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1 Overview

Pratola addresses a specific and challenging problem: the construction of Metropolis–
Hastings (MH) proposal mechanisms for regression tree models that are both efficient
and effective. Efficiency in this context relates to per-iteration computation time, which
is desired to be kept to a minimum. Effectiveness in this context relates to the mixing
of the resulting chain and its ability to avoid becoming trapped in local modes. As is
typical when designing Markov chain Monte Carlo (MCMC) algorithms, these desider-
ata must be balanced against each other. Moves that are computationally efficient often
result in slow-mixing chains, while moves that result in fast-mixing chains—if mecha-
nisms for proposing such moves can even be found—are often accompanied by a high
computational burden. Balancing these desiderata is quite difficult, both in general and
in the particular case of Bayesian regression tree models.

Pratola’s approach to improving MCMC efficiency and effectiveness in the Bayesian
regression tree model setting draws on two existing and commonly-used MH moves.
Pratola generalizes these moves to be more aggressive in exploring the posterior with-
out sacrificing much computational efficiency. The first is a move based on a rotation
mechanism (see, e.g., Sleator et al., 1988) used by Gramacy and Lee (2008) in the
sampling of Bayesian treed Gaussian process models. The generalized rotate proposal
developed by Pratola allows for nontrivial changes to be made to the interior structure
of the tree. Critically, the nodes involved in the rotation need not all split on the same
variable, as was the case in earlier implementations. The second is a move that changes
a cutpoint and/or splitting variable that has been implemented in various ways in the
literature (e.g., Chipman et al., 1998; Dennison et al., 1998; Chipman et al., 2002; Wu
et al., 2007; Gramacy and Lee, 2008; Chipman et al., 2010). The generalized perturb-
within-change-of-variable move allows for flexibility in moving the cutpoint for a given
split while using the covariates to inform the proposal distribution. The resulting gen-
eralized moves are computationally local yet structurally global in that they allow the
chain to avoid becoming trapped in local modes while restricting computation at any
given iteration to localized regions of the tree.

The goal of balancing computational speed with algorithmic effectiveness arises in
many computational settings. When thinking about such a balance, I am often reminded
of van Dyk and Meng (1997), who describe a search for “a ‘free and better lunch,’ not
a ‘better but expensive lunch’ in terms of human and computational effort” in the con-
text of designing ECM (Meng and Rubin, 1993) and ECME (Liu and Rubin, 1994)
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optimization algorithms. Such a free lunch is indeed sometimes available. In their study
of maximum likelihood estimation for the multivariate t distribution via the EM algo-
rithm (Dempster et al., 1977), Meng and van Dyk (1997) describe how a minor change
to the “standard” data augmentation results in an algorithm with an optimal rate of
convergence. Moreover, the speedup can be obtained by changing only one portion of a
single line of code implementing the “standard” algorithm.

While ideal, such an economical improvement is the exception rather than the rule
when it comes to algorithm design. The new MH mechanisms Pratola introduces rep-
resent a step toward this ideal as measured by empirical comparisons to existing ap-
proaches. As demonstrated in Section 2.3 (and elsewhere) of Pratola’s paper, the new
MH moves allow the chain to mix across modes much more freely than under existing
approaches. As demonstrated in Section 5.2 of the paper, the new MH moves can result
in a larger effective sample size per second. The lunch, however, is only “free” to the
user because Pratola pays for part of the coding bill himself by providing details for the
algorithmic heavy-lifting in the paper. As evidenced in Section 3 of the paper, defining
the rotation operator, R, and deriving the MH acceptance probability are nontrivial ex-
ercises and represent important contributions of the work. Equipped with these results,
Pratola provides pseudocode in the Supplementary Material that can incorporated into
code implementing MCMC algorithms for a variety of Bayesian regression tree models.
The result is a fairly straightforward “add-on” to existing algorithms that can improve
mixing without sacrificing too much computational efficiency.

