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Bayesian Analysis of the Stationary MAP2

P. Ramı́rez-Cobo∗, R. E. Lillo†, and M. P. Wiper‡

Abstract. In this article we describe a method for carrying out Bayesian estima-
tion for the two-state stationary Markov arrival process (MAP2), which has been
proposed as a versatile model in a number of contexts. The approach is illustrated
on both simulated and real data sets, where the performance of the MAP2 is com-
pared against that of the well-known MMPP2. As an extension of the method,
we estimate the queue length and virtual waiting time distributions of a station-
ary MAP2/G/1 queueing system, a matrix generalization of the M/G/1 queue
that allows for dependent inter-arrival times. Our procedure is illustrated with
applications in Internet traffic analysis.
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1 Introduction

The Markov arrival process (MAP) was introduced by Neuts (1979) as a versatile point
process where the times between occurrences of events (from now on, inter-event times)
are phase-type (PH) distributed (see Neuts (1974)) and correlated. Applications of the
MAP have been proposed in diverse areas such as teletraffic modeling, reliability, finance
and climatology. For examples, see Okamura et al. (2009), Casale et al. (2010), Cheung
and Landriault (2010), Cheung and Runhuan (2013), Montoro-Cazorla and Pérez-Ocón
(2014), Ramı́rez-Cobo et al. (2014b) and Rodŕıguez et al. (2015).

However, the MAP has mainly been studied from a queueing theory perspective.
A number of variants of the MAP/G/1 queueing system have been considered in e.g.
Wu et al. (2011), Zhang and Hou (2011), Xue and Alfa (2011), Chaudhry et al. (2013),
Dudina et al. (2013), and Banerjee et al. (2015). Also, Ramaswami (1980) derived
a detailed theoretical analysis of the single-server queue where the arrival process is
governed by a MAP with batch arrivals, which was studied later by Lucantoni (1991,
1993), where different numerical algorithms for computing the steady-state solutions
were given.

While performance analysis for models incorporating MAPs is a well developed area,
less progress has been made on statistical estimation for such processes. Probably the
major difficulty for inference for MAPs is that they suffer from identifiability problems
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so that many different MAP parameterizations produce the same joint density for any
observed sequence of inter-event times when the underlying states of the process are
not observed (Ramı́rez-Cobo et al., 2010b). In the context of statistical inference, this
implies that it is not sensible to estimate the individual parameters of the MAP given
a sample of inter-event time data, since there are infinitely many parameterizations
which give the same density for the observed process. Some papers have investigated
approaches to inference for MAPs, either from a moment matching method perspective
or via maximum likelihood, see e.g. Riska et al. (2002) or Kriege and Buchholz (2010)
and the references given therein for a recent review. However, in most of these articles,
with the exceptions of Telek and Horváth (2007) and Bodrog et al. (2008) the issue of
identifiability is not accounted for.

Although there has been some work on Bayesian estimation for a specific, iden-
tifiable subclass of MAPs, that is the Markov modulated Poisson process (MMPP),
see Scott (1999), Scott and Smyth (2003), Fearnhead and Sherlock (2006), as far as
we know, Bayesian inference for the general MAP has not previously been considered.
Recently however, an identifiable representation for the simplest, two-state stationary
MAP (MAP2), has been found by Bodrog et al. (2008). Thus, using this canonical rep-
resentation of the MAP2 the identifiability problems are removed. Therefore, the first
objective of this paper is to undertake Bayesian estimation of the stationary MAP2.

Concerning theMAP/G/1 queueing system, most of works are focused on theoretical
aspects and not on inferential issues, with the exception, to the best of our knowledge, of
Riska et al. (2002). However, in teletraffic contexts where the MAP is used as an arrival
model, there will typically be parameter uncertainty present and it will be of interest to
estimate probabilities of congestion, queue lengths, waiting time distributions etc. based
on sample data. Similarly, the study of ruin problems in insurance is directly related to
the analysis of queueing systems, see Prabhu (1998), Asmussen and Albrecher (2010)
or Ramı́rez-Cobo et al. (2010a). Therefore, given real insurance claim data (which are
commonly dependent), it will be important to make inference for the MAP/G/1 queue
in order to obtain an estimation of the ruin probability. Thus, the second objective
of this work is to obtain numerical predictions of the steady state distributions of the
MAP2/G/1 queue which, as far as we know, is an unexplored problem in the literature.
Our MCMC (Markov chain Monte Carlo) algorithm for Bayesian inference for theMAP2

is combined with results from queueing theory to obtain numerical predictions of the
waiting time and queue length distributions of the system.

The rest of this paper is organized as follows. In Section 2 we review the definition
and key properties of the stationary MAP2. Special emphasis is put on comparing the
MAP2 with the two-stateMMPP (MMPP2), the most considered subclass ofMAP in the
literature. In Section 3 we introduce a MCMC algorithm for Bayesian inference for the
stationaryMAP2. Our approach is illustrated in detail with simulated and real data sets.
In Section 4 we examine the MAP2/G/1 queueing system and show how our approach
for estimating the MAP2 can be used to approximate the steady state distributions
of interest. Our results are then applied to a real example of Internet traffic arrivals.
Conclusions and possible extensions to this work are considered in Section 5.
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2 The stationary MAP2

This section summarizes the main properties of the stationary MAP2, with special
emphasis on the identifiability problem and differences between the MAP2 and MMPP2

processes.

2.1 The MAP and the MAP2

Formally, a (m state) MAP is a doubly stochastic process {J(t), N(t)}, where J(t)
represents an irreducible, continuous-time, Markov process with finite state space S =
{1, 2, . . . ,m}, andN(t) is a counting process that records the number of events occurring
in (0, t].

The MAP evolves as follows. An initial state i0 ∈ S is generated according to some
initial probability vector α and at the end of an exponentially distributed sojourn time
in state i ∈ S, with mean 1/λi, one of two types of state transition can occur. Firstly,
with probability 0 ≤ pij1 ≤ 1, a single event occurs and the MAP enters a state j ∈ S,
which may be the same as the previous state. Otherwise, with probability 0 ≤ pij0 ≤ 1,
no event occurs and the MAP enters a different state j �= i. Clearly, we have that for
i ∈ S, then

m∑
j=1,j �=i

pij0 +

m∑
j=1

pij1 = 1.

A MAP can thus be expressed in terms of the initial probability vector α and the
parameters {λ, P0, P1}, where λ = (λ1, λ2, . . . , λm), and P0 and P1 are m×m transition
probability matrices with ij’th elements pij0 and pij1, respectively.

From now on, we shall concentrate on the specific properties of the MAP2, that is the
two state MAP with m = 2 and state space S = {1, 2}. Good reviews of the theoretical
properties of the general MAP can be seen in e.g. Lucantoni (1993), Latouche and
Ramaswami (1999), and Chakravarthy (2001).

