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Abrupt convergence for a family of
Ornstein–Uhlenbeck processes
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Mathematics Research Center, CIMAT

Abstract. We consider a family of Ornstein–Uhlenbeck processes. Under
some suitable assumptions on the behaviour of the drift and diffusion coeffi-
cients, we prove profile cut-off phenomenon with respect to the total variation
distance in the sense of the definition given by Barrera and Ycart [ALEA Lat.
Am. J. Probab. Math. Stat. 11 (2014) 445–458]. We compute explicitly the
cut-off time, the window time, and the profile function. Moreover, we prove
that the average process satisfies a profile cut-off phenomenon with respect
to the total variation distance. Also, a sample of N Ornstein–Uhlenbeck pro-
cesses has a window cut-off with respect to the total variation distance in the
sense of the definition given by Barrera and Ycart [ALEA Lat. Am. J. Probab.
Math. Stat. 11 (2014) 445–458]. The cut-off time and the cut-off window for
the average process and for the sampling process are the same.

1 Introduction

The Ornstein–Uhlenbeck process is a well-known stochastic process. It has been
widely studied for the past seventy years. It was introduced into Physics in 1930
by Uhlenbeck and Ornstein (1930). It has been used in financial mathematics to
model prices in markets in Jeanblanc and Rutkowski (2000) and in biology to
model neural activity in Lánský, Sacerdote and Tomassetti (1995).

The cut-off phenomenon has been widely investigated in the past thirty years;
see Diaconis (1996) and Saloff-Coste (2004). The term “cut-off” was introduced
by Aldous and Diaconis (1986) in the early 1980s to describe the phenomenon of
the abrupt convergence of Markov chains introduced as models of shuffling cards.
This phenomenon refers to an asymptotically drastic convergence of a family of
stochastic processes. The term cut-off is naturally associated to switching phe-
nomena, that is, “all/nothing” or “1/0” behaviour. Alternative names are threshold
phenomenon and abrupt convergence. Since the appearance of Aldous and Diaco-
nis (1986), many families of stochastic processes have been shown to have similar
properties. For more details, see Barrera and Ycart (2014) and Diaconis (1996).
Saloff-Coste (2004) gives an extensive list of random walks for which the phe-
nomenon occurs. Now, it is a well-studied feature of Markov processes. Barrera
and Jara (2016) study the cut-off phenomenon in a continuous setting.
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Lachaud (2005) proved that the average process and the sampling process of the
Ornstein–Uhlenbeck process satisfy a window cut-off with the same cut-off time
and window time. This is surprising, since the sample process comprises a large
number of processes.

In the present paper, we consider a family of Ornstein–Uhlenbeck processes.
Under some mild assumptions on the behaviour of the drift and diffusion coef-
ficients, we prove that the family of Ornstein–Uhlenbeck processes has a profile
cut-off in the sense of the definition given by Barrera and Ycart (2014) with an
explicit profile function, cut-off time, and cut-off window. Following the spirit of
Lachaud (2005), we prove that the average process of the Ornstein–Uhlenbeck pro-
cess has a profile cut-off with an explicit profile function, cut-off time and cut-off
window. Moreover, the sampling process of the Ornstein–Uhlenbeck process has
a window cut-off in the sense of the definition given by Barrera and Ycart (2014)
with an explicit cut-off time and cut-off window. We also note that in this case,
the average process and the sampling process have the same cut-off time and the
window time.

Consider a one-parameter family of stochastic processes in continuous time
{xN }N∈N indexed by N ∈ N, xN := {xN

t }t≥0, each one converging to an asymp-
totic distribution νN when t goes to infinity. Let us denote by dN(t) the distance
between the distribution at time t of the N th process, P(xN

t ∈ ·), and its asymp-
totic distribution as t → +∞, νN , where the “distance” can be taken to be the
total variation, separation, Hellinger, relative entropy, Wasserstein, Lp distances,
etc. Following Barrera and Ycart (2014), the cut-off phenomenon for {xN }N∈N can
be expressed at three increasingly sharp levels. Let us denote by M the diameter of
the metric space of probability measures in which we are working. In general, M

could be infinite. For any Ornstein–Uhlenbeck process, we have explicit formulas
for its mean, its variance, and its distribution. We can also give explicit expressions
for the total variation distance between normal distributions in terms of the cumu-
lative distribution function of the standard normal distribution. In our case, we will
focus on the total variation distance, so throughout this paper, M := 1.

