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BAYESIAN DETECTION OF IMAGE BOUNDARIES1

BY MENG LI AND SUBHASHIS GHOSAL

Duke University and North Carolina State University

Detecting boundary of an image based on noisy observations is a fun-
damental problem of image processing and image segmentation. For a d-
dimensional image (d = 2,3, . . .), the boundary can often be described by
a closed smooth (d − 1)-dimensional manifold. In this paper, we propose
a nonparametric Bayesian approach based on priors indexed by S

d−1, the
unit sphere in R

d . We derive optimal posterior contraction rates for Gaussian
processes or finite random series priors using basis functions such as trigono-
metric polynomials for 2-dimensional images and spherical harmonics for 3-
dimensional images. For 2-dimensional images, we show a rescaled squared
exponential Gaussian process on S1 achieves four goals of guaranteed geo-
metric restriction, (nearly) minimax optimal rate adapting to the smoothness
level, convenience for joint inference and computational efficiency. We con-
duct an extensive study of its reproducing kernel Hilbert space, which may be
of interest by its own and can also be used in other contexts. Several new es-
timates on modified Bessel functions of the first kind are given. Simulations
confirm excellent performance and robustness of the proposed method.

1. Introduction. The problem of detecting boundaries of images arises in a
variety of areas including epidemiology [44], geology [26], ecology [13], forestry,
marine science. A general d-dimensional (d ≥ 2) image can be described as
(Xi, Yi)

n
i=1, where Xi ∈ T = [0,1]d is the location of the ith observation and Yi is

the corresponding pixel intensity. Let f (·;φ) be a given regular parametric fam-
ily of densities with respect to a σ -finite measure ν, indexed by a p-dimensional
parameter φ ∈ �, then we assume that there is a closed region � ⊂ T such that

Yi ∼
{
f (·; ξ) if Xi ∈ �;
f (·;ρ) if Xi ∈ �c,

where ξ, ρ are distinct but unknown parameters. We assume that both � and �c

have nonzero Lebesgue measures. The goal here is to recover the boundary γ = ∂�

from the noisy image where γ is assumed to be a smooth (d−1)-dimensional man-
ifold without boundary, and derive the contraction rate of γ at a given true value
γ0 in terms of the metric defined by the Lebesgue measure of the symmetric dif-
ference between the regions enclosed by γ and γ0. When the boundary itself is of
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interest such as in image segmentation, we can view the problem as a generaliza-
tion of the change-point problem in one-dimensional data to images.

A significant part of the literature focuses on the detection of boundary pixels,
based on either first-order or second-order derivatives of the underlying intensity
function [32], Chapter 6, or Markov random fields [14], resulting in various edge
detectors or filters. This approach is especially popular in computer vision [3, 4].
However, the detected boundary pixels are scattered all over the image and do not
necessarily lead to a closed region, and hence cannot be directly used for image
segmentation. A post-smoothing step can be applied, such as Fourier basis ex-
pansion, principal curves [18] or a Bayesian multiscale method proposed by [16].
However the ad-hoc two-step approach makes the theoretical study of convergence
intractable. In addition, as pointed out by [2], many applications produce data at
irregular spatial locations and do not have natural neighborhoods.

Most existing methods are based on local smoothing techniques [5, 17, 31, 34,
38], which lead to convenient study of theoretical properties benefiting from well-
established results. However, local methods suffer when the data is sparse, and
thus the global information becomes critical. More importantly, it often leads to
local (or pointwise) inference such as marginal confidence bands losing the joint
information.

A relevant and intensively studied problem is to estimate the underlying inten-
sity function E(Y |X) with discontinuity at the boundary [10, 17, 29, 33, 35, 36].
These two problems are different for at least two reasons. First, there are many
important applications where ξ and ρ affect f (·) not (or not only) in the mean
but some other characteristics such as variance [5]. Second, the reconstruction of
E(Y |X) is essentially a curve (or surface) fitting problem with discontinuity and
the corresponding asymptotics are mostly on the entire intensity function rather
than the boundary itself. Therefore, we may refer the latter as image denoising
when boundaries are present, not necessarily guaranteeing the geometric restric-
tions on the boundary such as closedness and smoothness.

In this paper, we propose a nonparametric Bayesian method tailored to detect
the boundary γ0, which is viewed as a closed smooth (d −1)-dimensional manifold
without boundary. This paper has three main contributions.

The first main contribution is that the proposed method is, to our best knowl-
edge, the first one in the literature that achieves all the following four goals (i)–(iv)
when estimating the boundary:

(i) Guaranteed geometric restrictions on the boundary such as closedness and
smoothness.