As with any MAP, instead of transition probability matrices, the MAP2 can be
characterized in terms of rate (or intensity) matrices. For the MAP2, these matrices are
{D0, D1}, where

D0 =

(
−λ1 λ1p120
λ2p210 −λ2

)
, D1 =

(
λ1p111 λ1(1− p120 − p111)
λ2p211 λ2(1− p210 − p211)

)
. (1)

Intuitively, D1 (D0) can be thought of as governing transition rates that do (do not)
generate occurrences of events. D = D0 + D1 is the infinitesimal generator of the
underlying Markov process J(t) with stationary probability vector π = (π, 1 − π) and
computed as πD = 0. The stationary version of the process which we shall consider in
this work is obtained when α = π.

The stationary MAP2 can be viewed as a Markov renewal process. Indeed, let Sr

denote the state of the MAP2 at the time of the rth event, and let Tr denote the time
between the (r − 1)th and rth events. Then {Sr−1,

∑r
i=1 Ti}∞r=1 is a Markov renewal
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process, and in particular, {Sr}∞r=0 is a Markov chain with transition matrix P � given
by

P � = (I − P0)
−1P1. (2)

From the practical viewpoint, it will often be the case that only a sequence of inter-
event times t = (t1, t2, . . . , tn) are observed and that the corresponding state sequence of
theMAP2 is not. Therefore, it is important to consider the distribution of the variable T ,
representing the time between two successive events (inter-event time) in the stationary
version of a MAP2. It is known that T is phase-type distributed with representation
{φ, D0}, see e.g. Telek and Horváth (2007), and therefore the moments of T can be
computed as

μn = E(Tn) = n!φ (−D0)
−n

eT , (3)

where φ = (φ, 1− φ) is the probability distribution satisfying

φP � = φ, (4)

and e is a row vector with all its components equal to one. The inter-event times in
a stationary MAP2 are known to be correlated and in e.g. Bodrog et al. (2008), it is
shown that the autocorrelation coefficient of lag h, say Rh, is given by

Rh = γh μ2 − 2μ2
1

2(μ2 − μ2
1)
, for k > 0, (5)

where −1 ≤ γ < 1 is one of the two eigenvalues of the transition matrix P � (as P � is
stochastic, then necessarily the other eigenvalue is equal to 1). Note that the specific
structure in (5) implies geometric decay of the autocorrelation function, a property that
is also shared by the general m-state MAPs, see Hervé and Ledoux (2013).

Finally, the likelihood function for a sequence of observed inter-event times t =
(t1, t2, . . . , tn) is given by

f(t|D0, D1) = φeD0t1D1e
D0t2D1 . . . e

D0tnD1e
T , (6)

see for example, Chakravarthy (2001).

2.2 A canonical representation for the stationary MAP2

Representation (1) of the stationary MAP2 is known to be over-parameterized, in
the same sense as in Rydén (1996) or Ramı́rez-Cobo et al. (2010b): a MAP2 de-
fined by {D0, D1} is over-parametrized (or non-identifiable) if there exists a differently

parametrized process {D̃0, D̃1} such that

f(t|D0, D1) = f(t|D̃0, D̃1),

for any given sequence of inter-event times t = (t1, . . . , tn) and for all n ≥ 1, where
f(t|D0, D1) is the observed likelihood function given by Eq. (6).



P. Ramı́rez-Cobo, R. E. Lillo, and M. P. Wiper 1167

Bodrog et al. (2008) proves that any MAP2 is completely characterized in terms
of four descriptors, the first three moments and first-lag autocorrelation coefficient,
(μ1, μ2, μ3, R1), see Eq. (3) and (5). This definition of the MAP2 in terms of four quan-
tities allowed them to find a unique, canonical representation for the stationary MAP2.
This canonical representation depends on the sign of the correlation parameter γ (in 5).
Specifically, if γ ≥ 0, then the canonical form of the MAP2 is given by

λ = (λ1, λ2), P0 =

(
0 1− a
0 0

)
, P1 =

(
a 0

1− b b

)
, (7)

where, 0 < λ1 ≤ λ2 and a, b ∈ [0, 1]. We shall refer to this case as model M1. Otherwise,
for those MAP2s such that γ < 0, then their canonical form is

λ = (λ1, λ2), P0 =

(
0 1− a
0 0

)
, P1 =

(
0 a
b 1− b

)
, (8)

where, 0 < λ1 ≤ λ2 and a, b ∈ [0, 1] as earlier. We shall refer to this case as model M2.
Note that if a = b = 1, then the process is neither recurrent nor identifiable.

The transition matrices (2) for the states at an event occurrence under these two
models are given by

P � =

(
1− b+ ab b− ab

1− b b

)
,

under model M1 and

P � =

(
b− ab 1− b+ ab

b 1− b

)
,

under model M2, respectively.

2.3 MMPP2 versus MAP2

As noted in Section 1, a number of works have dealt with inference for the two-state,
Markov modulated Poisson process (MMPP2), which is a subclass of MAP2s such that,
in the traditional representation of theMAP2 (1), satisfies p121 = p211 = 0. In particular,
this implies that in the MMPP2

1. the jumps from 1 to 2, or from 2 to 1, necessarily define transitions without the
occurrence of an event, and

2. events only occur at self-transitions and since the elements of the diagonal of P0

are zero then, every self-transition produces an event.

Because of the constraint p121 = p211 = 0, the stationary MMPP2 is represented by
four parameters (λ1, λ2, p120 and p210). On the contrary, the representation (1) of the
general MAP2 does not constrain any parameter to be equal to 0 (with the exception of
p110 = p220 = 0, satisfied by all MAP2s, including the MMPP2s). This implies that in
the MAP2, events can occur either at transitions 1 → 2, 2 → 1 or self-transitions. This
fact makes the MAP2 a more complex model which, in principle, should imply more
versatility. Given that the canonical representation of a general MAP2 is also expressed
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in terms of four parameters, it is of interest to study the benefits of modeling using
MAP2s instead of MMPP2s. We shall address this issue below.

Firstly, the class of MAP2s is more general than the MMPP2s. Indeed, Asmussen
and Koole (1993) show that stationary MAPs can approximate any stationary point
process, a property which is not satisfied by MMPPs (as shown in Section 3 of the cited
paper). The MAP2 includes both renewal processes (phase type renewal processes as
the Erlang and hyperexponential renewal process) and non-renewal processes, as is the
case of the MMPP2. This implies there are classes of MAP2s that are not equivalent to
any MMPP2.

As an example, consider the MAP2 defined by λ = (0.005, 1) and

P0 =

(
0 0.02

0.0005 0

)
, P1 =

(
0.02 0.96
0.9990 0.0005

)
. (9)

Then, the procedure in Ramı́rez-Cobo et al. (2010b) can be used to show that the only
potentially equivalent MMPP2 to the MAP2 given by (9) would have to be defined by

λ̃ = (0.5013, 0.5037) and

P̃0 =

(
0 1.1390

0.8606 0

)
, P̃1 =

(
−0.1390 0

0 0.1394

)
,

which does not define a real MMPP2 since p120 > 1 and p111 < 0. In order to clarify
this phenomenon consider the canonical representation for (9), which can be obtained
from the approach in Bodrog et al. (2008) as the model M2

λ = (0.005, 1), P0 =

(
0 0.0404
0 0

)
, P1 =

(
0 0.9596

0.9994 6× 10−4

)
.

