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Bayesian Functional Data Modeling
for Heterogeneous Volatility

Bin Zhu∗‡ and David B. Dunson†§

Abstract. Although there are many methods for functional data analysis, less
emphasis is put on characterizing variability among volatilities of individual func-
tions. In particular, certain individuals exhibit erratic swings in their trajectory
while other individuals have more stable trajectories. There is evidence of such
volatility heterogeneity in blood pressure trajectories during pregnancy, for exam-
ple, and reason to suspect that volatility is a biologically important feature. Most
functional data analysis models implicitly assume similar or identical smoothness
of the individual functions, and hence can lead to misleading inferences on volatil-
ity and an inadequate representation of the functions. We propose a novel class
of functional data analysis models characterized using hierarchical stochastic dif-
ferential equations. We model the derivatives of a mean function and deviation
functions using Gaussian processes, while also allowing covariate dependence in-
cluding on the volatilities of the deviation functions. Following a Bayesian ap-
proach to inference, a Markov chain Monte Carlo algorithm is used for posterior
computation. The methods are tested on simulated data and applied to blood
pressure trajectories during pregnancy.

Keywords: Bayesian functional data analysis, Gaussian process, state space
model, stochastic differential equation, volatility heterogeneity.

1 Introduction

Multi-subject functional data arise frequently in many fields of research, including epi-
demiology, clinical trials and environmental health. Sequential observations are collected
over time for multiple subjects, and can be treated as being generated from a smooth
trajectory contaminated with noise. There are a rich variety of methods available for
characterizing variability and covariate dependence in functional data ranging from
hierarchical basis expansions to functional principal components analysis. In defining
models for functional data and in interpreting variability in trajectories, either unex-
plained or due to covariates, the emphasis has been on differences in the level and local
trends. Dynamic features, such as velocity, acceleration and especially volatility, are
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also important but have received less attention, with exceptions in the study of growth
data (Ramsay and Silverman, 2002) and in finance (Heston, 1993; Jacquier et al., 2002;
Shephard, 2005; Barndorff-Nielsen and Shephard, 2012; Horváth et al., 2014).

Analysis of functional data dynamics studies temporal changes in trajectories and
effects of covariates on these changes. For example, Wang et al. (2008) used linear
differential equations to model price velocity and acceleration in eBay auctions and
explored the auction subpopulation effect. Müller and Yao (2010) modeled the velocity
of online auction bids using empirical stochastic differential equations with time-varying
coefficients and a smooth drift process. Zhu et al. (2011) inferred the rate functions
of prostate-specific antigen profiles using a semiparametric stochastic velocity model,
in which rate functions are regarded as realizations of Ornstein–Uhlenbeck processes
dependent on covariates of interest.

This article investigates a different dynamic feature, the volatility, which measures
the conditional variance of trajectory changes over an infinitesimal time interval. We
propose a stochastic volatility regression model, with Gaussian process priors used for
the group mean and subject specific deviation functions through stochastic differential
equations. We further accommodate inference on covariate effects on volatility through
allowing the diffusion term of stochastic differential equations for deviation functions to
depend on covariates. Although volatility has been extensively studied through stochas-
tic volatility models in finance, the setting, model specifications and data features are
distinct from ours. Stochastic volatility models typically focus on a single volatility pro-
cess which is time-varying and associated with a price process for high-frequency finance
data. More relevant is the literature on multivariate stochastic volatility models; for re-
cent references, refer to Loddo et al. (2011), Van Es and Spreij (2011), Müller et al.
(2011), Ishihara and Omori (2012) and Durante et al. (2013).

This setting differs from ours in that the focus is on multivariate time series modeling
instead of functional data analysis, with interest in the joint volatility dynamics over
time for the different assets. In contrast, we are interested in studying variation across
individuals in a time-constant subject-specific volatility; that is, certain subjects may
have very smooth trajectories while other subjects have erratic trajectories. It is our
conjecture that such volatility heterogeneity is common in biomedical settings, but
is overlooked in analyzing data with models that implicitly prescribe a single level of
smoothness for all subjects. As data are sparse and irregularly spaced in most studies, it
is not surprising such behavior is overlooked. However, the volatility in a biomarker may
be as important or more important than the overall level and trend in the biomarker.
We provide motivation through the following longitudinal blood pressure data set.