The cut-off phenomenon refers to the abrupt convergence to an asymptotic prob-
ability measure (asymptotic distribution). When the distance is the total variation
distance, this asymptotic distribution can be interpreted as the survival function
of a certain positive “random variable” concentrated around the cut-off time. This
“random variable” could be viewed as the instant at which the family of processes
reaches the equilibrium.

Definition 1.1 (Cut-off). The family {xN }N∈N of stochastic processes has a cut-
off at {tN }N∈N if

lim
N→+∞dN(ctN) =

{
M if 0 < c < 1,

0 if c > 1.
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Definition 1.2 (Window cut-off). The family {xN }N∈N of stochastic processes
has a window cut-off at {(tN ,wN)}N∈N if tN → +∞, wN = o(tN) as N → +∞
and

lim
c→−∞ lim inf

N→+∞dN(tN + cwN) = M, lim
c→+∞ lim sup

N→+∞
dN(tN + cwN) = 0.

Definition 1.3 (Profile cut-off). The family {xN }N∈N of stochastic processes has a
profile cut-off at {(tN ,wN)}N∈N with profile function G if tN → +∞, wN = o(tN)

as N → +∞,

G(c) := lim
N→+∞dN(tN + cwN)

exists for all c ∈R and

lim
c→−∞G(c) = M, lim

c→+∞G(c) = 0.

This material is organized as follows. In Section 2, we describe the model, state
the main result as well as establish the basic notation, and give the proof of the
main result. In Section 3, we prove that the average process of a sampling of the
Ornstein–Uhlenbeck process has a profile cut-off and the sampling process of the
Ornstein–Uhlenbeck process has a window cut-off. In Section 4, we draw some
conclusions about the results obtained within Section 2 and Section 3. In the Ap-
pendix, we give some basic results that we use throughout Section 2 and Section 3,
in order to improve the readability.

2 Main result

We will establish some basic notation. Take μ ∈ R and let σ 2 ∈]0,+∞[ be fixed
numbers. We denote by N (μ,σ 2) the normal distribution with mean μ and vari-
ance σ 2. Given two probability measures P and Q that are defined on the same
measurable space (�,F), we define the total variation distance between P and Q

by

‖P−Q‖TV := sup
A∈F

∣∣P(A) −Q(A)
∣∣.

Theorem 2.1 (Main theorem). Let {kN }N∈N and {bN }N∈N be sequences of non-
negative numbers and let {cN }N∈N be a sequence of real numbers. Let us consider
the family of processes indexed by N ∈ N, xN = {xN

t }t≥0 that are given by the
solution of the following linear non-homogeneous stochastic differential equation:

dxN
t = −kNxN

t dt + cNf (t) dt + √
bN dWt, t ≥ 0,

xN
0 = x0,

(2.1)
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where x0 is a non-zero deterministic initial condition, f : [0,+∞[→ R is a con-
tinuous function, and {Wt }t≥0 is a standard one dimensional Brownian motion. We
assume that

fN := lim
t→+∞

(
e−kN t

∫ t

0
ekNsf (s) ds

)
∈R, (2.2)

lim
N→+∞

kN

bN

= +∞, (2.3)

lim
N→+∞

1

kN

ln
(

2x2
0kN

bN

)
= +∞, (2.4)

and

lim
N→+∞

kNc2
N supt≥0 |fN(t)|2

bN

= 0, (2.5)

where fN(t) := e−kN t
∫ t

0 ekNsf (s) ds for every N ∈ N and t ≥ 0. For every N ∈ N

and t ≥ 0, we define dN(t) := ‖P(xN
t ∈ ·) − P(xN∞ ∈ ·)‖TV, where xN∞ represents

the asymptotic distribution of xN
t as t → +∞ Then the family {xN }N∈N has a pro-

file cut-off in the sense of Definition 1.3 with respect to the total variation distance
when N → +∞. The profile function G : R→ [0,1] is given by

lim
N→+∞dN(tN + bwN) = G(b) := ∥∥N (

e−b,1
) −N (0,1)

∥∥
TV. (2.6)

The cut-off time tN and the window time wN are given by

tN := 1

2kN

ln
(

2x2
0kN

bN

)
(2.7)

and

wN := 1

kN

(2.8)

for every N large enough.