It can be easily seen that in this case the autocorrelation parameter γ = −0.9590 and
the first-lag autocorrelation coefficient of the inter-event times is R1 = −0.3219 < 0.
Not many works have been devoted to the study of the autocorrelation function of the
inter-event times produced by the MAP, but for example Kang and Sung (1995) prove
that for any MMPP2, then γ ≥ 0 and Rh ≥ 0, for all h. On the contrary, as we show
next, for certain MAP2s the autocorrelation function Rh can take negative values, for
some h > 0.

Consider a MAP2 with canonical representation (7). For this case it can be seen that
γ = ab which leads to the following correlation patterns:

a) if b >
λ1

λ2
, then Rh > 0, for all h > 0,

b) if b <
λ1

λ2
, then Rh < 0, for all h > 0, (10)

c) if b =
λ1

λ2
, then Rh = 0, for all h > 0.

If a MAP2 has canonical representation (8), then γ = −ab which implies that

a) if (1 + ab− b) <
λ1

λ2
, then R2h−1 > 0 and R2h < 0, for all h > 0,
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b) if (1 + ab− b) >
λ1

λ2
, then R2h−1 < 0 and R2h > 0, for all h > 0,

c) if (1 + ab− b) =
λ1

λ2
, then Rh = 0, for all h > 0. (11)

Results in Kang and Sung (1995) concerning the autocorrelation function of the
inter-event times produced by a MMPP2 imply that patterns described in b) of equa-
tions (10) or in any of the three cases of equations (11) will never be captured by a
MMPP2. And even the class of MAP2s with a correlation pattern as in a) of equa-
tions (10) is still larger than the class of MMPP2s. For example, the MAP2 given by
λ = (0.0064, 16.2737) and

P0 =

(
0 0.2188
0 0

)
, P1 =

(
0.7812 0
0.9992 0.0008

)
,

satisfies Rh > 0, for all h ≥ 1, and has no equivalent MMPP2 representation. The above
demonstrates the class of MAP2s is richer than that of MMPP2s and highlights the
capability of the MAP2 to capture a range of autocorrelation patterns which cannot be
obtained under a MMPP2.

3 Bayesian inference for the MAP2

Assume now that we observe a sequence of real valued inter-event times, t = (t1, t2, . . . ,
tn) generated from a stationary MAP2. In this section we shall develop a Markov chain
Monte Carlo algorithm for Bayesian inference in order to approximate the inter-event
time distribution and to estimate the parameters of the model. The algorithm is based
on the canonical forms for the MAP2 in (7) and (8).

In order to undertake Bayesian inference, we must first introduce prior distributions
for the unknown MAP2 parameters: the exponential rates λ = (λ1, λ2) and transition
probabilities a and b.

Unless there is specific information available a priori, it seems reasonable to apply
relatively uninformative, but flexible prior distributions. Here, we adopt the approach
of Gruet et al. (1999) and define the following prior structure

λ1 = λ2ω, where ω ∼ U(0, 1),

and λ2 has a gamma prior:
λ2 ∼ Ga (α2, β2) .

In addition, we use independent beta (uniform) priors for a and b, a ∼ Be(αa, βa),
b ∼ Be(αb, βb). In practice we set α2 = 1, β2 = 0.001, and αa = αb = βa = βb = 1.

3.1 The complete data likelihood for the MAP2

We shall base our approach on reconstruction of the complete sequence of transitions,
including both the transitions that take place when an event occurs and those transitions
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where there is no event but a state change occurs. Given the full history of the process
up to the n’th event, then we can reconstruct the complete data likelihood function.

Let t̃ = {t̃1, . . . , t̃N} represent the sequence of real valued inter-transition times
and s̃ = {s̃0, s̃1, . . . , s̃N} the sequence of the visited states (with and without events).
Note that the observed inter-event times t are included in the set t̃. Define g̃ =
{g̃0, g̃1, . . . , g̃N} such that g̃j = 1 (0) if the j−th transition occurred with (without)
an event. Then the complete data likelihood is given by

f
(
t̃, s̃, g̃|λ, P0, P1

)
= πs̃0

N∏
l=1

λs̃l−1
e−λs̃l−1

t̃lps̃l−1,s̃l,g̃l , (12)

where π is the stationary probability vector corresponding to the underlying Markov
chain, λ = (λ1, λ2) denotes the exponential rates, and P0 and P1 are the transition
matrices from states 1 and 2, respectively, with elements pij0 and pij1, probabilities of
a transition from state i to state j with 0 or 1 events.

The complete data likelihood function in Eq. (12) can be simplified in terms of
sufficient statistics. Specifically, if nij is the number of transitions with an event between
states i and j, m12 is the number of transitions without an event, (which must all be,
given the canonical parameterization, from state 1 to state 2), nj is the number of
transitions made from state j, and finally, vj is the time spent in state j, for i, j = 1, 2,
then from (7) and (8),

f(t̃, s̃, g̃|ω, λ2, a, b) ∝ πs̃0(1− a)m12an11(1− b)n21bn22λn1+n2
2 ωn1e−λ2(ωv1+v2), (13)

in the case of model M1 and

f(t̃, s̃, g̃|ω, λ2, a, b) ∝ πs̃0(1− a)m12an12(1− b)n22bn21λn1+n2
2 ωn1e−λ2(ωv1+v2), (14)

in the case of model M2, respectively.

3.2 Gibbs algorithm

Assuming that the MAP2 is in one of the two canonical forms (7) or (8), we propose
the following algorithm to sample the posterior distribution of the model parameters
θ = (ω, λ2, a, b).

Algorithm to estimate the MAP2 parameters.

1. Set initial values θ(0) = (ω(0), λ
(0)
2 , a(0), b(0)).

2. For k = 1, . . . ,M repeat:

(a) Define λ
(k−1)
1 = ω(k−1)λ

(k−1)
2 .

(b) Generate the states at events, s(k) = (s
(k)
0 , s

(k)
1 , . . . , s

(k)
n ), from

f(s(k)|t,θ(k−1)).
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(c) Complete the sequence s̃(k) from f(s̃(k)|t, s(k)θ(k−1)) by drawing the

states when a transition without an event occurs. Obtain s̃(k) =
(s̃

(k)
0 , s̃

(k)
1 , . . . , s̃

(k)
N ).

(d) Generate the inter-transition times, t̃(k) = (t̃
(k)
1 , . . . , t̃

(k)
N ), from

f(t̃(k)|t, s(k), s̃(k),θ(k−1)).

(e) Generate θ(k) from f(θ(k)|t, s(k), s̃(k), t̃(k)).

We next describe how steps 2(b)-2(e) are undertaken at each Gibbs iteration. For
simplicity of notation, we avoid the use of the superscript (k).

