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SUPPORT RECOVERY WITHOUT INCOHERENCE:
A CASE FOR NONCONVEX REGULARIZATION

BY PO-LING LoH"? AND MARTIN J. WAINWRIGHT?
University of Wisconsin—Madison and University of California, Berkeley

We develop a new primal-dual witness proof framework that may be used
to establish variable selection consistency and £~o-bounds for sparse regres-
sion problems, even when the loss function and regularizer are nonconvex.
We use this method to prove two theorems concerning support recovery and
{o-guarantees for a regression estimator in a general setting. Notably, our
theory applies to all potential stationary points of the objective and certifies
that the stationary point is unique under mild conditions. Our results provide
a strong theoretical justification for the use of nonconvex regularization: For
certain nonconvex regularizers with vanishing derivative away from the ori-
gin, any stationary point can be used to recover the support without requiring
the typical incoherence conditions present in £1-based methods. We also de-
rive corollaries illustrating the implications of our theorems for composite
objective functions involving losses such as least squares, nonconvex mod-
ified least squares for errors-in-variables linear regression, the negative log
likelihood for generalized linear models and the graphical Lasso. We con-
clude with empirical studies that corroborate our theoretical predictions.

1. Introduction. The last two decades have generated a significant body
of work involving convex relaxations of nonconvex problems arising in high-
dimensional sparse regression (e.g., see the papers [2, 5, 7, 9, 28, 31]). In broad
terms, the goal is to identify a relatively sparse solution from among a larger set
of candidates that yield good fits to the data. A hard sparsity constraint is most
directly encoded in terms of the £o-“norm,” which counts the number of nonzero
entries in a vector. However, this results in a nonconvex optimization problem that
may be NP-hard to solve or even approximate [23, 30]. As a result, much work has
focused on a slightly different problem, where the £g-constraint is replaced by the
convex £1-norm (e.g., see the papers [2, 5, 22, 29] and references therein).

Although the ¢1-norm encourages sparsity, however, it differs from the £¢-
norm in a crucial aspect: whereas the £op-norm is equal to a constant value for
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any nonzero argument, the £i-norm increases linearly with the absolute value
of the argument. This linear increase biases the resulting ¢-regularized solu-
tion and noticeably affects the performance of the estimator in finite-sample set-
tings [3, 10, 21]. Accordingly, several authors have proposed alternative forms
of nonconvex regularization, including the smoothly clipped absolute deviation
(SCAD) penalty [10], the minimax concave penalty (MCP) [36] and the log-sum
penalty (LSP) [6]. Such regularizers may be viewed as a hybrid of £p- and £;-
regularizers: they resemble the £1-norm within a neighborhood of the origin, but
become (asymptotically) constant at larger values. Furthermore, although the non-
convexity of the regularizer causes the overall optimization problem to be non-
convex, numerous empirical studies have shown that gradient-based optimization
methods—while only guaranteed to find local optima—often produce estimators
with consistently smaller estimation error than the estimators produced by the con-
vex £1-penalty [3, 10, 15, 21, 40].

In recent years, significant progress has been made in the theory of nonconvex
regularizers. Zhang and Zhang [35] showed that global optima of nonconvex reg-
ularized least squares problems are statistically consistent for the true regression
vector, leaving open the question of how to find such optima efficiently. Fan et
al. [13] showed that applying one step of a local linear approximation (LLA) al-
gorithm, initialized at a Lasso solution with low £,.-error, yields a local optimum
of the nonconvex regularized least squares problem that satisfies oracle properties;
Wang et al. [33] established similar guarantees for the output of a particular path-
following algorithm. Our own past work [17] supplies a general set of sufficient
conditions under which all stationary points of the nonconvex regularized problem
are guaranteed to lie within the statistical precision, as measured in terms of the
£y-error, of the true parameter; this result substantially simplifies the optimization
problem to one of finding stationary points, rather than global optima.

Despite these advances, however, an important question has remained open. To
wit, are stationary points of such nonconvex problems also consistent for variable
selection? Existing results in nonconvex regularization guarantee that the global
optimum, or certain local optima, are statistically consistent (e.g., [10, 13, 36, 40]).
However, whenever the underlying problem is nonconvex, such results do not pre-
clude the unpleasant possibility of having multiple stationary points within close
proximity of the global optimum, only one of which has support equal to the sup-
port of the true regression vector. Indeed, recent work by Zhang et al. [37] ex-
hibits ensembles of “hard” sparse regression problems possessing a huge number
of local optima that trap local algorithms. Our paper can be viewed as making a
complementary contribution, in particular by establishing conditions under which
a nonconvex optimization problem cannot exhibit such behavior.

For convex objectives, various standard proof techniques for variable selec-
tion consistency now exist, including approaches that leverage the Karush—Kuhn—
Tucker (KKT) optimality conditions, as well as the primal-dual witness argument
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(e.g., [16, 31, 38]), which combines the KKT conditions with a strict dual feasi-
bility condition to establish uniqueness. However, the validity of such arguments
has relied heavily upon the convexity of both the loss and the regularizer. The
first main contribution of our paper is to show that the primal-dual witness proof
technique may be modified and extended to handle a certain class of nonconvex
problems. Our proof involves checking sufficient conditions for local minimality
of a properly constructed oracle solution, and the key technical step hinges on the
notion of generalized gradients from nonsmooth analysis [8], as well as classical
optimization-theoretic results for norm-regularized, smooth, but possibly noncon-
vex functions [14]. Our main result thereby establishes sufficient conditions for
variable selection consistency when both the loss and regularizer are allowed to be
nonconvex, provided the loss function satisfies a form of restricted strong convex-
ity and the regularizer satisfies suitable mild conditions. Remarkably, our results
demonstrate that for a certain class of regularizers—including the SCAD and MCP
regularizers—we may dispense with the usual incoherence conditions required by
£1-based methods, and still guarantee support recovery consistency for all station-
ary points of the resulting nonconvex program.

We also establish that for the same class of nonconvex regularizers, the unique
stationary point is in fact equal to the oracle solution—this is striking, given the
long line of work focusing on providing theoretical guarantees for specific local
optima. (Note that some authors have established £,-bounds for convex penalties
under different ¢.,-curvature assumptions, without need for incoherence, but the
imposed curvature conditions are generally stronger than the restricted strong con-
vexity assumptions used to derive £- and £;-bounds [4, 20, 29]. Our work implies
that if a nonconvex penalty is used, one may obtain £,,-bounds without recourse
to the stronger curvature assumptions.) This provides a strong theoretical reason
for why certain nonconvex regularizers should be favored over their convex coun-
terparts.

Relation to previous work. Let us now briefly compare the main results of this
paper to other related work in the literature, paying attention to key aspects that
are crucial to appreciating the novelty of our paper. Several authors have inves-
tigated the potential for nonconvex regularizers to deliver estimation and support
recovery guarantees under weaker assumptions than those required by the Lasso
penalty [10-13, 34, 39, 40]; this line of work demonstrates that in the absence of
incoherence conditions, nonconvex regularized problems possess certain local op-
tima that are statistically consistent and satisfy an oracle property. However, the
arguments in this line of work are based on applying the KKT stationarity condi-
tions at a specific point; thus, they are only able to derive good behavior of certain
stationary points, as opposed to all stationary points. Since nonconvex programs
may possess multiple local optima, it is entirely possible that stationary points with
the incorrect support could exist. In contrast, the PDW proof technique developed
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in our paper provides a rather different guarantee: via a strict dual feasibility con-
dition and additional second-order conditions, the proof certifies that all stationary
points are consistent for variable selection.

