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Abstract. Inverse Weibull distribution has been used quite successfully to
analyze lifetime data which has non-monotone hazard function. The main
aim of this paper is to introduce bivariate inverse Weibull distribution along
the same line as the Marshall–Olkin bivariate exponential distribution, so that
the marginals have inverse Weibull distributions. The proposed bivariate in-
verse Weibull distribution has four parameters and it has a singular compo-
nent. Therefore, it can be used quite successfully if there are ties in the data.
The joint probability density function, the joint cumulative distribution func-
tion and the joint survival function are all in closed forms. Several proper-
ties of this distribution have been discussed. It is observed that the proposed
distribution can be obtained from the Marshall–Olkin copula. The maximum
likelihood estimators of the unknown parameters cannot be obtained in closed
form, and we propose to use EM algorithm to compute the maximum like-
lihood estimators. We propose to use parametric bootstrap method for con-
struction of confidence intervals of the different parameters. We present some
simulation experiments results to show the performances of the EM algo-
rithm and they are quite satisfactory. We provide the Bayesian analysis of the
unknown parameters based on very flexible priors. We analyze one bivariate
American Football League data set for illustrative purposes, and it is observed
that this model provides a slightly better fit than some of the existing models.
Finally, we present some generalization to the multivariate case.

1 Introduction

Two-parameter Weibull distribution has been used quite successfully to analyze
lifetime data. Due to the presence of two parameters, Weibull distribution is a very
flexible lifetime distribution. It can have a decreasing or an unimodal probability
density function (PDF). Moreover, depending on the shape parameter, it can have
increasing, decreasing or constant hazard functions. Extensive work has been done
on the Weibull distribution both from the frequentist and Bayesian points of view.
See, for example, an excellent review by Johnson et al. (1994) or Kundu (2008) for
some related references. Marshall and Olkin (1967) proposed a bivariate extension
of the exponential distribution, whose marginals are Weibull distributions. From
now on, we call it as the Marshall–Olkin bivariate Weibull (MOBW) distribution.
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MOBW is more flexible than the Marshall–Olkin bivariate exponential (MOBE)
model, see Kundu and Gupta (2013), and it also can be used as a shock model
similarly as the MOBE model.

Although, univariate Weibull distribution has been used quite extensively to an-
alyze lifetime data, it may not be proper to use if the data indicate a non-monotone,
for example, a unimodal hazard function. In many practical situations, it is known
apriori that the hazard function cannot be monotone. For example, in mortality
study, often it is known that the mortality reaches a peak after some finite period,
and then declines slowly. Similarly, in a breast cancer study it is observed that the
peak mortality occurs usually after three years of surgery, and then it gradually
decreases. If the empirical study indicates that the hazard function might be uni-
modal, then the inverse Weibull (IW) distribution may be used to analyze such data
set, see, for example, Nelson (1982). It can also be used as a heavy tail distribution.

The main aim of this paper is to introduce bivariate inverse Weibull (BIW) dis-
tribution, so that it has IW marginals. The proposed BIW distribution has four pa-
rameters. Due to the presence of four parameters, it becomes a very flexible model.
The joint PDF can take different shapes. The joint PDF, joint CDF and joint sur-
vival function all are in closed forms, which make it very convenient to use it in
practice for analyzing censored data also. There are several reasons to consider this
specific bivariate distribution. It may be mentioned that several absolute continu-
ous bivariate distributions are available in the literature, see, for example, Balak-
ishnan and Lai (2009) for a detailed account of such distributions till that time, and
see Aleem (2012), Myrhaug and Leira (2011), Teugels (2014), Yang et al. (2009)
for some recent references. But other than the MOBE, MOBW or bivariate gener-
alized exponential distribution of Kundu and Gupta (2009), not too many bivariate
distributions are available in the literature, at least not known to the authors, with a
singular component. In many practical applications ties between two components
may occur quite naturally. Therefore, it may not be reasonable to analyze those
data sets using any absolute continuous bivariate distribution. Moreover, all the ex-
isting bivariate distributions with a singular component have the marginals either
with constant or with monotone hazard functions. The proposed bivariate distribu-
tion has the marginals with non-monotone hazard functions. Therefore, it will give
the practitioner one more choice from the class of possible bivariate distributions
with a singular component to analyze a bivariate data set with ties. Moreover, the
proposed bivariate distribution has some interesting physical interpretations also.

The generation of random samples from the BIW distribution can be performed
very easily, hence simulation experiments can be performed quite conveniently.
The joint CDF of BIW has a singular component and an absolute continuous com-
ponent. Due to the presence of the singular component, this distribution can be
used quite naturally when there are ties in the data. We further study different prop-
erties of the BIW distribution. It is observed that the proposed BIW distribution can
be obtained from the Marshall–Olkin copula. Therefore, several dependency mea-
sures and dependency properties can be easily established for this model using the
copula structure.
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The maximum likelihood estimators (MLEs) of the unknown parameters can-
not be obtained in closed form. They have to obtained by solving four non-linear
equations simultaneously. Standard methods like Newton–Raphson or downhill
simplex may be used, but it usually takes a long time to converge. We propose
to use EM algorithm as originally suggested by Dempster et al. (1977), to com-
pute the MLEs of the unknown parameters. At each E-step of the EM algorithm
the corresponding M-step can be performed by solving only a one dimensional
optimization problem. Hence, the implementation of the EM algorithm is quite
straight forward in practice. A FORTRAN code has been provided for this pur-
pose. Parametric bootstrap method has been used for constructing confidence in-
tervals of the unknown parameters. We present some simulation results to show
the performances of the proposed EM algorithm, and they are quite satisfactory.
One bivariate American Football League data set has been analyzed for illustrative
purposes. It is observed that the proposed BIW model provides a slightly better fit
than some of the existing models.

We further consider the Bayesian inference of the unknown parameters. For
the fixed shape parameter, it is assumed that the scale parameters have Dirichlet-
Gamma prior, and for the shape parameter no fixed prior distribution is assumed.
It is assumed that the support of the shape parameter is on the entire positive real
line and its probability density function (PDF) is log-concave. It may be mentioned
that several well known life time distributions have log-concave PDFs. Based on
the above priors, the posterior distribution of the unknown parameters are obtained.
The Bayes estimates cannot be obtained in closed form. Although, the Lindley’s
approximation may be used to compute the approximate Bayes estimates, it is
not followed here. Instead, we use importance sampling technique to compute the
approximate Bayes estimates based on the squared error loss function, and also ob-
tain the associated highest posterior density (HPD) credible intervals. Simulation
results indicate that the performances of the Bayes estimates are quite satisfac-
tory. Finally, we provide a multivariate generalization of the proposed model, and
discuss some of its properties.

Rest of the paper is organized as follows. In Section 2, we introduce BIW model,
and discuss its properties in Section 3. The EM algorithm is provided in Section 4.
In Section 5, we provide the Bayesian inference of the unknown parameters. Sim-
ulation results and the analysis of a data set have been provided in Section 6. We
provide a generalization to the multivariate case in Section 7. Finally, conclusions
and some open problems appear in Section 8. All the proofs are provided in the
Appendices.

2 Bivariate inverse Weibull distribution

In this section, we introduce the BIW distribution and provide some physical in-
terpretations of the proposed model. We further provide the explicit expressions
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of the joint PDF of the absolute continuous part and the singular part. Moreover,
we also provide the shapes of the absolute continuous part of the joint PDF for
different parameter values.

If the random variable Y has a Weibull distribution with the PDF

fWE(y;α,λ) = αλyα−1e−λyα ; y > 0,

then the random variable X = 1/Y has an inverse Weibull (IW) distribution with
the PDF

fIW(x;α,λ) = αλx−(α+1)e−λx−α ; x > 0. (1)

Here α > 0 and λ > 0, are the shape and scale parameters, respectively. A random
variable with the PDF (1) will be denoted by IW(α,λ). If X follows (∼) IW(α,λ),
then the CDF of X becomes

P(X ≤ x) = FX(x;α,λ) = e−λx−α ; x > 0.

