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Abstract. Data from many applied fields exhibit both heavy tail and skew-
ness behavior. For this reason, in the last few decades, there has been a
growing interest in exploring parametric classes of skew-symmetrical dis-
tributions. A popular approach to model departure from normality consists of
modifying a symmetric probability density function in a multiplicative fash-
ion, introducing skewness. An important issue, addressed in this paper, is the
introduction of some measures of distance between skewed versions of prob-
ability densities and their symmetric baseline. Different measures provide
different insights on the departure from symmetric density functions: we an-
alyze and discuss L1 distance, J -divergence and the concentration function
in the normal and Student-t cases. Multiplicative contaminations of distribu-
tions can be also considered in a Bayesian framework as a class of priors and
the notion of distance is here strongly connected with Bayesian robustness
analysis: we use the concentration function to analyze departure from a sym-
metric baseline prior through multiplicative contamination prior distributions
for the location parameter in a Gaussian model.

1 Introduction

In the last few decades, there has been a growing interest in exploring paramet-
ric classes of non-normal distributions, see Genton (2004) and Azzalini (2005).
A popular approach to model departure from normality consists of modifying a
symmetric probability density function in a multiplicative fashion, introducing
skewness. Following this approach, we consider a class of skew-symmetric distri-
butions given in Azzalini and Capitanio (2003). The probability density function,
up to location and scale parameters, is of the form

f1(z|α) = 2f0(z)G
(
w(z,α)

)
, z ∈ R, (1)

where f0(·) is a symmetric density in R, that is f0(−z) = f0(z) for all z ∈ R,
G(·) is a symmetric absolutely continuous cumulative distribution function, that is
G(−z) = 1 − G(z) for all z ∈ R, with density g(·) and w(·) is a function such that
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w(−z,α) = −w(z,α) for all z ∈ R. We also add a parameter α ∈ R in w which
controls the shape of the distribution; moreover, we consider w(z,0) = 0,∀z.
Therefore, the symmetric base density f0(·) is retrieved when α = 0. Parameters
of location, ξ ∈ R, and of scale, τ > 0, can be introduced through Y = ξ + τZ,
where Z is a random variable with density (1).

The class (1) contains many interesting distributions. For instance, the choice
f0(z) = φ(z) and G(z) = �(z), the standard normal density and cumulative dis-
tribution function, respectively, with w(z,α) = αz, yields the skew-normal distri-
bution, SN(α), introduced by Azzalini (1985). Picking f0(z) = t (z;ν) and G(z) =
T (z;ν + 1), the standard Student’s t density and cumulative distribution func-

tion with ν and ν + 1 degrees of freedom, respectively, and w(α, z) = αz
√

ν+1
ν+z2 ,

yields the skew-t distribution of Branco and Dey (2001) and Azzalini and Capi-
tanio (2003). Other choices include setting f0(z) = φ(z) while letting G be any
symmetric cumulative distribution function that is different from the normal dis-
tribution (Nadarajah and Kotz (2003)), or setting G(z) = �(z) while letting f0 be
any symmetric density that is different from the normal density (Gomez, Venegas
and Bolfarine (2007)).

We consider the usual notation SN(ξ, τ 2, α), N(ξ, τ 2), ST(ξ, τ 2, α, ν) and
T (ξ, τ 2, ν) for the location-scale skew-normal, normal, skew-t and Student-t dis-
tributions, respectively.

When we work with skew-symmetric models, a natural question which arises
is how far we can go from symmetry using this kind of skewness, that is, how
the baseline distribution is affected introducing a skewing function. To answer
this question, we study some measures of distance between skewed distributions
and their symmetric baselines. The L1 distance was already explored by Vidal
et al. (2006) when w(z,α) = αz in (1). The authors use this measure for model
comparison. However, they do not present a closed form for the Student-t case. On
the other hand, Contreras-Reyes and Arellano-Valle (2012) obtain the Kullback–
Leibler (KL) divergence and the J -divergence between two skew distributions in
the multivariate skew-normal context. Again, the Student-t case is not explored by
the authors. Moreover, as far as we know, nobody has studied the concentration
function as a measure of distance for skew-symmetric distributions.

According to Fortini and Ruggeri (2000), the concentration function of a prob-
ability measure P with respect to another one, say P0, extends the classical notion
of the Lorenz–Gini curve and it can be used to define neighborhood of probability
measures or compare them. A prime use of such property is in Bayesian robustness
where the concentration function can be used to define topological neighborhoods
of a baseline prior distribution and to measure ranges spanned, as the prior varies
in a class, by the probability of measurable subsets with fixed probability under
a baseline prior. The concentration function gives different insights with respect
to the usual indices when comparing measures: as an example, it is possible that
two probability measures have means differing by a very small amount but the



Concentration function for the skew-normal and skew-t distributions 375

concentration function detects a very different behavior when the two measures
concentrate all their mass around two very close values (i.e., the mean) but on dis-
joint intervals, therefore concentrating mass in very different subsets. More details
on the properties of the concentration function and its applications can be found in
the paper by Fortini and Ruggeri (2000) and the references therein.