Another line of recent work has focused on establishing theoretical guarantees
for specific stationary points that correspond to the output of particular optimiza-
tion algorithms. Wang et al. [33] propose a path-following homotopy algorithm
for obtaining solutions to nonconvex regularized M -estimators, and show that it-
erates of the homotopy algorithm converge at a linear rate to the oracle solution
of the M-estimation problem. In contrast to theory of this type—applicable only
to a particular algorithm—the theory in our paper is purely statistical and does not
concern iterates of a specific optimization algorithm. Again, the novelty of our the-
oretical results lies in the fact that we establish support recovery consistency for
all stationary points, showing that any optimization algorithm that is guaranteed to
converge to a stationary point is suitable for optimization. Pan and Zhang [24] also
provide related but weaker guarantees showing that under restricted eigenvalue as-
sumptions on the design matrix that are less stringent than the standard restricted
eigenvalue conditions, a certain class of nonconvex regularizers yields estimates
that are consistent in £;-norm. They provide bounds on the sparsity of approxi-
mate global and approximate sparse (AGAS) solutions, a notion also studied in
earlier work [35]. However, their theoretical development stops short of providing
conditions for recovering the exact support of the underlying regression vector.

Finally, as pointed out by a reviewer, the result of Fan et al. [13] implies vari-
able selection consistency of stationary points that are close enough to 8*, since
stationary points are fixed points for the second stage of their two-step optimiza-
tion algorithm. However, a careful examination of the paper [13] reveals that only
stationary points that are close in £,-norm are guaranteed to be consistent for vari-
able selection. The £;- and £;-error bounds derived in our earlier work [17] are not
strong enough to imply that all stationary points are close enough in £,,-norm; in
fact, our Theorem 2 below, which we derive via our novel PDW machinery, is the
first result we are aware of that gives O( 10%
points of this class of nonconvex problems.

) rates in £-norm for all stationary

The remainder of our paper is organized as follows. In Section 2, we provide
background on regularized M -estimators and set up the assumptions on loss func-
tions and regularizers to be analyzed in the paper. We also outline the primal-dual
witness proof method. Section 3 is devoted to the statements of our main results
concerning support recovery and £.,-bounds, followed by corollaries that spe-
cialize our results to particular objective functions. In each case, we contrast our
conditions for nonconvex regularizers to those required by convex regularizers
and discuss the implications of our significantly weaker assumptions. We provide
proof sketches outlining the key components in the proofs of our main results in
Section 4, with proofs of more technical lemmas contained in the supplemental
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appendix [19]. Section 5 contains illustrative simulations that confirm our theoret-
ical results.

Notation. Unless specifically noted, we use the standard notational convention
that constants cy, c3, etc., refer to universal positive constants, with values that
may differ from line to line. For functions f(n) and g(n), we write f(n) 3 g(n)
to mean f(n) <cg(n) for some constant ¢ € (0, 00), and similarly, f(n) =~ g(n)
when f(n) > ¢’g(n) for some constant ¢’ € (0, c0). We write f(n) < g(n) when
f(n) = g(n) and f(n) 7 g(n) hold simultaneously. For a vector v € R” and a
subset S C {1, ..., p}, we write vg € RS to denote the vector v restricted to S.
For a matrix M, we write ||M]||2 and ||M|||r to denote the spectral and Frobenius
norms, respectively, and write || M [|oo to denote the £,,-operator norm. We write
| M || max := max; ; |m;;| to denote the elementwise £,-norm of M. For a function
h:R?P — R, we write VA to denote a gradient or subgradient, if it exists. Finally,
for g, r > 0, we write B, (r) to denote the £,-ball of radius r centered around 0.

2. Problem formulation. In this section, we briefly review the theory of reg-
ularized M -estimators. We also outline the primal-dual witness method that un-
derlies our proofs of variable selection consistency.

2.1. Regularized M-estimators. The analysis in this paper applies to regular-
ized M -estimators of the form

-~

2.1 B €arg ”Mg}g}ﬁeg{ﬁn(ﬁ)+px(ﬂ)},
where £,, denotes the empirical loss function and p;, denotes the penalty function,
both assumed to be continuous. In our framework, both of these functions are
allowed to be nonconvex. The prototypical example of a loss function is the least
squares objective L, (8) = % ly—XB ||%. We include the side constraint ||8]|; < R
in order to ensure that a global minimum B exists.3 For modeling purposes, we
have also allowed for an additional constraint, 8 € 2, where 2 is an open convex
set; note that we may take €2 = R” when this extra constraint is not needed.

The analysis of this paper is restricted to the class of coordinate-separable reg-
ularizers, meaning that p, is expressible as the sum:

p

(2.2) P (B) =Y _ pr(Bj)-

j=1

We have engaged in a minor abuse of notation; the functions p; : R — R appearing
on the right-hand side of equation (2.2) are univariate functions acting upon each

3In the sequel, we will give examples of nonconvex loss functions for which the global minimum
fails to exist without such a side constraint (cf. Section 2.3 below).
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coordinate. Our results readily extend to the inhomogenous case, where coordinate
j has regularizer pj .

From a statistical perspective, the purpose of solving the program (2.1) is to
estimate the vector B* € R” that minimizes the expected loss:

(2.3) p* = argminE[L, ()],

where we assume that 8* is unique and independent of the sample size. Our goal is
to develop conditions under which a minimizer ff of the composite objective (2.1)
is consistent for B*. Consequently, we will always choose R > ||8*||1, which en-
sures that 8* is a feasible point.

2.2. Assumptions on regularizers. We will study the class of regularizers
o : R — R that are amenable in the following sense.

Amenable regularizers. For some with ;> 0, we say that p, is w-amenable if:

(i) The function ¢ — p, (¢) is symmetric around zero [i.e., o) (t) = py(—t) for
all t], and p, (0) = 0.
(i) The function > p; (¢) is nondecreasing on R,
(iii) The function ¢ "’*T(t) is nonincreasing on RT.
(iv) The function t — p, (¢) is differentiable, for ¢ # 0.
(v) The function ¢ +— p; (t) + %tz is convex, for some p > 0.

(vi) lim,_ g+ p; (1) = A.
We say that p, is (u, y)-amenable if, in addition:
(vii) There exists a scalar y € (0, co) such that pi (t) =0, forall t > yA.

Conditions (vi) and (vii) are also known as the selection and unbiasedness proper-
ties, respectively.

Note that the usual £1-penalty p, () = A|t| is O-amenable, but it is not (0, y)-
amenable, for any y < oco. The notion of p-amenability was also used in our past
work on £>-bounds for nonconvex regularizers [17], without the selection property
(vi). Since the goal of the current paper is to obtain stronger conclusions, in terms
of variable selection and ¢,-bounds, we will also require p, to satisfy conditions
(vi)—(vii).

Note that if we define g, (¢) := A|¢| — px (¢), the conditions (iv) and (vi) together
imply that g, is everywhere differentiable. Furthermore, if p, is («, y)-amenable,
we have ¢; (t) = A - sign(?), for all [¢| > y 1. Many popular regularizers are either
p-amenable or (u, y)-amenable. Appendix A.1 contains definitions of common
regularizers discussed in the paper, and Appendix A.2 supplies additional useful
results concerning amenable regularizers.
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2.3. Assumptions on loss functions. We now describe the types of nonconvex
loss functions we will discuss in this paper. We will consider loss functions that
are twice-differentiable and satisfy a form of restricted strong convexity, as used
in large body of past work on high-dimensional sparse M -estimators (e.g., [2, 17,
22, 29]). In order to provide intuition before stating the formal definition, note that
for any convex and differentiable function f : R” — R that is globally convex and
locally strongly convex around a point 8 € R?, there exists a constant & > 0 such
that

(2.4) (VFB+A)=VFB),A)=a- min{|Al,, A3},

for all A € R”. The notion of restricted strong convexity (with respect to the £1-
norm) weakens this requirement by adding a tolerance term:

Restricted strong convexity (RSC). Given any pair of vectors 8, A € R”, the loss
function £, satisfies an («, 7)-RSC condition if:

log p
(2.50) arllAl? - f NG VIIALL <1,

(VL (B+A) = VL, (B), A)> 1
(0]
(2.5b) aznmu—rz,/%nAul, VIIA]L > 1,

where o1, ap > 0 and 71, 70 > 0.