From now on unless otherwise mentioned, it is assumed that α > 0, λ1 > 0, λ2 > 0,
λ3 > 0 and � = (α,λ1, λ2, λ3).

Suppose U1 ∼ IW(α,λ1), U2 ∼ IW(α,λ2), U3 ∼ IW(α,λ3), and they are inde-
pendently distributed. If X1 = max{U1,U3} and X2 = max{U2,U3}, then (X1,X2)

is said to have a bivariate inverse Weibull distribution with parameters α, λ1, λ2

and λ3, and it will be denoted by BIW(α,λ1, λ2, λ3). When α = 1, it will be called
the bivariate inverse exponential distribution with parameters λ1, λ2 and λ3. BIW
can be used as a stress model or as a maintenance model, as follows.

Stress Model. Suppose a system has two components, and each component is
subjected to individual independent stress say U1 and U2, respectively. The sys-
tem has an overall stress U3 which has been transmitted to both the components
equally, and it is independent of the individual stresses. Therefore, the observed
stresses at the two components are X1 = max{U1,U3} and X2 = max{U2,U3},
respectively.

Maintenance. Suppose a system has two components, and each component has
been maintained independently and there is an overall maintenance also. Due to
individual component maintenance, suppose the lifetime of the individual compo-
nent is increased by the amount Ui for i = 1,2, and for the overall maintenance,
the lifetime of each item is increased by the amount U3. Therefore, the increased
lifetimes of the two components are X1 = max{U1,U3} and X2 = max{U2,U3},
respectively.

The following result will provide the joint CDF of X1 and X2.
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Theorem 2.1. If (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then the joint CDF of (X1,X2)

for x1 > 0 and x2 > 0 is

FX1,X2(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
e−(λ1+λ3)x

−α
1 −λ2x

−α
2 if x1 < x2

e−λ1x
−α
1 −(λ2+λ3)x

−α
2 if x1 > x2

e−(λ1+λ2+λ3)x
−α

if x1 = x2 = x

Proof. It is trivial and hence it is omitted. �

We have the following unique decomposition of the joint CDF of (X1,X2).

Theorem 2.2. If (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then

FX1,X2(x1, x2) = λ1 + λ2

λ1 + λ2 + λ3
Fa(x1, x2) + λ3

λ1 + λ2 + λ3
Fs(x1, x2),

where for z = x1 ∧ x2 = min{x1, x2}.
Fs(x1, x2) = e−(λ1+λ2+λ3)z

−α

,

and

Fa(x1, x2) = λ1 + λ2 + λ3

λ1 + λ2
e−λ1x

−α
1 −λ2x

−α
2 −λ3z

−α − λ3

λ1 + λ2
e−(λ1+λ−2+λ3)z

−α

.

Here Fs(·, ·) and Fa(·, ·) are the singular and absolute continuous parts, respec-
tively.

Proof. See in the Appendix A. �

It is immediate that P(X1 ≤ x1,X2 ≤ x2|A) is the singular part, as its mixed
partial second derivative is 0, and P(X1 ≤ x1,X2 ≤ x2|Ac) is the absolute contin-
uous part, as its mixed second partial derivative is a density function. Hence, the
joint PDF of (X1,X2) can be written in the following form.

fX1,X2(x1, x2) = λ1 + λ2

λ1 + λ2 + λ3
fa(x1, x2) + λ3

λ1 + λ2 + λ3
fs(z),

where

fa(x1, x2) = λ1 + λ2 + λ3

λ1 + λ2
×

{
fIW(x1;α,λ1 + λ3)fIW(x2;α,λ2) if x1 < x2,

fIW(x1;α,λ1)fIW(x2;α,λ2 + λ3) if x1 > x2

and

fs(x) = fIW(x;λ1 + λ2 + λ3).

In this case fa(x1, x2) and fs(x) are the absolute continuous part and singular part,
respectively.
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It should be noted that when the function fX1,X2(x1, x2) is mentioned to be a
joint PDF of (X1,X2), it is understood that the first term fa(x1, x2) is the joint
PDF with respect to two dimensional Lebesgue measure and the second term is a
PDF with respect to one dimensional Lebesgue measure.

The following result will provide the shape of fa(x1, x2).

Theorem 2.3. Let (X1,X2) ∼ BIW(α,λ1, λ2, λ3).

(a) If λ1 = λ2 = λ, then fa(x1, x2) is continuous for 0 < x1, x2 < ∞. fa(x1, x2) is
unimodal, and the mode is at (xm, xm), where xm = {α(2λ + λ3)/

(2(α + 1))}1/α .
(b) If λ1 + λ3 < λ2, then fa(x1, x2) is not continuous on x1 = x2. fa(x1, x2)

is unimodal, and the mode occurs at (x1m,x2m), where x1m = {α(λ1 + λ3)/

(α + 1)}1/α and x2m = {αλ2/(α + 1)}1/α .
(c) If λ2 + λ3 < λ1, fa(x1, x2), then fa(x1, x2) is not continuous on x1 = x2.

fa(x1, x2) is unimodal, and the mode occurs at (x1m,x2m), where x1m =
{αλ1/(α + 1)}1/α and x2m = {α(λ2 + λ3)(α + 1)}1/α .

Proof. See in the Appendix A. �

In Figure 1, we provide the surface plots of the absolute continuous part
of the BIW distribution function for different choices of α, λ1, λ2 and λ3. It
shows the unimodality of the PDF for different choices of the parameter val-
ues. Note that it is very simple to generate samples from a BIW distribution.
The following simple procedure can be used to generate sample (x1, x2) from a
BIW(α,λ1, λ2, λ3). Step 1: Generate v1, v2 and v3 independently from a uniform
(0,1). Step 2: u1 = (− lnv/λ1)

−1/α , u2 = (− lnv/λ2)
−1/α , u3 = (− lnv/λ3)

−1/α .
Step 3: x1 = max{u1, u3} and x2 = max{u2, u3}.

3 Different properties

The main purpose of this section is to provide some basic properties of the BIW
distribution. We provide some dependency properties of the bivariate distribution
and provide the copula structure, which can be used to provide different depen-
dency measures of the two components. It has its own theoretical interest or it can
be used for other purposes also.

3.1 Marginals, conditionals and dependence

The following result provides the distributions of the marginals and the maximum
and the stress-strength measure of the two components of a BIW distribution.

Theorem 3.1. Let (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then
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Figure 1 The PDF of the absolute continuous part of BIW distribution for different parameter val-
ues of α, λ1, λ2 and λ3: (a) (4,1,1,1); (b) (1,1,1,1); (c) (2,4,1,1); (d) (2,1,4,1); (e) (2,1,2,4);
(f) (2,2,1,4).
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(a) X1 ∼ IW(α,λ1 + λ3) and X2 ∼ IW(α,λ2 + λ3)

(b) max{X1,X2} ∼ IW(α,λ1 + λ2 + λ3).
(c) P(X1 < X2) = λ2

λ1+λ2+λ3
.

Proof. See in the Appendix B. �

The following result provides the conditional results of BIW distribution.

Theorem 3.2. Let (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then

(a) the conditional distribution of X1 given X2 = x2, say FX1|X2=x2(x1) is a con-
vex combination of an absolute continuous distribution function and a degen-
erate distribution function as follows.

FX1|X2=x2(x1) = pG(x1) + (1 − p)H(x1),

where

G(x1) = 1

p
×

⎧⎪⎪⎨⎪⎪⎩
λ2

λ2 + λ3
e−(λ1+λ3)x

−α
1 +λ3x

−α
2 if x1 < x2,

e−λ1x
−α
1 − λ3

λ2 + λ3
e−λ1x

−α
2 if x1 > x2,

H(x1) =
{

0 if x1 < x2,

1 if x1 ≥ x2

and

p = 1 − λ3

λ2 + λ3
e−λ1x

−α
2 .