(ii) Convergence at the (nearly) minimax rate [22, 28], adaptively to the
smoothness of the boundary.

(iii) Possibility and convenience of joint inference.
(iv) Computationally efficient algorithm.
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To address (i) and (iii), the Bayesian framework has its inherent advantages. For
(i), we note that Bayesian methods allow us to put the restrictions on the boundary
conveniently via a prior distribution. Specifically, we propose to use a Gaussian
process (GP) prior indexed by the unit sphere in R

d , that is, the (d − 1)-sphere
S

d−1 = {x = (x1, . . . , xd) ∈ R
d : x2

1 + · · · + x2
d = 1}, or a random series prior on

S
d−1. For (iii), Bayesian methods allow for joint inference since we draw samples

from the joint posterior distributions, as demonstrated by the numerical results in
Section 6. The proposed method achieves the (nearly) minimax optimal rate adapt-
ing to the unknown smoothness level based on a random rescaling incorporated by
a hierarchical prior [39, 43]. Furthermore, Goal (ii) is achieved for any regular fam-
ily of noise and general dimensions. In contrast, for instance, the method in [28]
is presented only for binary images and does not adapt to the unknown smooth-
ness level. Although the quantification of uncertainty and adaptivity of a method
is appealing, Goal (iv) of computational efficiency is important when implement-
ing the procedure. Many adaptive methods are hard to implement since inverses
of covariance matrices need to be calculated repeatedly. In the proposed Bayesian
approach, an efficient Markov chain Monte Carlo (MCMC) sampling is designed
based on the analytical eigendecomposition of the squared exponential periodic
(SEP) kernel (see Section 5), for various noise distributions. In addition, we con-
duct extensive numerical studies to confirm the good performance of the proposed
method and indicate that it is robust under model misspecification.

As the second main contribution, we conduct an extensive study on the repro-
ducing kernel Hilbert space (RKHS) of the SEP Gaussian process, which is essen-
tial to obtain the optimal rate and adaptation in Goal (ii). For the most important
case in applications d = 2, by a simple mapping, the squared exponential (SE)
Gaussian process on S

1 is equivalent to the SEP Gaussian process on [0,1] since
their RKHS’s are isometric (see Lemma 4.1). Recently developed theory of pos-
terior contraction rates implies that nonparametric Bayesian procedures can au-
tomatically adapt to the unknown smoothness level using a rescaling factor via
a hyperparameter in a stationary Gaussian process on [0, 1] or [0,1]d [41, 43].
Rescaled SE Gaussian process is one popular example of this kind. In contrast, the
literature lacks results on the rescaling scheme and the resulting properties of the
SEP Gaussian process, even though it has been implemented in many applications
[27]. It may be due to the apparent similarity shared between the SEP Gaussian
process and the SE Gaussian process. However, these two processes have funda-
mental differences because the rescaling of the argument on S

1 cannot be trans-
formed as a rescaling of the mapped argument on the Euclidean domain. In addi-
tion, the spectral measure of the SEP Gaussian process is discrete (see Lemma 4.2)
thus lacking the absolute continuity of that of the SE Gaussian process which is
critical in establishing many of its properties [43]. As a result, the RKHS of the
SEP Gaussian process for different scales do not follow the usual nesting property.
We overcome these issues by using the special eigenstructure of the SEP kernel
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and intriguing properties of modified Bessel functions of the first kind. Some of
the properties of the SE Gaussian process still hold, however, the proofs are re-
markably different. Nevertheless, we show that the posterior contraction rate of the
boundary by using the SEP Gaussian process is nearly minimax-optimal, which is
n−α/(α+1) up to a logarithmic factor, adaptively to the smoothness level α of the
boundary. Section 4 establishes a list of properties on the RKHS of the SEP Gaus-
sian process, along with the contraction rate calculation and adaptation.

The third main contribution is that we provide some new estimates on Bessel
functions, which are critical when establishing properties on the RKHS of the SEP
Gaussian process. Similar to the second main contribution, these new estimates
may be of interest by their own and are useful in broader contexts such as function
estimation on spheres in addition to the boundary detection problem discussed
here.

In addition to establishing key theoretical properties, we also develop an effi-
cient MCMC method for sampling posterior distribution based on a SEP Gaus-
sian process prior using the explicit eigenstructure of the SEP Gaussian process
obtained in this paper [taking O(n) time in each MCMC run]. The algorithm is
generic, and hence can be used for posterior computation in other curve estimation
problems on the circle such as directional data analysis using the SEP Gaussian
process prior.