As noted in inequality (2.4), any locally strongly convex function that is also
globally convex satisfies the RSC condition with 71 = 7 = 0. For 71, 70 > 0,
the RSC condition imposes strong curvature only in certain directions of p-
cHliAnlllensional space—namely, those nonzero directions A € R” for whiﬁl”the ratio

1 1

D is relatively small. Note that for any k-sparse vector A, we have 1AL = Vk,

so that the RSC definition guarantees a form of strong convexity for all k-sparse
vectors when n 7~ klog p.

A line of past work (e.g., [17, 22, 25, 27]) shows that the RSC condition holds,
with high probability, for many types of convex and nonconvex objectives arising
in statistical estimation problems. We will elaborate on some specific examples of
interest in Section 3 below.

2.4. Primal-dual witness proof technique. Finally, we outline the main steps
of our new primal-dual witness (PDW) proof construction, which will yield sup-
port recovery and £.,-bounds for the program (2.1). We emphasize that the steps
described below provide a significant generalization of the previous proof con-
struction proposed in literature to establish support recovery in high-dimensional
estimation. In particular, whereas such a technique was previously applicable only
under assumptions of convexity on £,, and p;, we show that this machinery may
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be extended via a careful analysis of local optima of norm-regularized functions
based on generalized gradients.

As stated in Theorem 1 below, the success of the PDW construction guarantees
that stationary points of the nonconvex objective are consistent for variable selec-
tion consistency—in fact, they are unique. Recall that BeRPisa stationary point
of the program (2.1) if (V.L, (E) + VpA(E), B— E) > 0, for all B in the feasible
region [1]. Due to the possible nondifferentiability of p, at 0, we abuse notation
slightly and denote

~

(Vor(B). B — B) (Voi(B+1(B—B)). B — B)

lim
t—0t
(see, e.g., Clarke [8] for more details on generalized gradients). The set of station-
ary points includes all local/global minima of the program (2.1), as well as any
interior local maxima.

The key steps of the PDW argument are as follows. Note that the PDW construc-
tion is merely a proof technique for establishing properties of stationary points,
rather than a construction to be performed on the data.

Steps of PDW construction.

(i) Optimize the restricted program:

(2.6) Bs € arg min {L,.(B) + pi(B)),
BERS:||BIl1<R,BeR

where we enforce the additional constraint supp(,gs) C supp(B*) := S. Es-
tablish that ||Bs||1 < R; that is, Bs is in the interior of the feasible set.
(ii) DefineZs € 9| Bsl|1, and choose Zse to satisfy the zero-subgradient condition:

(2.7) VL(B) — Vg (B) + 12 =0,

where Z = (g, Zs¢), B := (Bs, 0sc), and g, (¢) := Alf| — p, (¢). Establish strict
dual feasibility of Zsc; that is, ||Zsc |0 < 1.

(ii1) Show that 3 is a local minimum of the full program (2.1), and moreover, all
stationary points of the program (2.1) are supported on S.

Note that the output (ff ,Z7) of the PDW construction depends on A and R.

Under the RSC condition, the restricted problem (2.6) minimized in step (i)
is actually a convex program. Hence, if ||ES||1 < R, the zero-subgradient condi-
tion (2.7) must hold at ,ES for the restricted problem (2.6). Note that when L, is
convex and p;, is the £1-penalty as in the conventional setting, the additional £;-
constraint in the programs (2.1) and (2.6) is omitted. If also 2 = R?”, the vector 3 s
is automatically a zero-subgradient point if it is a global minimum of the restricted
program (2.6), which greatly simplifies the analysis. Our refined analysis shows
that under suitable restrictions, global optimality still holds for E s and ,g , and the
convexity of the restricted program therefore implies uniqueness.
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To further highlight the differences between our PDW construction and the con-
struction mentioned in previous literature [31], we remark that due to the noncon-
vexity of the objective function, a zero-subgradient condition alone cannot guaran-
tee that the zero-padded vector B constructed from the optimum Bs of the restricted
program (2.6) is a local (global) minimum of the full program (2.1). However, as
we will argue in more detail in Section 4 below, the RSC condition, combined
with certain sufficient conditions for local optima of norm-regularized functions
(cf. Lemma 10 in Appendix G.2), allows us to establish that f is indeed a local
optimum in step (iii) of the construction. An additional technical argument is em-
ployed to show that all stationary points of the program (2.1) are also supported
onS.

3. Main results and consequences. In the sections to follow, we use the
primal-dual witness proof technique to establish support recovery results for gen-
eral nonconvex regularized M -estimators and derive conditions under which sta-
tionary points of the program (2.1) are unique. We then specialize our results to
specific problems of interest.

3.1. Main results. Our main statistical results concern stationary points of the
regularized M -estimator (2.1), where the loss function satisfies the RSC condi-
tion (2.5) with parameters {(c;, rj)}ﬁzl, and the regularizer is p-amenable with
% i < aq. Our first theorem concerns the success of the PDW construction de-
scribed in Section 2.4. The theorem guarantees that the support of the vector B
obtained from step (ii) of the PDW construction is the unique stationary point of
the regularized program (2.1), provided two conditions are met, the first involving
an appropriate choice of A and R and the second involving strict dual feasibility
of the vector Z. In particular, we may conclude that supp(ﬁ) C supp(B*). Note
that it is through validating the second condition that the incoherence assumption
arises in the usual £;-analysis, but we demonstrate in our corollaries to follow that
strict dual feasibility may be guaranteed under weaker conditions when a (u, y)-
amenable regularizer is used. (See Appendix C for a technical discussion.)

THEOREM 1 (PDW construction for nonconvex functions). Suppose L, is
a twice-differentiable, (a, T)-RSC function and p, is p-amenable, for some
% W < ay. Further suppose that:

(a) The parameters (A, R) satisfy the bounds

logk (4o —3p)an
(3.1a) 4max{HV£n(/3*)Hoo,oz2 ; } <i< ‘,W’ and
48k ) {az ar | n }
min{ —, — .
8L T\ logp

A

(3.1b) max{2||,3* } <R

4oy =30
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(b) For some § € [%, 11, the dual vector Z from the PDW construction sat-

isfies the strict dual feasibility condition:

(3.2) [Zselloe < 1 —6.

Then if n > zazlrluklogp and B* is k-sparse, the program (2.1) has a unique sta-

tionary point, given by the primal output E of the PDW construction.