The Healthy Pregnancy, Healthy Baby study (Miranda et al., 2009) collected longitu-
dinal blood pressure measurements for pregnant women. Blood pressures are measured
at irregularly spaced times during the second and third trimesters, with the number of
measurements per subject varying from 9 to 19. We are interested in estimating subject-
specific volatilities of blood pressure trajectories and in identifying covariates associated
with the volatility. Figure 1(a) plots mean arterial pressure trajectories for twenty ran-
domly selected normal women and women with preeclampsia, respectively. Clearly the
mean arterial pressure trajectories among the preeclampsia group are more wiggly than
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Figure 1: (a) Mean arterial pressure trajectories for twenty randomly selected normal
women and women with preeclampsia; (b) Log-transformed empirical volatilities for
women in the normal group and preeclampsia group. Yij denotes blood pressure for
the ith woman at time tij , and Uij = Yij − Ȳj is the deviation from the group mean
blood pressure Ȳj . The empirical volatility measures the fluctuation of trajectories em-

pirically and is defined as
∑ni−1

j=1 (Ui,j+1 − Ui,j)
2/{ni(ti,j+1 − ti,j)} with ni the number

of observations for the ith woman.

the ones in the normal group, which is also implied by boxplots of log-transformed em-
pirical volatilities in Figure 1(b). To explore volatility differences among various groups
in addition to preeclampsia, we apply normal linear regression for log-transformed em-
pirical volatilities with the covariates race, mother’s age, obesity, preeclampsia, parity
and smoking. The results suggest that preeclampsia and smoking are associated with
empirical volatility, with p-values of 0.0005 and 0.002, respectively. This is a two-stage
approach, which is useful as an exploratory tool but ignores measurement errors and
uncertainty in volatility estimation.

Additionally, empirical volatilities in Figure 1(b) are heterogeneous even within the
normal or preeclampsia group. This heterogeneity will be largely omitted when we apply
functional data analysis methods with identical or similar smoothness for individual
functions within a group. Consequently, the wiggly trajectories will be over-smoothed
while the smooth trajectories will be under-smoothed. We can potentially estimate the
individual trajectories separately but it is well known that borrowing of information
will dramatically improve performance for sparse functional data. In addition, separate
estimation does not allow for inferences on covariate effects and unexplained variability
in volatility.

As for the clinical question addressed, the previous functional data analysis methods
mainly focus on the shift of blood pressure level and ignore examining the volatility of
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blood pressure, which measures haemodynamic stability and is crucial for cardiovascu-
lar health. For example, a recent study shows that blood pressure stability rather than
blood pressure level is associated with increased survival among patients on hemodialy-
sis (Raimann et al., 2012). For the Healthy Pregnancy, Healthy Baby study, we observe
that preeclampsia is commonly accompanied by blood pressure over-swinging. The joint
effect of high blood pressure level and large volatility may lead to adverse birth out-
comes, such as low birth weight and preterm birth.

2 Stochastic Volatility Regression Model

2.1 The Model Specification

Suppose that Yi(t), i = 1, 2, . . . ,m, is the observation of the ith subject at time t ∈ Ti =
{ti,1, ti,2, . . . , ti,ni < tU}, with Ti the set of observation times before time tU for the ith
subject. We specify an observation equation for Yi(t) as

Yi(t) = Mki(t) + Ui(t) + εi(t), (1)

where Yi(t) is contaminated by a measurement error εi(t) following a one-dimensional
normal distribution with mean 0 and variance σ2

ε . Assuming the ith subject belongs to
the kith group, with ki ∈ {1, 2, . . . , g}, we include a kith group mean function Mki(t) =
E{Yi(t) | Mki(t)} in the observation equation. The Ui(t) characterizes the subject-
specific deviation from the group-mean with E{Ui(t)} = 0.

The volatility of the ith subject is defined as the conditional variance of the (q−1)th
order derivative of Ui(t) over an infinitesimal time interval. We denote the volatility
σ2
Ui

= lim
h→0

h−1E[{Dq−1Ui(t + h) −Dq−1Ui(t)}2 | Dq−1Ui(t)] with differential operator

Dq = dq/dtq. As volatility approaches zero, Ui(t) would be a straight line. In contrast,
increasing the value of volatility would lead to a more wiggly Ui(t) with a larger magni-
tude of fluctuation around Mki(t). We focus on the case when σ2

Ui
is constant over time

but varies across subjects and depends on covariates for smooth curves without spikes,
in which observations per subject are sparse and insufficient to estimate volatility vary-
ing over t. In contrast, stochastic volatility models typically focus on a single or a few
volatility processes in which volatility is time-varying but unrelated to covariates for
high frequency financial data. Our motivation is drawn from the blood pressure data;
in related applications it is of substantial interest to do inferences on variability among
subjects in the bumpiness or erratic-ness of biomarkers collected over time.