The focus of this paper is to measure the distance between the density f1 given
in (1) and the symmetric baseline f0. In Section 2, we review some measures
already given in the literature and present new results under some special cases.
In Section 3, we present the concentration function as a measure to compare two
probability densities and give results in closed form in some special cases. The
concentration function is used in a context of Bayesian robustness in Section 4,
whereas some final comments are presented in Section 5.

2 Some measures of divergence

The focus of this section is to measure the divergence between the density f1
given in (1) and the symmetric baseline f0. Expressions for the L1 distance and
the J -divergence are available in the general context and for the special cases of
skew-normal and skew-t models.

2.1 The L1 distance

The L1 distance between two density functions f and g is given by

L1(f, g) = 1

2

∫ ∣∣f (x) − g(x)
∣∣dx = sup

A∈B
∣∣Pf (A) − Pg(A)

∣∣, (2)

where Pf and Pg are probability measures, associated with the density functions
f and g, in the same measurable space (R,B) where B is the Borel σ -field. Note
that L1 is an upper bound on the differences |Pf (A) − Pg(A)| for any set A ∈ B.
Also, the L1 distance is bounded and takes values in [0,1], where L1(f, g) = 0
implies that f (x) = g(x) a.e. and L1(f, g) = 1 indicates that the supports of the
two densities are disjoint, indicating maximal discrepancy.

With a slight change in the proof of Proposition 1 in Vidal et al. (2006), we
obtain the next result.

Proposition 2.1. The L1 distance between f0 and f1, as defined in (1), is

L1(f0, f1) = EZ∗
[
G
(∣∣w(

Z∗, α
)∣∣)] − 1

2
, (3)

where the density of Z∗ is obtained folding the symmetric distribution f0 on itself,
that is, fZ∗(z) = 2f0(z)Id(0,∞), with IdA the usual indicator function, taking the
value one when z ∈ A and zero otherwise.
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For the skew-normal and skew-t distributions, a closed form for the L1 distance
is available.

Proposition 2.2. The L1 distance between SN(ξ, τ 2, α) and N(ξ, τ 2) distribu-
tions is equal to the L1 distance between ST(ξ, τ 2, α, ν) and T (ξ, τ 2, ν) distribu-
tions, for any ν, and it is given by

1

π
arcsin

( |α|√
1 + α2

)
= 1

2
− 1

π
arccos

( |α|√
1 + α2

)
. (4)

The proof of Proposition 2.2 follows from Proposition 7 in Vidal et al. (2006)
and the fact that the skew-t distribution is a scale mixture of the skew-normal (see
Azzalini and Capitanio, 2003). In fact, the result is also true for any member of the
scale mixture of the skew-normal family. Vidal et al. (2006) were not able to obtain
a closed form for the skew-t case because they were using another way to add
skewness to the t distribution. Note that there are several definitions of skew-t in
literature and it is important to be aware which each one is being considered. This
is even more important when considering the multivariate context (see Chapter 5
in Kotz and Nadarajah (2004)).

Moreover, from (4) we can see clearly that the L1 distance does not depend on
the location and scale parameters, since it only depends on the shape parameter.

2.2 Kullback–Liebler divergence and J -divergence

The Kullback–Liebler (KL) divergence between two densities f and g is given by

KL(f,g) =
∫

f (x) log
{
f (x)

g(x)

}
dx. (5)

This is not a measure of distance since KL(f,g) �= KL(g,f ). The usual
way to obtain a symmetric measure based on KL divergence is to consider
J (f, g) = KL(f,g) + KL(g,f ), known as J -divergence. Contreras-Reyes and
Arellano-Valle (2012) present the J -divergence between two multivariate skew-
normal distributions. Latter, Arellano-Valle, Contreras-Reyes and Genton (2013)
showed some results about entropy in the context of the skew-t distribution; how-
ever they did not obtain the J -divergence.

In the following, we deal with the one-dimensional case and the more general
skewness structure considered in this paper.

Proposition 2.3. The J -divergence between f1 and f0, as defined in (1), is given
by

ES

{
log

[
G
(
w(S,α)

)]} − EZ

{
log

[
G
(
w(Z,α)

)]}
, (6)

where S ∼ f1, Z ∼ f0 and α is fixed.
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Corollary 2.1.

1. The J -divergence between the SN(ξ, τ 2, α) and N(ξ, τ 2) is given by

EX1

{
log

[
�(αX1)

]} − EX0

{
log

[
�(αX0)

]}
, (7)

where X1 ∼ SN(0,1, α) and X0 ∼ N(0,1); and
2. The J -divergence between the ST(ξ, τ 2, α, ν) and T (ξ, τ 2, ν) is given by

EY1

{
log

[
T

(
αY1

√
ν + 1

ν + Y 2
1

;ν + 1
)]}

(8)

− EY0

{
log

[
T

(
αY0

√
ν + 1

ν + Y 2
0

;ν + 1
)]}

,

where Y1 ∼ ST(0,1, α, ν) and Y0 ∼ T (0,1, ν).