(b) the conditional distribution function of X1 given X2 ≤ x2, say FX1|X2≤x2(x1),
is an absolute continuous distribution function as follows;

P(X1 ≤ x1|X2 ≤ x2) = FX1|X2≤x2(x1)

=
⎧⎨⎩e−(λ1+λ3)x

−α
1 +λ3x

−α
2 if x1 ≤ x2,

e−λ1x
−α
1 if x1 > x2.

Proof. The proofs can be obtained in a routine manner, hence they are avoided. �

Theorem 3.3. Let (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then (X1,X2) is

(a) PLOD, positively lower orthant dependent.
(b) LTD, left tail decreasing.
(c) LCSD, left corner set decreasing.

Proof. See in the Appendix B. �
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3.2 Copula representation

Every bivariate distribution, FX1,X2(x1, x2), with continuous marginals distribu-
tion functions FX1(x1) and FX2(x2), corresponds a unique function C : [0,1]2 →
[0,1] called a copula such that for (x1, x2) ∈ (−∞,∞) × (−∞,∞),

FX1,X2(x1, x2) = C
(
FX1(x1),FX2(x2)

)
,

see Nelsen (2006) for more details. If (X1,X2) ∼ BIW(α,λ1, λ2, λ3), then the cor-
responding copula function for 0 < u1, u2 < 1 and for u = min{u1, u2}, becomes

C(u1, u2) =
{
u

1−β1
1 u2 if u

β1
1 ≥ u

β2
2 ,

u1u
1−β2
2 if u

β1
1 < u

β2
2 ,

(2)

where β1 = λ3
λ1+λ3

and β2 = λ3
λ2+λ3

. The copula (2) is the well-known Marshall–
Olkin copula, see, for example, Nelsen (2006). Therefore, it easily follows that
for a BIW(α,λ1, λ2, λ3) distribution, Kendall’s τ and Spearman’s ρ become

β1β2
β1−β1β2+β2

and 3β1β2
2β1−β1β2+2β2

, respectively. Using the copula structure, different
other dependence properties and dependence measures of the BIW(α,λ1, λ2, λ3)

can be easily obtained.

4 Maximum likelihood estimation

In this subsection, we discuss the maximum likelihood estimation procedures of
the unknown parameters of BIW distribution based on a random sample of size n.
It is observed that to compute the MLEs of the unknown parameters, one needs
to solve a four dimensional optimization problem. To avoid that, we propose to
use EM algorithm which involves solving only a one-dimensional problem at each
‘E-step’, hence it can be implemented very conveniently.

The problem can be formulated as follows. Suppose D = {(x11, x21), . . . ,

(x1n, x2n)} is a random sample from BIW(α,λ1, λ2, λ3), the problem is to find
the MLEs of the unknown parameters. We use the following notations

I1 = {i : x1i < x2i}, I2 = {i : x2i > x2i},
I0 = {i : x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3

|I1| = n1, |I2| = n2, |I0| = n0, and n = n0 + n1 + n2.

Based on the observations, the log-likelihood function can be written as follows:

l(α,λ1, λ2, λ3|D)

= (2n1 + 2n2 + n0) lnα + n1 ln(λ1 + λ3) + n1 lnλ2 + n2 lnλ1

+ n2 ln(λ2 + λ3) + n0 lnλ3 − λ1

( ∑
i∈I1∪I2

x−α
1i + ∑

i∈I0

x−α
i

)
(3)
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− λ2

( ∑
i∈I1∪I2

x−α
2i + ∑

i∈I0

x−α
i

)

− λ3

(∑
i∈I1

x−α
1i + ∑

i∈I2

x−α
2i + ∑

i∈I0

x−α
i

)
.

It is clear from (3) that the MLEs of α, λ1, λ2 and λ3 can be obtained by solv-
ing four non-linear equations. We propose to use EM algorithm to avoid solving
four dimensional optimization problem. It is observed that to implement the EM
algorithm, at each E-step, the corresponding M-step can be performed by solving
one one-dimensional optimization problem. Hence, it saves computational burden
significantly.

We treat this as a missing value problem. It is assumed that for a bivariate ran-
dom vector (X1,X2), there is an associated random vector (�1,�2), defined as
follows

�1 =
{

1 if U1 > U3,

3 if U1 < U3,
and �2 =

{
2 if U2 > U3,

3 if U2 < U3.

It can be easily seen that if we had a sample of size n from (X1,X2,�1,�2), then
the MLEs of unknown parameters can be obtained by solving a one non-linear
equation. That is the main motivation of the proposed EM algorithm. It is imme-
diate that when X1 = X2, then �1 = �2 = 3, but if X1 < X2 or X1 > X2, the
corresponding (�1,�2) is missing. If (x1, x2) ∈ I1, then the possible values of
(�1,�2) are (1,2) or (3,2), respectively. Similarly, if (x1, x2) ∈ I2, then the pos-
sible values of (�1,�2) (1,3) or (1,2). We need the following result for further
developments, and they can be obtained very easily. If U1, U2 and U3 are three
random variables same as defined in Section 2, then

{X1 < X2} = {U1 < U3 < U2} ∪ {U3 < U1 < U2},
{X2 < X1} = {U2 < U3 < U1} ∪ {U3 < U2 < U1},

P (U3 < U1 < U2) = λ1λ2

(λ1 + λ3)(λ1 + λ2 + λ3)
,

P (U1 < U3 < U2) = λ2λ3

(λ1 + λ3)(λ1 + λ2 + λ3)
,

P (U3 < U2 < U1) = λ1λ2

(λ2 + λ3)(λ1 + λ2 + λ3)
,

P (U2 < U3 < U1) = λ1λ3

(λ2 + λ3)(λ1 + λ2 + λ3)
,

P (U3 < U1|X1 < X2) = λ1

λ1 + λ3
,
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P(U1 < U3|X1 < X2) = λ3

λ1 + λ3
,

P (U3 < U2|X2 < X1) = λ2

λ2 + λ3
,

P (U2 < U3|X2 < X1) = λ3

λ2 + λ3
.

Now we provide the EM algorithm. In the E-Step, we treat the observations be-
longing to I0 as the complete observations. An observation (x1, x2) is treated as
missing if (x1, x2) ∈ I1 ∪ I2. If the observation (x1, x2) ∈ I1, we form the ‘pseudo
observation’ by fractioning (x1, x2) to two partially complete ‘pseudo observation’
of the form (x1, x2, u1(�)) and (x1, x2, u2(�)), similarly as in Dinse (1982). Here

u1(�) = P(�1 = 1,�2 = 2|X1 < X2) = λ1

λ1 + λ3
,

u2(�) = P(�1 = 3,�2 = 2|X1 < X2) = λ3

λ1 + λ3
.

Similarly, if (x1, x2) ∈ I2, we form the ‘pseudo observation’ (x1, x2, v1(�)) and
(x1, x2, v2(�)). Here

v1(�) = P(�1 = 2,�2 = 1|X2 < X1) = λ2

λ2 + λ3
,

v2(�) = P(�1 = 3,�2 = 1|X2 < X1) = λ3

λ2 + λ3
.

From now on, for brevity we write u1(�), u2(�), v1(�) and v2(�) as u1, u2, v1,
v2, respectively. Based on the above notations, the log-likelihood function of the
‘pseudo data’ is

lpseudo(�|D) = (n0 + 2n1 + 2n2) lnα

− (α + 1)

(∑
i∈I0

lnxi + ∑
i∈I1∪I2

lnx1i + ∑
i∈I1∪I2

lnx2i

)

+ (u1n1 + n2) lnλ1 − λ1

(∑
i∈I0

x−α
i + ∑

i∈I1∪I2

x−α
1i

)
(4)

+ (n1 + v1n2) lnλ2

− λ2

(∑
i∈I0

x−α
i + ∑

i∈I1∪I2

x−α
2i

)
+ (n0 + u2n1 + v2n2) lnλ3

− λ3

(∑
i∈I0

x−α
i + ∑

i∈I1

x−α
1i + ∑

i∈I2

x−α
2i

)
.