Of course, Theorem 1 is vacuous unless proper choices of A, R and § exist. In
the corollaries to follow, we show that | VL, (8%)|lc < ¢ logp , with high prob-

- n

e . . . ~ [logp
ability, in many settings of interest. In particular, we may choose A <,/ =+ to

satisfy inequality (3.1a) when n 7~ klog p. Note that R < % then causes inequal-
ity (3.1b) to be satisfied under the same sample size scaling. Finally, note that the
inequality % < 1 is satisfied as long as R < %, which is guaranteed
by the preceding choice of (A, R) and the scaling n =~ klog p. This ensures the
existence of an appropriate 8.*

We now remark briefly on the proof of Theorem 1; more details are provided
in Section 4. As outlined in Section 2.4, the proof proceeds by constructing a
vector B supported on S that we will show is the unique optimum. Clearly, the
appropriate vector is a zero-filled version of the |S|-dimensional vector obtained by
minimizing the program (2.6). We first use results on £1-consistency to argue that
the constructed vector lies in the interior of the feasible region. In order to establish
that it is a local optimum of the full program (2.1), we construct a dual witness
vector 7 satisfying first-order necessary conditions. By verifying the appropriate
second-order sufficient conditions, which follow from strict dual feasibility and
restricted strong convexity in a neighborhood around 8*, we establish that B is
indeed a local optimum. Finally, further algebraic manipulations with respect to B
show that other stationary points must be supported on S, as well.

We also note that our results require the assumption 3 < 4«1, where a smaller
gap of (41 — 3u) translates into a larger sample size requirement. This consider-
ation may motivate an advantage of using the LSP regularizer over a regularizer
such as SCAD or MCP; as discussed in Appendix A.1, the SCAD and MCP reg-
ularizers have  equal to a constant value, whereas p = A> — 0 for the LSP. On
the other hand, the LSP is not (u, y)-amenable, which as discussed later, allows
us to remove the incoherence condition for SCAD and MCP when establishing
strict dual feasibility (3.2). This suggests that for more incoherent designs, the
LSP may be preferred for variable selection, whereas for less incoherent designs,
SCAD or MCP may be better. (In simulations, however, the LSP regularizer only
performs negligibly better than the ¢;-penalty in situations where the incoherence

4Note that the parameter § does not appear in the statistical estimation procedure and is simply a
byproduct of the PDW analysis. Hence, it is not necessary to know or estimate a valid value of 4.
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condition holds and the same regularization parameter A is chosen.) Finally, note
that although the conditions of Theorem 1 are only sufficient conditions. Indeed,
as confirmed experimentally, many situations exist where the condition 3t < 4oy
does not hold, yet the stationary points of the program (2.1) still appear to be sup-
ported on § and/or unique.

Our second theorem provides control on the {,.-error between any station-
ary point and B*, and shows that if the regularizer is (u, y)-amenable, the
unique local/global optimum is the oracle estimator, which is the unpenalized
estimator obtained from minimizing £, over the true support set S. Let B? =
arg minﬂSeRs{En (Bs, 0sc)}, and let ,@O = (,@g) Ogc) be the oracle estimator. Note
that under the assumed RSC conditions, the restricted function £, |s is strictly con-
vex and B\? is uniquely defined. With this notation, we have the following result.

THEOREM 2. Suppose the assumptions of Theorem 1 are satisfied. The unique
stationary point B of the program (2.1) has the following properties:

(a) Let Q := fol V2L, (B* +1(B — B*))dt, and suppose Qys is invertible. Then

(33) 1B =8l = [Q59) 7' VLB sl oo + A (Q59) ™ |-

(b) Moreover, if p;, is (ju, y)-amenable and ;. = mineg |ﬁ;’-‘| is lower-bounded
as

(342) Brin = My + 12597 o) + 1259 ™' VL (B 5| .
then 3 agrees with the oracle estimator BO, and we have

(3.4b) 1B =Bl = 1€Q59) ™ VLa(B) s oo

The proof of Theorem 2 is provided in Section 4.3. Note that in part (a), the
integral appearing in the definition of 0 is taken componentwise.

Theorem 2 underscores the strength of (i, y)-amenable regularizers: with the
addition of a beta-min condition (3.4a), the unbiasedness property allows us to
remove the second term in inequality (3.3) and obtain a faster oracle rate (3.4b).
In the corollaries below, we demonstrate typical scenarios where the right-hand
expression in inequality (3.4b) is O( k’%), with high probability, when the spec-
trum of V2L, (8*) is bounded appropriately.

It is worth noting the relationship between the £,,-bounds guaranteed by The-
orem 2(b) and the results of Fan et al. [13], who prove certain results about one
step of the LLA algorithm when initialized at a Lasso solution with low ¢,-error.
Since stationary points of the nonconvex regularized program (2.1) are fixed points
of the LLA algorithm, the results of that paper guarantee that stationary points

with £~-norm error on the order of O(,/ 10%) are equal to the oracle estimator.

This conclusion is consistent with Theorem 2; however, our theorem also shows
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support recovery for corrected linear regression, non-incoherent I, error for corrected linear regression, non-incoherent
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FI1G. 1. Simulation results for least squares linear regression with covariates corrupted by additive
noise. (a) Plot showing variable selection consistency with the SCAD (solid) and MCP (dash-dotted)
regularizers. The probability of success in recovering the correct signed support transitions sharply
fromQto 1 as a function of the sample size, agreeing with the predictions of Theorem 1; such behavior
is not observed when using the £1-penalty or LSP. (b) Plot showing {~o-error HE— B*lloo with the
SCAD (solid) and MCP (dash-dotted) regularizers. As predicted by Theorem 2, both regularizers

demonstrate consistency in £oo-error.

that when the PDW construction succeeds, the program (2.1) does not possess any
stationary points outside the designated £~.-norm ball, either. Thus, we have the
same guarantees but without assuming the initial Lasso estimate has low £,-error.

Figure 1 illustrates the guarantees delivered by Theorems 1 and 2 in the case of
errors-in-variables linear regression. As detailed in Section 3.3 below, the PDW
construction is shown to succeed with high probability when using the SCAD
or MCP regularizer, implying that the estimated vector ,é has the correct signed

support when n 77 klog p and the £.-error is O( l(’%). In contrast, the PDW
construction does not succeed when only a p-amenable regularizer is used, due to

non-incoherence of the design matrix.
We now unpack Theorems 1 and 2 in several concrete settings. Theory for the

graphical Lasso is developed in Appendix E.

3.2. Linear regression. Our first application focuses on the setting of ordinary
least squares, together with the nonconvex SCAD, MCP and LSP regularizers.
We compare the consequences of Theorems 1 and 2 for each of these regularizers
with the corresponding results for the convex £-penalty. Our theory demonstrates
a clear advantage of using nonconvex regularizers such as SCAD and MCP that
are (u, y)-amenable; whereas support recovery using £-based methods requires
fairly stringent incoherence conditions, our corollaries show that methods based
on nonconvex regularizers guarantee support recovery even without incoherence

conditions.
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Consider the standard linear regression model, in which we observe i.i.d. pairs
{(xi, yi)}i_,, linked by the linear model:

y,-:xiT,B*—i—s,-, fori=1,...,n,
and the goal is to estimate 8* € R”. A standard loss function in this case is the least
squares function £,(8) = ﬁ ly — XB ||%, where y € R" is the vector of responses
and X € R"*? is the design matrix with xl-T € R? asits ith row. For any 8, A € R?,
we have
x"'x BENE:

(VLB +8) = VL, (B, ) =aT (52 )a =220,

Consequently, for the least squares loss function, the RSC condition is essentially

equivalent to lower-bounding sparse restricted eigenvalues [2, 29].
Setting 2 = R”, the p,-regularized least squares estimator takes the form

(35) Feue min [1pr XXy 7 X, (ﬂ)}
. €a —
© 8=k 2 P
Note that the Hessian of the loss function is V2L, (8) = £ Although the sample

covariance matrix is always positive semidefinite, it has rank at most 7. Hence, in
high-dimensional settings where n < p, the Hessian of the loss function has at
least p — n zero eigenvalues, implying that any nonconvex regularizer p, makes
the overall program (3.5) nonconvex.