The result for the skew-normal is a particular case of Contreras-Reyes and
Arellano-Valle (2012).

The proof of Proposition 2.3 is given in the Appendix. Corollary 2.1 follows
from Proposition 2.3 and the fact that the J -divergence does not depend on the
location and scale parameters.

Evaluation of the J -divergences presented in the Corollary 2.1 is possible con-
sidering numerical procedures like quadrature methods or ordinary Monte Carlo.
All the results for the simulation of J -divergences in this work were obtained using
the function NExpectation in the Mathematica�10.1 software.

Recently, Contreras-Reyes (2014) showed a way to approximate the Kullback–
Liebler divergence between two skew-t distributions. Although this result is only
an asymptotic approximation, it can be helpful to calculate the J -divergence ap-
proximately.

3 The concentration function

According to Cifarelli and Regazzini (1987), the concentration function of a prob-
ability measure P with respect to another one, say P0, is extending the classical
notion of the Lorenz–Gini curve. The concentration function studies the discrep-
ancy between two measures defined on the same probability space, comparing the
different concentrations of probability determined by the measures. As discussed
in Cifarelli and Regazzini (1987), the concentration function is also related to the
total variation distance and some indexes, like Gini’s and Pietra’s, which capture
different aspects of the difference between probability measures. In Fortini and
Ruggeri (2000), a thorough review of the properties of the concentration function
is presented, along with its applications in Bayesian robustness and as a tool to
build topological neighborhoods of probability measures.
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In the next, we present the formal definition and an important lemma for the
interpretation of the concentration function.

We denote by f and f0 the density functions associated, respectively, to the
probability measures Pf and Pf0 , absolutely continuous with respect to Lebesgue
measure on the same measurable space (R,B), where R is the set of the real num-
bers and B is the Borel σ -field on R.

Definition 3.1. Let Ly = {θ ∈ R : h(θ) ≤ y} for any y ≥ 0, and h(θ) = f (θ)
f0(θ)

for
any θ ∈ R. The concentration function of Pf with respect to Pf0 is given by ϕPf

:
[0,1] → [0,1] such that ϕPf

(0) = 0, ϕPf
(1) = Pf (R) = 1 and

ϕPf
(z) = Pf (Ly), if z = Pf0(Ly), (9)

where Pf (Ly) ≡ ∫
Ly

f (θ) dθ and Pf0(Ly) ≡ ∫
Ly

f0(θ) dθ .

Scarsini (1990) provides a similar definition when he considers two probability
measures on the power set of a finite space X . The next lemma (see Cifarelli and
Regazzini (1987)) presents an important propriety about the distance between two
densities which allows also for a helpful graphical representation.

Lemma 3.1. Let Pf and Pf0 be two probabilities measures on the same measur-
able space (R,B). For z ∈ [0,1] and any A ∈ B such that Pf0(A) = z, then

ϕ(z) ≤ Pf (A) ≤ 1 − ϕ(1 − z). (10)

Another interesting property about the concentration function is related to two
distributions that have undergone the same location-scale transformation. In this
situation, the concentration function is not affected by equal location shifts and/or
scale changes applied to both distributions.

3.1 Skew-normal case

We present a closed form expression for the concentration function between skew-
normal and normal distributions. Then, we discuss the interpretation of this mea-
sure through a special case and complete this section presenting a relationship
between the concentration function and the L1 distance.

Proposition 3.1. The concentration function between a SN(ξ, τ 2, α) and a
N(ξ, τ 2) is given by

ϕSN(z | α) = 2�2

[(
�−1(z)

0

) ∣∣∣∣
(

1 −δ

−δ 1

)]
, (11)

where �2(· | 
) is the cumulative distribution function of the bivariate normal
with mean vector zero and covariance matrix 
, δ = |α|√

1+α2
, whereas �−1(·) is

the quantile function of the standard normal distribution.
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Figure 1 The concentration function of SN(0,1,2) with respect to N(0,1) and respective density
functions.

Figure 1 (left) shows the functions ϕSN(z) and 1 − ϕSN(1 − z) for the dis-
tributions SN(0,1,2) and N(0,1). We draw a dashed line crossing the curves
ϕSN(z) and 1 − ϕSN(1 − z) for z = 0.5 and it follows from Lemma 3.1 that
0.148 ≤ PSN(A) ≤ 0.852, for all A ∈ B such that PN(A) = 0.5. Moreover, in the
second graph on the Figure 1 (right) we depict the two probabilities densities func-
tions.

The first graph (left) in the Figure 1 shows that a relatively small value of α,
that is, 2, implies a quite large difference between the SN(0,1,2) and the N(0,1)

distributions, as testified by the vertical line (left plot) which shows how measur-
able sets of probability 0.5 under the normal distribution can have a probability
ranging, approximately, from 0.15 to 0.85 under the skewed normal. The finding
is also confirmed by the visual comparison of the densities (right plot) which are
concentrating most of their probability on quite different sets. Figure 1 can be con-
sidered as a warning when introducing skewness: even small values of α can lead
to significantly different concentrations.