Step 2(b) To generate the set of states at events, s = (s0, s1, . . . , sn), the classic
forward–backward sampler is used, see Scott (2002). In order to implement
it, the likelihood of the observed inter-event times t given the states at events
s, is needed. Since the MAP2 is a Markov renewal process, then the sequence
of random variables representing the inter-event times, {Tr}∞r=1 are condi-
tionally independent given the sequence of states at events, {Sr}∞r=1, where
the distributions of Tr | S1, . . . , Sr−1 is the same as that of Tr | Sr−1. See
Ch. 10 in Çinlar (1975) for more details. From (7) and (8), the distribution
of the inter-event times conditioned on the previous states is as follows,

Tr|sr−1 = 2 ∼ Ex(λ2), (15)

Tr|sr−1 = 1 ∼
{

Ex(λ1) with probability a,
Ex(λ1) + Ex(λ2) with probability 1− a,

(16)

for all r = 1, . . . , n, where Ex(λ) represents an exponential variable with
parameter λ. Thus, the likelihood of t given s is

f(t|s,θ) = φs0

n∏
r=1

P �(sr−1, sr)h (tr|sr−1) , (17)

where P �(i, j) denotes the (i, j)−th element in the transition matrix P � as
in (2), and h(·|sr−1) is the density function corresponding to Eq. (15) or Eq.
(16), depending on the value of sr−1. From expression (17), note that we are
assuming that our data start with an event. If this is not the case, the value
φs0 should be replaced by πs0 .

Step 2(c) Consider now the generation of intermediate states to obtain the complete
sequence of states, s̃. From representations (7) and (8) there is at most
one state transition between any two real events. For r = 1, . . . , n, let S̃r =( ccS̃r(1,1) S̃r(1,2)

S̃r(2,1) S̃r(2,2)

)
represent the number of transitions of each type that occur

between real events (r − 1) and r, including the final transition associated
with the real event. In particular, if sr−1 = 2 then there are no intermediate
transitions and, we have that

S̃r =

(
0 0
0 1

)
, if sr = 2, or S̃r =

(
0 0
1 0

)
, if sr = 1 (M1,M2).
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Otherwise, if sr−1 = 1, then either a transition without events to state 2 can
occur, so that

S̃r =

(
0 1
1 0

)
, if sr = 1, or S̃r =

(
0 1
0 1

)
, if sr = 2 (M1,M2),

or there is no intermediate transition

S̃r =

(
1 0
0 0

)
, if sr = 1 (M1), S̃r =

(
0 1
0 0

)
, if sr = 2 (M2).

Then, dropping the dependence on a, b for convenience, the following prior
probabilities are obtained:

P

(
S̃r =

(
0 1
1 0

)∣∣∣∣sr−1 = 1, sr = 1

)
=

(1− a)(1− b)

a+ (1− a)(1− b)
,

P

(
S̃r =

(
1 0
0 0

)∣∣∣∣sr−1 = 1, sr = 1

)
= 1− (1− a)(1− b)

a+ (1− a)(1− b)
, (M1)

P

(
S̃r =

(
0 1
0 1

)∣∣∣∣sr−1 = 1, sr = 2

)
= 1,

or

P

(
S̃r =

(
0 1
0 1

)∣∣∣∣sr−1 = 1, sr = 2

)
=

(1− a)(1− b)

a+ (1− a)(1− b)
,

P

(
S̃r =

(
0 1
0 0

)∣∣∣∣sr−1 = 1, sr = 2

)
= 1− (1− a)(1− b)

a+ (1− a)(1− b)
, (M2)

P

(
S̃r =

(
0 1
1 0

)∣∣∣∣sr−1 = 1, sr = 1

)
= 1.

Then, conditional on the inter-event times we have that, for model M1, the
posterior probabilities q1 and q2 defined as

q1 = P

(
S̃r =

(
0 1
1 0

)∣∣∣∣sr−1 = 1, sr = 1, tr

)
,

q2 = P

(
S̃r =

(
1 0
0 0

)∣∣∣∣sr−1 = 1, sr = 1, tr

)
are given by

q1 =

P

(
S̃r =

(
0 1
1 0

)∣∣∣∣sr−1 =1, sr =1

)
g(tr|λ1, λ2)

P

(
S̃r =

(
0 1
1 0

)∣∣∣∣sr−1 =1, sr =1

)
g(tr|λ1, λ2)+P

(
S̃r =

(
1 0
0 0

)∣∣∣∣sr−1 =1, sr =1

)
f(tr|λ1)

,

q2 =1− q1, (18)

and similarly for model M2. In Eq. (18), f(·|λ) denotes an exponential den-
sity function with rate λ, and g(·|λ1, λ2) is the density of a sum of two
exponentials with rates λ1 and λ2,

g(t|λ1, λ2) =
λ1λ2

λ2 − λ1
e−λ1t

(
1− e−t(λ2−λ1)

)
.
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Step 2(d) To generate the complete inter-transitions times sequence, t̃, we proceed

as follows. Consider the first inter-event time, t1. If s0 = 2, then t̃1 = t1.
Otherwise, if s0 = 1 and no intermediate transition occurs (that is, if s1 = 1),
t̃1 = t1. However, if s0 = 1 and an intermediate transition occurs (that is,
s1 = 2), then t̃1 = c1 and t̃2 = c2, such that c1 + c2 = t1. If T1 and C1

represent random variables accounting for the first inter-event time, and
the time at which the intermediate transition occurs, respectively, and F2,2

denotes an F-distribution with parameters (2, 2) then, one has

T1

C1
| s0 = 1, s̃0, λ1, λ2 ∼ 1 +

λ2

λ1
F2,2.

Therefore, we can generate x ∼ F2,2 and set c1 =
t1

1 + λ2

λ1
x

and c2 = t1 − c1.

We can now proceed analogously to the completion of t̃ = (t̃1, . . . , t̃N ).
Step 2(e) Finally, from the complete data likelihood functions (13)–(14) and the con-

sidered conjugate (except for ω) priors, it is easy to find the posteriors

λ2|ω, t, s, t̃, s̃ ∼ Ga(α2 + n1 + n2, β2 + ωv1 + v2) (M1,M2), (19)

ω|λ2, t, s, t̃, s̃ ∼ Ga (n1 + 1, v1λ2) truncated onto [0, 1] (M1,M2),

a|t, s, t̃, s̃ ∼ Be (αa + n11, βa +m12) (M1),

b|t, s, t̃, s̃ ∼ Be (αb + n22, βb + n21) (M1),

a|t, s, t̃, s̃ ∼ Be (αa + n12, βa +m12) (M2),

b|t, s, t̃, s̃ ∼ Be (αb + n21, βb + n22) (M2).

3.3 Model selection

The procedure to fit a MAP2 in one of the canonical forms (7) or (8) to a given sequence
of inter-event times t, has been described in Section 3.2. However, the canonical form
is unknown in practice and therefore, model selection or model averaging need to be
considered. Here, we use Bayes factors for model comparison and use the approach of
Chib (1995) to calculate the marginal likelihoods under each model. Consider model

M1. Then, given point estimates of the model parameters, θ̂ = (ω̂, λ̂2, â, b̂) (for example,

θ̂ = E(θ|·), the posterior mean), then log f(t|M1) is approximated as follows:

log f(t|M1) ≈ log f(t|θ̂,M1) + log f(θ̂|M1)− log f(θ̂|t,M1). (20)

In Eq. (20), the first term denotes the likelihood function of the inter-event times,
computed from Eq. (6). The second term in Eq. (20) concerns the log-prior distributions.
The joint posterior distribution of the model parameters, the third term in Eq. (20), is
approximated as

log f(θ̂|t) ≈ 1

M

M∑
k=1

(
log f

(
â|t, t̃(k), s(k), s̃(k)

)
+ log f

(
b̂|t, t̃(k), s(k), s̃(k)

)
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+ log f
(
ω̂|t, t̃(k), s(k), s̃(k)

)
+ log f

(
λ̂2|t, t̃(k), s(k), s̃(k)

))
, (21)

where the model has been dropped for the sake of abbreviation and M is the number
of runs for the Gibbs sampler in Section 3.2.