We specify Gaussian process priors for Mki(t) and Ui(t) using stochastic differential
equations, which incorporate the group and individual volatilities σ2

Mki
and σ2

Ui
:

DpMki(t) = σMki
Ẇki(t), (2)

DqUi(t) = σUiẆ
′
i (t), (3)

where p, q ∈ N ≥ 1, σMki
, σUi ∈ R

+, and Ẇki(t), Ẇ
′
i (t) are independent Gaussian

white noise processes with E{Ẇki(t)} = E{Ẇ ′
i (t)} = 0 and covariance function
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E{Ẇki(t)Ẇki(t
′)} = E{Ẇ ′

i (t)Ẇ
′
i (t

′)} = δ(t − t′), a delta function. Equations (2) and
(3) specify Mki(t) and Ui(t) as integrated Brownian motions, which have Bayesian
connections to smoothing splines (Wahba, 1990; Gu, 2013). More details are given
in Section 2.2. Drift terms can be included in equations (2) and (3) when domain-
specific knowledge supports a particular curve pattern, such as convergent evolution
for prostate-specific antigen profiles (Zhu et al., 2011). In this article, we are interested
in investigating heterogeneous individual volatilities. Particularly, the volatility σ2

Ui
in

stochastic differential equation (3) is allowed to vary between subjects and with covari-
ates through a simple Gaussian log linear model, log(σ2

Ui
) ∼ N1(x

T
i β, σ

2), which can be
extended easily to more complex specifications. In the current setting, the group volatil-
ity σMki

would not depend on the same xi and we has outlined the possible extension
in Discussion section.

The mean and covariance functions of Gaussian process priors for Mki(t) and Ui(t)
can be obtained by applying stochastic integration to stochastic differential equations
(2) and (3) as detailed in the Supplementary Material (Zhu and Dunson, 2016), resulting
in the following lemma.

Lemma 1. Mk(t), k = 1, 2, . . . , g, and Ui(t), i = 1, 2, . . . , n, are the summations of
mutually independent Gaussian processes written as Mk(t) = Mk0(t) + Mk1(t) and
Ui(t) = Ui0(t) + Ui1(t) with corresponding mean functions E{Mk0(t)} = E{Mk1(t)} =
E{Ui0(t)} = E{Ui1(t)} = 0 and covariance functions

KMk0
(s, t) = σ2

M0
RM0(s, t) = σ2

M0

p−1∑
l=0

φl(s)φl(t),

KMk1
(s, t) = σ2

Mk
RM1(s, t) = σ2

Mk

∫
T
Gp(s, u)Gp(t, u)du,

KUi0(s, t) = σ2
U0
RU0(s, t) = σ2

U0

q−1∑
l=0

φl(s)φl(t),

KUi1(s, t) = σ2
Ui
RU1(s, t) = σ2

Ui

∫
T
Gq(s, u)Gq(t, u)du,

respectively, where φl(t) = tl/l!, Gq(s, u) = (s− u)q−1
+ /(q − 1)! and s, t, u ∈ T = [0, tU ].

We denote Mki0 = {Mki(0), D
1Mki(0), . . . , D

p−1Mki(0)} ∼ Np(0, σ
2
M0

I) and Ui0 =
{Ui(0), D

1Ui(0), . . . , D
q−1Ui(0)} ∼ Nq(0, σ

2
U0
I) as the initial values of Mki(t) and Ui(t)

and their derivatives up to orders p− 1 and q − 1 respectively.

Hence, we can represent the prior ofMki(t)+Ui(t) as a hierarchical Gaussian process,

Mki(t) + Ui(t) | Mki(t) ∼ GP (Mki(t),KUi0(s, t) +KUi1(s, t)),

Mki(t) ∼ GP (0,KMk0
(s, t) +KMk1

(s, t)),

where GP (M(t),K(s, t)) denotes a Gaussian process with mean function M(t) and co-
variance function K(s, t). Different from previous hierarchical Gaussian processes (Park
and Choi, 2010), in which the covariance function is modeled as squared exponential,
and is identical across subjects within a group, here KUi0(s, t) + KUi1(s, t) is subject-
specific and depends on covariates through σ2

Ui
.
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To carry out Bayesian inference, we further specify the following prior distribu-
tions. In particular, Mki0 ∼ Np(0, σ

2
M0

I) with σ2
M0

= 104 in the below applications,
Ui0 ∼ Nq(0, σ

2
U0
I), σ2

ε ∼ invGa(a, b), σ2
Mk

∼ invGa(a, b) and σ2
U0

∼ invGa(a, b), where
invGa(a, b) denotes the inverse gamma distribution with shape parameter a and scale
parameter b. We choose weakly informative priors, for example a = b = 0.01, to al-
low the data to dominate the inference of posteriors of σ2

ε , σ
2
Mk

and σ2
U0
, as illustrated

by the MCMC steps 3a), 3b) and 3d) in Section 3. In practice, we have found the
posterior distributions for these hyperparameters to be substantially more concentrated
than the prior in simulations and applications, suggesting substantial Bayesian learning.
Additionally, the β and σ2 follow the independent Jeffreys’ prior, f(β, σ2) ∝ 1/σ2.