The paper is organized as follows. Section 2 introduces the model and notation.
The general results on the posterior contraction rate are given in Section 3, along
with examples of priors and posterior rate calculation including a finite random
series prior (for d = 2 and 3) and the squared exponential Gaussian process prior
on S

1 (for d = 2). In Section 4, we study the corresponding RKHS of a squared
exponential Gaussian process prior on S

1, or equivalently, a squared exponential
periodic Gaussian process on [0,1], heavily relying on the properties of modified
Bessel functions of the first kind. Section 5 proposes an efficient Markov Chain
Monte Carlo methods for computing the posterior distribution of the boundary us-
ing a randomly rescaled Gaussian process prior, for various noise distributions.
Section 6 studies the performance of the proposed Bayesian estimator via simula-
tions, under various settings for both binary images and Gaussian noised images.
Section 7 contains proofs to all main theorems. Section 8 provides several results
on the modified Bessel functions of the first kind. Proofs to all the lemmas and
propositions are deferred to the supplementary materials [24].

2. Model and notation. We consider a d-dimensional image (Xi, Yi)
n
i=1 for

d = 2,3, . . . , where Xi is the location of the ith observation and Yi is the image
intensity. We consider the locations within a d-dimensional fixed size hypercube,
and we specifically use unit hypercube T = [−1/2,1/2]d without loss of general-
ity. Depending on the scheme of collecting data, we have the following options for
the distribution PXi

of Xi :
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• Completely Random Design. Xi
i.i.d.∼ Uniform(T ).

• Jitteredly Random Design. Let Ti be the ith block when partitioning T into
equal-spaced grids. Then Xi is chosen randomly at Ti , that is, Xi ∼ Uniform(Ti)

independently.

The region � is assumed to be star-shaped with a known reference point O ∈ �,
namely, for any point in � the line segment from O to that point is in �; see
[10] and [22], Chapter 5. If the image is star-shaped, this assumption is mild
since in general a reference point can be easily detected by a preliminary esti-
mator of the boundary or it could be directly given in many cases according to
some subject matter knowledge. Images of more general shapes can possibly be
addressed by an ad-hoc “divide and conquer” strategy. The boundary γ = ∂� is a
(d − 1)-dimensional closed manifold. In view of a converse of the Jordan curve
theorem, we represent the closed boundary γ as a function indexed by Sd−1, that is,
γ : Sd−1 → R

+ : s → γ (s). We further assume that the boundary γ is α-smooth,
that is, γ ∈ C

α(Sd−1), where Cα(Sd−1) is the α-Hölder class on S
d−1. Specifically,

let α0 be the largest integer strictly smaller than α, then

C
α(
S

d−1) = {
f : Sd−1 →R

+,
∣∣f (α0)(x) − f (α0)(y)

∣∣ ≤ Lf ‖x − y‖α−α0

for ∀x, y ∈ S
d−1 and some Lf > 0

}
,

where ‖·‖ is the Euclidean distance. A different definition of smoothness was used
by [28] based on the class of sets in [11], which covers cases of unsmooth boundary
but with smooth parameterization. Here, we focus on the class of smooth boundary,
therefore, it may be more natural to use the definition of Cα(Sd−1) directly. It may
be noted that in our setup, the boundary is not affected by reparameterization.

We use θ to denote the triplet (ξ, ρ, γ ). Let φi be the parameters at the ith
location, that is, φi = ξ1(Xi ∈ �) + ρ1(Xi ∈ �c) where 1(·) is the indicator
function. The model assumes that Y |X ∼ P n

θ for some θ , where P n
θ has density∏n

i=1 pθ,i(Yi) = ∏n
i=1 f (Yi;φi) with respect to νn. Let

d2
n

(
θ, θ ′) = 1

n

n∑
i=1

∫
(
√

pθ,i − √
pθ ′,i)

2 dν

be the average of the squares of the Hellinger distance for the distributions
of the individual observations. Let K(f,g) = ∫

f log(f/g)dν, V (f,g) =∫
f | log(f/g)|2 dν, and ‖ · ‖p denote the Lp-norm (1 ≤ p ≤ ∞). We use f � g if

there is a universal constant C such that f � Cg, and f  g if f � g � f . For a
vector x ∈ R

d , define ‖x‖p = {∑d
i |xi |p}1/p and ‖x‖∞ = max1≤i≤p |xi |. For two

sets � and �′, we use � � �′ for their symmetric difference and λ(� � �′) for
its corresponding Lebesgue measure. We also use λ(γ, γ ′) for λ(� � �′) when
γ = ∂� and γ ′ = ∂�′.
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3. Posterior convergence. In the following sections, we shall focus on the
jitteredly random design; the completely random design is more straightforward
and follows the same rate calculation with minor modifications.

