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Abstract. Let π1, . . . , πk be k (≥ 2) independent populations, where πi

denotes the uniform distribution over the interval (0, θi ) and θi > 0 (i =
1, . . . , k) is an unknown scale parameter. Let θ[1] ≤ · · · ≤ θ[k] be the ordered
values of θ1, . . . , θk . The population π(k) (π(1)) associated with the unknown
parameter θ[k] (θ[1]) is called the best (worst) population. For selecting the
best population, we consider a general class of selection rules based on the
natural estimators of θi , i = 1, . . . , k. Under the entropy loss function, we
consider the problem of estimating the scale parameter θS of the population
selected using a fixed selection rule from this class. We derive the uniformly
minimum risk unbiased estimator of θS and two natural estimators of θS are
also considered. We derive a general result for improving a scale invariant
estimator of θS under the entropy loss function. A simulation study on the
performances of various competing estimators of θS is also reported. Finally,
we provide similar results for the problem of estimating the scale parameter
of selected population when the selection goal is that of selecting the worst
uniform population.

1 Introduction

Selection and related estimation problems have been extensively studied in the lit-
erature. Selection problems primarily deal with the goal of selecting the best (or
worst) population among a set of available populations, where the quality of a pop-
ulation is assessed in terms of an unknown parameter associated with it. After the
selection has been made using a given selection procedure, one may be interested
in estimating the worth of the selected population. In the literature, such prob-
lems are referred to as problems of estimation after selection. For detailed discus-
sion on estimation after selection problems, one may refer to Vellaisamy, Kumar
and Sharma (1988), Song (1992), Vellaisamy (1992, 1996), Parsian and Farsipour
(1999), Misra and van der Meulen (2001), Kumar and Tripathi (2003), Kumar
and Gangopadhyay (2005), Nematollahi and Motamed-Shariati (2009, 2012) and
Nematollahi and Jozani (2016).
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Most of the work on selection and estimation after selection problems reported
in the literature is carried out under the assumption of equal nuisance parame-
ters and/or equal sample sizes and very little research has been carried out under
the setup where nuisance parameters and/or sample sizes may be unequal. Such
selection problems are exceedingly complex as reported in Hall (1959). For the
case of unequal nuisance parameters/sample sizes, some of the contributions are
due to Risko (1985), Abughalous and Miescke (1989), Abughalous and Bansal
(1994), Misra and Dhariyal (1994), Vellaisamy (1996), Misra and Arshad (2014),
Arshad, Misra and Vellaisamy (2015), Arshad and Misra (2015a, 2015b, 2016).
Recently, under the entropy loss function and under the natural selection rule
which selects the population corresponding to largest (smallest) complete suffi-
cient statistic, Nematollahi and Motamed-Shariati (2012) considered the problem
of estimation after selection from uniform populations based on sample of equal
sizes. In this paper, we consider unequal sample sizes and a more general class of
selection rules thereby extending the results of Nematollahi and Motamed-Shariati
(2012).

Let π1, . . . , πk be k (≥ 2) independent populations such that the independent
observations Xi1, . . . ,Xini

from the population πi have a uniform distribution
over the interval (0, θi), θi > 0, i = 1, . . . , k. Assume that the parameters θ1, . . . , θk

are completely unknown. Let Xi = max{Xi1, . . . ,Xini
}, i = 1, . . . , k, so that X =

(X1, . . . ,Xk) is a complete and sufficient statistic for θ = (θ1, . . . , θk) ∈ �; here
� (= R

k+) denotes the parametric space and R
k+ denotes the positive part of k-

dimensional Euclidean space. The random variables X1, . . . ,Xk are independent
and Xi has the probability density function (pdf)

fi(x|θi) =
⎧⎨
⎩

nix
ni−1

θ
ni

i

, if 0 < x < θi ,

0, otherwise.
(1.1)