286 D. Kundu and A. K. Gupta

Now the M-step involves maximizing (4) with respect to α, λ1, λ2 and λ3. For
fixed α the maximum with respect to λ1, λ2 and λ3 occur at

λ̂1(α) = u1n1 + n2∑
i∈I0

x−α
i + ∑

i∈I1∪I2
x−α

1i

,

(5)
λ̂2(α) = n1 + v1n2∑

i∈I0
x−α
i + ∑

i∈I1∪I2
x−α

2i

,

λ̂3(α) = n0 + u2n1 + v2n2∑
i∈I0

x−α
i + ∑

i∈I1
x−α

1i + ∑
i∈I2

x−α
2i

. (6)

If α̂ maximizes lpseudo(�), then α̂ can be obtained by maximizing the profile
‘pseudo’ log-likelihood function lpseudo(α, λ̂1(α), λ̂2(α), λ̂3(α)) = c+g(α), where

g(α) = (n0 + 2n1 + 2n2) lnα − (α + 1)

(∑
i∈I0

lnxi + ∑
i∈I1∪I2

lnx1i + ∑
i∈I1∪I2

lnx2i

)

− (u1n1 + n2) ln
(∑

i∈I0

x−α
i + ∑

i∈I1∪I2

x−α
1i

)
(7)

− (n1 + v2n2) ln
(∑

i∈I0

x−α
i + ∑

i∈I1∪I2

x−α
2i

)

− (n0 + u2n1 + v2n2) ln
(∑

i∈I0

x−α
i + ∑

i∈I1

x−α
1i + ∑

i∈I2

x−α
2i

)
,

and c is independent of α. The following result indicates that g(α) has a unique
maximum.

Theorem 4.1. g(α) is a unimodal function.

Proof. See in the Appendix C. �

Since, g(α) is a unimodal function, it is very easy to obtain α̂, which maximizes
(7), by using by-section or Newton–Raphson method. We propose the following
algorithm to compute (k + 1)th step from the kth step of the EM algorithm. At
the kth step the estimates of α, λ1, λ2 and λ3 will be denoted by α(k), λ

(k)
1 , λ

(k)
2

and λ
(k)
3 .

EM Algorithm.

• Step 1: Compute u1, u2, v1, v2 using α(k), λ
(k)
1 , λ

(k)
2 and λ

(k)
3 .

• Step 2: Maximize (7), and obtain α(k+1).
• Step 3: Once α(k+1) is obtained, compute λ

(k+1)
1 = λ̂1(α

(k+1)) λ
(k+1)
2 =

λ̂1(α
(k+1)), λ

(k+1)
3 = λ̂1(α

(k+1)).
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Now we will discuss how to choose the initial values of the unknown pa-
rameters, namely α(0), λ

(0)
1 , λ

(0)
2 and λ

(0)
3 . We estimate α and λ1 + λ3 from

{x11, . . . , x1n}. Similarly, we can obtain estimates of α and λ2 + λ3 from
{x21, . . . , x2n}, and the estimates of α and λ1 + λ2 + λ3 from {z1, . . . , zn}, where
zi = max{x1i , x2i}, for i = 1, . . . , n. We take the average of the three estimates of
α to get the initial estimate of α, and using the estimates of λ1 + λ3, λ2 + λ3 and
λ1 + λ2 + λ3, we get initial estimate of λ1, λ2 and λ3.

5 Bayesian inference

In this section, we discuss the Bayesian inference of the unknown parameters of
the BIW distribution based on a random sample of size n. We assume a very flex-
ible prior on the scale parameters (λ1, λ2, λ3) and on the shape parameter α. It is
observed that the Bayes estimator under the squared error loss function cannot be
obtained in explicit form, and we propose to use importance sampling procedure to
compute the Bayes estimate and the associated credible interval. It is assumed that
we have a random sample {(x11, x21), . . . , (x1n, x2n)} from BIW(α,λ1, λ2, λ3),
and we are using the same notations as in the previous section.

5.1 Prior assumption

When the common shape parameter α is known, we assume the conjugate prior on
(λ1, λ2, λ3) as follows. If we denote λ = λ1 + λ2 + λ3, then it is assumed that for
a > 0 and b > 0, λ has a Gamma(a, b) prior distribution, say π0(a, b). Here the
PDF of a Gamma(a, b) for λ > 0 is

π0(λ|a, b) = ba


(a)
λa−1e−bλ;

and 0, otherwise. Given λ, (λ1
λ

, λ2
λ

) has a Dirichlet prior, say π1(a1, a2, a3), i.e.

π1

(
λ1

λ
,
λ2

λ

∣∣∣∣λ,a1, a2, a3

)
= 
(a1 + a2 + a3)


(a1)
(a2)
(a3)

(
λ1

λ

)a1−1(
λ2

λ

)a2−1(
λ3

λ

)a3−1
,

for λ1 > 0, λ2 > 0, λ3 > 0 and λ3 = λ − λ1 − λ2. Here all the hyper parameters a,
b, a1, a2, a3 are greater than 0. For known α, it happens to be the conjugate prior
also. If we denote ā = a1 + a2 + a3, then after simplification the joint prior of λ1,
λ2, λ3 becomes

π1(λ1, λ2, λ3|a, b, a1, a2, a3) = 
(ā)


(a)
(bλ)a−ā ×

3∏
i=1

bai


(ai)
λ

ai−1
i e−bλi . (8)

The joint PDF (8) is known as the Gamma–Dirichlet (GD) distribution with param-
eters a, b, a1, a2, a3, and from now on we will denote it by GD(a, b, a1, a2, a3).
It may be mentioned that the GD distribution is a very flexible distribution. The
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joint PDF of a GD distribution can take variety of shapes depending on the param-
eters, and the correlation between the marginals can be both positive and negative
depending. Moreover, the marginals become independent if ā = a.

At this moment, we do not assume any specific prior on α. It is simply as-
sumed that the prior on α has a positive support on (0,∞), and the PDF of prior
α, say π2(α) is log-concave. It is further assumed that π2(α) is independent of
π1(λ1, λ2, λ3). From now on, the joint prior of α, λ1, λ2, λ3 will be denoted by
π(α,λ1, λ2, λ3) = π2(α)π1(λ1, λ2, λ3).

5.2 Posterior analysis

In this section, we provide the Bayes estimates of the unknown parameters based
on the squared error loss function and the associated HPD credible intervals. Based
on the observations, the joint likelihood function of the observed data can be writ-
ten as

l(D|α,λ1, λ2, λ3)

= α2n1+2n2+n0λ
n2
1 λ

n1
2 λ

n0
3 (λ1 + λ3)

n1(λ2 + λ3)
n2e−λ1T1(α)−λ2T2(α)−λ3T3(α)

×
{∏

i∈I0

x
−(α+1)
i

}{ ∏
i∈I1∪I2

x
−(α+1)
1i x

−(α+1)
2i

}
,

where

T1(α) = ∑
i∈I1∪I2

x−α
1i + ∑

i∈I0

x−α
i , T2(α) = ∑

i∈I1∪I2

x−α
2i + ∑

i∈I0

x−α
i ,

and

T3(α) = ∑
i∈I1

x−α
1i + ∑

i∈I2

x−α
2i + ∑

i∈I0

x−α
i .

The joint posterior density function of α, λ1, λ2, λ3 can be written as follows

l(λ1, λ2, λ3, α|D) = l(λ1, λ2, λ3|α,D) × l(α|D).

