2){y[[j]] <- rnorm(n,mu[[j]][z], sqrt(sigma2[z])) # sample

write.table(y[[j]],paste("y_",j,".txt",sep=""),row.names=F,col.names=F)}

# *******************************
# RJMCMC for heterogeneous sample

# *******************************
library(mixAK); library(plyr)# packages required

y <- read.table("y_1.txt",header=F) # read the dataset previous generated

# Prior distribution

po_med <- (range(y)[1] + range(y)[2])/2 # midpoint of Y

delta <- c(1,4)

kmax <- c(5,10)

prio1 <- list(priorK= "uniform", Kmax=kmax[2], delta=delta[1],

priormuQ="independentC", xi=po_med, zeta=2*2, g=0.2)

prio2 <- prio1

prio2$delta <- delta[2]

parRJMCMC <- list(par.u1=c(2, 2),par.u2=c(2, 2),par.u3=c(1, 1))
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# Number of iterations

nMCMC <- c(burn=2000, keep=5000, thin=10, info=1000) #2,000*10+5,000*10

# Models fitted

mod1 <- NMixMCMC(y0=y, prior=prio1, RJMCMC=parRJMCMC, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=FALSE)

mod2 <- NMixMCMC(y0=y, prior=prio2, RJMCMC=parRJMCMC, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=FALSE)

# Posterior samples

postK <- postmu <- postSigma <- postw <- postorder <-list()

postK[[1]]<- mod1$K; postK[[2]] <- mod2$K

postmu[[1]] <- mod1$mu; postmu[[2]] <- mod2$mu

postSigma[[1]] <- mod1$Sigma; postSigma[[2]] <- mod2$Sigma

postw[[1]] <- mod1$w; postw[[2]] <- mod2$w

postorder[[1]] <- mod1$order; postorder[[2]] <- mod2$order # order indeces of

# mixture components defined by a relabeling algorithm

# Posterior summary

grupomu <- gruposig <- postsigorder <- list()

postmu_condK <- postorder_condK <- list()

for (j in 1:2){

barplot(prop.table(table(postK[[j]])),xlab="k",col="black")

mtext(substitute(gamma==delta,list(delta=delta[j])), side=3, adj=1)

valor_k <- as.numeric(names(table(postK[[j]]))[

table(postK[[j]])==max(table(postK[[j]]))])

# Take posterior marginals conditionals on the value of k

acumK <- cumsum(postK[[j]])

acumK_alt <- c(0,acumK[1:length(acumK)])

acumK_menos1 <- acumK_alt[1:length(acumK_alt)-1]

postmu_condK[[j]] <- postorder_condK[[j]] <- list()

for (i in 1:length(acumK_menos1)){liminf <- acumK_alt[i] + 1

limsup <- acumK_alt[i+1]

postmu_condK[[j]][[i]] <- postmu[[j]][liminf:limsup]

postorder_condK[[j]][[i]] <- postorder[[j]][liminf:limsup]}

indicemu <- which(sapply(postmu_condK[[j]],length)==valor_k)

grupomu[[j]] <- list()

for (i in indicemu){

grupomu[[j]] <- rbind(grupomu[[j]],sort(postmu_condK[[j]][[i]]))}

# conditional mean for each subgroup

postsigorder[[j]] <- list()

postsigorder[[j]][[1]] <- postSigma[[j]][1:postK[[j]][1]][

postorder[[j]][1:postK[[j]][1]]]

for (i in 2:length(postK[[j]])){postsigorder[[j]][[i]] <- postSigma[[j]][

(sum(postK[[j]][1:(i-1)])+1):sum(postK[[j]][1:i])][postorder[[j]][(

sum(postK[[j]][1:(i-1)])+1):sum(postK[[j]][1:i])]]}

indicesig <- which(sapply(postsigorder[[j]],length)==valor_k)

gruposig[[j]] <- list()
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for (i in indicesig){gruposig[[j]] <- rbind(gruposig[[j]],

postsigorder[[j]][[i]])} # conditional variance for each subgroup

}

layout(matrix(1:(2*valor_k),nrow=2,byrow=F))

for (i in 1:valor_k){

plot(do.call(rbind,grupomu[[1]][,i]),type="l",ylab=substitute(

paste(mu[nn]),list(nn=i)))

lines(do.call(rbind,grupomu[[2]][,i]),type="l",col="blue")

plot(do.call(rbind,gruposig[[1]][,i]),type="l",ylab=substitute(

paste(sigma^2[nn]),list(nn=i)))

lines(do.call(rbind,gruposig[[2]][,i]),type="l",col="blue")}

# Predictive densities

pred1 <- NMixPredDensMarg(mod1,grid=seq(-10,20,l=1000))

pred2 <- NMixPredDensMarg(mod2,grid=seq(-10,20,l=1000))

hist(y[[1]],breaks=20,prob=T,ylab="Density", xlim=c(-10,20),xlab="Sample")

lines(pred1$x$x1,pred1$dens$‘1‘,lwd=2,lty=2)

lines(pred2$x$x1,pred2$dens$‘1‘,lwd=2,lty=1)