Let θ[1] ≤ · · · ≤ θ[k] be the ordered values of θ1, . . . , θk . Let π(k) denote the un-
known population associated with the largest scale parameter θ[k], and be called
the best population. In case of ties for the best populations, we assume that the
population πj having the largest subscript j among tied populations is tagged as
the best population; for example, if θi = θj = θ[k] and i < j then the population
πj is tagged as the best population. Since Xi is the maximum likelihood estimator
of θi, i = 1, . . . , k, for the goal of selecting the best population, a natural selection
rule δN is to select the population corresponding to X[k] = max{X1, . . . ,Xk}. Then
the scale parameter of the selected population is θS = ∑k

i=1 θi{∏j �=i I (Xi,Xj )},
where I (a, b) = 1 if a ≥ b; = 0 otherwise. Under the assumption of equal sam-
ple sizes and for the natural selection rule δN , Nematollahi and Motamed-Shariati
(2012) considered the problem of estimating the scale parameter θS of the selected
population under the entropy loss function

L(θS,ϕ) = θS

ϕ
− ln

(
θS

ϕ

)
− 1, ϕ ∈ C, (1.2)
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where C denotes the class of all estimators of θS . The authors derived the uniformly
minimum risk unbiased (UMRU) estimator of θS . For k = 2, authors proved the
minimaxity of the generalized Bayes estimator and also proved the inadmissibility
of the UMRU estimator. In case of unequal sample sizes, it is inappropriate to
use the natural selection rule δN for selecting the best population (see Misra and
Dhariyal (1994)). For k = 2 and for the case of unequal sample sizes, it follows
from Arshad and Misra (2015b) (see Concluding Remarks in Arshad and Misra
(2015b)) that the selection rule δa∗ = (δa∗

1 , δa∗
2 ), where

δa∗
1 (X) =

{
1, if X1 > a∗X2,
0, if X1 ≤ a∗X2,

δa∗
2 (X) = 1 − δa∗

1 (X), (1.3)

and

a∗ ≡ a∗(n1, n2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n1 + n2

2n2

) 1
n1

, if n1 ≤ n2,

(
2n1

n1 + n2

) 1
n2

, if n1 > n2,

is minimax rule under the 0–1 loss function and is generalized Bayes rule with
respect to non-informative prior. For selecting the best populations, we consider a
fixed selection rule δa ∈ D1 = {δa : δa = (δa

1, . . . , δa
k ),a ∈ R

k+}, where

δa
i (X) =

{
1, if aiXi > max

j �=i
ajXj ,

0, otherwise.

Then the scale parameter of the selected population is

θS =
k∑

i=1

θiδ
a
i (X).

Let χ (= R
k+) denote the sample space and let Ai = {x ∈ χ : aixi > ajxj ,∀j �=

i, j = 1, . . . , k}, i = 1, . . . , k. Then the scale parameter θS can be written as

θS =
k∑

i=1

θiIAi
(X), (1.4)

where IA denotes the indicator function of the set A.
Arshad and Misra (2015a) considered estimation of θS under the scale invariant

squared error loss function. They derived the uniformly minimum variance un-
biased estimator of θS and proved certain inadmissibility results. For the special
choice ai = 1, i = 1, . . . , k, Nematollahi and Motamed-Shariati (2012) considered
estimation of θS under the entropy loss function (1.2). They derived the UMRU
estimator of θS and for the case k = 2, they proved that UMRU estimator is in-
admissible and the generalized Bayes estimator is minimax. In this paper, for a
general a ∈ R

k+, we consider the problem of estimating θS under the entropy loss
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function (1.2). We generalize various results proved in Nematollahi and Motamed-
Shariati (2012).

Note that, for i ∈ {1, . . . , k}, Xi and ni

ni−1Xi are respectively, the maximum
likelihood estimator and uniformly minimum risk unbiased estimator (or minimum
risk invariant estimator), with respect to the entropy loss function, of θi in the
component estimation problem. Based on these estimators, two natural estimators
of the scale parameter θS are given by

ϕN,1(X) =
k∑

i=1

XiIAi
(X) and ϕN,2(X) =

k∑
i=1

(
ni

ni − 1

)
XiIAi

(X).

In Section 2, we derive the UMRU estimator of θS . In Section 3, we derive a
general result for improving a scale invariant estimator of θS under the entropy loss
function (1.2). Using this result, the estimators better than the UMRU estimator
and the natural estimator ϕN,1 are obtained. A subclass of natural type estimators
is shown to be inadmissible for estimating θS under the entropy loss function. In
Section 4, a simulation study on the performances of various competing estima-
tors of θS is provided. Section 5 deals with the problem of estimating the scale
parameter of the selected uniform population when the selection goal is that of
selecting the worst uniform population (population associated with the smallest
scale parameter).