Considering expression (4), we obtain that the L1 distance between the
SN(0,1,2) and N(0,1) is 0.352, which corresponds to half distance between
ϕSN(0.5) and 1 − ϕSN(0.5). In Cifarelli and Regazzini (1987) it was proved that
the Pietra’s index, given by supx∈[0,1](x − ϕ(x)), equals the total variation dis-
tance between two probability measures, which is also half the L1 distance. In the
next, we will make an explicit computation, showing the relation between the L1

distance and the concentration function under the normal context.
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Figure 2 L1 and J distances between SN(0,1, α) and N(0,1) in function of α ∈ [−50,50].

Proposition 3.2. The L1 distance between a SN(ξ, τ 2, α) and a N(ξ, τ 2) is given
by

L1(f1, f0) = 1

2
− ϕSN(0.5), ∀α. (12)

From Proposition 3.2, we see that the L1 distance can be interpreted as a sum-
mary measure of the concentration function.

We also obtained the J -divergence between the SN(0,1,2) and N(0,1) and its
value is 1.534. This value is more difficult to interpret and we could not find a rela-
tion between it and the concentration function. In Figure 2, we show the behavior
of the L1 and J divergences between SN(0,1, α) and N(0,1) for different values
of α.

The findings of Figure 1, valid for α = 2, can be extended to a larger set of
values when looking at the left hand side of Figure 2. The L1 distance, related to
the concentration function by Proposition 3.2, has a dramatic increase for values of
|α| < 10, providing a warning, as above, on the consequences of the choice of α.
The same warning cannot be achieved when looking at the J -divergence on the
right-hand side of Figure 2. Note that the L1 distance increases more smoothly
than the J -divergence for |α| > 20, when it gets practically constant. Therefore,
the L1 distance is more coherent than the J -divergence since it is known that the
density function of a standard skew-normal distribution is minimally affected for
|α| > 20, when converging to a half normal distribution.
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Figure 3 Graphs of ϕST (z | α, ν) and 1 − ϕST (1 − z | α, ν) of ST(0,1, α, ν) with respect to
T (0,1, ν).

3.2 Skew-t case

We present a closed form expression for the concentration function between the
skew-t and the Student-t distributions. Then, using an example, we discuss the
influence of the shape parameter α and the degrees of freedom parameter ν.

Proposition 3.3. The concentration function between ST(ξ, τ 2, α, ν) and T (ξ,

τ 2, ν) is given by

ϕST(z | α, ν) = 2T2

[(
cT −1

ν (z)

0

) ∣∣∣∣
(

1 −δ

−δ 1

)
, ν

]
, (13)

where T −1
ν (·) is the quantile of the standard Student-t distribution with ν degrees

of freedom, δ = |α|√
1+α2

and T2(· | 
,ν) is the distribution function of a bivariate t

distribution with mean vector zero, covariance matrix 
 and ν degrees of freedom.

Considering that the skew-t distribution can be expressed as a scale mixture of
skew-normals, an alternative way to write the concentration function is given by

ϕST(z | α, ν) = 2EW

{
�2

[(
T −1

ν (z)W 1/2

0

) ∣∣∣∣
(

1 −δ

−δ 1

)]}
,

where W ∼ Gamma(ν/2, ν/2) and δ = |α|√
1+α2

.

Figure 3 presents ϕST(z | α, ν) and 1 − ϕST(1 − z | α, ν) of the ST(0,1, α, ν)

with respect to T (0,1, ν) in several situations. The graphs were drawn using the
expression (13) in Proposition 3.3. The first graph (left) shows these functions
when ν = 1 and α is equal to 0, 0.25, 1 and 10. Note that, for fixed ν = 1, the
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distance between the curves increases with α, as expected. The same behavior is
observed when we fix other values for ν. Changes of α (see left-hand side) induce
a great variation in the probability of the sets when moving from the T (0,1, ν)

distribution to the ST(0,1, α, ν), as a consequence of Lemma 3.1. In particular, the
bottom line, corresponding to α = 10, is almost flat up to z = 0.5: it means there
is a subset of measure 0.5 under the Student-t distribution which has negligible
probability under the skew-t distribution. In the second graph (right), we fix α = 1
and change the values of ν (1, 2, 3, 5 and 15). In this case, we cannot note many
differences between curves indicating that there are no relevant changes in the
distributions when considering different degrees of freedom. There are just tiny
differences on subsets of small probability, as shown by the nonoverlapping curves
for values of z between 0 and 0.3. It is important to remember that, for α fixed, the
L1 distance is the same for all ν.

4 Application in Bayesian robustness

4.1 Prior robustness

Robust Bayesian analysis is concerned with the impact of different specifications
for the prior distribution or the likelihood function on the posterior distribution. If,
for instance, a specific posterior inference is not much affected by these choices,
then we will say that this inference is robust. In general, robustness analysis as-
sumes the likelihood f (x | θ) is fixed and considers a class � of prior distributions
to deal with the uncertainty in specifying a unique distribution. Robustness of a
given statistical procedure is measured by the size of the range of posterior mea-
sures or quantities of interest (e.g., mean) obtained when the prior distribution
varies over �.