2.2 Double-Penalized Smoothing Spline

It is well known that the smoothing spline estimate is interpretable as a Bayes estimate
under an integrated Wiener process prior (Wahba, 1990). By similar arguments, we can
show that when the volatilities are given and σ2

M0
and σ2

U0
go to infinity, the posterior

means of Mk(t) and Ui(t) are equivalent to the double penalized smoothing spline
M̂k(t) + Ûi(t), which is the minimizer of the double penalized sum-of-squares,

DPSS =

m∑
i=1

1

ni

ni∑
j=1

{Y (tij)−Mki(tij)− Ui(tij)}2 + (4)

g∑
k=1

λMk

∫
T
{DpMk(t)}2 dt+

m∑
i=1

λUi

∫
T
{DqUi(t)}2 dt,

where penalty terms
∫
T {DpMk(t)}2dt and

∫
T {DqUi(t)}2dt penalize the roughness of

Mk(t) and Ui(t) respectively, where the smoothness and the fidelity to data are bal-
anced by the smoothing parameters λMk

=
∑

i:ki=k σ
2
ε/(niσ

2
Mk

) and λUi = σ2
ε/(niσ

2
Ui
),

which balance the fidelity to the data and smoothness of Mk(t) and Ui(t) respectively.
Expressions for M̂k(t) and Ûi(t), depending on λMk

and λUi , can be obtained explicitly,
as shown in the following theorem.

Theorem 2.1. The smoothing splines M̂k(t) and Ûi(t) with t ∈ T minimize the double-
penalized sum-of-squares (4) and have the forms

M̂k(t) =

p−1∑
l=0

μklφl(t) +

n∑
j=1

νkjRM1(tj , t) = μT

kφμ(t) + νT

kRM1(t)

Ûi(t) =

q−1∑
l=0

αilφl(t) +

ni∑
j=1

γijRU1(tij , t) = αT

i φα(t) + γT

i RUi1(t)

where μk = {μk0, μk1, . . . , μk(p−1)}T, νk = (νk1, νk2, . . . , νkn)
T, αi = {αi0, αi1, . . . ,

αi(q−1)}T and γi = (γi1, γi2, . . . , γini)
T are the coefficients for the bases

φμ(t) = {φ0(t), φ1(t), . . . , φp−1(t)}T,

RM1(t) = {RM1(t1, t),RM1(t2, t), . . . ,RM1(tn, t)}T,
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φα(t) = {φ0(t), φ1(t), . . . , φq−1(t)}T,

RUi1(t) = {RU1(ti1, t),RU1(ti2, t), . . . ,RU1(tini , t)}T,

with tj ∈ Tm = ∪m
i=1Ti = {tj , j = 1, 2, . . . , n}, the index set of unique observation times

among all m subjects.

Given M̂k(t) and Ûi(t), the double-penalized sum-of-squares (4) can be written as

DPSS =

m∑
i=1

1

ni
(Yi −Δiφμμki −ΔiRM1νki − φαiαi −RUi1γi)

T× (5)

(Yi −Δiφμμki −ΔiRM1νki − φαiαi −RUi1γi)+
g∑

k=1

λMk
νT

kRM1νk +

m∑
i=1

λUiγ
T

i RUi1γi,

where

Yi = {Y (ti1), Y (ti2), . . . , Y (tini)}T, Δi = (δjj′)ni×n,

φμ = {φμ(t1),φμ(t2), . . . ,φμ(tn)}T, RM1 = {RM1(t1),RM1(t2), . . . ,RM1(tn)},
φαi = {φα(ti1),φα(ti2), . . . ,φα(tini)}T, RUi1 = {RUi1(ti1),RUi1(ti2), . . . ,RUi1(tini)}
with δjj′ = 1 if ith subject has an observation at time tij = tj′ , tij ∈ Ti, tj′ ∈ Tm and
δjj′ = 0 otherwise.

The proofs of Theorem 2.1 and the following Corollary are included in Supplemen-
tary Material.

Corollary 1. The μk, νk, αi and γi can be obtained through a backfitting algorithm
or the Gauss–Seidel method, iterating the following two steps until convergence:

(a) Given μ̂k and ν̂k, update α̂i = (φT
αi
S−1
Ui

φαi)
−1φT

αi
S−1
Ui

Ỹi and γ̂i = S−1
Ui

{I −
φαi(φ

T
αi
S−1
Ui

φαi)
−1φT

αi
S−1
Ui

}Ỹi, where SUi = RUi1+niλUiI and Ỹi = Yi−Δiφμμ̂ki −
ΔiRM1 ν̂ki , i = 1, 2, . . . ,m;

(b) Given α̂i and γ̂i, update μ̂k = (φT
μΔ

TS−1
Mk

Δφμ)
−1φT

μΔ
TS−1

Mk
Ỹk and ν̂k = S−1

Mk
{I−

Δφμ(φ
T
μΔ

TS−1
Mk

Δφμ)
−1φT

μΔ
TS−1

Mk
}Ỹk, where SMk

= ΔRM1 + λMk
I, Ỹk =∑

i:ki=k Δ
T
i (Yi − φαiα̂i −RUi1 γ̂i)/ni and Δ =

∑
i:ki=k Δ

T
i Δi/ni, k = 1, 2, . . . , g.