2 UMRU estimator

In this section, we will derive the UMRU estimator of θS , under the entropy loss
function (1.2).

Definition 1 (Nematollahi and Motamed-Shariati (2012)). An estimator ϕ(X)

of θS is said to be risk unbiased estimator of the random parameter η(θ) under the
entropy loss function (1.2) if

Eθ

(
1

ϕ(X)

)
= Eθ

(
1

η(θ)

)
, ∀θ ∈ �. (2.1)

To obtain the UMRU estimator, we need the following lemma given in
Nematollahi and Motamed-Shariati (2012).

Lemma 1. Suppose that X1, . . . ,Xk are independent random variables such that
Xi (i = 1, . . . , k) has the pdf (1.1). For i ∈ {1, . . . , k}, let Ui(·) be a given real
valued function on R

k+ such that

(i) Eθ (Ui(x1, . . . , xk)/xi) < ∞, ∀θ ∈ � and ∀x ∈R
k+,

(ii)
∫ xi

0 Ui(x1, . . . , xi−1, t, xi+1, . . . , xk)t
ni−1 dt < ∞, ∀x ∈R

k+.
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Define the function V : Rk+ →R+, such that 1
V (X)

= ∑k
i=1

1
Vi(X)

, where

1

Vi(x)
= Ui(x)

xi

− 1

x
ni+1
i

∫ xi

0
Ui(x1, . . . , xi−1, t, xi+1, . . . , xk)t

ni−1 dt,

x ∈R
k+, i = 1,2, . . . , k.

Then, under the entropy loss function (1.2), the estimator V (X) is risk unbiased
for SX(θ) = [∑k

i=1
1
θi

Ui(X)]−1.

Theorem 1. Under the entropy loss function (1.2), the uniformly minimum risk
unbiased estimator of the scale parameter θS of the selected population is given by

ϕU(X) =
k∑

i=1

niXi

[(ni − 1) + (
maxj �=i ajXj

aiXi
)ni ]

IAi
(X).

Proof. Let ϕU(X) be a risk unbiased estimator of SX(θ) = [∑k
i=1

1
θi

IAi
(X)]−1.

Using Lemma 1, we have

1

ϕU(X)
=

k∑
i=1

1

Vi(X)
(say),

where

1

Vi(X)
= IAi

(X)

Xi

− 1

X
ni+1
i

∫ Xi

0
IAi

(X1, . . . ,Xi−1, t,Xi+1, . . . ,Xk)t
ni−1 dt

= IAi
(X)

Xi

− 1

X
ni+1
i

∫ Xi

maxj �=i
aj Xj

ai

tni−1 dtIAi
(X)

= IAi
(X)

Xi

− 1

niX
ni+1
i

[
X

ni

i −
(

max
j �=i

ajXj

ai

)ni
]
IAi

(X)

= 1

niXi

[
(ni − 1) +

(
maxj �=i ajXj

aiXi

)ni
]
IAi

(X), i = 1, . . . , k.

Since ϕU(X) is a risk unbiased estimator of SX(θ), it follows that

Eθ

(
1

ϕU(X)

)
= Eθ

(
1

SX(θ)

)
= Eθ

(
k∑

i=1

1

θi

IAi
(X)

)
= Eθ

(
1

θS

)
.

Hence, the estimator ϕU(X) is a risk unbiased estimator of θS and the result follows
on noting that X = (X1, . . . ,Xk) is a complete and sufficient statistic. �

Remark 1. Let X[1] ≤ · · · ≤ X[k] be the ordered values of X1, . . . ,Xk . For n1 =
n2 = · · · = nk = n, and a1 = a2 = · · · = ak = 1, the UMRU estimator of θS is given
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by

ϕU(X) = nX[k]
[n − 1 + (

X[k−1]
X[k] )n]

.

In this case, the UMRU estimator depends only on the last two order statistics.
This result was derived by Nematollahi and Motamed-Shariati (2012).