Remark 2.2. By the hypothesis (2.4), we can take N0 := N0(x
2
0) ∈N large enough

in order that the cut-off time tN given by the relation (2.7) satisfies tN > 0 for every
N ≥ N0. Also, by the hypothesis (2.3) we have that the window time wN given by
the relation (2.8) satisfies wN = o(tN) as N → +∞. Now, by Lemma A.1, we
have that the function G defined by the relation (2.6) satisfies

lim
b→−∞G(b) = 1, lim

b→+∞G(b) = 0.

Theorem 2.1 provides computable assumptions to verify in order to obtain a profile
cut-off.
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Remark 2.3. By the Fundamental Theorem of Calculus, we have

lim
b→+∞

G(b)

( e−b√
2π

)
= 1.

Using the Mill ratio, we obtain

1 + 4e− e−2b

8 −b

√
2π(4 + e−2b)

≤ G(b) ≤ 1 + 4e− e−2b

8 +b

√
2π

for every b ∈ R. Therefore,

lim
b→−∞

G(b) − 1

(4e
− e−2b

8√
2π

)

= 0.

Proof of the Main Theorem 2.1. Fix N ∈ N and t > 0. Using the Itô isometry,
we have that xN

t has normal distribution with mean

μN
t := x0e

−kN t + cNe−kN t
∫ t

0
ekNsf (s) ds

and variance bN

2kN
(1 − e−2kN t ). Then by hypothesis (2.2), we have that the asymp-

totic probability measure associated to the transition kernel of the linear non-
homogeneous stochastic differential equation (2.1) is a normal distribution with
mean cNfN and variance bN

2kN
. Define

dN(t) :=
∥∥∥∥N

(
μN

t ,
bN

2kN

(
1 − e−2kN t )) −N

(
cNfN,

bN

2kN

)∥∥∥∥
TV

,

DN(t) :=
∥∥∥∥N

(√
2kN

bN

(
μN

t − cNfN

)
,1

)
−N (0,1)

∥∥∥∥
TV

and

RN(t) := ∥∥N (
0,1 − e−2kN t ) −N (0,1)

∥∥
TV.

By the triangle inequality, we have

dN(t) ≤
∥∥∥∥N

(
μN

t ,
bN

2kN

(
1 − e−2kN t )) −N

(
μN

t ,
bN

2kN

)∥∥∥∥
TV

+
∥∥∥∥N

(
μN

t ,
bN

2kN

)
−N

(
cNfN,

bN

2kN

)∥∥∥∥
TV

.

Using the translation invariance property of the total variation distance, we obtain

dN(t) ≤
∥∥∥∥N

(
0,

bN

2kN

(
1 − e−2kN t )) −N

(
0,

bN

2kN

)∥∥∥∥
TV

+
∥∥∥∥N

(
μN

t − cNfN,
bN

2kN

)
−N

(
0,

bN

2kN

)∥∥∥∥
TV

.
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Using the scaling invariance property of the total variation distance, we get

dN(t) ≤ ∥∥N (
0,1 − e−2kN t ) −N (0,1)

∥∥
TV

+
∥∥∥∥N

(√
2kN

bN

(
μN

t − cNfN

)
,1

)
−N (0,1)

∥∥∥∥
TV

.
(2.9)

By the inequality (2.9), we have

dN(t) ≤ DN(t) + RN(t). (2.10)

Using the same ideas, we can obtain

DN(t) ≤ dN(t) + RN(t). (2.11)

Therefore, using the inequality (2.10) and the inequality (2.11), we get∣∣dN(t) − DN(t)
∣∣ ≤ RN(t).