3 Posterior Computation

We prefer a fully Bayesian approach that allows for uncertainty in smoothing parame-
ters through hyperpriors. In addition, it is unclear how to implement generalized cross
validation (Chap. 4, Wahba, 1990) when λUi depends on covariances, and when n is
large, it is computational infeasible to invert the n × n matrix SMk

involved in the
backfitting algorithm. Instead, we propose an Markov chain Monte Carlo algorithm
for posterior computation that solves these problems. The algorithm achieves compu-
tational efficiency by leveraging on the Markovian property of stochastic differential
equations and samples Mk(t) and Ui(t) through the simulation smoother (Durbin and
Koopman, 2002), which requires the following proposition.
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Proposition 1. Let X(t) denote a (r − 1)th-order integral Wiener process, defined by
the stochastic differential equation DrX(t) = Ẇ (t). Consequently, the Xj = {X(tj),
D1X(tj), . . . , D

r−1X(tj)}T, j = 1, 2, . . . , n, follows a state equation

Xj+1 = GjXj + ωj ,

where Gj =
∑r

k=0 δ
k
jC

k/k! and ωj ∼ Nr(0,Wj) with C = (cllT)r×r, cll′ = 1 when

l′ = l + 1 and cll′ = 0,otherwise, Wj =
∫ δj
0

exp{C(δj − u)}DDT exp{CT(δj − u)}du,
D = (0, 0, . . . , 1)T and δj = tj+1 − tj.

The proof is in Supplementary Material. Finally, we outline the proposed Markov
chain Monte Carlo algorithm as follows.

(1) Given Mki(tij), σ
2
ε and σ2

Ui
, sample Ui(tij), i = 1, 2, . . . ,m, j = 0, 1, . . . , ni. Let

YUij = Yi(tij) − Mki(tij) and the stochastic volatility regression model for the ith
subject can be expressed as the following state space model (Jones, 1993; Durbin and
Koopman, 2001), from which we can draw samples of Ui(tij) and its derivatives using
the simulation smoother.

YUij = FUijUij + εUij ,

Ui(j+1) = GUijUij + σUiωUij ,

where FUij = (1, 0, . . . , 0), Uij = {Ui(tij), D
1Ui(tij), . . . , D

q−1Ui(tij)}T and εUij

i.i.d.∼
N1(0, σ

2
ε), which denotes εUij independently following an identical distribution

N1(0, σ
2
ε). Similar to the Gj , ωj and Wj in Proposition 1, the GUij , ωUij and WUij

follow the same specifications with r = q.

(2) Given Ui(tj), σ
2
ε and σ2

Mk
, sample Mk(tj), k = 1, 2, . . . , g, j = 0, 1, . . . , n. Similarly,

we rewrite the stochastic volatility regression model for the kth group as the following
state space model and then sample Mki(tij) and its derivatives by the simulation
smoother.

YMkj
= FMkj

Mkj + εMkj
,

Mk(j+1) = GMkj
Mkj + σMk

ωMkj
,

where YMkj
= (Y i

Mkj
)m×1, Mkj = {Mk(tj), D

1Mk(tj), . . . , D
p−1Mk(tj)}T, FMkj

=

(F il
Mkj

)m×p and εMkj
= diag(ε1Mkj

, ε2Mkj
, . . . , εmMkj

). When ith subject has an observa-

tion at time tj and ki = k, Y i
Mkj

= Yi(tj) − Ui(tj), F
i1
Mkj

= 1 and εiMkj
∼ N1(0, σ

2
ε).

Otherwise, Y i
Mkj

= F il
Mkj

= εiMkj
= 0. The GMkj

, ωMkj
and WMkj

are given by
Proposition 1 with r = p.

(3a) Given Mki(tij) and Ui(tij), i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, sample σ2
ε from

invGa(a +
∑m

i=1 ni/2, b+
∑m

i=1

∑ni

j=1{Yi(tij) −Mki(tij) − Ui(tij)}2/2), the posterior

distribution of σ2
ε .

(3b) Given Ui0, sample σ2
U0

from invGa(a+mq/2, b+
∑m

i=0 U
T
i0Ui0/2), the posterior

distribution of σ2
U0
.
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(3c) Given Mkj , sample σ2
Mk

from the posterior distribution invGa(a + np/2, b +∑n−1
j=0 (Mk(j+1) −GMkj

Mkj)
TW−1

Mkj
(Mk(j+1) −GMkj

Mkj)/2).