2 Connections to Literature on Related Problems

Large, structured model spaces pose many computational challenges, especially for pos-
terior inference via MCMC. The regression tree models considered by Pratola are par-
ticularly challenging, however similar difficulties arise in the related areas of Gaussian
graphical model determination and Bayesian regression modeling with many predic-
tors. Basic algorithms that are only capable of making local moves tend, in all three
model settings, to become trapped in or near local modes, especially as the size of
the problem increases. Those who attended the 2016 ISBA World Meeting in Sardinia,
Italy—where Pratola’s paper was presented with discussion—may have attended Profes-
sor Peter Green’s Foundations Lecture on “Graphical modeling and Bayesian structural
learning” (Green, 2016). In his lecture, Prof. Green provided a detailed survey of ap-
proaches to modeling and computation for Gaussian graphical models (and, to a lesser
extent, Bayesian linear regression models and models on trees). Those who were not
able to attend the lecture may view it online.1

It is clear from both a survey of the literature and from Prof. Green’s lecture that,
in all three related model settings, the historical trend has been a shift from algorithms
that rely on local moves to those that encourage global moves. For example, early

1A video of the lecture and the corresponding slides from the presentation will soon be
available at http://videolectures.net/isba2016_green_graphical_modelling/; see also links at
http://www.bayesian.org.
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MCMC algorithms for decomposable Gaussian graphical models typically involved pro-
posals where a single edge was added to, deleted from, or swapped out of the current
model (e.g., Madigan and York, 1995; Guidici and Green, 1999; Armstrong et al., 2009).
Computationally-aggressive approaches like the Shotgun Stochastic Search approach of
Jones et al. (2005) relied on an extensive survey of the local neighborhood of the current
model when constructing moves. More recent algorithms, such as the feature-inclusion
stochastic search approach of Scott and Carvalho (2012), have moved toward mixing
local moves with global moves in an attempt to escape local posterior modes.

A similar trend has occurred in the literature related to Bayesian regression model
uncertainty and variable selection. Early algorithms focused on local moves that in-
volved some combination of adding, deleting or swapping variables (e.g., George and
McCulloch, 1993; Geweke, 1996; Smith and Kohn, 1996; George and McCulloch, 1997).
Shotgun Stochastic Search approaches (Hans et al., 2007) again relied on an extensive
cataloguing of local neighborhoods. As with Gaussian graphical models, recent algo-
rithms for exploring regression model space have moved toward using a mixture of local
and carefully-constructed global moves (e.g., Bottolo and Richardson, 2010). The global
moves often represent a non-local change of dimension. For example, Xu (2011) describes
an approach where, after a transformation on the parameter space, local moves in the
transformed regression space correspond to “larger” moves in the original model space,
allowing the chain to make global moves. Finally, notions of adaptation are now being
used to guide searches for high posterior probability regression models (Nott and Kohn,
2005; Clyde et al., 2011).

Pratola’s paper fits nicely into the stream of related literature, as it focuses on
a move away from purely local (and low-dimensional) moves while at the same time
incorporating notions of adaptiveness and pre-conditioning based on information in the
predictors, all while maintaining computational efficiency.

3 Specifics

There are many ways in which the two new MH proposals could be incorporated into an
MCMC algorithm. The paper explores a few potential options and provides guidance
that is based on experimental evidence and intuition the author has gained by studying
these problems in detail. After reading the manuscript and considering how the work
fits into the broader literature on MCMC for related problems, I wondered about a
few other specific approaches to implementation and how these approaches might fare
relative to the ones presented in the paper.