In this case, l(λ1, λ2, λ3|α,D) can be written as

l(λ1, λ2, λ3|α,D) ∝ h(λ1, λ2, λ3) × Gamma
(
λ1;a1 + n1, T1(α) + b

)
× Gamma

(
λ2;a2 + n2, T2(α) + b

)
× Gamma

(
λ3;a3 + n0, T3(α) + b

)
,

where

h(λ1, λ2, λ3) = λa−ā(λ1 + λ3)
n2(λ2 + λ3)

n1

and l(α|D) can be written as

l(α|D) ∝ π2(α) × αn0+2n1+2n2{∏i∈I0
x

−(α+1)
i }{∏i∈I1∪I2

x
−(α+1)
1i x

−(α+1)
2i }

(T1(α) + b)a1+n1 × (T2(α) + b)a2+n2 × (T3(α) + b)a3+n0
.
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Therefore, the Bayes estimate of any function of α, λ1, λ2, λ3, say θ(α,λ1, λ2, λ3)

under squared error loss function can be obtained as

θ̂B =
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
0

θ(α,λ1, λ2, λ3)l(α,λ1, λ2, λ3|D) dα dλ1 dλ2 dλ3. (9)

Clearly (9) cannot be obtained in explicit form for a general θ(α,λ1, λ2, λ3). If we
denote

lN (α,λ1, λ2, λ3|D)

= h(λ1, λ2, λ3) × Gamma
(
λ1;a1 + n1, T1(α) + b

)
× Gamma

(
λ2;a2 + n2, T2(α) + b

)
× Gamma

(
λ3;a3 + n0, T3(α) + b

)
× π2(α) × αn0+2n1+2n2{∏i∈I0

x
−(α+1)
i }{∏i∈I1∪I2

x
−(α+1)
1i x

−(α+1)
2i }

(T1(α) + b)a1+n1 × (T2(α) + b)a2+n2 × (T3(α) + b)a3+n0
,

then (9) can be written as

θ̂B =
∫ ∞

0
∫ ∞

0
∫ ∞

0
∫ ∞

0 θ(α,λ1, λ2, λ3)lN(α,λ1, λ2, λ3|D) dα dλ1 dλ2 dλ3∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 lN (α,λ1, λ2, λ3|D) dα dλ1 dλ2 dλ3

. (10)

We will compute (10) using importance sampling technique, and that can be used
to compute the associated HPD credible interval of θ also. The following result
will be useful for further development.

Theorem 5.1. l(α|D) is log-concave.

Proof. The proof can be obtained following similar approaches as the proof of
the Theorem 2 of Kundu (2008) and the transformation used in the proof of the
Theorem 4.1. �

Now we suggest an importance sampling technique which will produce sim-
ulation consistent estimator of θ̂B , and it can be used to construct HPD credible
interval of θ also.

Algorithm.

Step 1: Generate α1 from l(α|D) using the method suggested by Devroye (1984)
or Kundu (2008).

Step 2: Generate

λ11|α,D ∼ Gamma
(
λ1;a1 + n1, T1(α) + b

)
,

λ21|α,D ∼ Gamma
(
λ2;a2 + n2, T2(α) + b

)
,

λ31|α,D ∼ Gamma
(
λ3;a3 + n3, T3(α) + b

)
.
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Step 3: Repeat Step 1 and Step 2, N times and obtained {(α1i , λ1i , λ2i , λ3i );
i = 1, . . . ,N}.

Step 4: A simulation consistent estimator of θ̂B can be obtained as∑N
i=1 θih(λ1i , λ2i , λ3i )∑N
i=1 h(λ1i , λ2i , λ3i )

,

here θi = θ(αi, λ1i , λ2i , λ3i).
Now to construct the HPD credible interval of θ , we propose the fol-

lowing steps.
Step 5: Compute wi for i = 1, . . . ,N as follows

wi = h(λ1i , λ2i , λ3i )∑N
i=1 h(λ1i , λ2i , λ3i )

Step 6: Rearrange {(θ1,w1), . . . , (θN,wN)} as {(θ(1),w(1)), . . . , (θ(N),w(N))},
where θ(1) < · · · < θ(N) and w(i)’s are not ordered, they are just associated
with θ(i). Then a simulation consistent 100(1 − γ )% credible interval of θ

can be obtained as (θ̂δ, θ̂δ+1−γ ), for δ = w(1),w(1)+w(2), . . . ,
∑N1−γ

i=1 w(i).
Here θ̂p = θ(Np) and Np is the integer satisfying

Np∑
i=1

≤ p <

Np+1∑
i=1

w(i).

Step 7: A 100(1 − γ )% HPD credible interval of θ can be obtained as (θ̂δ∗,
θ̂δ∗+1−γ ), where δ∗ satisfies

θ̂δ∗+1−γ − θ̂δ∗ ≤ θ̂δ+1−γ − θ̂δ,

for δ = w(1),w(1) + w(2), . . . ,

N1−γ∑
i=1

w(i).

6 Simulation results and data analysis

6.1 Simulation results

In this section, we present some simulation results for different samples sizes
and for different parameter values, mainly to see how the MLEs computed using
the EM algorithm and proposed Bayes estimators work in practice. We mainly
consider three different sets of parameter values namely: (i) α = λ1 = λ2 =
λ3 = 1.0, (ii) α = λ1 = λ2 = λ3 = 1.5, (iii) α = λ1 = λ2 = λ3 = 2.0 and differ-
ent n = 25,50,75 and 100. In each case, we compute the MLEs of the unknown
parameters by using the EM algorithm. We start the EM algorithm with the ini-
tial guesses as suggested in Section 4, and stop the iteration when the sum of the
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absolute differences of the estimates at the two consecutive iterates is less than
ε = 10−4. We replicate the process 1000 times, and report in Tables 1–3 the av-
erage estimates, the associated mean squared errors (MSEs) and the median num-
ber of iterations (MNI) required for the convergence of the EM algorithm. We
also compute the Bayes estimators of the unknown parameters as suggested in
the previous section. To compute the Bayes estimates of the unknown parame-
ters, we need to specify π2(α), the prior on α, and all the hyper parameters of
the priors π1(α) and π2(λ1, λ2, λ3). We have assumed π2(α) ∼ Gamma(c, d), and
a = b = a1 = a2 = a3 = c = d = 0.0001, as suggested by Congdon (2014). We
have used N = 10,000. In this case also we replicate the process 1000 times, and
report the average estimates and the MSEs in each case. All the results are also
reported in Tables 1–3.

Some of the points are quite clear from the simulation experiments. The Bayes
estimates with respect to non-informative priors and MLEs behave very similarly.
In all the cases it is observed that as sample size increases the biases and MSEs
decrease. It verifies the consistency properties of the MLEs and the Bayes estima-
tors. It is observed that as the parameter values increase the corresponding MSEs
increase. The performance of the EM algorithm is quite satisfactory, and it con-
verges within a reasonable number of iterations. The Bayes estimates obtained
using importance sampling technique are also as expected.