In analyzing the family of estimators (3.5), we assume that n > cok log p, for
some constant cg. (By known information-theoretic results [32], such a lower
bound is required for any method to recover the support of a k-sparse signal.)
The following result is proved in Appendix D.

COROLLARY 1. Suppose X and & are sub-Gaussian, and the parameters

(X, R) are chosen such that ||f*||1 < % and ¢y 10% <A< %‘,for some con-

. — T .
stants ¢y and c,. Also suppose the sample covariance matrix I' = % satisfies

the condition:
(3.6) ITSs Il = coo-

(a) Suppose p;, is w-amenable, with 3 < 2Aimin(Zy), and T also satisfies the
incoherence condition:

(3.7) ITsesTssllog <m < 1.
Then with probability at least 1 — c1 exp(—c2 min{k, log p}), the nonconvex

objective (3.5) has a unique stationary point E, which corresponds to the
global optimum. Furthermore, supp(B) < supp(B*), and

(3.8) 1B-pl,<C" gp+coox
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(b) Suppose the regularizer p; is (u,y)-amenable, with 3t < 2Amin(Xy). Also

suppose
log p
Biiin = My + co0) + C, i .

Then with probability at least 1 — ¢y exp(—cy min{k, log p}), the nonconvex
objective (3.5) has a unique stationary point 8 given by the oracle estimator
B°, and

—~ 1
(3.9) 1B—pl = =E.

Note that if we also have the beta-min condition g7, > 2(C 10% + Coo)) 1In
part (a), then 3 is still a sign-consistent estimate of 8*; however, the bound (3.8)
is looser than the oracle bound (3.9) derived in part (b).

Remark. The constants ¢,, ¢, and C appearing in the statement of the corollary
above depend on the sub-Gaussian parameters o, and o, of X and ¢, respectively,
but we have chosen to suppress this dependence in the statement of the corollary
in order to simplify our presentation. Indeed, the required values of ¢, and c; may

be derived from equation (3.1) in Theorem 1: Since ||VL,(8%)|lco = || XTTS lloo and
o2 =X Amin(Zx), we would need ¢; < 0,0, and ¢, < Anin(Zx). Consequently, the

optimal choice of A would scale explicitly as A < 05044/ loip , as well. As shown

in the proof of the corollary, we may take C = krln/fx(Z +)0:+/2. Finally, note that
a term of the form c in the B condition is also necessary for support recovery
in the case of the p-amenable regularizers studied here (cf. Theorem 2 in Wain-
wright [31]).

The distinguishing point between parts (a) and (b) in Corollary 1 is that using
(i, y)-amenable regularizers allows us to dispense with an incoherence assump-
tion (3.7) and guarantees that the unique stationary point is in fact equal to the or-
acle estimator. Regularizers satisfying the conditions of part (b) include the SCAD
and MCP. Recall that for the SCAD penalty, we have u = a%]; and for the MCP,
we have u = % (cf. Appendix A.1). Hence, the lower-eigenvalue condition trans-
lates into a%] < 2Amin(Xy) and % < 2Amin(Xy), respectively. The LSP penalty is
an example of a regularizer that satisfies the conditions of part (a), but not part (b):
with this choice, we have yu = A2, so the condition 3u < 2Amin(2y) is satisfied
asymptotically whenever Apyin(Xy) is bounded below by a constant. A version of
part (a) also holds for the £;-penalty, as shown in past work [31].

Perhaps the closest existing work on nonconvex regularization of ordinary least
squares is in the characterization of “approximate local” and “approximate global”
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solutions due to Zhang and Zhang [35], defined according to a bound on the value
of the subgradient and the value of the objective function, respectively. Their pa-
per establishes approximate sparsity of such solutions, which is a relaxed version
of support recovery. They also prove that the objective has a unique approximate
local solution that is also sparse, thereby coinciding with the oracle solution, and
that any local solution which is also approximately global also coincides with this
oracle estimator. However, our Corollary 1 addresses all local solutions simulta-
neously, showing that these local solutions all have the correct support and are
unique—without recourse to approximate global properties or prior knowledge of
sparsity. In addition, when the regularizer is (i, y)-amenable, corresponding to
the regularizers studied in Zhang and Zhang [35], we again achieve the oracle es-
timator.

Regarding removing incoherence conditions under nonconvex penalization,
Zhang [34] shows that the two-step MC+- estimator [beginning with a global op-
timum of the program (3.5) with the MCP regularizer] is guaranteed to be consis-
tent for variable selection, under only a sparse eigenvalue assumption on the design
matrix. Our result shows that the global optimum obtained in the MCP step is actu-
ally already guaranteed to be consistent for variable selection, under only slightly
stronger assumptions involving lower- and upper-eigenvalue bounds on the design
matrix. In another related paper, Wainwright [32] establishes necessary conditions
for support recovery in a linear regression setting when the covariates are Gaus-
sian. As remarked in that paper, the necessary conditions only require eigenvalue
bounds on the design matrix, in contrast to the more stringent incoherence condi-
tions appearing in analysis of the Lasso [31, 38].

3.3. Linear regression with corrupted covariates. We now shift our focus to a
setting where the loss function is nonconvex. Consider a simple extension of the
linear model: The pairs {(x;, y;)}{_, are again drawn according to the standard lin-
ear model, y; = xl.T B* + ¢&;. However, instead of observing the covariates x; € R?
directly, we observe the corrupted vectors z; = x; + w;, where w; € R” is a noise
vector. This setup is a particular instantiation of a more general errors-in-variables
model for linear regression; note that the standard Lasso estimate [applied to the
observed pairs {(z;, y;)}/_,] is inconsistent in this setting.

As studied in our previous work [18], it is natural to consider a corrected version
of the Lasso, which we state in terms of the quadratic objective,

I 7=
(3.10) Lip=3p"Tp—7".

Our past work shows that for specific choices of T, 7), any global minimizer B of
the appropriately regularized problem (2.1) is a consistent estimate for * [18]. In
the additive corruption model described in the previous paragraph, a natural choice
is

(3.11) (fJD::(

VAN ZTy>
- Ew, ’
n
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where the covariance matrix %,, = Cov(w;) is assumed to be known. However,
in the high-dimensional setting (n < p), the matrix T is not positive semidefinite,
so the quadratic objective function (3.10) is nonconvex. [This is also a concrete
instance where the objective function (2.1) requires the constraint ||8]|; < R in
order to be bounded below.] Nonetheless, our past work [17, 18] shows that under
certain tail conditions on the covariates and noise vectors, the loss function (3.10)
does satisfy restricted strong convexity.

To simplify our discussion, we only state an explicit corollary for the case
when p, is the convex f-penalty; the most general case, involving a noncon-
vex quadratic form and a nonconvex regularizer, is simply a hybrid of the analysis
below and the arguments of the previous section. Our goal is to illustrate the ap-
plicability of the primal-dual witness technique for nonconvex loss functions. This
setup leads to the following estimator for 8*:

(3.12) B €arg min {lﬁrfﬁ—)’/‘Tﬂ—i—AHﬂH]}.
IBIli<R(2

In the following corollary, we assume that n > k?and n > cok log p, for a suffi-
ciently large constant cp. As in the statement of Corollary 2, we do not include an
explicit choice of ¢¢, ¢, and C in the statement of the corollary to avoid clutter, but
it is easy to check that ¢; < (0 + 0y) (0 + 0y || 8¥112) and ¢, < Amin(Zy) suffices.
The expression for C is more complicated, but an inspection of the proof shows
that it should scale with || (EX)ES1 ll2, in addition to the sub-Gaussian parameters of
X, W and ¢.