First, as evidenced in the literature on MCMC for structural identification in the
areas described above, the role of adaptation has been seen to be increasingly useful. This
is particularly true when the goal is to tune proposal distributions that have the ability
to make global (or, at least, non-local) moves. Designing such moves often requires
knowledge about the posterior so as to avoid proposing global moves to low-probability
regions. This knowledge can be accumulated on-the-fly via adaptation. Pratola discusses
the potential for adaptation with respect to the α scaling parameter involved in the
perturbation proposal, as well as with respect to the percentage of iterations during
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which a rotate proposal is used in place of the traditional birth/death proposal. Rather
than implementing a formal adaptive MCMC for α, Pratola opts to adapt α during a
pre-burn-in run of the chain. Under this approach, α is updated on a regular schedule
to tune the locality of the proposed moves by monitoring the acceptance rate of the
chain. At the end of the adaptation period, α is fixed and the formal MCMC is started.
This is reasonable, and it appears to work well in practice.

Thinking about other potential ways in which adaptation could be incorporated in
to the algorithm, I wonder whether adapting the change-of-variable move might help
increase the efficiency of the MCMC. Pratola’s change-of-variable move relies on a pre-
conditioning strategy whereby correlations between the predictor variables are used to
inform the proposal. Pratola argues that this strategy helps the algorithm converge to
the true posterior when there are highly correlated predictors, providing a more honest
quantification of posterior uncertainty than is obtained by the standard algorithms.
I wonder whether, rather than fixing this proposal distribution at the start of the chain
via pre-conditioning, the proposal distribution might be adapted as the chain evolves,
resulting in a post-conditioning of the change-of-variables move. By adaptively learning
which changes-of-variable result in good moves throughout the space, the chain may be
able to make more effective moves than can be obtained by pre-conditioning alone. Such
an approach is reminiscent of the adaptive sampler proposed by Nott and Kohn (2005)
in the context of Bayesian variable selection for the normal linear model. Exploring
adaptations along these lines might shed more light on the ways in which correlations
between predictors drive poor mixing of standard algorithms.

My second thought about alternative approaches also relates to the strategy for the
change-of-variables update. Under the pre-conditioning approach, Pratola notes that
“if vk is highly correlated with a single other variable vj , then this formula [the pre-
conditioning approach] will lead to proposals that stay at vk about 50% of the time and
propose transitions to vj about 50% of the time.” I wonder whether restructuring the
proposal so that, in situations like this, the mechanism is heavily biased toward proposals
away from vk might lead to a more effective sampler, as it would avoid proposing a
“move” to the current variable. This is motivated by the “Metropolized Gibbs sampler”
of Liu (1996), which can be shown in certain setups to yield more efficient inference
than samplers that allow proposals to the current state. Of course, such an approach
would only be practically useful in the regression tree setting if improvements in mixing
outweighed potential increases in computational cost due to the restructuring of the
tree/model that would occur after a proposed change-of-variable.

Finally, the paper proposes two different types of improved moves, the rotate pro-
posal and the perturbation(-within-change-of-variables) proposal. In Section 5, Pratola
investigates the impact of these two proposals separately and simultaneously. It appears
from the various examples that both proposal mechanisms help increase the effectiveness
of the sampler, and that there is an interaction effect between the proposals in terms
of both the diversity of tree structures explored and the resulting computation time.
Further investigations along these lines to help understand the relative importance of
the two proposals and the way in which they interact would be of interest, and may
reveal other interesting properties of the posterior distribution over tree structures.
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4 Summary

To summarize, Pratola has tackled a difficult problem that also arises in other discrete-
structure setups. He has proposed improvements to existing MH methods that are cus-
tomized to account for the topological structure of regression trees. The new methods,
the development of which required a careful construction of a nontrivial operation on a
tree structure, provide mechanisms for proposing global jumps in regression tree space
that require only localized computation.

I would like to thank Pratola for writing a thoughtful paper that I very much en-
joyed reading. As someone who does not work with tree structures on a regular basis,
I appreciated that the paper was written with enough detail and clarity to enable a
casual reader to extract the essence of the problem while at the same time tracking the
details of the solution. I found the work to be both useful and interesting, and expect
the methodology will have a positive impact on modeling practice in this area.
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