Table 1 The average estimates, the associated MSEs (reported within braces below) and MNI for
the model BIW(1.0,1.0,1.0,1.0)

n ↓ Method α λ1 λ2 λ3 MNI

25 MLE 1.0446 1.0562 1.0532 1.0769 12
(0.0205) (0.1348) (0.1324) (0.1086)

Bayes 1.0397 1.0661 1.0481 1.0881 –
(0.0275) (0.1211) (0.1378) (0.0951)

50 MLE 1.0179 1.0224 1.0203 1.0260 11
(0.0084) (0.0533) (0.0539) (0.0438)

Bayes 1.0256 1.0119 1.1113 1.0219 –
(0.0079) (0.0498) (0.0610) (0.0497)

75 MLE 1.0118 1.0080 1.0118 1.0162 11
(0.0054) (0.0365) (0.0354) (0.0282)

Bayes 1.0154 1.0167 1.0078 1.0218 –
(0.0049) (0.0315) (0.0389) (0.0310)

100 MLE 1.0084 1.0051 1.0074 1.0142 11
(0.0040) (0.0256) (0.0254) (0.0221)

Bayes 1.0043 1.0023 1.0089 1.0079 –
(0.0029) (0.0227) (0.0238) (0.0248)
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Table 2 The average estimates, the associated MSEs (reported within braces below) and MNI for
the model BIW(1.5,1.5,1.5,1.5)

n ↓ Method α λ1 λ2 λ3 MNI

25 MLE 1.5691 1.6244 1.6121 1.6576 13
(0.0475) (0.3650) (0.3347) (0.3119)

Bayes 1.5976 1.6456 1.5567 1.6213 –
(0.0427) (0.4016) (0.3289) (0.3216)

50 MLE 1.5275 1.5490 1.5423 1.5538 13
(0.0191) (0.1347) (0.1265) (0.1119)

Bayes 1.5311 1.5519 1.5523 1.5568 –
(0.0187) (0.1468) (0.1267) (0.1189)

75 MLE 1.5181 1.5212 1.5253 1.5337 12
(0.0123) (0.0873) (0.0817) (0.0706)

Bayes 1.5212 1.5318 1.5310 1.5277 –
(0.0165) (0.0798) (0.0799) (0.0765)

100 MLE 1.5132 1.5147 1.5168 1.5282 12
(0.0091) (0.0621) (0.0588) (0.0541)

Bayes 1.5127 1.5125 1.5189 1.5178 –
(0.0078) (0.0598) (0.0595) (0.0588)

Table 3 The average estimates, the associated MSEs (reported within braces below) and MNI for
the model BIW(2.0,2.0,2,0,2,0)

n ↓ Method α λ1 λ2 λ3 MNI

25 MLE 2.0933 2.2093 2.1817 2.2588 15
(0.0849) (0.7671) (0.6541) (0.6961)

Bayes 2.1019 2.1789 2.1899 2.2123 –
(0.0823) (0.8123) (0.7167) (0.7221)

50 MLE 2.0373 2.0823 2.0682 2.0894 14
(0.0343) (0.2692) (0.2342) (0.2316)

Method 2.0512 2.0687 2.0689 2.0699 –
(0.0318) (0.2531) (0.2401) (0.2405)

75 MLE 2.0246 2.0384 2.0414 2.0564 14
(0.0222) (0.1676) (0.1489) (0.1442)

Bayes 2.0289 2.0297 2.0311 2.0321 –
(0.0198) (0.1705) (0.1651) (0.1523)

100 MLE 2.0182 2.0274 2.0284 2.0461 13
(0.0163) (0.1203) (0.1074) (0.1089)

Bayes 2.0178 2.0198 2.0267 2.0337 –
(0.0159) (0.1176) (0.1123) (0.1112)
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6.2 Data analysis

In this section, we present the analysis of a data set mainly for illustrative purpose.
The main aim of this section is to show how the proposed method can be used
in practice. Moreover, it has been shown here that the proposed model works bet-
ter (in terms of better fitting) to this particular data set than some of the existing
bivariate models.

We have analyzed one data set which represents the American Football (Na-
tional Football League) League data and they are obtained from the matches played
on three consecutive weekends in 1986. This is a bivariate date set (X1,X2), where
X1 represents the ‘game time’ to the first points scored by kicking the ball between
goal posts, and X2 represents the ‘game time’ to the first points scored by moving
the ball into the end zone.

The data (scoring times in minutes and seconds) are represented in Table 4.
The data set was first analyzed by Csorgo and Welsh (1989), by converting the
seconds to the decimal minutes, that is, 2:03 has been converted to 2.05, 3:59 to
3.98 and so on. We have also adopted the same procedure. These times are of
interest to a casual spectator who wants to know how long one has to wait to watch
a touchdown or to a spectator who is interested only at the beginning stages of a
game.

The variables X1 and X2 have the following structure: (i) X1 < X2 means that
the first score is a field goal, (ii) X1 = X2 means the first score is a converted
touchdown, (iii) X1 > X2 means the first score is an unconverted touchdown or
safety. In this case, the ties are exact because no ‘game time’ elapses between a
touchdown and a point-after conversion attempt. Therefore, here ties occur quite

Table 4 American Football League (NFL) data

Y1 Y2 Y1 Y2 Y1 Y2

2:03 3:59 5:47 25:59 10:24 14:15
9:03 9:03 13:48 49:45 2:59 2:59
0:51 0:51 7:15 7:15 3:53 6:26
3:26 3:26 4:15 4:15 0:45 0:45
7:47 7:47 1:39 1:39 11:38 17:22

10:34 14:17 6:25 15:05 1:23 1:23
7:03 7:03 4:13 9:29 10:21 10:21
2:35 2:35 15:32 15:32 12:08 12:08
7:14 9:41 2:54 2:54 14:35 14:35
6:51 34:35 7:01 7:01 11:49 11:49

32:27 42:21 6:25 6:25 5:31 11:16
8:32 14:34 8:59 8:59 19:39 10:42

31:08 49:53 10:09 10:09 17:50 17:50
14:35 20:34 8:52 8:52 10:51 38:04
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naturally and they can not be ignored. Csorgo and Welsh (1989) analyzed the data
using the MOBE model but concluded that it does not work well.

Before progressing further first we have fitted IW(α,λ) model to the marginals
and the maximum of the two marginals. The MLEs of the unknown parameters, the
Kolmogorov–Smirnov (KS) distances between the empirical distribution function
(EDF) and the fitted distribution function and the associated p values are reported
in Table 5. Based on the p values, it is observed that IW distribution may be used
to fit X1, X2 and max{X1,X2}.

Hence, we have used the BIW model to analyze the bivariate data set. To com-
pute the MLEs, we have used the EM algorithm as it has been proposed. We
have used the initial guesses as suggested in Section 4. We start the EM algo-
rithm with the above initial guesses, and stop the iteration when the sum of the
absolute differences of the estimates at the two consecutive iterates is less than
ε = 10−4. In this case, the EM algorithm stops after 11 iterations. The progress
of the EM algorithm is provided in Table 6. The final estimates of the unknown
parameters are α̂ = 0.9199, λ̂1 = 0.1605, λ̂2 = 1.9037, λ̂3 = 3.9318, and the
associated 95% parametric bootstrap confidence intervals are (0.7689,1.1757),
(0.0000,0.5656), (0.9439,3.5807), (2.8999,6.5094), respectively. The programs
are written in FORTRAN and they are available in the supplementary section.

Table 5 MLEs, K-S test statistics and the associated p values

Variable α̂ λ̂ K-S p

X1 1.0419 4.6222 0.1855 0.1511
X2 0.9123 4.6148 0.1961 0.1317

max{X1,X2} 0.9199 4.6394 0.1941 0.1342

Table 6 Progress of the EM algorithm

α(k) λ
(k)
1 λ

(k)
2 λ

(k)
3 LL k

0.9633 0.0247 0.0172 4.5976 −31.46828 0
0.9254 0.1057 1.8795 4.0418 −24.93369 1
0.9202 0.1381 1.9032 3.9559 −24.92566 2
0.9199 0.1516 1.9036 3.9409 −24.92469 3
0.9199 0.1569 1.9036 3.9354 −24.92455 4
0.9197 0.1590 1.9031 3.9321 −24.92453 5
0.9197 0.1599 1.9031 3.9312 −24.92453 6
0.9197 0.1603 1.9031 3.9309 −24.92453 7
0.9199 0.1604 1.9037 3.9319 −24.92453 8
0.9199 0.1605 1.9037 3.9318 −24.92453 9
0.9196 0.1605 1.9029 3.9302 −24.92453 10
0.9199 0.1605 1.9037 3.9318 −24.92453 11
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Now we test whether BIW fits the data or not. We have used the multivariate
Kolmogorov–Smirnov test of goodness of fit as proposed by Justel et al. (1997).
We obtain the value of the test statistic as 0.2865. Based on 10,000 replications,
we obtain the 10% critical value as 0.3112. Hence, p > 0.1. Therefore, based on
the p value, we cannot reject the null hypotheses that the data are from a BIW
distribution.