COROLLARY 2. Suppose (X, w,¢e) are sub-Gaussian, Anin(Xy) > 0, and
(A, R) are chosen such that ||B*||1 < g and cy 10% <A < %. If in addition,

(3.13) ITss oo < oo and |[TsesTiglle <m<1.

then with probability at least 1 — ¢y exp(—cz min{k, log p}), the objective (3.12)
has a unique stationary point B (corresponding to the global optimum) such that

supp(B) C supp(B*), and

log p
n

(3.14) IB-B*=<C + Cooh-

We prove Corollary 2 in Appendix D.2. Note that similar results regarding the
uniqueness of stationary points and {s.-error bounds hold without assuming the
incoherence condition |||f‘gc5f‘§sl lloo <n < 1if a(u,y)-amenable regularizer is
used instead [cf. Corollary 1(b)]. Also note that if in addition, we have the bound

v = 2(Cy/ 10% + cxo)), we are guaranteed that E is sign-consistent for §*.
Corollary 2 shows that the primal-dual witness technique may be used even in
a setting where the loss function is nonconvex. Under the same incoherence as-

sumption (3.13) and the sample size scaling n > cok log p, stationary points of
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the modified (nonconvex) Lasso program (3.12) are also consistent for support re-
covery. Surprisingly, although the objective (3.12) is indeed nonconvex whenever
n < p and %,, > 0, it nonetheless has a unique stationary point that is in fact equal
to the global optimum. This further clarifies the simulation results appearing in
Loh and Wainwright [18]: those simulations are performed with I' = I,, so the
incoherence condition (3.13) holds, with high probability, with 7 close to 0.

In order to produce the plots shown in Figure 1 above, we generated i.i.d.
covariates x; ~ N (0, X), where X, = M () was obtained from the family
of non-incoherent matrices (F.10), with 6 = 2k_5 We chose k ~ ./p and B* =

( VAN 0,...,0), and generated response variables according to the linear

model y; = xiT B* + ¢g;, where g; ~ N(0, (0.1)?). In addition, we generated cor-
rupted covariates z; = x; + w;, where w; ~ N (0, (0.2)), and w; 1L x;. We ran
the composite gradient descent algorithm (cf. Appendix F.1) on the objective
function given by equations (3.10) and (3.11), and with regularization parameters

R=1.1||B*[ly and A = k’%. In panel (a), we see that the probability of correct
support recovery transitions sharply from O to 1 as the sample size increases and
ox 1s the SCAD or MCP regularizer. In contrast, the probability of recovering the
correct support remains at 0 when p, is the £1-penalty or LSP—by the structure
of 3, regularization with the £;-penalty or LSP results in an estimator j that puts
nonzero weight on the (k 4 1)st coordinate, as well. Note that we have rescaled the
horizontal axis according to @ in order to match the scaling prescribed by our
theory; the three sets of curves for each regularizer roughly align, as predicted by
Theorem 1. Panel (b) confirms that the £,,-error ||E — B*|loo decreases to O when
using the SCAD and MCP, as predicted by Theorem 2. Further note that the £;-
penalty, LSP, SCAD, and MCP regularizers are all £;-consistent; however, since a
lower-eigenvalue bound on the covariance matrix of the design is sufficient in that
case [17].

3.4. Generalized linear models. 'We now move to the case where the loss func-
tion is the negative log likelihood of a generalized linear model, and show that
the incoherence condition may again be removed if the regularizer p; is (u, y)-
amenable.

Suppose the pairs {(x;, y;)}7_, are drawn from a generalized linear model
(GLM). Recall that the conditional distribution for a GLM takes the form

yix! B— 1ﬁ(xiTﬂ))
c(o) ’

where o > 0 is a scale parameter and 1 is the cumulant function. The loss function
corresponding to the negative log likelihood is given by

3.15) P(yi|xi, B.0) = exp(

n

|
(3.16) Lo(B) ==Y (V(x/B)— yix]'B),

3
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and it is easy to see that equation (3.16) reduces to equation (3.10) when ¥ () = %
Using properties of exponential families, we may also verify that equation (2.3)
holds. Negahban et al. [22] showed that restricted strong convexity holds for a
broad class of generalized linear models.

Taking 2 = R?, we then construct the composite objective:

n

~ 1
(3.17) Bearg min 1= (Y(x/B) —yix/ B) + pr(B) -

<R
1BIh=R | n =

We further impose the following technical conditions.

ASSUMPTION 1.

(i) The covariates are uniformly bounded: ||x;|co < M, forall 1 <i <n.
(ii) There are positive constants «; and 3, such that [[{"|e < k2 and

1" oo < k3.

The conditions of Assumption 1, although somewhat stringent, are satis-
fied in various settings of interest. In the case of logistic regression, we have
¥ (t) =log(l + exp(?)), and we may easily verify that the boundedness conditions
in Assumption 1(ii) are satisfied with x» = 0.25 and 3 = 0.1. Also note that the
uniform bound on ¥ is used implicitly in the proof for support recovery con-
sistency in the logistic regression analysis of Ravikumar et al. [26], whereas the
uniform bound on /" also appears in the conditions for £;- and £;-consistency in
other past work [17, 22]. The uniform boundedness condition in Assumption 1(i) is
somewhat less desirable: although it always holds for categorical data, it does not
hold for Gaussian covariates. We suspect that is possible to relax this constraint.

In what follows, let 0* := E[1 ", v (x] p*)x;x]] denote the Fisher infor-
mation matrix.

COROLLARY 3. Suppose Assumption 1 holds, and suppose p, is (iL,y)-
amenable with p < cyAmin(Xy), where cy is a constant depending only on .

Also suppose n > cok3log p, and (7, R) are chosen such that ||f*|1 < % and

coy/ L < & < %. Further suppose ||(Q%s) Moo < coor and By, = Ay +

— min —
2¢00) +C k’%. Then with probability at least 1 — ¢y exp(—c2 min{k, log p}), the

program (3.17) has a unique stationary point B given by the oracle estimator B°,
and

_ I
(3.18) 18— B, <C 2L

n

Corollary 3 may be compared with the result for £1-regularized logistic regres-
sion given in Ravikumar et al. [26] (see Theorem 1 in their paper). Both results
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require that the sample size is lower-bounded as n > cok? log p, but Ravikumar et
al. [26] also require Q* to satisfy the incoherence condition:

(3.19) 1 Q3e5(Q%s5) Moo <n < 1.

As noted in their paper and by other authors, the incoherence condition (3.19) is
difficult to interpret and verify for general GLMs. In contrast, Corollary 3 shows
that by using a properly chosen nonconvex regularizer, this incoherence require-
ment may be removed entirely. Furthermore, Corollary 3 applies to more than just
the logistic case with an £;-penalty and extends to various nonconvex problems
where the uniqueness of stationary points is not evident a priori. The proof of
Corollary 3 is contained in Appendix D.3. Due to increasing technicality, we do
not state explicit choices of c¢, ¢, and C, but we refer the reader to the supplement
for more details.

4. Proofs of main theorems. We now outline the proofs of the theorems
stated in Section 3. In the proof of Theorem 1, we show that the PDW construction
in Section 2.4 may be applied to establish support recovery even for nonconvex
objectives. In the proof of Theorem 2, we highlight how the support recovery re-
sults achieved in Theorem 1 may be used to derive novel ¢,-error bounds on the
unique stationary point B. Furthermore, we show how (1, y)-amenability implies
an even tighter bound for the oracle estimator.