3 Some inadmissibility results

In this section, we will show that the UMRU estimator and the natural estimator
ϕN,1 are inadmissible under the entropy loss function (1.2). To obtain a sufficient
condition for the inadmissibility of a scale-invariant estimator of θS , we need the
following lemmas. Lemma 2 is adopted from Arshad and Misra (2015a).

Lemma 2. Let X1, . . . ,Xk be independent random variables such that Xi has
the probability density function given in (1.1). Let Tj = Xj

X1
, j = 2, . . . , k. Then,

for a fixed t = (t2, . . . , tk) ∈ R
k−1+ , the conditional distribution of X1 given T =

(t2, . . . , tk) is given by

fX1|T(x1|t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∑k

j=1 nj )x

∑k
j=1 nj−1

1

θ

∑k
j=1 nj

t

, if 0 < x1 < θt,

0, otherwise,

(3.1)

where θt = min{θ1,minj �=1
θj

tj
}.

Lemma 3. Let B1 = {(t2, . . . , tk) ∈ R
k−1+ : tj < a1

aj
, j = 2, . . . , k} and

Bl =
{
(t2, . . . , tk) ∈ R

k−1+ : tl > max
(

a1

al

, max
2≤j≤k

j �=l

aj tj

al

)}
, l = 2, . . . , k,

so that {B1, . . . ,Bk} forms a partition of Rk−1+ . Define

φ(t, θ) =
k∑

i=1

θiEθ

(
1

X1

∣∣∣T = t
)
IBi

(t), t ∈R
k−1+ , θ ∈ �.

Then

φ(t, θ) =
( ∑k

j=1 nj∑k
j=1 nj − 1

) k∑
i=1

θi

min{θ1,minj �=1
θj

tj
}
IBi

(t), t ∈ R
k−1+ , θ ∈ �,
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and

φ∗(t) = inf
θ∈�

φ(t, θ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( ∑k
j=1 nj∑k

j=1 nj − 1

)
, if t ∈ B1,

( ∑k
j=1 nj∑k

j=1 nj − 1

)
tl, if t ∈ Bl, l = 2, . . . , k.

Definition 2. An estimator ϕ(X1, . . . ,Xk) of the scale parameter θS of selected
population is said to be scale-invariant if

ϕ(cx1, . . . , cxk) = cϕ(x1, . . . , xk), ∀c > 0 and x = (x1, . . . , xk) ∈ R
k.

Clearly, a scale-invariant estimator of θS will be of the form

ϕ(X1, . . . ,Xk) = X1ψ(T2, . . . , Tk),

where Ti = Xi

X1
, i = 2, . . . , k, and ψ is a non-negative real-valued function on

R
k−1+ .
The following theorem provide a sufficient condition for the inadmissibility of

a scale-invariant estimator of θS under the entropy loss function (1.2). The proof
of the theorem is an application of the technique of Brewster and Zidek (1974).

Theorem 2. Suppose ϕ(X) = X1ψ(T) is a given scale-invariant estimator of θS ,
where T = (T2, . . . , Tk) = (X2

X1
, . . . , Xk

X1
), and ψ(·) is a real-valued function defined

on R
k−1+ . Let Pθ (ψ(T) < φ∗(T)) ≥ 0,∀θ ∈ �, with strictly inequality for some

θ ∈ �, where φ∗(·) is as defined in Lemma 3. Then, under the entropy loss function
(1.2), the estimator ϕ is inadmissible and is dominated by the estimator ϕ1(X) =
X1ψ1(T), where ψ1(t) = max{ψ(t), φ∗(t)}.

Proof. Consider the risk difference

R(θ , ϕ) − R(θ , ϕ1) = Eθ

(
Dθ (t)

)
,

where, for t ∈ R
k−1+ and θ ∈ �,

Dθ (t) = Eθ

(
L

(
θ ,X1ψ(T)

) − L
(
θ ,X1ψ1(T)

)|T = t
)

=
(

1

ψ(t)
− 1

ψ1(t)

)
Eθ

(
θS

X1

∣∣∣T = t
)

− ln
(

ψ1(t)
ψ(t)

)

=
(

1

ψ(t)
− 1

ψ1(t)

)
φ(t, θ) − ln

(
ψ1(t)
ψ(t)

)
.
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Here φ(t, θ) is as defined in Lemma 3. Clearly, for a fixed t ∈ R
k−1+ , if ψ(t) ≥

φ∗(t), then Dθ (t) = 0,∀θ ∈ �. Also, if ψ(t) < φ∗(t), then

Dθ (t) =
(

1

ψ(t)
− 1

φ∗(t)

)
φ(t, θ) − ln

(
φ∗(t)
ψ(t)

)

≥
(

1

ψ(t)
− 1

φ∗(t)

)
φ∗(t) − ln

(
φ∗(t)
ψ(t)

)
(using Lemma 3)

≥ 0.