(3d) Given Uij , β and σ2, sample σ2
Ui

using a Metropolis–Hasting algorithm. We

choose σ2
Ui

∼ invGa(a, b) as the proposal prior distribution and a proposal σ2∗
Ui

can

be easily drawn from invGa(a+niq/2, b+
∑ni−1

j=0 (Ui(j+1)−GUijUij)
TW−1

Uij
(Ui(j+1)−

GUijUij)/2) the corresponding proposal posterior distribution. The σ2∗
Ui

will be ac-

cepted with the following probability and discarded otherwise with σ2
Ui

unchanged,

min

{
fLN (σ2∗

Ui
|xT

i β, σ
2)

∏ni−1
j=0 fNq (Ui(j+1) −GUijUij |0, σ2∗

Ui
WUij )finvGa(σ

2
Ui

| aUi , bUi)

fLN (σ2
Ui

|xT
i β, σ

2)
∏ni−1

j=0 fNq (Ui(j+1) −GUijUij |0, σ2
Ui
WUij )finvGa(σ2∗

Ui
| aUi , bUi)

, 1

}
,

where fLN , fNq and finvGa denote the log-normal, q-dimensional normal and inverse
gamma probability density functions respectively with aUi = a + niq/2, bUi = b +∑ni−1

j=0 (Ui(j+1) −GUijUij)
TW−1

Uij
(Ui(j+1) −GUijUij)/2.

(4) Given σ2
Ui
, sample β and σ2. Let Z = (log σ2

U1
, log σ2

U2
, . . . , log σ2

Um
)T, β̂ =

(XTX)−1XTZ and σ̂2 = (Z −Xβ̂)T(Z −Xβ̂)/(m−k). We draw τ from Chi-squared
distribution with m−k degrees of freedom and set σ2 = (m− k)σ̂2/τ and then sample
β from Nm(β̂, σ2(XTX)−1).

The algorithm coded in R can be downloaded at http://dceg.cancer.gov/tools/

analysis/SVR/SVR_beta.zip.

4 Simulation

We carry out two simulation studies to evaluate the performance of the proposed method
and compare it to alternative methods including natural cubic splines (Wahba, 1990),
functional principal components analysis (Yao et al., 2005) and functional mixed effects
models (Guo, 2002). The comparison focuses on performance in estimating the trajec-
tory Mki(t) + Ui(t), the volatility σ2

Ui
and the coefficients β. We considered both the

cases with heterogeneous and homogeneous volatilities respectively, the later of which is
in favor of the functional principal components analysis method and functional mixed
effects models.

The first simulation study is designed to investigate the consequence of ignoring
heterogeneity of volatilities. One hundred replicated datasets, each consisting of 100
trajectories, are sampled from the stochastic volatility regression model, in which the
log-transformed volatilities are normally distributed. More precisely, we choose β =

(0, 0.6, 2)T and xi = (1, xi1, xi2)
T with xi1 and xi2 sampled from xi1

i.i.d.∼ Bin(1, 0.4)

and xi2
i.i.d.∼ N1(0, 0.25) respectively. Given β and xi, volatilities σ

2
Ui
’s are drawn from

log(σ2
Ui
) ∼ N1(x

T
i β, 1). Along with σ2

M1
= σ2

M2
= 10, σ2

ε = 1, p = 2 and q = 1, M1(t),
M2(t), Ui(t) and εi(t) are sampled at t ∈ {0.2, 0.4, . . . , 4} from equations (2) and (3)
and the distribution of measurement error εi(t). Twenty percent of samples are removed

http://dceg.cancer.gov/tools/analysis/SVR/SVR_beta.zip
http://dceg.cancer.gov/tools/analysis/SVR/SVR_beta.zip
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completely at random, resulting in an average of 16 unequally spaced observations per
subject. The ith subject is randomly assigned to one of the two groups with equal
probability and Yi(t) is obtained from observation equation (1).

We first apply stochastic volatility regression using the proposed Markov chain
Monte Carlo algorithm, with 15,000 iterations and keeping every 5th of the last 10,000
samples for posterior analysis. It takes about 80 minutes on a personal computer with
2.33 Gigahertz Intel(R) Xeon(R) central processing unit. Posterior means are chosen as
the estimates ofMki(t)+Ui(t), σ

2
Ui

and β. The trajectoriesMki(t)+Ui(t)’s are estimated
by natural cubic splines for one subject at a time, by functional principal components
analysis and by functional mixed effects models for subjects within each group, taking
about 1 minute, 2 minutes and 50 minutes on the same personal computer, respectively.
For natural cubic spline, functional principal components analysis and functional mixed
effects models, we may also estimate covariate effects on volatility through a two-stage
method: estimating empirical volatility by

∑ni−1
j=1 (Ûi,j+1 − Ûi,j)

2/{ni(ti,j+1 − ti,j)} in

the first stage with Ûi,j the estimate of Ui(t) at time tij , and in the second stage,
empirical volatilities are regressed on covariates to obtain the estimate of β.