Using Lemma A.3 and the hypothesis (2.3), we obtain

lim
N→+∞

∣∣dN(tN + bwN) − DN(tN + bwN)
∣∣ = 0 (2.12)

for every b ∈ R. We can note that

DN(tN + bwN) =
∥∥∥∥N

(
sgn(x0)e

−b +
√

2kN

bN

cN

(
fN(t) − fN

)
,1

)
−N (0,1)

∥∥∥∥
TV

for every b ∈ R, where sgn(x0) denotes the sign of x0 and fN(t) = e−kN t
∫ t

0 ekNs ×
f (s) ds. Using hypotheses (2.2), (2.5) and Lemma A.2, we obtain

lim
N→+∞DN(tN + bwN) = ∥∥N (

sgn(x0)e
−b,1

) −N (0,1)
∥∥
TV

for every b ∈ R. Using the relation (2.12) and the scaling invariance property of
the total variation distance, we get

lim
N→+∞dN(tN + bwN) = ∥∥N (

e−b,1
) −N (0,1)

∥∥
TV =: G(b)

for every b ∈ R. �

3 The profile cut-off phenomenon for the average process and window
cut-off for the sampling process

In this section, we consider two natural stochastic processes associated to the
stochastic differential equation defined by (2.1). Roughly speaking, these pro-
cesses could be used to model the average and the sampling of a population. As a
corollary of Theorem 2.1, we have a statement for the average process that it will
define by the relation (3.1).



194 G. Barrera

Corollary 3.1 (Average process). Let {(xN,1
t , . . . , x

N,N
t )}t≥0 be a sample of N in-

dependent stochastic processes governed by the linear non-homogeneous stochas-
tic differential equation (2.1). Fix N ∈ N. Define the uniform average process
{sN

t }t≥0 by

sN
t := 1

N

N∑
i=1

x
N,i
t , t ≥ 0. (3.1)

We assume that

fN := lim
t→+∞

(
e−kN t

∫ t

0
ekNsf (s) ds

)
∈ R,

lim
N→+∞

NkN

bN

= +∞,

lim
N→+∞

1

kN

ln
(

2x2
0NkN

bN

)
= +∞,

lim
N→+∞

NkNc2
N supt≥0 |fN(t)|2

bN

= 0,

where fN(t) := e−kN t
∫ t

0 ekNsf (s) ds for every N ∈ N and t ≥ 0. For every N ∈ N

and t ≥ 0, define dN(t) := ‖P(sN
t ∈ ·) − P(sN∞ ∈ ·)‖TV, where sN∞ represents the

asymptotic distribution of sN
t as t → +∞. Then, the family {sN := {sN

t }t≥0}N∈N
has a profile cut-off in the sense of Definition 1.3 with respect to the total variation
distance when N → +∞. The profile function G : R→ [0,1] is given by

lim
N→+∞dN(tN + bwN) = G(b) := ∥∥N (

e−b,1
) −N (0,1)

∥∥
TV.

The cut-off time tN and the window time wN are given by

tN := 1

2kN

ln
(

2x2
0NkN

bN

)
, wN := 1

kN

for every N large enough.

Proof of the Corollary 3.1. Fix N ∈ N. The average process {sN
t }t≥0 satisfies the

following stochastic differential equation,

dsN
t = −kNsN

t dt + cNf (t) dt +
√

bN

N
dW̃t , t ≥ 0,

sN
0 = x0,

(3.2)

where x0 is a non-zero deterministic initial condition and {W̃t }t≥0 is a standard
one dimensional Brownian motion. The proof follows from the relation (3.2) and
Theorem 2.1. �
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The next proposition does not follow directly from Theorem 2.1, as did Corol-
lary 3.1. Nevertheless, with some slight modifications in the proof of Theorem 2.1,
we can prove that there is a window cut-off for the sampling process associated to
the linear non-homogeneous stochastic differential equation (2.1). In the sampling
process, the dimension of the sampling vector goes to infinity and this fact does not
permit giving a profile. For this reason, we introduce the Hellinger (A.2) distance
because it is computable for product measures of normal distributions.

Proposition 3.2 (Sampling process). Let {πN
t := (x

N,1
t , . . . , x

N,N
t )}t≥0 be a

sample of N independent stochastic processes governed by the linear non-
homogeneous stochastic differential equation (2.1). We assume that

fN := lim
t→+∞

(
e−kN t

∫ t

0
ekNsf (s) ds

)
∈R, (3.3)

lim
N→+∞

kN

bN

= +∞, (3.4)

lim
N→+∞

1

kN

ln
(

2x2
0NkN

bN

)
= +∞, lim

N→+∞
NkNc2

N supt≥0 |fN(t)|2
bN

= 0,

where fN(t) := e−kN t
∫ t

0 ekNsf (s) ds for every N ∈ N and t ≥ 0. For every N ∈ N

and t ≥ 0, define dN(t) := ‖P(πN
t ∈ ·) − P(πN∞ ∈ ·)‖TV, where πN∞ represents the