Finally, the value of log f(t|M2) is computed in an analogous way which allows for
the derivation of the log Bayes factor.

3.4 Numerical illustrations

In this section we illustrate the performance of the proposed MCMC algorithm for
Bayesian inference of the MAP2 on a set of simulated and real data sets.

Simulated data. In order to clarify the differences between MAP2s and MMPP2s
we consider three inter-event times traces, simulated from the following models:

S1. The MAP2 of type M1

λ = (1.5244, 49.2821), P0 =

(
0 0.0657
0 0

)
, P1 =

(
0.9343 0
0.0194 0.9806

)
,

which has the equivalent MMPP2 given by

λ = (1.5264, 49.2801), P0 =

(
0 0.0669

0.0194 0

)
, P1 =

(
0.9331 0

0 0.9806

)
.

S2. The MAP2 of type M1

λ = (3.4364, 3.4453), P0 =

(
0 0.2454
0 0

)
, P1 =

(
0.7546 0
0.0021 0.9979

)
,

which does not have any equivalent MMPP2 (from the approach in Ramı́rez-Cobo
et al. (2010b)).

S3. The MAP2 of type M2

λ = (0.683, 34.6904), P0 =

(
0 0.0038
0 0

)
, P1 =

(
0 0.9962

0.9962 0.0038

)
.

Since this MAP2 is of type M2, then according to Section 2.3 it does not have
any equivalent MMPP2.

The generator models were randomly obtained so that they satisfied to have an equiv-
alent MMPP2 and a non-negligible autocorrelation structure for the inter-event times
(S1), to lack of an equivalent MMPP2 (S2), and to be a MAP2 of type M2 with a
non-negligible autocorrelation function (S3). The sample sizes where fixed to 1500, 500
and 1500, for S1, S2, and S3, respectively. The reason for such a choice is related to
the theoretical coefficient of variation of the inter-event time distribution. Specifically,
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Figure 1: MCMC trace plots for simulated data set S1. The Gibbs algorithm was
applied to a sample of 1500 data generated from a MAP2 with parameters θ =
(0.03, 49.28, 0.9343, 0.9806).

for the first and third generator models the coefficients of variation are equal to 2.48
and 1.68, which implies that if the sample sizes are not large enough, the empirical
descriptors as the mean, variance and autocorrelation coefficients might be far from the
theoretical ones and thus, the estimates of the model parameters might be inaccurate.
For the second model, however, the coefficient of variation is close to 1, and therefore,
a smaller sample size is enough to capture the theoretical descriptors.

The Gibbs sampler described in Section 3.2 with the prior structures commented at
the beginning of Section 3, was run for 100,000 iterations (with 10,000 for burn in) for
each data set. A prototype code was written in Matlab and, when run on Intel Core i5
at 3.2 GHz and 16 GB of DDR3 RAM, took approximately 19 seconds to perform 1000
iterations for a sample size equal to 500 (the time increased to 56 seconds when the
length of the sample was 1500). Concerning the first data set S1, Figure 1 illustrates
the mixing properties of the algorithm in this case.

Tables 1 summarizes the obtained results for the simulated data set S1 under both
types ofMAP2 (M1 andM2) andMMPP2. The starting values of the MCMC, posterior
mean for the model parameters, and corresponding 95% credible intervals, including
those for the mean, variance, and first three autocorrelation coefficients of the inter-
event times distribution are included in the table. The sample values are shown in
parenthesis in the first column. Finally, the marginal likelihoods under both types of
MAP2 and the MMPP2 are also shown in the last row of the table. Figure 2 shows the
fits to the empirical CDF (cumulative distribution function) of the inter-event times
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Data set S1:
θ = (0.03, 49.28, 0.93, 0.98) MAP2(M1) MAP2(M2) MMPP2

θ(0) (0.82, 7.47, 0.81, 0.44) (0.16, 13.27, 0.064, 0.847) (0.894, 10.294, 0.492, 0.148)

θ̂ = E(θ|t) (0.036, 48.09, 0.921, 0.979) (0.354, 8.012, 0.027, 0.111) (0.034, 48.117, 0.787, 0.843)
Cω [0.027, 0.041] [0.282, 0.437] [0.026, 0.034]
Cλ2 [45.51, 50.68] [7.59, 8.41] [45.76, 50.71]
Ca [0.895, 0.945] [0.0015, 0.085] [0.684, 0.906]
Cb [0.972, 0.986] [0.095, 0.129] [0.616, 0.998]
Cμ1 (0.164) [0.118, 0.218] [0.155, 0.174] [0.022, 0.733]
Cσ2 (0.173) [0.103, 0.220] [0.033, 0.551] [0.002, 0.557]
CR1 (0.384) [0.353, 0.391] [−0.007, 0] [0.002, 0.39]
CR2 (0.403) [0.316, 0.357] [0.0002, 1.5]× 10−4 [8× 10−8, 0.336]
CR3 (0.321) [0.281, 0.329] [−1.3, −10−5]× 10−7 [1.6× 10−11, 0.290]
log f(t|model) 3190.6 1555.3 2941.3

Table 1: Performance of the MCMC for the simulated data set S1, under both types of MAP2 and MMPP2 (second to
fourth columns, respectively). From top to bottom: starting values of the MCMC, posterior mean for the model parameters,
95% credible intervals for the model parameters, 95% credible intervals for the mean, variance, and first three autocorrelation
coefficients of the inter-event times distribution, and marginal likelihoods.
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Figure 2: Empirical (thick solid line), and posterior predictive CDFs of the inter-event
times via the MAP2(M1) (dashed line), the MAP2(M2) (dotted line) and the MMPP2

(thin solid line) for the simulated data set S1.

provided by both types of MAP2 and MMPP2. Some comments follow from the table
and figure. First, the comparison of the marginal likelihoods obtained under the three
models provides evidence in favor of the generating process. Note how the MMPP2

produces a marginal likelihood that is slightly lower than that of the MAP2 of type
M1, but much higher than the corresponding to the MAP2 of type M2. From Figure
2 it is clear that the MAP2 of type M1 performs better than the other approaches,
the MMPP2 provides a similar performance as the MAP2 of type M1 and finally, the
MAP2 of type M2 shows the poorest behavior.

Concerning the parameters defining the generating process, it can be seen how under
the generator model the credible intervals include the true values. Similarly, the intervals
obtained when fitting the MMPP2 capture the true parameters, except for parameter
a. Regarding the sample values, all models correctly fit the mean and variance. With
respect to the empirical autocorrelation function, the MAP2 of type M1 outperforms
the other models (note how under the MAP2 of type M2 some negative values are
obtained).