3.1. General theorem. The likelihood function is given by

L(Y |X,θ) = ∏
i∈I1

f (Yi; ξ)
∏
i∈I2

f (Yi;ρ),

where I1 = {i : Xi ∈ �} and I2 = {i : Xi ∈ �c}. The parameters (ξ, ρ) ∈ �∗, where
�∗ is a subset of �×� = {(ξ, ρ) : ξ ∈ �,ρ ∈ �}. The set �∗ is typically given as
the full parameter space � × � with some order restriction between ξ and ρ. For
instance, when f (·) is the Bernoulli distribution, then �∗ = {(ξ, ρ) ∈R

2 : 0 < ρ <

ξ < 1} if the inside probability ξ is believed to be larger than the outside probabil-
ity. We assume that the distribution f (·) has the following regularity conditions:

(A1) For fixed φ0, we have K(f (·;φ0), f (·;φ)) � ‖φ − φ0‖2 and V (f (·;φ0),

f (·;φ)) � ‖φ − φ0‖2 as ‖φ − φ0‖2 → 0;
(A2) There exist constants C0, b0 > 0 such that for φ1, φ2 with ‖φ1‖,‖φ2‖ ≤

M , we have h2(f (·;φ1), f (·;φ2)) ≤ C0(1 + Mb0)‖φ − φ0‖2, where h(f (·;φ),

f (·;φ′)) is the Hellinger distance between the two densities f (·;φ) and f (·;φ′).
Assumptions (A1) and (A2) relate divergences and distances between two dis-

tributions to the Euclidean distance between the corresponding parameters. Most
common distributions where the parameters are bounded away from the bound-
ary of their supports satisfy these two assumptions, particularly including all the
distribution families discussed in the paper.

The observations Yi’s are conditionally independent given parameters. In the
following sections, we let θ0 denote the true value of the parameter vector
(ξ0, ρ0, γ0) generating the data, and the corresponding region with boundary γ0
is denoted by �0.

We shall denote the prior on θ by �. By a slight abuse of notation, we denote the
priors on (ξ, ρ) and γ also by �. We next present the abstract forms of the required
prior distributions in order to satisfy the minimax-optimal posterior contraction
rate later on. The prior on (ξ, ρ) is independent with the prior on γ and satisfies
that:

(B1) �(ξ,ρ) has a positive and continuous density on �∗;
(B2) Sub-polynomial tails: there are some constants t1, t2 > 0 such that for any

M > 0, we have �(ξ : ξ /∈ [−M,M]p) ≤ t1M
−t2 and �(ρ : ρ /∈ [−M,M]p) ≤

t1M
−t2 .

As inference on γ is of primary interest, (ξ, ρ) are considered as two nuisance
parameters. When γ is modeled nonparametrically, the contraction rate for θ is
primarily influenced by γ . The following condition is critical to relate dn(θ, θ ′) to
λ(γ, γ ′), which will lead to the contraction rate for γ .
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(C) For given (ξ0, ρ0) ∈ �∗, there exists a positive constant c0,n such that for
arbitrary (ξ, ρ) ∈ �∗, h(f (·; ξ0), f (·;ρ)) + h(f (·;ρ0), f (·; ξ)) ≥ c0,n.

Above we allow the constant c0,n, which is usually h(ξ0, ρ0), to depend on n if
we consider a sequence of true values (ξ0, ρ0). Assumption (C) can be interpreted
as quantifying the separation of the inside and outside densities in terms of the
Hellinger distance. The separation becoming smaller with n indicates the increas-
ing level of difficulty of the problem. Assumption (C) holds for most commonly
used distribution families {f (·;φ);φ ∈ �} when �∗ considers the order restriction
between ξ and ρ. Examples include but are not limited to:

• One-parameter family such as Bernoulli, Poisson, exponential distributions and
�∗ = �2 ∩ {(ξ, ρ) : ρ < ξ}, or �∗ = �2 ∩ {(ξ, ρ) : ρ > ξ}.

• Two-parameter family such as Gaussian distributions, and �∗ = �2 ∩
{((μ1, σ1), (μ2, σ2)) : μ1 > μ2, σ1 = σ2}, or �∗ = �2 ∩ {((μ1, σ1), (μ2, σ2)) :
μ1 > μ2, σ1 > σ2}, or �∗ = �2 ∩ {((μ1, σ1), (μ2, σ2)) : μ1 = μ2, σ1 > σ2}.