4.1. Proof of Theorem 1. We follow the outline of the primal-dual wit-
ness construction described in Section 2.4. For step (i) of the construction, we
use Lemma 9 in Appendix G, where we simply replace p by k and L, by
(L£,)]s, which is the function £, restricted to RS. It follows that as long as

16R? max(t2,73) 242k
ailogk we are guaranteed that ||,BS - Bl < T30

n > , whence

IBsl < 1B*Ih + 1Bs — BEll < & + 4514“@ < R. Here, the final inequality fol-

lows by the lower bound in inequality (3.1b). We conclude that BS must be in the
interior of the feasible region.

Moving to step (ii) of the PDW construction, we define the shifted objective
function £, B) := L,(B) — q,(B). Since ﬁg is an interior point, it must be a
Zero- subgradlent point for the restricted program (2.6), so V(L, )|5(,BS) +AZs =
0, Where Zs € 0| /35||1 is the dual vector. By the chain rule, this implies that
(VL, (ﬁ)) s+ AZs =0, where ,6 (,85, Osc). Accordingly, we may define the sub-
vector Zsc € RS such that

4.1) VL, (B)+A2Z2=0,

where 7 := (Zs, Zs¢) is the extended subgradient. Under the assumption (3.2), this
completes step (ii) of the construction.

For step (iii), we first establish that 3 is a local minimum for the program (2.1)
by verifying the sufficient conditions of Lemma 10 in Appendix G, with functions
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f =L, and g = gy, and (x*, v*, w*, u*) = (3,2,2, 0). Note that Lemma 5(b)
from Appendix A.2 ensures the concavity and differentiability of g(x) — %||x||%.
Since pu* = 0, condition (G.2a) is trivially satisfied. Furthermore, condition (G.2b)
holds by equation (4.1). Hence, it remains to verify the condition (G.2c).

We first show that G* C RS. Supposing the contrary, consider a vector v € G*
such that supp(v) C S. Fixing some index j € §¢ such that v; # 0, and using the
definition of G*, we have

(4.2) sup v/ (VL,(B) + Av) =0.
vedlBlly

However, if 7 denotes the vector Z with entry j replaced by sign(s;) € {—1, 1}, we
clearly still have 7 € 9| ,8 |l1. On the other hand,

vI(VL(B) +22) > vI (VL (B) + 22) =0,

where the strict inequality holds because ||Zs¢||co < 1, by our assumption. We have
thus obtained a contradiction to equation (4.2); consequently, our initial assump-
tion was false, and we may conclude that G* C RS,

The following lemma, proved Appendix B.1, guarantees that a shifted form of
the loss function is strictly convex over a k-dimensional subspace.

LEMMA 1. Consider any twice-differentiable, (o, T)-RSC loss function L,
and any p-amenable regularizer p;L, with u < ay. Suppose |S| =k. If n >
20 klog p, the function L, (B) — ||;3||% is strictly convex on B € RS, and the

ar—p
restricted program (2.6) is also smctly convex.

In particular, since G* € S and supp(,@) C S, Lemma 1 implies condition (G.2c)
of Lemma 10, so B is a local minimum of the program (2.1).

The following lemma, proved in Section 4.2, shows that all stationary points of
the program (2.1) are supported on S. It involves a fairly technical argument, using
the strict dual feasibility of Zgc to deduce that any stationary point g also has the
correct support.

LEMMA 2. Suppose E is a stationary point of the program (2.1) and the con-
ditions of Theorem 1 hold. Then supp(B) C S.

The uniqueness assertion now follows fairly easily. Note that since all stationary
points are supported in S by Lemma 2, any stationary point B of the program (2.1)
must satisfy /3 (,3 s, 0sc), where ,85 is a stationary point of the restricted pro-
gram (2.6). By Lemma 1, the restricted program is strictly convex. Hence, the
vector B, and consequently also B, is unique.
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4.2. Proof of Lemma 2. Let ¥ := B — p*. We first show that [|¥]|> < 1. Sup-
pose on the contrary that ||| > 1. By inequality (2.5b), we have (V.L,(B) —

VL,(B), D) > oV — 72,/ lofp I]l;. Moreover, since B is feasible, the first-

order optimality condition gives

(4.3) 0<(VL,(B)+ Vor(B). B—B).

Summing the two preceding inequalities yields

1 — -
4.4) ¥l — 72, Of P15 < (VL B) — Vpr(B). 7).

Since ,@ is an interior local minimum, we have V., (E) + Vo (3) = 0. Inequal-
ity (4.4) implies

~ lo ~ —~ ~
@Vl - vy i”uvul <(Vor(B) = Vor(B). )

<(IVorB® | + V01| ) 1T
< 2|71,

where the bound ||V p, (8)|lcc < A holds by Lemma 5 in Appendix A.2. Rearrang-
ing, we have ||F]lz < 211 (22 + 7,/ 1%82) < 2R (2) 4 7, /1€P) Since A < ¢% and

16R?1 L - _
n= p 2 log p, this implies that ||V||» < 1, as claimed.

Now,zapplying the RSC condition (2.5b), we have

logp
1513,
n

(4.5) (VL.(B) = VL.(B), D) = (a1 = VI3 — 11
By inequality (4.3), we also have
(4.6) 0<(VLy(B). B —B)+2 @B ~P)

Whe_re 7 e E |l1. From the zero-subgradient condition (2.7), we further have
(VL,(B) + A7, B — B) = 0. Combining with inequality (4.6) then yields

4.7) 0=<(VL,(B)=VLy(B), B—B)+2r-Z B) =Bl +2-EZ B — Bl
Rearranging, we have

MBI =12, B) <(VL,(B) — VL,(B), B—B)+1-(Z, B) — 1Bl
4.8) <(VL.(B) = VL.(B), B - B)

logp -
- 19113 = (@1 — w) |73,

=7

where the second inequality follows because (Z, B) < IZllso - 1811 < IIB]I1, and
the third inequality comes from the bound (4.5). Finally, we show that V lies in a
cone set.
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LEMMA 3. If ||Zsclloo <1 — 6 for some & € (0, 1] and A > %, then

4 5
Il < (5+2)¢Euvuz.

The proof of Lemma 3 is provided in Appendix B.2. Combining Lemma 3 with
inequality (4.8) then gives

MBI =A@ B) <T

klogp (4 2 9
2P (242) 1715~ (e = 0l

Hence, if n > azﬂ (3 + 2)%klog p, then A||Bll1 — A(Z, B) < —uuaug <0.
On the other hand, Holder’s 1nequahty gives A(Z, ,B ) < k||z||oo||,8||1 < k||,3||1 It

follows that we must have (Z, ,8) I /3||1 Since ||[Zsc|loo < 1, we conclude that
Bj =0, forall j ¢ S. Hence, supp(,B) C §, as claimed.

4.3. Proof of Theorem 2. Note that by the fundamental theorem of calculus
for vector-valued functions, we have Q (,3 BY=VL, (ff) VL, (B*). Further-
more, we have Bgc = B 5c = 0, by construction. Using the zero-subgradient condi-
tion (2.7) and the assumed invertibility of QSS, we have

Bs — BE=(0s9) (=VLa(B*)s + Vg (Bs) — AZs),

so combined with the support recovery result of Theorem 1, we have

49 B= Bl = 1(Q59) " (VLW(B*)s — Var(Bs) + 1Zs) |
Lemma 5 in Appendix A.2 guarantees that ||(Vg, (Es) —2Z8) loo < A, SO

1B =Bl < 1(059) VL, (B¢l o + [(O55) ™ (Vi (Bs) — 4Zs)] o
< [(Qs9) ™' VLB sl T M1(Q59) o

which is inequality (3.3).
For inequality (3.4b), we use the following lemma, proved in Appendix B.3:

LEMMA 4. Suppose p, is (4, y)-amenable, and the bound (3.4a) holds. Then
|Bjl = vAforall j €S, andin particular, qi(,Bj) = A -sign(B;).