A possible way to construct � is to consider an elicited prior as baseline prior
and contaminate it using a class of functions. In the literature, the most common
and well-studied class of priors is the ε-contaminated class when the perturbation
of the baseline prior is additive (see O’Hagan (1994)). Considering multiplicative
ways of perturbation, Godoi and Branco (2014) studied a multiplicative class of
contaminated priors for the location parameter, under a normal likelihood. These
authors analyzed the behavior of the posterior mean and posterior variance under
changes in the prior distribution. In this section, we explore the use of the concen-
tration function for a robustness study under multiplicative contamination.

Suppose that X1,X2, . . . ,Xn is a random sample from a normal distribution
with location parameter θ and scale parameter σ 2. Usually, the prior distribution
specified for θ is the normal, that is conjugate with respect to the statistical model
considered. The idea here is to propose a class of prior distributions that contains
the normal distribution, but allows the inclusion of the assumption of asymmetry.
One possibility is to use the skew-normal class of distributions, given by

� =
{
fα(θ) = 2

τ
φ

(
θ − ξ

τ

)
�

(
α

θ − ξ

τ

)
: α ∈ R

}
. (14)



Concentration function for the skew-normal and skew-t distributions 383

Note that the location and scale parameters are considered fixed and the class �

contains an infinite number of density functions arising from the variation of the
skewness parameter α.

Considering σ 2 known, Godoi and Branco (2014) show that, under a SN
prior distribution for θ , the posterior distribution is in a more general class
of skew distribution known as SUN (Skew Unified Normal). A continuous p-
dimensional random vector X has a multivariate SUN distribution, denoted by
X ∼ SUNp,q(μ,�,�,�, ξ), if its density function at x ∈R

p is given by

fX(x) = φp(x;μ,�)
�q(ξ + �T �−1(x − μ);0,� − �T �−1�)

�q(ξ ;0,�)
, (15)

where μ ∈ R
p and ξ ∈ R

q are location vectors, � ∈ R
p×p , � ∈ R

q×q and
� ∈ R

p×q are dispersion matrices. For details about SUN, see Arellano-Valle and
Azzalini (2006).

The SN(ξ, τ 2, α) is recognized as a particular case of a SUN distribution de-
noted by SUN1,1(ξ, τ 2, ατ 2,0, τ 2(1 + α2)). Therefore, to compare the posterior
distributions under normal prior and SN prior it is necessary to have a distance
measure between a normal and a SUN distributions, in a similar fashion as in
Section 2. In the next, we will present the results about conjugation under SUN
context, given by Godoi and Branco (2014), and the concentration function be-
tween posteriors. The proof follows similar steps of the Proposition 3.1, so we will
not present it here.

Proposition 4.1. Let X = (X1,X2, . . . ,Xn) be a random sample of size n from
X ∼ N(θ,σ 2), with σ 2 known. If θ ∼ SUN1,1(ξ, τ 2, ατ 2,0, τ 2(1 + α2)), then the
posterior distribution is given by

θ | x ∼ SUN1,1
(
ζ,ω2, αω2,−α(ξ − ζ ), τ 2 + α2ω2), (16)

where

ζ = nx̄τ 2 + ξσ 2

nτ 2 + σ 2 and ω2 = σ 2τ 2

nτ 2 + σ 2 . (17)

Proposition 4.2. The concentration function between the densities N(ζ,ω2) and
SUN1,1(ζ,ω2, αω2,−α(ξ − ζ ), τ 2 + α2ω2) is given by

ϕSUN(z) =
�2

[( α√
nτ 2+σ 2(1+α2)

τn(x̄−ξ)√
nτ 2+σ 2

�−1(z)

) ∣∣∣∣
(

1 −ρ

−ρ 1

)]

�[ α√
nτ 2+σ 2(1+α2)

τn(x̄−ξ)√
nτ 2+σ 2

] , (18)

where �2(· | 
) is the cumulative distribution function of the bivariate normal with
mean vector zero and covariance matrix 
, ρ = |α|σ√

nτ 2+σ 2(1+α2)
and �−1(·) is the

quantile function of the standard normal distribution.
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In the next proposition, we present an expression for the L1 distance between a
SUN and the normal distribution, which generalizes the result given in Section 2.

Proposition 4.3. The L1 distance between the densities N(ζ,ω2) and SUN1,1(ζ,

ω2, αω2,−α(ξ − ζ ), τ 2 + α2ω2) is given by

L1(fSUN, fN) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
− �

[−K(α)
] + g(α), if α > 0,

−1

2
+ �

[−K(α)
] − g(α), if α < 0,

(19)

where

g(α) = 1

2�[αQ(α)]
{
−�2

[(
K(α)

αQ(α)

)
;−ρ

]
+ �2

[(−K(α)

αQ(α)

)
;ρ

]}
, (20)

Q(α) = (ζ − ξ)√
τ 2 + α2ω2

, K(α) = 1√
ω2

(
Q(α)τ + ξ − ζ

)
, (21)

ζ and ω2 are as specified in (17) and �2(· | ρ) is the distribution function of the
bivariate normal with mean vector zero and ρ = ασ√

nτ 2+σ 2(1+α2)
being the corre-

lation coefficient such that the covariance matrix is given by
[ 1 ρ

ρ 1

]
.