Since Pθ (ψ(T) < φ∗(T)) ≥ 0,∀θ ∈ �, with strictly inequality for some θ ∈ �,
we conclude that

R(θ , ϕ) ≥ R(θ , ϕ1), ∀θ ∈ �,

and there is a strict inequality for some θ ∈ �. Hence the result follows. �

It is easy to verify that the UMRU estimator ϕU and the natural estimator ϕN,1,
respectively, can be written as ϕU(X) = X1ψU(T) and ϕN,1(X) = X1ψN,1(T),
where

ψU(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1

n1 − 1 + (
maxj �=1 aj tj

a1
)n1

, if t ∈ B1,

nltl

nl − 1 + (
max{a1,maxj �=l,j �=1 aj tj }

al tl
)nl

, if t ∈ Bl, l = 2, . . . , k,

and

ψN,1(t) =
{

1, if t ∈ B1,
tl, if t ∈ Bl, l = 2, . . . , k.

Now, using Theorem 2, we have the following results.

Corollary 1. Under the loss function (1.2), the UMRU estimator ϕU(X) is
inadmissible for estimating θS and is dominated by the estimator ϕ∗

U(X) =
X1ψ

∗
U(t), where ψ∗

U(t) = max{ψU(t), φ∗(t)}, t ∈ R
k−1+ , and φ∗(·) is as defined

in Lemma 3.

Corollary 2. Under the loss function (1.2), the natural estimator ϕN,1(X) is inad-
missible for estimating θS and is dominated by the estimator

ϕ∗
N,1(X) =

( ∑k
j=1 nj∑k

j=1 nj − 1

)
ϕN,1(X).
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Remark 2. For k = 2, n1 = n2 = n and a1 = a2 = 1, it follows from Remark 1
that the UMRU estimator of θS is

ϕU(X) = nX[2]
[n − 1 + (

X[1]
X[2] )

n]
. (3.2)

Under the loss function (1.2), Nematollahi and Motamed-Shariati (2012) proved
that the UMRU estimator, given in (3.2), is inadmissible. Thus, Corollary 1 gener-
alizes their result.

Now we will prove that a subclass of natural estimators is inadmissible for es-
timating θS , under the entropy loss function (1.2). The following lemma will be
useful in deriving the next result (see Lemma 3 in Arshad and Misra (2015a) and
Theorem 3.1 in Rajesh, Misra and Singh (1998)).

Lemma 4. Let {Gα : α > 0} be a family of distribution functions defined by

Gα(z) =
⎧⎨
⎩

0, if z < 0,
zα, if 0 ≤ z < 1, α > 0,
1, if z ≥ 1.

Then, for any non-decreasing function φ(z) and 0 < α1 < α2 < ∞,∫ 1

0
φ(z)dGα1(z) ≤

∫ 1

0
φ(z)dGα2(z).

Theorem 3. Let min{n1, . . . , nk} > 1. For a fixed i ∈ {1, . . . , k}, let ci ≡ ci(n1, . . . ,

nk) be a positive constant and let c = (c1, . . . , ck) ∈ R
k−1+ . Assume that ci ∈

(0,

∑k
j=1 nj∑k

j=1 nj−1
) ∪ ( ni

ni−1 ,∞), for some i ∈ {1, . . . , k}. Then, under the entropy loss

function (1.2), the natural type estimator

ϕc(X) =
k∑

j=1

cjXj IAj
(X),

is inadmissible for estimating θS .