Consider now the analysis of the simulated data set S2, generated from a MAP2 of
typeM1 that does not possess an equivalentMMPP2. Table 2 and Figure 3 are described
in analogous way as in the previous analysis for the sample S1. Some conclusions arise
from the presented results. First, here again the generator model produces the highest
value for the marginal likelihood, closely followed by theMAP2 of typeM2 andMMPP2,
respectively. From Figure 3 the same deduction is obtained. Note that despite having
similar values for the marginal likelihoods, the estimated parameters under both types
of MAP2s do not need to be similar because representations (7) and (8) are not equal.
Again, the MCMC algorithm provides reasonable estimates for the sample mean and
variance (with the exception of the MMPP2 for the variance). Given that the empirical
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Data set S2:
θ = (0.997, 3.44, 0.7546, 0.9979) MAP2(M1) MAP2(M2) MMPP2

θ(0) (0.905, 7.234, 0.107, 0.009) (0.675, 6.108, 0.441, 0.881) (0.183, 7.782, 0.328, 0.874)

θ̂ = E(θ|t) (0.866, 4.315, 0.715, 0.883) (0.840, 3.973, 0.683, 0.188) (0.802, 8.941, 0.609, 0.673)
Cω [0.662, 0.998] [0.542, 0.996] [0.469, 0.961]
Cλ2 [3.213, 5.044] [3.419, 4.726] [3.583, 16.446]
Ca [0.505, 0.835] [0.23, 0.907] [0.271, 0.997]
Cb [0.697, 0.998] [0.014, 0.434] [0.581, 0.774]
Cμ1 (0.3054) [0.267, 0.311] [0.267, 0.310] [0.177, 0.725]
Cσ2 (0.0841) [0.066, 0.097] [0.069, 0.099] [0.21, 0.31]
CR1 (−0.008) [−0.005, 0.006] [−0.003, 0.003] [0.061, 0.099]
CR2 (−0.043) [−0.001, 0.002] [−3× 10−4, 3.5× 10−4] [2.5× 10−6, 0.011]
CR3 (−0.036) [−10−5, 7× 10−3] [−5× 10−5, 4× 10−5] [1.2× 10−7, 0.004]
log f(t|model) 114.634 111.662 104.297

Table 2: Performance of the MCMC for the simulated data set S2, under both types of MAP2 and MMPP2 (second to
fourth columns, respectively). From top to bottom: starting values of the MCMC, posterior mean for the model parameters,
95% credible intervals for the model parameters, 95% credible intervals for the mean, variance, and first three autocorrelation
coefficients of the inter-event times distribution, and marginal likelihoods.
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Figure 3: Empirical (thick solid line), and posterior predictive CDFs of the inter-event
times via the MAP2(M1) (dashed line), the MAP2(M2) (dotted line) and the MMPP2

(thin solid line) for the simulated data set S2.

autocorrelation function of the inter-event times is negligible, the estimated models are
close to PH-renewal processes (subclass of MAP2 where Rh = 0, for all h).

Finally, consider in Table 3 and Figure 4 the results obtained for the sample S3,
which was generated by a MAP2 of type M2.

Since anyMMPP2 is aMAP2 of typeM1, then as occurred in the previous simulated
example, the generator model here does not have any equivalent MMPP2. For this data
set, again the generator model is that which presents the highest marginal likelihood
followed by the MAP2 of type M1 and the MMPP2. The analogous conclusion is derived
from Figure 4, where it can be observed how the predictive CDF by the MAP2 of type
M2 is almost indistinguishable from the empirical CDF. Concerning the estimation of
the model parameters, note how the true values are included in the credible intervals
obtained under the MAP2 of type M2. The inter-event time distribution moments are
well captured by the three types of models and as expected, both the MAP2 of type
M1 as well as the MMPP2 fail in fitting the alternate autocorrelation function of the
inter-event times. With the exception of R3, the estimated MAP2 of type M2 does
capture the correlation coefficients.

Real data. We now illustrate the performance of the MCMC algorithm when fitting
the MAP2 to a real data set. The sample, depicted by Figure 5, reports a sequence of 823
consecutive times (in sec) between real crashes in the corresponding author’s personal
computer (data available from the author on request).

As in the previous results, for comparison reasons both types of MAP2s and the
MMPP2 are estimated. The same prior distributions, number of iterations, and burn in
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Data set S3:
θ = (0.019, 34.69, 0.996, 0.996) MAP2(M1) MAP2(M2) MMPP2

θ(0) (0.148, 2.394, 0.069, 0.284) (0.137, 2.336, 0.222, 0.863) (0.423, 6.397, 0.374, 0.851)

θ̂ = E(θ|t) (0.552, 45.323, 0.007, 0.850) (0.022, 36.65, 0.991, 0.996) (0.241, 40.273, 0.276, 0.436)
Cω [0.464, 0.647] [0.0183, 0.0238] [0.231, 0.256]
Cλ2 [40.371, 47.227] [34.64, 38.61] [34.68, 48.86]
Ca [0.003, 0.218] [0.985, 0.996] [0.021, 0.598]
Cb [0.831, 0.886] [0.992, 0.997] [0.336, 0.510]
Cμ1 (0.746) [0.711, 0.787] [0.703, 0.791] [0.736, 1.053]
Cσ2 (1.589) [0.568, 1.780] [1.37, 1.754] [1.336, 1.824]
CR1 (−0.320) [0.002, 0.014] [−0.325, −0.314] [0.003, 0.036]
CR2 (0.305) [10−7, 2.4× 10−5] [0.303, 0.317] [10−6, 0.006]
CR3 (−0.318) [0, 4.3× 10−7] [−0.315, −0.302] [10−8, 0.0012]
log f(t|model) −1000.66 818.81 −1112.11

Table 3: Performance of the MCMC for the simulated data set S3, under both types of MAP2 and MMPP2 (second to fourth
columns, respectively). From top to bottom: starting values of the MCMC, posterior mean for the model parameters, 95%
credible intervals for the model parameters, 95% credible intervals for the mean, variance, and first three autocorrelation
coefficients of the inter-event times distribution, and marginal likelihoods.
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Figure 4: Empirical (thick solid line), and posterior predictive CDFs of the inter-event
times via the MAP2(M1) (dashed line), the MAP2(M2) (dotted line) and the MMPP2

(thin solid line) for the simulated data set S3.

Figure 5: A total of 823 consecutive times (in sec) between real crashes.

period as in the simulated data case are considered. Figure 6 depicts the convergence
of the algorithm by showing the evolution of the average parameters for the real data
set.

Note from Figures 1 and 6 that none of the figures or Monte Carlo computations
would change meaningfully if only a few thousand draws had been taken.