4.2 A numerical case study

We develop here a robustness analysis under the skew-normal class of distributions
as presented in (14) when a random sample of size n of X ∼ N(θ,σ 2), with σ 2

known, is considered. For this, let ξ = 0, τ 2 = 1, σ 2 = 1 and n = 20.
Note that this class of prior distributions (�) contains an infinite number of stan-

dard skew-normal distributions (SN(0,1, α)) arising from the variation of α ∈ R

and includes the standard normal distribution specified when α = 0. In this con-
text, our goal is to observe the influence of this class on the posterior distributions,
when α varies.

According to Proposition 4.1, the posterior class of distributions is still a SUN,
determined by the variation of α. The posterior distribution associated to the base-
line prior is obtained when α = 0.

Fortini and Ruggeri (2000) suggest to obtain the class of the concentration func-
tions between the class of posterior distributions and the baseline posterior and an-
alyze the robustness considering the pointwise infimum of the concentration func-
tions in this class. The resulting function will be denoted by ϕ̂(z) for any z ∈ [0,1].
In our context, for each z fixed in a grid constructed through zj = 0.02 × j , for
j = 1, . . . ,50, we consider a grid of values for α ∈ [−25,25], namely αi = 0.1× i,
with {i ∈ Z | i = −250, . . . ,250}; using the expression in (18) with known x̄, we
obtain

ϕ̂(zj ) = inf
α

ϕα(zj ) ≈ min
{
ϕα1(zj ), . . . , ϕα501(zj )

}
, j = 1, . . . ,50. (22)
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If we suppose, for example, that x̄ = 0.25 and α ∈ [−25,25], we obtain a graph
identical to the one presented in Figure 4, bottom row, left-hand side column. The
analysis should be performed based on it, showing an evident lack of robustness,
as discussed earlier.

In a similar context, Godoi and Branco (2014) showed that the robustness of
the posterior mean of θ with respect to the variation of the prior distributions in �

occurs when both α and x̄ − ξ vary in intervals in R
+ (or are, similarly, both in

R
−). With this in mind, we split � in two subclasses depending on the sign of α:

one for α ≥ 0 and the other for α ≤ 0. The value α = 0 is in both classes to ensure
that the baseline prior is inside each of them. In each subclass, the infimum of the
concentration function is computed as described previously and the behavior of
the posterior distributions is studied to check if the results presented in Godoi and
Branco (2014) occur even when using the approach based on the concentration
function.

In Figure 4, we present the graphs of ϕ̂(z) and 1 − ϕ̂(1 − z) for x̄ = −0.25, 0
and 0.25. We note that, when α has the same sign of the sample mean, then ϕ̂(z)

and 1− ϕ̂(1−z) are close. This proximity is more evident for large absolute values
of x̄. In this case, the class of posterior distributions is robust with respect to skew-
normal contamination class and there is no significant difference in performing a
Bayesian analysis using the prior baseline (N(0,1)) or any other skew prior in �.
On the other hand, the robustness does not occur when α and x̄ have different signs.
The lack of robustness in this context can be explained by the conflict between the
information suggested by the class of prior distribution (skewness on one side) and
the sample mean (obtained on the other side).

It could be possible to consider classes with α in subsets of R+ (or R−) and
consider the infimum of the concentration function and compute, say, the Pietra’s
index, given here by supx∈[0,1](x − ˆϕ(x)), to check about robustness. Different
classes could give different values of the index, with smaller values denoting im-
provement in robustness. An issue, common to all robust Bayesian analysis, is
about the threshold about the entertained measure (here Pietra’s index) which de-
termines if there is robustness or not. This is a critical question whose answer
depends on the problem at hand and who is involved: it is a subjective choice. We
just provide a tool which can be applied in many practical cases where departure
from symmetry is deemed necessary; the consequences of its use (lack or not of
robustness) are to be evaluated case by case by the decision makers.

We could also consider classes with both negative and positive values of α. It is
evident from the previous discussion and Figure 4 that the infimum of the concen-
tration function will be obtained for those value of α which have the opposite sign
of x̄.

Similar conclusions are obtained when we consider the L1 distance. Figure 5
shows the behavior of the L1 distance as a function of α. Moreover, for α > 0
we obtain numerically that the maxα L1(α) corresponds to 0.861, 0.499 and 0.137
when x̄ = −0.25, 0 and 0.25, respectively. For α < 0, the maxα L1(α) corresponds
to 0.137, 0.499 and 0.861 when x̄ = −0.25, 0 and 0.25, respectively.
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Figure 4 Concentration function for the class of posterior distributions, with fixed x̄ = −0.25, 0
and 0.25. The lines (–) and (- -) correspond, respectively, to ϕ̂(z) and 1 − ϕ̂(1 − z).
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Figure 5 L1 distances for the class of posterior distributions, with fixed x̄ = −0.25, 0 and 0.25.