Proof. Suppose that ci ∈ (0,

∑k
j=1 nj∑k

j=1 nj−1
), for some fixed i ∈ {1, . . . , k}. Clearly

the natural type estimators ϕc satisfied the sufficient condition for inadmissibil-
ity given in Theorem 2. Thus, it follows from Theorem 2 that the natural type
estimators ϕc are inadmissible and are dominated by the estimator

ϕ∗
c (X) =

∑k
j=1 nj∑k

j=1 nj − 1

k∑
j=1

XjIAj
(X).
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Now suppose that ci ∈ ( ni

ni−1 ,∞), for some fixed i ∈ {1, . . . , k}. The risk function
of the natural type estimator ϕc is given by

R(θ , ϕc) = Eθ

(
θS

ϕc(X)
− ln

(
θS

ϕc(X)

)
− 1

)

=
k∑

j=1

Eθ

({
θi

cjXj

− ln
(

θi

cjXj

)
− 1

}
IAj

(X)

)
(3.3)

=
k∑

j=1

Mj(θ , cj ), (say).

For j ∈ {1, . . . , k}, let Zj = Xj

θj
. Then Z1, . . . ,Zk are independent random vari-

ables and Zj has the distribution function Gnj
(·), defined in Lemma 4. For a fixed

value of θ ∈ �, Mi(θ , c) is minimum at c = c∗
i (θ), where

c∗
i (θ) = θi

Eθ (X
−1
i IAi

(X))

Eθ (IAi
(X))

= Eθ (Z
−1
i IDi

(Z))

Eθ (IDi
(Z))

, i = 1, . . . , k.

Here, for i ∈ {1, . . . , k}, Di = {z ∈ (0,1)k : aiθizi > aj θj zj ,∀j �= i, j = 1, . . . , k}.
Therefore,

Eθ

(
Z−1

i IDi
(Z)

) = ni

ni − 1

∫ 1

0

k∏
j �=i

Gnj

(
aiθiz

aj θj

)
dGni−1(z)

and

Eθ

(
IDi

(Z)
) =

∫ 1

0

k∏
j �=i

Gnj

(
aiθiz

aj θj

)
dGni

(z).

Clearly,
∏k

j �=i Gnj
(aiθiz

aj θj
) is a non-decreasing function of z ∈ R+. Using Lemma 4,

we get

∫ 1

0

k∏
j �=i

Gnj

(
aiθiz

aj θj

)
dGni−1(z) ≤

∫ 1

0

k∏
j �=i

Gnj

(
aiθiz

aj θj

)
dGni

(z)

⇒ ni − 1

ni

Eθ

(
Z−1

i IDi
(Z)

) ≤ Eθ

(
IDi

(Z)
)

⇒ c∗
i (θ) = Eθ (Z

−1
i IDi

(Z))

Eθ (IDi
(Z))

≤ ni

ni − 1
, ∀θ ∈ �, i = 1, . . . , k.

Note that, for a fixed θ ∈ � and a fixed i, Mi(θ , c) is a decreasing function of c ∈
(0, c∗

i ) and is an increasing function of c ∈ [c∗
i ,∞) with c∗

i ≤ ni

ni−1 . It follows that,
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for all θ ∈ � and c ≥ ni

ni−1 , Mi(θ , c) is an increasing function of c. Consequently,

Mi(θ, ci) > Mi

(
θ ,

ni

ni − 1

)
, ∀θ ∈ �.

⇒ R(θ , ϕc) =
k∑

j=1

Mj(θ , cj )

>

k∑
j=1
j �=i

Mj (θ , cj ) + Mi

(
θ ,

ni

ni − 1

)

= R(θ , ϕd), ∀θ ∈ �,

where ϕd(X) = ∑k
j=1
j �=i

cjXj IAj
(X) + ni

ni−1XiIAi
(X). �

The computation of various competing estimators of θS is illustrated through
the following example.