For each simulated dataset, we calculate average squared error for the trajectory
ASE(M + U) =

∑m
i=1

∑ni

j=1{M̂ki(tij) + Ûi(tij) − Mki(tij) − Ui(tij)}2/(mni), average

squared error for log volatility ASE{log(σ2
U )} =

∑m
i=1{log(σ̂2

Ui
) − log(σ2

Ui
)}2/m, and

squared errors for coefficient estimates SE(βl) = (β̂l − βl)
2, l = 0, 1, 2. Table 1 reports

means of ASE(M+U), ASE{log(σ2
U )} and SE(βl) across 100 replicate datasets. Means

of average squared errors and means of squared errors by natural cubic spline and func-
tional principal components analysis approaches are significantly inflated, for example,
being doubled and tripled in MASE(M+U) respectively, while MASE(M+U) of func-
tional mixed effects models is slightly larger than for stochastic volatility regression. We
randomly select a data set for close examination. We calculate the individual average
squared error of the trajectory

∑ni

j=1{M̂ki(tij)+ Ûi(tij) −Mki(tij) − Ui(tij)}2/ni, and
select the subjects with the largest individual average squared errors for natural cubic
splines and functional principal components.

Figure 2 shows estimates of the trajectory for six subjects. The figure illustrates that,
by treating one trajectory at a time, natural cubic splines lead to over fitting, e.g. Fig-
ure 2(d) and 2(e), with both over and under estimated volatilities. Functional principal
components analysis instead faces problems in not adapting to the different volatility
levels, for example, subjects with high volatility are over smoothed, e.g. Figure 2(b)
and 2(d). Functional mixed effects models does not borrow smoothness information
across subjects. Hence, it fits some curves well (e.g. Figure 2(c)) but over smooths other
curves (e.g. Figure 2(b)). Although this simulation is based on the proposed model, it
nonetheless illustrates the importance of adaptation of varying smoothness while bor-
rowing smoothness information across subjects.

Our second simulation study assumes constant volatilities across subjects, with the
set-up otherwise identical to the first study. The observations are generated from Yi(t) =
10{t+sin(t)}+0.6α1icos(πt/10)+0.2α2isin(πt/10)+εi(t) for subjects in the first group
and from Yi(t) = 10{t + cos(t)} + 0.5α1icos(πt/10) + 0.3α2isin(πt/10) + εi(t) for the
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Figure 2: The plots of observation (◦) and trajectory at time tij (×), as well as estimates
of trajectory Mki(t)+Ui(t) by stochastic volatility regression (—), natural cubic splines
(− − −), functional principal components analysis (· · ·) and functional mixed effects
models (−·−·−), for six subjects in one simulated dataset with the largest individual
average squared errors

∑ni

j=1{M̂ki(tij) + Ûi(tij)−Mki(tij)− Ui(tij)}2/ni.

Case I Case II
Method M + U log(σ2

U ) β0 β1 β2 M + U
Stochastic volatility regression 0.345 0.614 0.043 0.081 0.075 1.122

Natural cubic spline 0.609 1.297 0.089 0.165 1.724 1.477
Functional PCA 1.099 2.966 1.144 0.185 1.969 1.185

Functional mixed effects models 0.576 2.220 0.647 0.180 1.839 1.112

Table 1: The mean of squared errors or average square errors of the estimates of trajec-
tory, volatility and covariate effect across 100 replicate datasets for stochastic volatility
regression, natural cubic spline, functional principal components analysis (PCA) and
functional mixed effects models.

ones in the second group, with α1i
i.i.d.∼ N1(0, 4), α2i

i.i.d.∼ N1(0, 1) and εi(t)
i.i.d.∼ N1(0, 1).

As illustrated in Table 1, stochastic volatility regression, similar to functional principal
components analysis and functional mixed effects models, has similar performance with
lower errors than natural cubic splines. This suggests that stochastic volatility regression
can also adapt to the homogeneous case.

5 Applications

It is a standard practice to monitor blood pressure of pregnant woman. However, fluc-
tuations in pregnancy and the associated factors are largely unstudied. We apply the
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Figure 3: The scatter plot and quantile-quantile plot of standardized residuals.