388 L. G. Godoi, M. D. Branco and F. Ruggeri

5 Final comments

In the paper, we have investigated the use of different measures to compare skew-
symmetric distributions with respect to a baseline symmetric distribution. In partic-
ular, we have proposed the use of the concentration function and discussed findings
relate also to L1 distance and J -divergence. We have been able to provide novel
computations, mostly for the Student−t distribution. Once the measures used to
compare distributions are available, then their properties could provide different
insights on the departure from the symmetric baseline. We have also presented an
expression that relates the concentration function and the L1 distance in the normal
case. In this case, we can interpret the L1 distance as a summary measure of a con-
centration function. A relevant application of the approach is Bayesian robustness
where the class of distributions could be considered a neighborhood, not neces-
sarily in topological sense, of a baseline symmetric prior. A more extensive study
on the properties of the measures and the implications in Bayesian robustness is
currently being pursued.

Appendix: Proofs

Proof of Proposition 2.3. The J -divergence (see Contreras-Reyes and Arellano-
Valle, 2012) between two densities f and g is given by

J (f, g) = CH(f,g) + CH(g,f ) − H(f ) − H(g), (23)

where CH(f,g) is the cross-entropy and it is given by

CH(f,g) = −
∫

f (x) log
(
g(x)

)
dx (24)

and H(f ) = − ∫
f (x) log(f (x)) dx and H(g) = − ∫

g(x) log(g(x)) dx are the
usual measures of entropy.

Now we obtain the cross-entropy between f0 and f1, as given in (1).
Consider Z and S random variables with density function f0 and f1, respec-

tively. Then,

CH(f0, f1) = −
∫

f0(z) log
(
f1(z)

)
dz

= −
∫

f0(z)
[
log

(
f0(z)2G

(
w(z,α)

))]
dz (25)

= H(f0) − EZ

[
log

(
2G

(
w(Z,α)

))]
.

On the other hand, the cross-entropy between f1 and f0 is

CH(f1, f0) = −
∫

f0(s)2G
(
w(s,α)

)
log

(
f0(s)

)
ds = −ES

[
log

(
f0(S)

)]
.
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Therefore,

J (f0, f1) = −EZ

[
log

(
2G

(
w(Z,α)

))] − ES

[
log

(
f0(S)

)] + ES

[
log

(
f1(S)

)]
= ES

[
log

(
f0(S)2G(w(S,α))

f0(S)

)]
− EZ

[
log

(
2G

(
w(Z,α)

))]
(26)

= ES

[
log

(
G
(
w(S,α)

))] − EZ

[
log

(
G
(
w(Z,α)

))]
. �

Proof of Proposition 3.1. According to the discussion made after Lemma 3.1,
without loss of generality, this proof can be made for ξ = 0 and τ 2 = 1. Then,

h(θ) = f (θ)

f0(θ)
= 2�(αθ). (27)

For any z ∈ [0,1], we compute the concentration function by finding the value
y such that z = Pf0({θ ∈ � : h(θ) ≤ y}). For α > 0,

0 < h(θ) ≤ y ⇐⇒ 0 < 2�(αθ) ≤ y
(28)

⇐⇒ −∞ < θ ≤ �−1(y/2)

α
.

Considering q = �−1(y/2)
α

then z = Pf0({θ ∈ � : h(θ) ≤ y}) = Pf0({θ ∈ � :
−∞ < θ ≤ q}) = �(q) and thus z = �(

�−1(y/2)
α

).

Therefore, the value y for which z = �(
�−1(y/2)

α
) is given by 2�[α�−1(z)] and

ϕSN(z | α) = Pf ({θ ∈ � : h(θ) ≤ y}) = Pf ({θ ∈ � : h(θ) ≤ 2�[α�−1(z)]}). Not-
ing that 0 < h(θ) ≤ 2�[α�−1(z)] ⇐⇒ −∞ < θ ≤ �−1(z), we have, for α > 0,

ϕSN(z | α) =
∫ �−1(z)

−∞
2φ(θ)�(αθ) dθ. (29)

According to Rodríguez (2005), we can rewrite ϕSN(z | α) as presented on (11).
For α < 0, the proof is similar. �

Proof of Proposition 3.2. For α > 0, we consider ϕSN(0.5 | α) as expressed in
(29) and using the identity 1010.3 presented in Owen (1980), we rewrite ϕSN(0.5 |
α) as 1

π
arctan 1

α
. Then,

1

2
− ϕSN(0.5 | α) = 1

2
− 1

π
arctan

1

α

= 1

2
− 1

π
arccos

α√
1 + α2

(30)

= 1

2
− 1

π

[
π

2
− arcsin

α√
1 + α2

]
= L1(fSN, fN).
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Similar steps can be done for α < 0 knowing that in this case ϕSN(0.5 | α) can be
written as 1