The assertions above can be verified by noting that, by keeping one argument
fixed, the Hellinger distance increase in the other argument in each direction as
that moves away from the fixed value in terms of the Euclidean distance. In prac-
tice, the order restriction is often naturally obtained depending on the concrete
problem. For instance, in brain oncology, a tumor often has higher intensity values
than its surroundings in a positron emission tomography scan, while for astronom-
ical applications objects of interest emit light and will be brighter. In this paper, we
use the abstract condition (C) to provide a general framework for various relevant
applications.

Throughout this paper, we shall use h(φ,φ′) to abbreviate h(f (·;φ),f (·;φ′)).
The following general theorem gives a posterior contraction rate for parameters θ

and γ .

THEOREM 3.1. Let a sequence εn → 0 be such that nε2
n/ logn is bounded

away from 0. Under Conditions (A1), (A2), (B1), (B2), if there exists Borel mea-
surable subsets �n ⊂C

α(Sd−1) with σn = sup{‖γ ‖∞ : γ ∈ �n} such that

− log�
(
γ : λ(�0 � �) ≤ ε2

n

)
� nε2

n,(3.1)

− log�
(
γ ∈ �c

n

)
� nε2

n,(3.2)

logN
(
ε2
n/σ

d−1
n ,�n,‖ · ‖∞

)
� nε2

n,(3.3)

then for the entire parameter θ = (ξ, ρ, γ ), we have that for every Mn → ∞,

(3.4) P(n)
θ0

�
(
θ : dn(θ, θ0) ≥ Mnεn|X(n), Y (n)) → 0.

Further, if also Condition (C) holds, then for the boundary γ , we have that for
every Mn → ∞,

(3.5) P(n)
θ0

�
(
γ : λ(γ, γ0) ≥ Mnε

2
n/c

2
0,n|X(n), Y (n)) → 0.
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Equation (3.5) claims that if the rate for θ is εn, then the boundary γ has the
rate ε2

n/c
2
0,n in terms of the discrepancy metric λ(·, ·) and can be faster than n−1/2

which is an interesting aspect of a boundary detection problem. The condition that
nε2

n/ logn is bounded away from 0 is not restrictive since its sufficient condition
εn � n−c for some c < 1/2 is expected for nonparametric problems. It ensures that
the parametric components with priors of sub-polynomial tails are not influential
for the posterior contraction rate compared with the nonparametric part.

REMARK 3.2. It follows immediately that ‖ξ0 − ξ‖ � εn and ‖ρ0 − ρ‖� εn.
These two parameters are not of our interest and are actually estimable at n−1/2

rate. To see this, we assume the separation c2
0,n decays at a rate such that ε2

n/c
2
0,n →

0 (particularly c0,n = c0 satisfies this), one may use a two-step semiparametric
procedure: first, estimate the boundary curve consistently using Theorem 3.1, re-
move a small section of pixels neighboring the estimated boundary and then esti-
mate (ξ, ρ) based on observations at the remaining pixels. The n−1/2-rate possibly
also holds for the original posterior of (ξ, ρ) and will follow if a semiparametric
Bernstein—von Mises theorem can be established using the rate in Theorem 3.1
as a preliminary rate; see [6].

In the next two subsections, we consider two general classes of priors suitable
for applications of Theorem 3.1.

3.2. Rate calculation using finite random series priors. The boundary γ0 is
a function on S

d−1, which can be regarded also as a function on [0,1]d−1 with
periodicity restrictions. We construct a sequence of finite dimensional approxi-
mation for functions in C

α([0,1]d−1) with periodicity restriction by linear com-
binations of the first J elements of a collection of fixed basis functions. Let
η = ηJ = (η1, . . . , ηJ )T be the vector formed by the first J basis functions, and
βT

0,J η be a linear approximation to γ0 with ‖β0,J ‖∞ < ∞. We assume that the
basis functions satisfy the following condition:

(D) max1≤j≤J ‖ηj‖∞ ≤ t3J
t4 for some constants t3, t4 ≥ 0.

Priors. We use a random series prior for γ induced from βT η through the num-
ber of basis functions J and the corresponding coefficients β given J . For the
simplicity of notation, we use β (β0) for βJ (β0,J ) when J is explicit from the
context. Let � stand for the probability mass function (p.m.f.) of J and also for
the prior of β satisfying the following conditions:

(E1) − log�(J > j)� j log j , and − log�(J = j) � j log j .
(E2) − log�(‖β − β0‖1 ≤ ε|J ) � J log(1/ε), and �(β /∈ [−M,M]J |J ) ≤

J exp{−CM2} for some constant C.