asymptotic distribution of πN
t as t → +∞ Then, the family {πN := {πN

t }t≥0}N∈N
has a window cut-off in the sense of Definition 1.2 with respect to the total variation
distance when N → +∞, i.e.,

lim
b→−∞ lim inf

N→+∞�N(tN + bwN) = 1, lim
b→+∞ lim sup

N→+∞
�N(tN + bwN) = 0

for every b ∈ R, where the cut-off time tN and the window time wN are given by

tN := 1

2kN

ln
(

2x2
0NkN

bN

)
, wN := 1

kN

for every N large enough.

Proof of Theorem 3.2. Fix N ∈ N and t > 0. The distribution of πN
t is given

by N (μN
t , bN

2kN
(1 − e−2kN t ))⊗N , where μN

t := x0e
−kN t + cNe−kN t

∫ t
0 ekNsf (s) ds.

Using the hypothesis (3.3), we have that the asymptotic distribution as t → +∞ is
given by N (cNfN, bN

2kN
)⊗N . Define

δN(t) :=
∥∥∥∥N

(
μN

t ,
bN

2kN

(
1 − e−2kN t ))⊗N

−N
(
cNfN,

bN

2kN

)⊗N∥∥∥∥
TV

,

�N(t) :=
∥∥∥∥N

(√
2kN

bN

(
μN

t − cNfN

)
,1

)⊗N

−N (0,1)⊗N

∥∥∥∥
TV

,
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and

rN(t) := ∥∥N (
0,

(
1 − e−2kN t ))⊗N −N (0,1)⊗N

∥∥
TV.

Then ∣∣δN(t) − �N(t)
∣∣ ≤ rN(t). (3.5)

Using the inequality (A.1) in Remark A.4 and the hypothesis (3.4), we get

lim
N→+∞ rN(tN + bwN) = 0 (3.6)

for every b ∈ R. Therefore,

lim
N→+∞

∣∣δN(tN + bwN) − �N(tN + bwN)
∣∣ = 0 (3.7)

for every b ∈ R. We can note that

�N(tN + bwN)

=
∥∥∥∥N

(
sgn(x0)e

−b

√
N

+
√

2kN

bN

cN

(
fN(tN + bwN) − fN

)
,1

)⊗N

−N (0,1)⊗N

∥∥∥∥
TV

for every b ∈ R, where sgn(x0) denotes the sign of x0 and fN(t) = e−kN t
∫ t

0 ekNs ×
f (s) ds. Using Lemma A.7, item (i), item (ii) and item (iii), we have

lim
b→−∞ lim inf

N→+∞�N(tN + bwN) = 1,

lim
b→+∞ lim sup

N→+∞
�N(tN + bwN) = 0

(3.8)

for every b ∈ R. Now the relations (3.6), (3.7) and (3.8) imply the statement. �

4 Conclusions

In the Main Theorem 2.1, in order that there be a profile cut-off phenomenon, we
need to assume the relations (2.2), (2.3), (2.4) and (2.5). Those relations guarantee
the abrupt convergence to the equilibrium measure for the process given by (2.1).
From this fact, we can obtain immediately a profile cut-off in the following cases:

• Constant drift coefficient, zero in-homogeneous coefficient and noise coefficient
going to vanish. In the stochastic differential equation (2.1), put kN = k ∈
]0,+∞[, cN = 0 for N large enough and bN = o(1) as N → +∞. Then, by
the Main Theorem 2.1, we obtain a profile cut-off.
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• f bounded: In the stochastic differential equation (2.1), assume the conditions

(2.2), (2.3) and (2.4). Then (2.5) will be fulfilled if limN→+∞
c2
N

bNkN
= 0. Conse-

quently, we obtain a profile cut-off.
• f ∈ L2([0,+∞[): In the stochastic differential equation (2.1), assume the con-

ditions (2.2), (2.3) and (2.4). Then, using the Cauchy–Schwarz inequality, the

condition (2.5) will be fulfilled if limN→+∞
c2
N

bNkN
= 0. Therefore, we obtain a

profile cut-off.