Table 4 and Figure 7 show in analogous way as in the simulated data, the perfor-
mance of the MCMC algorithm. From the results it is clear that the MAP2 of type M1

and the MMPP2 outperform the MAP2 of type M2, which presents the lowest marginal
likelihood. Also, from Figure 7 it can be seen how the estimated CDFs under the MAP2
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Data set
“Crashes logs” MAP2(M1) MAP2(M2) MMPP2

θ(0) (0.062, 0.072, 0.6, 0.93) (0.027, 0.087, 0.292, 0.359) (0.102, 7.22, 0.639, 0.782)

θ̂ = E(θ|t) (0.286, 0.1102, 0.754, 0.936) (0.574, 0.0805, 0.1838, 0.108) (0.639, 0.138, 0.749, 0.832)
Cω [0.241, 0.337] [0.401, 0.770] [0.194, 0.875]
Cλ2 [0.1005, 0.1208] [0.075, 0.0867] [0.125, 0.151]
Ca [0.656, 0.837] [0.013, 0.4749] [0.155, 0.997]
Cb [0.913, 0.956] [0.069, 0.158] [0.268, 0.992]
Cμ1 (14.51) [12.94, 16.45] [13.63, 15.53] [7.57, 35.06]
Cσ2 (496.58) [297.6, 541.7] [200.9, 310.9] [78.9, 338.5]
CR1 (0.328) [0.1581, 0.299] [−0.129, −4× 10−2] [0.15, 0.265]
CR2 (0.203) [0.1103, 0.245] [9× 10−8, 0.003] [5× 10−4, 0.202]
CR3 (0.121) [0.09, 0.165] [−3× 10−4, −10−7] [10−7, 0.174]
log f(t|model) −2928.7 −3236.6 −2945.4

Table 4: Performance of the MCMC for the real data set, under both types of MAP2 and MMPP2 (second to fourth columns,
respectively). From top to bottom rows: starting values of the MCMC, posterior mean for the model parameters, 95% credible
intervals for the model parameters, 95% credible intervals for the mean, variance, and first three autocorrelation coefficients
of the inter-event times distribution, and marginal likelihoods.
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Figure 6: Average ω, λ2 (top), a and b (bottom) from the first 10000 runs of MCMC
for the real data set.

Figure 7: Empirical (thick solid line), and posterior predictive CDFs of the times between
real crashes in a computer via the MAP2(M1) (dashed line), the MAP2(M2) (dotted
line) and the MMPP2 (thin solid line).

of type M1 and the MMPP2 are closer to the empirical distribution than that under
the MAP2 of type M2. In all cases, the mean of the data are correctly fitted, while
the MMPP2 and MAP2 of type M2 fail in capturing the sample variance. Both the
MAP2 of type M1 and the MMPP2 underestimate the first autocorrelation coefficient
but correctly fit the second and third coefficients. The MAP2 of type M2 gives negative
estimates for the first and third autocorrelation coefficients.
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Figure 8: Posterior predictive distributions obtained when running the MCMC (MAP2

of type M1) to the simulated data S1, under different choices of the prior structure.

3.5 Prior sensitivity

In this section we aim to test the prior sensitivity of the proposed MCMC algorithm.
As seen just before Section 3.1, the prior structure was set as follows

ω ∼ U(0, 1),
λ2 ∼ Ga (α2, β2) ,

a ∼ Be(αa, βa),

b ∼ Be(αb, βb),

where in the numerical experiments carried out in Section 3.4, the values α2 = 1,
β2 = 0.001, and αa = αb = βa = βb = 1 were selected. Figure 8 depicts in solid line
the estimated (posterior) densities for the model parameters obtained when running the
MCMC (MAP2 of typeM1) for the S1 data set, under the previous prior structure. Note
that the summarized information of such posterior sample is given in the second column
of Table 1. Also, Figure 8 represents the posterior distribution of the parameters of the
MAP2 (type M1), under different choices of the priors’ distributions. In particular, in
dashed and dotted lines the densities under the same priors for a and b as in the solid
line case is shown, while the distribution of λ2 becomes more informative (the variance
decreases from 10000 to 100 and 0.1 in the dashed and dotted cases, respectively). The
posterior densities shown in dashed–dotted and starred solid line are obtained under
the same prior structure for λ2 as in the solid line case, while the priors for parameters
a and b change to a more (respectively less) informative distributions. Only in the case
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where αa = αb = βa = βb = 10, the posteriors differ significantly from those obtained in
the rest of the cases. However, this is a very large change in the prior distribution and
we should expect this to be influential when we have relatively small data samples as is
the case here. Since analogous results were obtained when testing the prior sensitivity
for the rest of data bases, it can be concluded that there is little sensitivity in posterior
inference as long as the prior densities for a and b are relatively uninformative.

4 Inference for the MAP2/G/1 queueing system

In this section, we shall consider the MAP2 as a model for the arrival process in a
single-server, first in first out queueing system with independent, general service times.
Following standard notation, we shall denote this queueing system by MAP2/G/1. The
inference approach described in Section 3 will be combined with techniques from the
queueing literature in order to estimate predictive equilibrium distributions for this
system.

4.1 The MAP2/G/1 queueing system

The main properties of the MAP2/G/1 queueing system are briefly outlined below. For
the complete description of the queueing system we refer the reader to Ramaswami
(1980), Lucantoni (1993) or Ramı́rez-Cobo et al. (2014a).

Assume that we have a queueing system with MAP2 arrivals, specified by the rate
matrices {D0, D1} and independent and identically distributed service times with a
general distribution, which are independent of the arrival times. Denote by μ� < ∞ the
expected value of the service time. Then, the traffic intensity of this system is given by

ρ = λ�/μ�, (22)

where λ� is the stationary arrival rate (inverse of the expected inter-event time), defined
as

λ� = πD1e
T = 1/μ1,

where μ1 is defined as in Eq. (3).

Now define Z(t) to be the number of customers in the system (including in service,
if any) at time t and let τk be the epoch of the k-th departure from the queue, with
τ0 = 0. If the system is stable (ρ < 1), then the stationary distributions of the considered
queueing system are defined as follows. For i ≥ 1, define

zi = lim
k→∞

P [Z(τk) = i] ,

which represents the stationary probability that the queue length is equal to i when
a departure occurs. Similarly, denote by yi the stationary probability that the queue
length is equal to i, at an arbitrary time. Finally, consider the waiting time CDF denoted
by W (x) and defined as the probability that at an arbitrary time, a virtual customer
who arrives at that time waits at most a time x before entering service. Closed-form
expressions for the generating functions of the queue length distributions and for the
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Laplace Stieltjes transform of the waiting time distribution can be found in Lucantoni
(1993). In order to invert such transforms the numerical routines described in Lucantoni
(1993), as well as in Abate and Whitt (1995) were implemented.

4.2 Bayesian estimation of the MAP2/G/1 queueing system

As commented in Section 1, in some real-life contexts as teletraffic or insurance it is
important to estimate the steady-state distributions of queueing systems. In particular,
since the MAP2 allows for dependent observations, the inference for the MAP2/G/1
queue is of interest. However, inferential analysis of the MAP/G/1 queueing system
are rare. As established by Mcgrath et al. (1987) and Armero and Bayarri (1999),
the Bayesian reasoning to the theory of queues presents a number of advantages with
respect to other approaches as that related to the restrictions of the parameter space,
accuracy of estimators, prediction or transient analyses. In this section we combine the
MCMC algorithm shown in Section 3.2 with theoretical results from Section 4.1 to
obtain estimations of the queue length and waiting time distributions in a MAP2/G/1
queueing system.