For instance, a Poisson prior on J and a multivariate normal for β meet the re-
quired conditions.
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Finite random series priors with a random number of coefficients form a very
tractable flexible class of priors offering alternative to Gaussian process priors.
Their properties including asymptotic behavior of posterior distributions have been
thoroughly studied by [1] and [39].

We derive conditions to obtain the posterior contraction rate as follows.

THEOREM 3.3. Let εn be a sequence such that εn → 0 and nε2
n/ logn is

bounded away from 0, and Jn ≤ n be a sequence such that Jn → ∞. Under con-
ditions (A1), (A2), (B1), (B2), (C), (D), (E1) and (E2), if εn, Jn satisfy∥∥γ0 − βT

0,Jn
η
∥∥∞ ≤ ε2

n/2, c1nε2
n ≤ Jn logJn ≤ Jn logn ≤ c2nε2

n,

for some constants c1 > 0 and c2 > 0, then the posterior contraction rate for γ in
terms of the distance λ(·, ·) is ε2

n/c
2
0,n.

REMARK 3.4. The optimal value of Jn, say Jn,α typically depends on the de-
gree of smoothness α. We can use a fixed value J = Jn when α is given. The pos-
terior distribution can be easily computed, for example, by a Metropolis–Hastings
algorithm. If α is unknown, one will need to put a prior on J and reversible-jump
MCMC may be needed for computation.

EXAMPLE 3.5 (Trigonometric polynomials). For the case d = 2 (2D image),
we use trigonometric polynomials {1, cos 2πjω, sin 2πjω, . . . : ω ∈ [0,1]} as the
basis. If γ0 is α-smooth, we have ‖γ0 − βT

0,jη‖∞ � j−α for some appropriate
choice of β0,j (cf. [19]). Therefore, according to Theorem 3.3, we can obtain the
rate εn by equating J−α

n  ε2
n and Jn logJn  nε2

n, which gives the following rate
εn and the corresponding Jn:

Jn  n1/(α+1)(logn)−1/(α+1), ε2
n  n−α/(α+1)(logn)α/(α+1).

EXAMPLE 3.6 (Spherical harmonics). For 3D images (d = 3), periodic func-
tions on the sphere can be expanded in the spherical harmonic basis functions.
Spherical harmonics are eigenfunctions of the Laplacian on the sphere. It satisfies
condition (D) and more technical details and the analytical expressions of spheri-
cal harmonics can be found in [40], Chapter 2, while MATLAB implementation is
available in [12]. Let Kn be the degree of the spherical harmonics, then the number
of basis functions are Jn = K2

n . The approximation error for spherical harmonics

is J
−α/2
n [9], Theorem 4.4.2. Therefore, we can obtain the posterior contraction

rate by equating J
−α/2
n  ε2

n and Jn logJn  nε2
n, which gives

Jn  n2/(α+2)(logn)−2/(α+2), ε2
n  n−α/(α+2)(logn)α/(α+2).
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3.3. Rescaled squared exponential Gaussian process prior on S
1. We use a

rescaled squared exponential Gaussian process (GP) to induce priors on γ when
d = 2. Specifically, let W be a GP with the squared exponential kernel function
K(t, t ′) = exp(−‖t − t ′‖2), where t, t ′ ∈ S

1 and ‖ · ‖ is the Euclidean distance.
Let Wa = (Wat , t ∈ S

1) be the scaled GP with scale a > 0, whose covariance
kernel becomes Ka(t, t

′) = exp(−a2‖t − t ′‖2). The rescaling factor a acts as a
smoothing parameter and allows us to control smoothness of a sample path from
the prior distribution.

When d = 2, it is natural to use the map Q : [0,1] → S
1,ω → (cos 2πω,

sin 2πω) as in [27], then by Lemma 4.1, the squared exponential kernel Ka(·, ·)
on S

1 has the equivalent RKHS as of the kernel Ga(t1, t2) on [0,1] defined by

Ga(t1, t2) = exp
(−a2{

(cos 2πt1 − cos 2πt2)
2 + (sin 2πt1 − sin 2πt2)

2})
= exp

{−4a2 sin2(πt1 − πt2)
}
.

We call Ga(·, ·) on the unit interval as squared exponential periodic (SEP) kernel.
Theorem 3.7 gives the posterior contraction rate if a rescaled SEP Gaussian process
is used as the prior.