Therefore, we can build several examples of sequences {kN }N∈N, {bN }N∈N,
{cN }N∈N and a function f such that the assumptions of Theorem 2.1 are fulfilled.
Consequently, by the Main Theorem 2.1, we can obtain immediately a profile cut-
off.

As in Theorem 2.1, we have several examples in which the average process has a
profile cut-off and the sampling process has a window cut-off with the same cut-off
time and window time. We also obtain immediately the results of Lachaud (2005)
taking the sequences {kN }N∈N, constants {bN }N∈N, and cN = 0 for any N ∈ N.
Moreover, we obtain an explicit profile function.

Appendix: Some properties of the total variation distance

Lemma A.1. Fix μ ∈R. Then

∥∥N (μ,1) −N (0,1)
∥∥
TV = 2√

2π

∫ |μ|
2

0
e− x2

2 dx ≤ |μ|√
2π

.

Lemma A.2. Let {μN }N∈N ⊂ R be a sequence such that limN→+∞ μN = μ ∈ R.
Then

lim
N→+∞

∥∥N (μN,1) −N (0,1)
∥∥
TV = ∥∥N (μ,1) −N (0,1)

∥∥
TV.

Lemma A.3. Suppose {σ 2
N }N∈N ⊂]0,+∞[ is a sequence such that

limN→+∞ σ 2
N = σ 2 ∈]0,+∞[. Then

lim
N→+∞

∥∥N (
0, σ 2

N

) −N
(
0, σ 2)∥∥

TV = 0.

Remark A.4. Suppose that σ 2 ∈]0,1[. Then

∥∥N (
0, σ 2) −N (0,1)

∥∥
TV = 2√

2π

∫ x(σ 2)

0

(
1

σ
e
− x2

2σ2 − e− x2
2

)
dx

≤
√

2π

π

(1 − σ 2)

σ 2 ,

(A.1)
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where x(σ 2) :=
√

σ 2 ln(σ 2)

σ 2−1
. The relation (A.1) now follows from a straightforward

calculation.

Lemma A.5. Let N ∈ N and take μ1,μ2, . . . ,μN ∈ R and σ 2
1 , σ 2

2 , . . . , σ 2
N ∈

]0,+∞[. Then∥∥N (
μ1, σ

2
1
) ⊗ · · · ⊗N

(
μN,σ 2

N

) −N
(
μ̃1, σ̃

2
1
) ⊗ · · · ⊗N

(
μ̃N , σ̃ 2

N

)∥∥
TV

≤
N∑

i=1

∥∥N (
μk,σ

2
k

) −N
(
μ̃k, σ̃

2
k

)∥∥
TV.

Definition A.6 (Hellinger distance). Let P, Q and � be probability measures
defined on the measurable space (�,F). Suppose that P � � and Q � �. Then
we define the Hellinger distance between P and Q by

dH (P,Q) :=
(

1

2

∫
�

(√
dP

d�
−

√
dQ

d�

)2
d�

)1/2
, (A.2)

where dP
d�

and dQ
d�

are the Radon–Nikodym derivatives of P and Q with respect
to �, respectively.

Lemma A.7 (The relation between the Hellinger distance and total variation
distance). Let P and Q be two probability measures defined in the measurable
space (�,F). Then

(i)

d2
H(P,Q) ≤ ‖P−Q‖TV ≤ √

2dH (P,Q).

(ii) Suppose PN = P⊗ · · · ⊗ P︸ ︷︷ ︸
N-t imes

and QN = Q⊗ · · · ⊗Q︸ ︷︷ ︸
N-t imes

are two product prob-

ability measures. Then

d2
H

(
PN,QN ) = 1 − (

1 − d2
H (P,Q)

)N
.

(iii) Suppose μ1,μ2 ∈ R and σ 2
1 , σ 2

2 ∈]0,+∞[. Then

d2
H

(
N

(
μ1, σ

2
1
)
,N

(
μ2, σ

2
2
)) = 1 −

√
2σ1σ2

σ 2
1 + σ 2

2

e
− (μ1−μ2)2

4(σ2
1 +σ2

2 ) .

Proof. For the item (i), see Proposition 2.2 of Barrera, Lachaud and Ycart (2006).
For the item (ii), see Proposition 2.3 of Barrera, Lachaud and Ycart (2006). For
the item (iii), see relation (5) of Lachaud (2005). �
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