π
arccos (− α√

1+α2
) according to the identity 1010.4 in Owen (1980). �

Proof of Proposition 3.3. According to the discussion made after Lemma 3.1,
without loss of generality, we consider in this proof ξ = 0 and τ 2 = 1. Then,

h(θ) = f (θ)

f0(θ)
= 2T

(
αθ

√
1 + ν

v + θ2 ;ν + 1
)
. (31)

For any z ∈ [0,1], we compute the concentration function by finding the value y

such that z = Pf0({θ ∈ � : h(θ) ≤ y}).
Note that 0 < y < 2 and, for α > 0, the function h(θ) is strictly increasing,

for all θ . Then 0 < h(θ) ≤ y ⇐⇒ −∞ < θ < h−1(y), where h−1(y) corresponds

to the value of θ such that 2T (αθ
√

1+ν
v+θ2 ;ν + 1) = y. After some calculations,

we obtain that θ <

√
K2ν

1−K2 , if 1 ≤ y < 2, and θ < −
√

K2ν
1−K2 , if 0 < y < 1, where

K = T −1
ν+1(y/2)

α
√

ν+1
.

For 1 ≤ y < 2, we have that z ≥ 0.5 and that y = 2T (
α
√

ν+1T −1
ν (z)√

ν+[T −1
ν (z)]2

;ν + 1),

since z = Pf0({θ ∈ � : h(θ) ≤ y}) = ∫ √
K2ν

1−K2

−∞
�( ν+1

2 )

�( ν
2 )

1√
(νπ)

(1 + t2

ν
)(

ν+1
2 ) dt , where

K = T −1
ν+1(y/2)

α
√

ν+1
.

Finally, we get that

ϕST(z | α, ν) = Pf

({
θ ∈ � : h(θ) ≤ y

})
(32)

= Pf

({
θ ∈ � : h(θ) ≤ 2T

(
α
√

ν + 1T −1
ν (z)√

ν + [T −1
ν (z)]2

;ν + 1
)})

and noting that 0 < h(θ) ≤ 2T (
α
√

ν+1T −1
ν (z)√

ν+[T −1
ν (z)]2

;ν + 1) ⇐⇒ −∞ < θ ≤ T −1
ν (z), we

have, for α > 0 and z ≥ 0.5

ϕST(z | α, ν) =
∫ T −1

ν (z)

−∞
2t (θ;ν)T

(
αθ

√
ν + 1

ν + θ2 ;ν + 1
)

dθ. (33)

If we consider 0 < y < 1, we have that if z < 0.5 we also obtain y =
2T (

α
√

ν+1T −1
ν (z)√

ν+[T −1
ν (z)]2

;ν + 1) and, following similar steps as before, we obtain the con-

centration function as presented in (33).
According to Jamalizadeh, Mehrali and Balakrishnan (2009), the expression in

(33) can be rewritten as presented in (13). For α < 0, the proof is similar. �
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Proof of Proposition 4.3. The densities associated to the normal and SUN distri-
butions are given, respectively, by

fN(θ) = φ
(
θ; ζ,ω2),

(34)
fSUN(θ) = A−1φ

(
θ; ζ,ω2)�(

αθ;αξ, τ 2),
with A = �(αζ ;αξ, τ 2 + α2). Then

L1(fN,fSUN)

= 1

2

∫ ∣∣fSUN(θ) − fN(θ)
∣∣dθ (35)

= 1

2A

∫ ∣∣∣∣�
[
α

(
θ − ξ

τ

)]
− �

[
α

(
ζ − ξ√

τ 2 + α2ω2

)∣∣∣∣
]

︸ ︷︷ ︸
|B|

φ
(
θ; ζ,ω2)dθ.

For α > 0,

|B| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

[
α

(
θ − ξ

τ

)]
− �

[
α

(
ζ − ξ√

τ 2 + α2ω2

)]
,

if θ > τ

(
ζ−ξ√

τ 2+α2ω2

)
+ ξ,

−�

[
α

(
θ − ξ

τ

)]
+ �

[
α

(
ζ − ξ√

τ 2 + α2ω2

)]
,

if θ < τ

(
ζ−ξ√

τ 2+α2ω2

)
+ ξ

and then

L1(fN,fSUN)

= 1

2A

{∫ τ(
ζ−ξ√

τ2+α2ω2
)+ξ

−∞

(
�

[
α

(
ζ − ξ√

τ 2 + α2ω2

)]
− �

[
α

(
θ − ξ

τ

)])
(36)

× φ
(
θ; ζ,ω2)dθ +

∫ ∞
τ(

ζ−ξ√
τ2+α2ω2

)+ξ

(
�

[
α

(
θ − ξ

τ

)]

− �

[
α

(
ζ − ξ√

τ 2 + α2ω2

)])
φ
(
θ; ζ,ω2)dθ

}
.

After some calculations in (36), we obtain the expression in (19), for α > 0. The
proof for α < 0 is similar and thus it is omitted. �
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