THEOREM 3.7. Let Conditions (A1), (A2), (B1), (B2) and (C) hold:

(i) Deterministic rescaling: If the smoothness level α is known, and we choose
a = an = n1/(α+1)(logn)−2/(α+1), then the posterior contraction rate in Theo-
rem 3.1 is determined by ε2

n = n−α/(α+1)(logn)2α/(α+1).
(ii) Random rescaling: If the rescaling factor a follows a gamma prior, then the

contraction rate in Theorem 3.1 is determined by ε2
n = n−α/(α+1)(logn)2α/(α+1)

for any α > 0.

Thus, when the underlying smoothness level α is unknown, the SEP Gaussian
process prior can adapt to α in a hierarchical Bayesian approach by assigning the
rescaling parameter an appropriate prior such as a gamma distribution [43].

The proof to Theorem 3.7 relies on an extensive study of the RKHS of the
rescaled SEP Gaussian process (see Section 4). We also obtain the eigenstructure
of the SEP Gaussian process analytically, leading to efficient MCMC method for
posterior sampling for various distribution families (see Section 5).

REMARK 3.8. The rates obtained in Examples 3.5, 3.6 and Theorem 3.7 are
optimal in the minimax sense up to a logarithmic factor; see [22], Chapter 7. By
a uniform strengthening of Theorem 3 of [15], the conclusion can be strengthened
to uniform in (ξ0, ρ0, γ0) ∈ �0 if on �0 Assumptions (A1) and (C) hold uniformly
and ‖γ0‖∞ ≤ C0 for a universal constant C0 > 0.
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3.4. Rescaled Gaussian process with the heat kernel. For a Gaussian process
prior, various kernels may be used in addition to the squared exponential kernel, for
example, the heat kernel Gaussian processes studied by [7]. Without introducing
the technical details on heat kernel theory, a Gaussian process with the heat kernel
on S

d−1 can be represented as

WT (x) =
∞∑

k=0

Nk(d)∑
l=1

e−λkT /2Zk,lek,l(x),

for any x ∈ S
d−1, where Zk,l are independent standard normal variables indexed by

(k, l), and {ek,l(·),1 ≤ l ≤ Nk(d)} is an orthonormal basis of the space of spherical
harmonics of order k whose eigenvalue is λk and dimension is Nk(d) = (2k +
d − 2)

(d+k−3
k

)
/(d − 2). Starting from eigendecomposition of the heat kernel, the

rescaling is applied directly to the eigenvalues λk . Note that this is a different
rescaling strategy compared to the SEP Gaussian process where the rescaling is
applied to the distances between two points. If we randomly rescale the process
by letting T follow a gamma prior, then similar results as in Theorem 3.7 hold
(possibly with a different logarithmic factor) based on the study of RKHS of WT (·)
available in [7] which are parallel to Lemma 4.4 to Lemma 4.8, following the
argument in proving Theorem 3.7.

4. RKHS of SEP Gaussian processes. The RKHS of a GP plays a criti-
cal role in calculating the posterior contraction rate. There has been an extensive
study of the RKHS of a GP indexed by [0,1]d−1 (e.g., [41, 43]). A GP indexed
by S

d−1 can be naturally related to a GP indexed by [0,1]d−1 by a surjection
Q : [0,1]d−1 → S

d−1 (e.g., using the spherical coordinate system). Define the fol-
lowing kernels on [0,1]d−1: G(s1, s2) = K(Qs1,Qs2) for any s1, s2 ∈ [0,1]d−1.
Let H be the RKHS of the GP defined by the kernel K , equipped with the inner
product 〈·, ·〉H and the RKHS norm ‖ · ‖H. For the GP with covariance kernel G,
we denote the RKHS, its inner product and norm by H

′, 〈·, ·〉H′ and ‖ · ‖H′ , respec-
tively. Then the following lemma shows that the two RKHSs related by the map Q

are isomorphic.

LEMMA 4.1. (H′,‖ · ‖H′) and (H,‖ · ‖H) are isometric; (H′,‖ · ‖∞) and
(H,‖ · ‖∞) are also isometric.

However, if K is the squared exponential kernel on S
d−1, the kernel G(·, ·) is no

longer a squared exponential kernel on [0,1]d−1. More importantly, it is not even
stationary for general d > 2. The case d = 2 is an exception, for which the RKHS
can be studied via an explicit treatment such as analytical eigendecompositions of
its equivalent kernel on the unit interval. We next focus on the case d = 2, and
study the RKHS of a GP Wa = {Wa

t : t ∈ [0,1]} with the SEP kernel Ga(·, ·)
which was used in Section 3.3.
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The SEP kernel Ga(·, ·) is stationary since Ga(t1, t2) = φa(t1 − t2), where
φa(t) = exp{−4a2 sin2(πt)}. The following result gives the explicit form of the
spectral measure μa of the process Wa

t . Let δx be the Kronecker delta function
and In(x) be the modified Bessel function of the first kind with order n and argu-
ment x where n ∈ Z and x ∈ R.