Parameter Mean Mode Standard deviation 95% highest posterior density interval
σ2
ε 17.807 17.818 0.694 [16.389, 19.106]

σ2
M1

0.236 0.187 0.181 [0.040, 0.556]
σ2
M2

0.204 0.162 0.148 [0.042, 0.472]
σ2
U0

46.729 46.412 4.776 [38.263, 56.619]
σ2 0.734 0.741 0.333 [0.082, 1.295]

Table 2: Blood pressure data: Posterior summary of parameters in the stochastic volatil-
ity regression model.

proposed stochastic volatility regression approach to analyze longitudinal blood pres-
sure measurements in the Healthy Pregnancy, Healthy Baby study, aiming to investigate
the stability of blood pressure trajectories and identify the associated factors. The data
consist of 106 non-Hispanic white and 176 non-Hispanic black women whose first blood
pressure measurement is collected before the 16th week of gestation and the last one
no earlier than the 37th week of gestation. Most subjects have 9 (35.10% of them), 10
(29.28%) or 11 (14.98%) measurements spaced at irregular times. The covariates we
focused on include race as non-Hispanic white versus non-Hispanic black and indica-
tors of advanced maternal age, obesity, preeclampsia, previous pregnancy, and smoking.
The analysis was implemented as in the simulation studies. Trace plots and autocorre-
lation plots suggest rapid convergence and mixing. The posterior means of standardized
residuals εi(t)’s are plotted in Figure 3a. Most of points locate within two standard
deviations from the mean zero. In addition, a QQ-plot in Figure 3b of the empirical
quantiles of the posterior means of the standardized residuals shows close agreement
with a diagonal line. These diagnostics suggest that the proposed model fits the data
well. Posterior summaries of selected parameters are presented in Table 2.

The panels (a) and (b) of Figure 4 show posterior means and 95% credible intervals
of the average blood pressure for non-Hispanic white and non-Hispanic black groups,
respectively, which share a common pattern: decreasing till the late stage of the second
trimester during 20 to 25 weeks and then increasing toward the pre-pregnancy level.
Within ethnic group, there is significant heterogeneity among women in the stability of
the blood pressure trajectory. As Figure 4(c) indicates, posterior means of volatility vary
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Figure 4: The posterior means and 95% highest posterior density credible intervals for
(a) the blood pressure during the 2nd and 3rd trimesters for non-Hispanic white group;
(b) the blood pressure during the 2nd and 3rd trimesters for non-Hispanic black group;
(c) the volatility in the logarithmic scale; (d) covariate effects.

from -0.5 to 2 in the logarithmic scale, suggesting some women have stable trajectories
parallel to the group mean, while other women have erratic trajectories.

Most interesting, we find that obesity and preeclampsia are associated with blood
pressure volatility, with their 95% credible intervals not covering zero in Figure 4(d).
This implies that pregnant women with obesity and/or preeclampsia are more likely
to demonstrate irregular patterns of blood pressure relative to their ethnic group. We
further examine the characteristics of women with extreme volatilities. Among the eight
women presenting with the largest volatilities, most of them are non-Hispanic black
with obesity and preeclampsia, do not smoke and give birth to a baby for the first time;
half of them are younger than 35. For the eight subjects with the smallest volatilities,
they are surprising homogeneous, with all but one being non-Hispanic white without
obesity and preeclampsia, younger than 35, not smoking and giving birth to a baby
before.

6 Discussion

We have proposed a Bayesian model to investigate functional data volatility and its
association with covariates. As an important dynamic feature, volatility measures the
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stability of the biological process. The analysis of volatility not only reveals its hetero-
geneity among subjects but also its dependence on the covariates of interest. Comple-
menting current FDA methods, which mainly focus on trends in each trajectory and
(perhaps) derivatives, the proposed method initiates the exploration of stability of func-
tional data. As illustrated with the blood pressure data, our view is that substantial
new insights can be obtained in a rich variety of biomedical applications by studying
volatility.

The proposed model utilizes Markovian property and adopts a state space model
approach to achieve computational efficiency, which requires O(m2n) for calculating
the matrix inverse with m subjects and n observations per subject. In contrast, the
linear mixed model requires O(m3n3) for the same calculation. The current algorithm
however would face the challenge of handling large number of subjects, the solution of
which warrants further investigation.

The proposed stochastic volatility regression model is closely related to the func-
tional mixed effects models (Guo, 2002) but with different specifications. Both models
incorporate population-average and subject-specific curves, whose smoothness proper-
ties are the same in functional mixed effects models but could be different in stochastic
volatility regression model with unequal p and q. Moreover, although both models allow
smoothness parameters of subject-specific curves to vary, they are dependent on co-
variates in stochastic volatility regression model but not in the functional mixed effects
models.

The proposed model can be extended in multiple different directions. For exam-
ple, we may substitute single group mean function in equation (1) by a weighted sum
of several mean functions with covariates. Limited by the sparse observations in the
HPHB study, we assume the volatility time-constant, so that each subject has their
own distinct volatility controlling the “erraticness” of their function. Given denser mea-
surements, we may allow volatility to vary across time and subjects. It is also of interest
to avoid normality assumptions in modeling the population distribution of volatility
and in developing methods that scale to high-dimensional covariates.

Supplementary Material

Supplementary material of “Bayesian functional data modeling for heterogeneous volatil-
ity” (DOI: 10.1214/16-BA1004SUPP; .pdf).
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