Given a sample of inter-event data, we have seen that the Gibbs sampler can be

used to produce a sample of values θ(k) = (ω(k), λ
(k)
2 , a(k), b(k)), for k = 1, . . . ,M , from

the posterior distribution of the MAP2 parameters. Assuming that the service rate μ�

is known, it is straightforward to estimate the probability that the system is stable,

P (ρ < 1|data) ≈ 1

M

M∑
k=1

I
(
ρ(k) < 1

)
, (23)

where ρ(k) is the system traffic intensity calculated from Eq. (22) using θ(k) and I(·)
is the indicator function. If this probability is high, then for each set θ(k) of generated
parameters such that ρ(k) < 1, the conditional posterior distributions of queue length
and waiting times, given stability, can be estimated by Rao Blackwellization (Blackwell,
1947), that is, by simply averaging over the parameters satisfying the stability condition.
Thus, for example, the predictive distribution of the waiting time W (x), is estimated
by

1

C

C∑
c=1

W (c)(x), (24)

where W (c)(x) results from inverting the Laplace–Stieltjes transform of the station-
ary time distribution after substituting the set of parameters satisfying the stability
condition θ(c), c = 1, . . . , C ≤ M .

Note finally that when the service parameter μ� is unknown, then, given an indepen-
dent sample of service time data, inference for the service rate can be carried out along
the lines of, for example, Armero and Bayarri (1994) (for the case where the service
times were exponentially distributed). For a Monte Carlo sample, μ�(1), . . . , μ�(M) from
the posterior distribution of the service rate, the traffic intensity may be estimated by
calculating ρ(k) given (θ(k), μ�(k)) and averaging as in (23). In order to condition on the
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existence of equilibrium, only those parameter sets (θ(k), μ�(k)) such that ρ(k) < 1 are
retained.

4.3 Application to Internet traffic analysis

Here we estimate the probabilities of congestion, queue lengths and waiting time distri-
butions in aMAP2/G/1 queue under a sample of real arrival data. The analyzed data set
represents a sequence of 300 consecutive inter-arrival times (in sec) and can be found
in the Internet Traffic Archive (BC-pAug89 trace), http://ita.ee.lbl.gov/html/
traces.html. The same data set was explored in Ramirez et al. (2008); Ramı́rez-Cobo
et al. (2010a) where Bayesian estimation of queueing systems with heavy-tailed arrival
processes was considered. However, in such works the empirical autocorrelation of the
inter-arrival times was not taken into account. The trace of the inter-arrival times as
well as some of its statistical descriptors (sample mean, variance and first three auto-
correlations coefficients) is shown by the top panel of Figure 9.

Both types of MAP2 as well as the MMPP2 were fitted to the data. In this case,
the MAP2 of type M1 showed the best performance. The bottom panel of Figure 9
shows the empirical CDF of the inter-arrival times and superimposed (in dashed line)
the fitted MAP2 distribution generated using the Gibbs sampler described in Section
3.2. Also, the figure shows the 95% credible intervals for the statistical descriptors given
by the top panel of the same figure.

Now we shall consider the queueing aspects. Given the MAP2 arrival process, for
computational simplicity we shall assume an exponential service process with rate μ�.
For the considered real dataset (of length equal to 300) and under the described setting,
the computational time for estimating the queue according to Section 4.2 was around
32 seconds per 1000 iterations. Table 5 shows the posterior probability of stability
(third column) and the expected value for the traffic intensity (fourth column) for an
assortment of values of μ� (the expected service time is E(S) = 1/μ�). As expected,
when μ� is large (faster service on average), the probability of stability of the system
increases. From the table, it is clear that there is a high probability that the system is
stable (that is, no congestion occurs) for values of μ� greater than 450.

In Figures 8 and 9, we illustrate the predictive steady-state queue length (at depar-
tures and at an arbitrary time) and waiting time distributions for some values of μ�

greater than 450. Figure 10 depicts the predictive queue length distributions at depar-
tures and at an arbitrary time. As would be expected, for faster services on average
(large μ�) the probability of an empty system is larger than for slower services. Finally,
Figure 11 shows the predictive waiting time distributions for the values of μ� considered
for the analysis. It can be seen that when the service rate increases, then the distribution
of the waiting times decreases, as expected as well.

5 Conclusions

In this article, we have illustrated how to carry out Bayesian inference for the station-
ary MAP2 and then combined this approach with results from the queueing theory

http://ita.ee.lbl.gov/html/traces.html
http://ita.ee.lbl.gov/html/traces.html
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Figure 9: Top panel: trace of the teletraffic inter-arrival times and sample statistical
descriptors (mean, variance and first three autocorrelation coefficients). Bottom panel:
empirical CDF of the inter-arrival times (solid line), fitted distribution by the MAP2

(dashed line) and 95% credible intervals for the statistical descriptors.

to estimate the steady-state distributions of interest in a MAP2/G/1. The MAP2 has
proven suitable for many statistical modeling applications since it combines phase-type
distributions with a specific autocorrelation function for the inter-event times, allowing
in this way for the modeling of dependent observations. In this work, the problem of
the non-identifiability of the MAP2 has been overcome by using the canonical version
of the process instead of the redundant form. Extensive comparisons with the MMPP2,
a simplified MAP2 widely studied in the literature, have also been provided. A Gibbs
sampler has been combined with a Chib criteria for selection model, although a different
approach as the reversible jump MCMC (Green, 1995) could have been used instead.
The result is an efficient algorithm although the computational cost may be notable,
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μ� E(S) P(ρ < 1|data) E(ρ|data)
1500 0.0006 1 0.2379
1000 0.001 1 0.3569
500 0.002 0.9941 0.7138
450 0.0025 0.9436 0.7931
400 0.0025 0.7605 0.8923
395 0.002531 0.7330 0.9036
390 0.002564 0.7043 0.9152
385 0.002597 0.6752 0.9271
375 0.002667 0.6136 0.9518
350 0.002285 0.4594 1.0198
325 0.0030768 0.3138 1.0982
300 0.003334 0.2167 1.1921

Table 5: Expected service time (second column), probability that the system is stable
(third column) and traffic intensity (fourth column).

Figure 10: Predictive queue length distribution at departures times and at an arbitrary
time for the Internet data for an assortment of service rates (◦ : μ� = 450, ∗ : μ� = 500,

 : μ� = 700, + : μ� = 1000, � : μ� = 1500).

especially when considering the inference for the MAP2/G/1 system due to the need of
inverting a set of generating functions at each iteration.

A number of extensions are possible, among them the estimation of higher state
MAPs, which are expected to show more versatility for modeling purposes than the
MAP2, and of the batch Markov arrival process, the BMAP (Lucantoni, 1993), which
allows for correlated arrivals in batches. Generalizations to inference for the BMAP/G/1
queue are also of interest. We are aware of both the theoretical and computational com-
plexities of such problems due to the lack of unique representations and the increasing
number of parameters. These complications present a challenging problem that we hope
to address in the future.
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Figure 11: Predictive waiting time distribution for the Internet data for an assortment
of service rates (◦ : μ� = 450, ∗ : μ� = 500, 
 : μ� = 700, + : μ� = 1000, � : μ� = 1500).
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