# DIC analysis

mod1$DIC; mod2$DIC

# PED analysis (run the same model, but switch PED argument from FALSE to TRUE).

mod_PED <- NMixMCMC(y0=y[[1]], prior=prio1, RJMCMC=parRJMCMC, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=TRUE)

mod_PED$PED

# *****************************
# MCMC for heterogeneous sample

# *****************************

prio1_mcmc <- prio1

prio1_mcmc$Kmax <- kmax[1]

prio1_mcmc$xi <- rep(po_med,kmax[1])

prio1_mcmc$priorK <- "fixed"

prio2_mcmc <- prio1_mcmc

prio2_mcmc$delta <- delta[2]

mod1_mcmc <- NMixMCMC(y0=y, prior=prio1_mcmc, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=FALSE)

mod2_mcmc <- NMixMCMC(y0=y, prior=prio2_mcmc, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=FALSE)

# Posterior samples

postmu <- postSigma <- postw <- postorder <-list()

postmu[[1]] <- mod1_mcmc$mu; postmu[[2]] <- mod2_mcmc$mu

postSigma[[1]] <- mod1_mcmc$Sigma; postSigma[[2]] <- mod2_mcmc$Sigma

postw[[1]] <- mod1_mcmc$w; postw[[2]] <- mod2_mcmc$w

postorder[[1]] <- mod1_mcmc$order; postorder[[2]] <- mod2_mcmc$order

grupomu <- gruposig <- list()

for (j in 1:2){

grupomu[[j]] <- t(apply(postmu[[j]], 1, sort))
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sig <- data.frame(postSigma[[j]])

order <- data.frame(postorder[[j]])

colnames(sig) <- paste0("X",c(1:kmax[1]))

colnames(order) <- paste0("X",c(1:kmax[1]))

sig$id <- 1:nrow(sig)

order$id <- 1:nrow(order)

sig_order <- rbind(sig, order)

sig_order <- arrange(sig_order, id)

orders <- function(dataset){

aux <- unlist(dataset[1, -(kmax[1]+1)])

order <- unlist(dataset[2, -(kmax[1]+1)])

aux_order <- data.frame(aux, order)

aux_orders <- arrange(aux_order, order)

return(aux_orders$aux)

}

gruposig[[j]] <- ddply(sig_order, .(id), orders)[,2:(kmax[1]+1)]

}

layout(matrix(1:(2*kmax[1]),nrow=2,byrow=F))

for (i in 1:kmax[1]){

plot(grupomu[[1]][,i],type="l",ylab=substitute(paste(mu[nn]),list(nn=i)))

lines(grupomu[[2]][,i],type="l",col="blue")

abline(h=mu[[1]][i],col="gray70")

plot(gruposig[[1]][,i],type="l",ylab=substitute(paste(sigma^2[nn]),list(nn=i)))

lines(gruposig[[2]][,i],type="l",col="blue")

abline(h=sigma2[i],col="gray70")

}

# Predictive densities

pred1_mcmc <- NMixPredDensMarg(mod1_mcmc,grid=seq(-10,20,l=1000))

pred2_mcmc <- NMixPredDensMarg(mod2_mcmc,grid=seq(-10,20,l=1000))

hist(y[[1]],breaks=20,prob=T,ylab="Density", xlim=c(-10,20),xlab="Sample")

lines(pred1_mcmc$x$x1,pred1_mcmc$dens$‘1‘,lwd=2,lty=2)

lines(pred2_mcmc$x$x1,pred2_mcmc$dens$‘1‘,lwd=2,lty=1)

mod1_mcmc$DIC; mod2_mcmc$DIC # DIC analysis

mod_PED_mcmc <- NMixMCMC(y0=y[[1]], prior=prio1_mcmc, nMCMC=nMCMC,

scale=list(shift=0, scale=1),PED=TRUE) # PED analysis

mod_PED_mcmc$PED

A.2 R code to reproduce studies in Section 4

library(foreign)
download.file("http://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/SSCMV_C.XPT",
"download_SSCMV_C.XPT", mode="wb")
y <- sample(read.xport("download_SSCMV_C.XPT")$SSCMVOD,1000)

censor <- rep(1,length(y))
censor[which(y==3.001)] <- 0
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prio <- list(priorK= "uniform", Kmax=10, delta=1, xi=sum(range(y))/2,
priormuQ="independentC", zeta=2*2, g=0.2)

mod_real <- NMixMCMC(y0=y, y1=rep(3.001,length(y)),
censor=censor, prior=prio, RJMCMC = parRJMCMC, nMCMC=nMCMC,
scale=list(shift=0, scale=1), PED=FALSE) #RJMCMC

Appendix B: Assessment of MCMC and RJMCMC with real data

Figure 9 Trace plots with the posterior densities of the parameters μ and σ 2 obtained from the
fit of the normal mixture model assuming k to be known and fixed at the value 2 in the real dataset
(MCMC).

Figure 10 Trace plots with the posterior densities of the parameters μ and σ 2 obtained from the
fit of the normal mixture model assuming k to be known and fixed at the value 3 in the real dataset
(MCMC).
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Figure 11 Trace plots with the posterior densities of the parameters μ and σ 2 obtained from the
fit of the normal mixture model assuming k to be known and fixed at the value 4 in the real dataset
(MCMC).

Figure 12 Trace plots with the posterior densities of the parameters μ and σ 2 obtained from the
fit of the normal mixture model assuming k to be unknown in the real dataset (RJMCMC).
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