We compute the Bayes estimates of the unknown parameters based on the
same prior assumptions as mentioned in the previous sub-section. In this case,
the Bayes estimates and the associated HPD credible intervals are as follows:
α̃ = 0.9733, λ̃1 = 0.1495, λ̃2 = 1.8689, λ̃3 = 3.9278, and the associated 95%
parametric bootstrap confidence intervals are (0.7823,1.1927), (0.0005,0.4687),
(0.8998,3.5328), (2.7524,6.1978), respectively.

For comparison purposes, we have fitted four-parameter bivariate generalized
exponential (BGE) distribution as proposed by Kundu and Gupta (2009) and bi-
variate generalized Rayleigh (BGR) distribution. Both the distributions have three
shape parameters and one scale parameter. We present the MLEs of the unknown
parameters and the associated log-likelihood (LL) values in Table 7. Based on the
log-likelihood values in this case it is observed the proposed BIW model provides
a better fit than BGE or BGR models for this data set.

7 Multivariate inverse Weibull distribution

In this section, we introduce multivariate inverse Weibull (MIW) distribution along
the same line, and discuss some of its properties. It can be used as a multivariate
heavy tail distribution. Suppose U1 ∼ IW(α,λ1), . . . ,Up+1 ∼ IW(α,λp+1), and
they are independently distributed. If

X1 = max{U1,Up+1}, . . . , Xp = max{Up,Up+1},
then X = (X1, . . . ,Xp)T , is called MIW distribution of order p, with parameters
α, λ1, . . . , λp+1. From now on, it will be denoted by MIWp(α,λ1, . . . , λp+1). We
have the following result regarding MIW distribution.

Theorem 7.1. Let X ∼ MIWp(α,λ1, . . . , λp+1).

Table 7 MLEs and the associated LL values for BGE and BGR models

Model λ α1 α2 α3 LL

BGE 9.5634 0.0481 0.5959 0.1706 −38.25
BGR 18.0844 0.0152 0.1880 0.3705 −36.53
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(a) The joint CDF of X is

P(X1 ≤ x1, . . . ,Xp ≤ xp) = e−λ1x
−α
1 −···−λpx−α

p −λp+1z
−α

,

where z = min{x1, . . . , xp}.
(b) X1 ∼ IW(α,λ1 + λp+1), . . . ,Xp ∼ IW(α,λp + λp+1).
(c) For any non-empty subset Iq = {i1, . . . , iq} ⊂ {1, . . . , p}, the q-dimensional

marginal

XIq = (Xi1, . . . ,Xiq )
T ∼ MIWq(α,λi1 + λp+1, . . . , λiq + λp+1).

(d) The conditional distribution of XB given {XA ≤ xA}, where the non-empty
subsets A and B are disjoint partition of {1, . . . , p}, is an absolute continuous
distribution function as follows;

P(XB ≤ xB |XA ≤ xA) =
⎧⎨⎩e−∑

i∈B λix
−α
i if z = v,

e−∑
i∈B λix

−α
i −λp+1(z

−α−v−α) if z < v,

where z = min{xi; i ∈ A ∪ B} and v = min{xi; i ∈ A}.
(e) If Tn = max{X1, . . . ,Xp}, then Tn ∼ IW(α,λ1 + · · · + λp+1).
(f) If T1 = min{X1, . . . ,Xp}, then

P(T1 ≤ t) = e−λp+1t
−α ×

(
1 −

p∏
i=1

(
1 − e−λi t

−α ))
.

Proof. (a) Follows from the definition of MIW. (b) and (c) follow from (a). (d)
and (e) also follow from the definition. (f) Note that

FT1(t) =
p∑

i=1

(−1)k−1
∑

Ik∈Sk

FIk
(t, . . . , t).

Here Ik = (i1, . . . , ik), 1 ≤ i1 �= i2 �= . . . �= ik ≤ n, is a k-dimensional subset, and
Sk is the set of all ordered k-dimensional subsets of {1, . . . , n}. Since

FIk
(t, . . . , t) = P(Xi1 ≤ t, . . . ,Xik ≤ t) = e

−λp+1t
−α−∑k

j=1 λij
t−α

,

FT1(t) = e−λp+1t
−α ×

p∑
i=1

(−1)k−1
∑

Ik∈Sk

e
−∑k

j=1 λij
t−α

.

Now the result follows by observing the fact
p∑

i=1

(−1)k−1
∑

Ik∈Sk

e
−∑k

j=1 λij
t−α =

(
1 −

p∏
i=1

(
1 − e−λi t

−α ))
.

�

In Theorem 7.1, we provided the joint CDF of a MIW distribution. It is immedi-
ate that the CDF of a MIW is not an absolute continuous distribution except when
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p = 1. For p > 1, it has an absolute continuous part and a singular part. The MIW
distribution can be written as

FX(x) = αFa(x) + (1 − α)Fs(x).

Here 0 < α < 1, Fa(x) and Fs(x), denote the absolute continuous and singular
part of FX(x), respectively. Further the corresponding PDF can be written as

fX(x) = αfa(x) + (1 − α)fs(x).

The absolute continuous part of fa(x) and α can be obtained from ∂pFX(x1,...,xp)

∂x1...∂xp
.

It is clear that x = (x1, . . . , xp)T belongs to the set where FX(x) is absolutely
continuous, if and only if xi ’s are different. For a given x, so that all the xi ’s are
different, there exists a permutation P = {i1, . . . , ip}, so that xi1 < · · · < xip . We
define for xi1 < · · · < xip

fP(xi1, . . . , xip) = fIW(xi1;α,λi1 + λp+1) × fIW(xi2;α,λi2) × · · ·
× fIW(xip ;α,λip).

Then for xi1 < · · · < xip ,

∂pFX(x1, . . . , xp)

∂x1 . . . ∂xp

= αfa(x1, . . . , xp) = fP(xi1, . . . , xip ).

Further,

α = α

∫
Rp

fa(x1, . . . , xp) dx1 . . . dxp

= ∑
P

∫ ∞
xip=0

∫ xip

xip−1=0
. . .

∫ xi2

xi1=0
fP(x1, . . . , xp) dxi1 . . . dxip

= ∑
P

JP (say).

Since∫ xi2

xi1=0
fP(x1, . . . , xp) dxi1 = FIW(xi2;α,λi1 + λp+1)

p∏
j=2

fIW(xij ;α,λij ),

and∫ xi3

xi2=0

∫ xi2

xi1=0
fP(x1, . . . , xp) dxi1 dxi2

= λi2

λi1 + λi2 + λp+1
× FIW(xi3;α,λi1 + λi2 + λi3) ×

p∏
j=3

fIW(xij ;α,λij )

...

JP = λi2

λi1 + λi2 + λp+1
× · · · × λip

λi1 + · · · + λip + λp+1
.
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Therefore,

α = ∑
P

λi2

λi1 + λi2 + λp+1
× · · · × λip

λi1 + · · · + λip + λp+1
,

and for all xi1 < · · · < xip ,

fa(x) = 1

α
fP(x).