Example. The data in Table 1 is reported in Lawless (1982; page 138). The data
represent failure times (in minutes) for two types of electrical insulation in an ex-
periment in which the insulation was subjected to a continuously voltages stress.
Arshad and Misra (2015a) considered data in Table 1 and fitted the uniform dis-
tributions. They shifted the location of the data by its minimum value. The shifted
data from the populations π1 and π2 are fitted to uniform U(0,200.8) and uni-
form U(0,139.6) distributions, respectively. Suppose the quality of the electri-
cal insulation is measured in terms of average failure time, that is, the population
π1 ≡ U(0, θ1) is better than the population π2 ≡ U(0, θ2) if θ1 > θ2, and the pop-
ulation π2 is better than the population π1 if θ1 ≤ θ2. For the goal of selecting the
better electrical insulation, we use the minimax selection rule δa∗

given in (1.3).
Since the minimax selection rule δa∗

depends on the sample sizes n1 and n2, we
consider the following two cases:

Case I: Taking n1 = 4 and n2 = 11. We use the first 4 observations from π1
and 11 observations from π2 (excluding 0). From the above data, we have a∗ =
0.9087 and x = (x1, x2) = (200.8,139.6). Clearly, x1 = 200.8 > a∗x2 = 126.85.
Thus, the various estimates of θS are given by ϕU(x) = ϕ∗

U(x) = 254.23, ϕN,1(x) =
200.8, ϕ∗

N,1(x) = 215.14 and ϕN,2(x) = 267.73.

Table 1 Failure times (in minutes) for two types of electrical insulation

Population Observations

Type A (π1) 219.3, 79.4, 86.0, 150.2, 21.7, 18.5, 121.9, 40.5, 147.1, 35.1, 42.3, 48.7
Type B (π2) 21.8, 70.7, 24.4, 138.6, 151.9, 75.3, 12.3, 95.5, 98.1, 43.2, 28.6, 46.9
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Case II: Taking n1 = 11 and n2 = 4. We use 11 observations from π1 and
the first 4 observations from π2, we have a∗ = 1.1005 and x = (x1, x2) =
(200.8,126.3). The various estimates of θS are ϕU(x) = ϕ∗

U(x) = 220.49,
ϕN,1(x) = 200.8, ϕ∗

N,1(x) = 215.14 and ϕN,2(x) = 220.88.

4 Numerical comparison

In this section, we compare the risk of the various competing estimators of θS un-
der the entropy loss function (1.2). For k = 2, it is easy to verify that the risks
of the competing estimators, that is, the UMRU estimator ϕU , the estimator ϕ∗

U

(that improves upon the UMRU estimator), the natural estimator ϕN,1 and ϕN,2,
and the estimator ϕ∗

N,1 (that improves upon the natural estimator ϕN,1), of θS are

the functions of θ = θ2
θ1

. For selecting the best uniform population, we consider

the minimax selection rule δa∗
(see (1.3)), which depends on the sample sizes

n1 and n2. Clearly, the minimax selection rule δa∗
is not the same for different

configurations of the sample sizes. We have compared the risk functions of the
five competing estimators of θS for various values of θ and for various configura-
tions of sample sizes. For notational convenience, let R1(θ) = R(θ , ϕU),R2(θ) =
R(θ , ϕ∗

U),R3(θ) = R(θ , ϕN,1),R4(θ) = R(θ , ϕ∗
N,1),R5(θ) = R(θ , ϕN,2) denote

the risk functions of the various estimators. The risks of these estimators are plotted
for (n1, n2) ∈ {(2,3), (3,2), (4,5), (5,4)}. The following observations are made
from Figures 1–4.

(i) The UMRU estimator ϕU dominates the natural estimator ϕN,1.
(ii) The estimator ϕ∗

U provides only marginal improvement over the UMRU esti-
mator ϕU .

(iii) The estimator ϕ∗
N,1 provides significant improvement over the natural estima-

tor ϕN,1.
(iv) The natural estimator ϕN,2 is not comparable with other competing estima-

tors.

Figure 1 Risk values of various estimators for (n1, n2) = (2,3).
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Figure 2 Risk values of various estimators for (n1, n2) = (3,2).

Figure 3 Risk values of various estimators for (n1, n2) = (4,5).

Figure 4 Risk values of various estimators for (n1, n2) = (5,4).

(v) Although the natural estimator ϕN,2 and the UMRU estimator ϕU are not
dominated by the estimator ϕ∗

N,1, but overall performance of the estimator
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ϕ∗
N,1 is satisfactory. Thus, the estimator ϕ∗

N,1 may be recommended for use in
practical applications.