Lemma 4 implies that qu(ﬁs) = AZs. Hence, the zero-subgradient condi-
tion (2.7) reduces to (Vﬁn(gg))|s = 0. Since £, is strictly convex on RS by
Lemma 1, this zero- gradlent condition implies that Bg is the unique global min-
imum of (£,)|s, so /35 = ,BS and /3 ﬂo, as claimed. Finally, inequality (4.9)
simplifies to inequality (3.4b), since Vg, (ﬂs) = AZs.
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5. Simulations. In this section, we report the results of additional illustrative
simulations. We ran experiments with the loss function coming from (a) ordinary
least squares regression and (b) logistic regression, together with the £1-penalty,
LSP, SCAD (a = 2.5) and MCP (b = 1.5) regularizers. In each setting, we tuned
the regularization parameters (R, A) via 10-fold cross-validation over a grid of

values with R = ¢ ||*||1 and A = ¢, 10%, using the squared error loss for lin-
ear regression and deviance measure for logistic regression. To locate stationary
points, we ran a version of the composite gradient descent algorithm (for more
details on the optimization algorithm, see Appendix F.1).

In our first set of simulations, we explore the uniqueness of stationary points in
the linear regression setting. We generated i.i.d. observations x; ~ N (0, X,) with
¥y = M>(6) coming from the family of spiked identity models (F.11), for 8 = 0.9,
and independent additive noise, &; ~ N (0, (0. 1)%). We set the problem dimensions
tobe p =256, k =4 and n ~ 25k log p, and generated 8* to have k nonzero values

i\/LE with equal probability for each sign. In particular, the design matrix satisfies

the incoherence property with high probability, so the theory of Section 3.2 guar-
antees that stationary points are unique for all regularizers whenever 3u < 4o;.
When 4o < 31, convergence of the composite gradient descent algorithm and
consistent support recovery are no longer guaranteed; in practice, we observe that
multiple initializations of the composite gradient descent algorithm still appear to
converge to a single stationary point with the correct support when 3 is slightly
larger than 4«1. However, when the condition is violated more severely, the com-
posite gradient descent algorithm indeed terminates at several distinct stationary
points.

Figure 2 displays the results of our simulations. When using the SCAD or MCP
regularizers [panels (b) and (d)], distinct stationary points emerge, the recovered
support is incorrect, and the optimization algorithm sometimes has difficulty con-
verging, since 4«1 < 3. In contrast, the £1-penalty and LSP still continue to pro-
duce unique stationary points with the correct support [panels (a) and (c)]. [For
smaller values of 6, the solution trajectories for the SCAD and MCP regularizers
exhibit the same nice behavior as the trajectories in panels (a) and (c).] Also ob-
serve that the error ||’ — B*||» decreases at a rate that is linear on a log scale, as
predicted by Theorem 3 of Loh and Wainwright [17], until it reaches the threshold
of statistical accuracy.

In our second set of simulations, we used the maximum likelihood loss function
for logistic regression:

1 n
La(B)=~> {log(l +exp(x; ) — vix; B}.
i=1
We generated x; ~ N (0, asz ), with oy € {0.8, 2}, and set the problem dimensions
to be p =256, k =3, and n ~ 3k3log p. We generated 8* to have k nonzero
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FIG. 2. Plots showing log £-error log(|| " — B*|l2) as a function of iteration number t for OLS
linear regression with a variety of regularizers and 15 random initializations of composite gradient
descent. As seen in panels (b) and (d), the SCAD and MCP regularizers give rise to multiple distinct
stationary points.

values :I:Lk , with equal probability for each sign, and generated response variables

vi € {0, 1} according to

. exp(XiTﬂ*)
B = the B7) = 17Ty

[Note that although the covariates in our simulations for logistic regression do not
satisfy the boundedness Assumption 1(i) imposed in our corollary, the generated
plots still agree qualitatively with our predicted theoretical results.]

Figure 3 displays the results of our simulations. Panels (a)—(d) plot the log £>-
error as a function of iteration number, when o, = 0.8. Note that in this case, an
empirical evaluation shows that Amin(Vzﬁ(,B*)) ~ (.10, so we expect a1 ~ 0.10
and 3u £ 4ap. As in the plots of Figure 2, multiple stationary points emerge in
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FIG. 3.  Plots showing log {5 -error log(|| T — B*|12) as a function of iteration number t for logistic
regression, with a variety of regularizers and 15 random initializations of composite gradient de-
scent. The covariates are normally distributed according to x; ~ N (0, (7)%]), with ox = 0.8 in plots
(a)—(d), and ox =2 in plots (e)—(f). In panels (c) and (d), the composite gradient descent algorithm
settles into multiple distinct stationary points, which exist because 41 < 3 for the SCAD and MCP.
However, when the covariates have a larger covariance, the SCAD and MCP regularizers produce
unique stationary points, as observed in panels (e) and (f).
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panels (c) and (d) when p; is the SCAD or MCP regularizer; in contrast, we see
from panels (a) and (b) that all 15 runs of composite gradient descent converge to
the same stationary point when p,, is the £;-penalty or LSP. In panels (e) and (f),
we repeat the simulations with o, = 2. In this case, Amin(VZL(8%)) & 0.24, and
we see from our plots that although the condition 3 < 4o is still violated, the
larger value of o is enough to make the stationary points under SCAD or MCP
regularization unique. We may again observe the geometric rate of convergence of
the ¢5-error || 8" — B*||2 in each plot, up to a certain small threshold. The improved
performance from using the SCAD and MCP regularizers may also be observed
empirically by comparing the vertical axes in the panels of Figure 3.

6. Discussion. We have developed a novel framework for analyzing a variety
of nonconvex problems via the primal-dual witness proof technique. Our results
apply to composite optimization programs where both the loss and regularizer
function are allowed to be nonconvex, and our analysis significantly generalizes
the machinery previously proposed to establish variable selection consistency for
convex functions. As a consequence, we have provided a powerful reason for us-
ing nonconvex regularizers such as the SCAD and MCP rather than the convex
£1-penalty: In addition to being consistent in £,-error, the nonconvex regularizers
actually produce an overall estimator that is consistent for support recovery when
the design matrix is non-incoherent and the usual £;-regularized program fails in
recovering the correct support. We have also established guarantees concerning
the uniqueness of stationary points of certain nonconvex regularized problems that
subsume several recent results in the high-dimensional regression literature.

Future research directions include devising theoretical guarantees when the con-
dition 3 < 41 is only mildly violated, since the condition does not appear to be
strictly necessary based on our simulations; and justifying why the SCAD and
MCP regularizers perform appreciably better than the £1-penalty even in terms of
£>-error, in situations where the assumptions are not strong enough for an ora-
cle result to apply. It would be useful to be able to compute the RSC constants
(a1, ap) empirically from data, so as to assign a nonconvex regularizer with the
proper amount of curvature.

Acknowledgments. The authors thank the Associate Editor and anonymous
reviewers for helpful comments that substantially improved the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Support recovery without incoherence: A case for noncon-
vex regularization” (DOI: 10.1214/16-A0S1530SUPP; .pdf). We provide addi-
tional technical details for the results provided in the main body of the paper.
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