Now we provide different components of fs(x), taking into account that fX(x)

can be written as

fX(x) = αfa(x) +
p∑

k=2

∑
Ik⊂I

αkfIk
(x),

where Ik = {i1, . . . , ik} ⊂ I = {1, . . . , p}, such that i1 < · · · < ik . Here, it is under-
stood that each fIk

(x) is a PDF with respect to (p − k + 1) dimensional Lebesgue
measure on the hyperplane AIk

= {x ∈ R
p : xi1 = · · · = xik }. The exact meaning of

fX(x) is as follows. For any Borel measurable set B ∈ R
p ,

P(X ∈ B) = α

∫
B

fa(x) +
p∑

k=2

∑
Ik⊂I

αIk

∫
BIk

fIk
(x),

where BIk
= B∩AIk

is the projection of the set B onto the (p−k+1)-dimensional
hyperplane AIk

. Now we provide αIk
and fIk

(x). Note that if x ∈ AIk
, then x has

the following form

x = (
x1, . . . , xi1−1, x

∗, xi1+1, . . . , xi2−1, x
∗, xi2+1, . . . , xik−1, x

∗, xik+1, . . . , xp

)
.

For a given x ∈ R
p , we define a function gIk

from the (p − k + 1)-dimensional
hyperplane AIk

to R as follows

gIk
(x) = fIW

(
x∗;α,λp+1

)
FIW

(
x∗;α,

∑
i∈Ik

λi

) ∏
i∈I−Ik

fIW(xi;α,λi),

if xi > x∗ for i ∈ I − Ik , and zero otherwise. We used the notation
∏

i∈I−Ik
= 1,

when k = p. Now it follows along the same line as before that∫
AIk

gIk
(x) dx = ∑

PI−Ik

∫ ∞
xjp−k

=0

∫ xjp−k

xjp−k−1=0
· · ·

∫ xj2

xj1=0
gIk

(x) dx∗ dxj1 . . . dxjp−k

= ∑
PI−Ik

λp+1∑
i∈Ik

λi + λp+1
× λj1∑

i∈Ik
λi + λj1 + λp+1

× · · ·

× λjp−k∑
i∈I λi + λp+1

,

and

fIk
(x) = 1

αIk

gIk
(x).
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8 Conclusions

In this paper, we have introduced BIW distribution along the same line as the
MOBE distribution. The proposed BIW distribution has four parameters and it has
an absolute continuous part and a singular part. The joint PDF of the absolute
continuous part can take different shapes depending on the parameter values but
it is always unimodal. The MLEs of the unknown parameters cannot be obtained
in closed form. A very convenient EM algorithm has been proposed, and in this
case at each E-step the corresponding M-step can be performed by solving only
one non-linear equation. One data set has been analyzed and it is observed that the
performance of the proposed EM algorithm is quite satisfactory. Bayesian infer-
ence of the unknown parameters have also been developed based on a very flexible
prior. Finally, a multivariate generalization has been proposed and several proper-
ties have been developed. It will be interesting to develop inferential issues for the
multivariate case. More work is needed in these directions.

Comment. At the final acceptance stage of this article, the referee pointed out
the manuscript by Muhammad (2016), where the author also introduced the same
bivariate inverse Weibull model. Although the model is same, but our treatments
are much more intensive. We have provided some physical interpretations of the
model, and provided several properties of the model. We have considered both the
frequentist and Bayesian inference of the model parameters and finally we have
provided the multivariate generalization of the model. Hopefully it will generate
further interest along that direction.

Appendix A

Proof of Theorem 2.2. Suppose A is the following event A = {U1 < U3} ∩
{U2 < U3}, then P(A) = λ3/(λ1 + λ2 + λ3). Therefore,

FX1,X2(x1, x2) = P(X1 ≤ x1,X2 ≤ x2|A)P (A)+P
(
X1 ≤ x1,X2 ≤ x2|Ac)P (

Ac).
if z = x1 ∧ x2, then

P(X1 ≤ x1,X2 ≤ x2|A) = e−(λ1+λ2+λ3)z
−α

,

and we obtain P(X1 ≤ x1,X2 ≤ x2|Ac) by subtraction. �

Proof of Theorem 2.3. (a) We will use the following notations: S0 = {(x1, x2) :
x1 = x2 ≥ 0}, S1 = {(x1, x2) : 0 ≤ x1 < x2 < ∞}, S2 = {(x1, x2) : 0 ≤ x2 <

x1 < ∞}. It is clear that fa(x1, x2) is continuous in S1 ∪ S2. Since fa(x, x) =
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limx1,x2→x fa(x1, x2), it follows that fa(x1, x2) is continuous in S1 ∪ S2. Since for
all 0 < x1, x2 < ∞,

fa(0,0) = fa(∞,∞) = fa(x1,0) = fa(x1,∞) = fa(0, x2) = fa(∞, x2) = 0,

fa(x1, x2) has a local maximum. It can be easily checked by taking derivatives of
lnfa(x1, x2) that fa(x1, x2) does not have any critical point in the region S1 ∪ S2,
hence fa(x1, x2) cannot have any local maximum in S1 ∪ S2. Therefore, in this
case the local maximum will be at S0. Note that

fa(x, x) ∝ x−2(α+1)e−(2λ+λ3)x
−α

,

hence xm can be easily obtained as the solution of d
dx

fa(x, x) = 0. Since the so-
lution is unique, it provides the unique maximum. Proofs of (b) and (c) can be
obtained by solving the two equations

∂ lnfa(x1, x2)

∂x1
= 0 and

∂ lnfa(x1, x2)

∂x2
= 0,

and by observing the fact that under the restrictions the critical points cannot occur
simultaneously at in S1 and S2 both. �

Appendix B

Proof of Theorem 3.1. (a) can be obtained easily from the joint CDF of X1
and X2. (b) can be obtained as for x ≥ 0,

P
(
max{X1,X2} ≤ x

) = P(X1 ≤ x,X2 ≤ x)

= P(U1 ≤ x,U2 ≤ x,U3 ≤ x)

= e−(λ1+λ2+λ3)x
−α

.

(c) can be obtained as follows:

P(X1 < X2) =
∫ ∞

0

∫ x2

0
fIW(x1;α,λ1 + λ3)fIW(x2;α,λ2) dx1 dx2

=
∫ ∞

0
αλ2x

−(α+1)
2 e−(λ1+λ2+λ3)x

−α
2 dx2

= λ2

λ1 + λ2 + λ3
. �

Proof of Theorem 3.3. (a) Note that the random vector (X1,X2) is PLOD, if and
only if for all 0 < x1, x2 < ∞,

FX1,X2(x1, x2) ≥ FX1(x1)FX2(x2). (11)
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In case of BIW model, it immediately follows that it satisfies (11). To prove (b), we
need to prove that P(X1 ≤ x1|X2 ≤ x2) is a non-increasing function of x2 for all
0 < x1 < ∞, and also P(X2 ≤ x2|X1 ≤ x1) is a non-increasing function of x1 for
all 0 < x2 < ∞. Now the result immediately follows from part (b) of Theorem 3.2.
In order to prove (c), we need to show that

P
(
X1 ≤ x1,X2 ≤ x2|X1 ≤ x′

1,X2 ≤ x′
2
)
, (12)

is a non-increasing in x′
1, x′

2, for all choices of 0 < x1, x2 < ∞. Note that in case
of BIW model, (12) can be written as

e−λ1((x1∧x′
1)

−α−x′−α
1 )−λ2((x2∧x′

2)
−α−x′−α

2 )−λ3((x1∧x′
1∧x2∧x′

2)
−α−(x′

1∧x′
2)

−α). (13)

Now proof can be established by considering twenty four possible cases namely
(i) x1 < x′

1 < x2 < x′
2, (ii) x′

1 < x1 < x2 < x′
2 etc. �

Appendix C

Proof of Theorem 4.1. First, we will prove the following result. Suppose yi > 0,
for i = 1, . . . , n, then w(α) = − ln(

∑n
i=1 yα

i ) is a concave function. To prove that,
note that

d2w(α)

dα2 = −
∑

i �=j yα
i , yα

j (lnyi − lnyj )
2

(
∑n

i=1 yα
i )2 < 0.

If we take yi = x−1
i in (7), it easily follows that g(α) is a concave func-

tion, since d2g(α)

dα2 < 0. Now the result follows as limα↓0 g(α) = −∞ and
limα→∞ g(α) = −∞ �
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