5 Estimation after selection of worst uniform population

Let π(1) be the unknown uniform population associated with the smallest scale
parameter θ[1] = min{θ1, . . . , θk} and is called the worst population. For selecting
the worst population, Arshad and Misra (2015a) considered the class D2 = {δb :
δb = (δb

1 , . . . , δb
k ),b ∈ R

k+} of natural selection rules, where

δb
i (X) =

{
1, if biXi < min

j �=i
bjXj ,

0, otherwise,

and b = (b1, . . . , bk). Then the scale parameter of the selected population is

θJ =
k∑

i=1

θiIFi
(X),

where Fi = {x ∈R
k+ : bixi < bjxj ,∀j �= i, j = 1, . . . , k}, i = 1, . . . , k.

In this section, we consider the problem of estimation after selection of the
worst uniform population under the entropy loss function (1.2). For estimation
of θJ , we consider the following two natural estimators based on the maximum
likelihood estimator and uniformly minimum risk unbiased estimator (or minimum
risk invariant estimator) of θi in the component estimation problem:

ϕW
N,1(X) =

k∑
i=1

XiIFi
(X), and ϕW

N,2(X) =
k∑

i=1

(
ni

ni − 1

)
XiIFi

(X).

Now we will provide some results (without proofs) similar to the results derived
in Sections 2 and 3. The following theorem is an analog of Theorem 1.

Theorem 4. The UMRU estimator of the scale parameter θJ of the selected pop-
ulation is given by

ϕW
U (X) =

k∑
i=1

[
niXi

ni − ∑k
l=1

nibl

nlbi
( biXi

blXl
)nl+1

]
IFi

(X).

Remark 3. Let X[1] ≤ · · · ≤ X[k] be the ordered values of X1, . . . ,Xk . For n1 =
· · · = nk = n and b1 = · · · = bk = 1, it follows from Theorem 4 that the UMRU
estimator of θJ is

ϕW
U (X) = nX[1]

n − ∑k
l=1(

X[1]
X[l] )

n+1
.

This result was derived by Nematollahi and Motamed-Shariati (2012). Thus, The-
orem 4 generalizes their result.
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The following lemma (analog of Lemma 3) will be use in Theorem 5.

Lemma 5. Let G1 = {(t2, . . . , tk) ∈ R
k−1+ : tj > a1

aj
, j = 2, . . . , k} and

Gl =
{
(t2, . . . , tk) ∈ R

k−1+ : tl < min
(

a1

al

, min
2≤j≤k

j �=l

aj tj

al

)}
, l = 2, . . . , k,

so that {G1, . . . ,Gk} forms a partition of Rk−1+ . Define

M(t, θ) =
k∑

i=1

θiEθ

(
1

X1

∣∣∣T = t
)
, t ∈R

k−1+ , θ ∈ �.

Then

M∗(t) = inf
θ∈�

M(t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( ∑k
j=1 nj∑k

j=1 nj − 1

)
, if t ∈ G1,

( ∑k
j=1 nj∑k

j=1 nj − 1

)
tl, if t ∈ Gl, l = 2, . . . , k.

The following result is an analog of Theorem 2 and provides a sufficient condi-
tion for the inadmissibility of a scale-invariant estimator of θJ under the entropy
loss function (1.2).

Theorem 5. Let ϕ(X) = X1ψ(T) be a scale-invariant estimator of θJ , where
T = (T2, . . . , Tk) = (X2

X1
, . . . , Xk

X1
), and ψ(·) is a real-valued function defined on

R
k−1+ . Let ϕ∗

J (X) = X1 max{ψ(T),M∗(T)}, where M∗ is as defined in Lemma 5.
Then, under the entropy loss function (1.2), the estimator ϕ(X) is inadmissible for
estimating θJ and is dominated by ϕ∗

J , provided that Pθ (T : ψ(T) < M∗(T)) ≥
0,∀θ ∈ �, with strictly inequality for some θ ∈ �.

The following corollary is a consequence of Theorem 5.

Corollary 3. Under the entropy loss function (1.2), the natural estimator ϕW
N,1(X)

is inadmissible for estimating θJ and is dominated by the estimator

ϕ∗
J (X) =

( ∑k
j=1 nj∑k

j=1 nj − 1

)
ϕW

N,1(X).
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