LEMMA 4.2. We have φa(t) = ∫
e−its dμa(s), where μa is a symmetric and

finite measure and given by μa = ∑∞
n=−∞ e−2a2

In(2a2)δ2πn.
In addition, the Karhunen–Loève expansion of the covariance kernel is

Ga(t, t
′) = ∑∞

k=1 vk(a)ψk(t)ψk(t
′), where the eigenvalues are given by

v1(a) = e−2a2
I0

(
2a2)

, v2j (a) = v2j+1(a) = e−2a2
Ij

(
2a2)

, j ≥ 1,

with eigenfunctions ψj(t), j = 1,2, . . . given by the Fourier basis functions
{1, cos 2πt, sin 2πt, . . .} in that order.

The measure μa is the so-called spectral measure of Wa . In the existing lit-
erature [41, 43], posterior contraction properties of rescaled GP on [0,1]d−1

were studied relying on the absolute continuity of the spectral measure and the
scaling relation μa(B) = μ1(aB). However, Lemma 4.2 shows that the spec-
tral measure of an SEP Gaussian process is discrete and the simple relationship
μa(B) = μ1(aB) does not hold. We instead heavily use properties of modified
Bessel functions to study the RKHS of an SEP Gaussian process.

Note that the discrete measure μa has subexponential tails since∫
e|s|μa(ds) =

∞∑
n=−∞

e2π |n|e−2a2
In

(
2a2) ≤ 2e−2a2

∞∑
n=0

e2πnIn

(
2a2)

which is bounded by 2ea2(e2π+e−2π−2) < ∞ [Proposition 8.1(a)]. The following
Lemma 4.3 describes the RKHS H

a of the rescaled process Wa , as real parts of a
closed set containing complex valued functions.

LEMMA 4.3. The RKHS H
a of the process Wa is the set of real parts of all

functions in {
h : [0,1] → C, h(t) =

∞∑
n=−∞

e−it2πnbn,ae
−2a2

In

(
2a2)

,

bn,a ∈C,

∞∑
n=−∞

|bn,a|2e−2a2
In

(
2a2)

< ∞
}
,

and it is equipped with the squared norm

‖h‖2
Ha =

∞∑
n=−∞

|bn,a|2e−2a2
In

(
2a2) =

∞∑
n=−∞

1

e−2a2
In(2a2)

∣∣∣∣∫ 1

0
h(t)eit2πn dt

∣∣∣∣2.
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We then study the approximation property of Ha to an arbitrary smooth func-
tion w ∈ C

α[0,1]. Unlike the approach approximating w by a convolution of w0

with a smooth function as used in [41, 43], we use a finite Fourier approximation
to w.

LEMMA 4.4. For any function w ∈ C
α[0,1], there exist constants Cw and

Dw depending only on w such that inf{‖h‖2
Ha : ‖w − h‖∞ ≤ Cwa−α} ≤ Dwa, as

a → ∞.

Lemma 4.5 obtains an entropy estimate using Proposition 8.3 on modified
Bessel functions.

LEMMA 4.5. Let Ha
1 be the unit ball of the RKHS of the process Wa = (Wa

t :
0 ≤ t ≤ 1), then we have logN(ε,Ha

1,‖ · ‖∞)� max(a,1) · {log(1/ε)}2.

As a corollary of Lemma 4.5, using the connection between the entropy of the
unit ball of the RKHS and the small ball probability [23, 25], we have the following
estimate of the small ball probability.

LEMMA 4.6 (Lemma 4.6 in [43]). For any a0 > 0, there exits constants C and
ε0 that depend only on a0 such that, for a ≥ a0 and ε ≤ ε0,

− log P
(

sup
0≤t≤1

∣∣Wa
t

∣∣ ≤ ε
)

≤ Ca

(
log

a

ε

)2
.

The proof of Theorem 3.7(ii) needs a nesting property of the RKHS of Wa

for different values of a. Lemma 4.7 in [43] proved that
√

aHa
1 ⊂ √

bHb
1 if

a ≤ b for a squared exponential GP indexed by [0,1]d−1. For the SEP Gaus-
sian process prior, this does not hold but can be modified up to a global con-
stant.

LEMMA 4.7. If a ≤ b, then
√

aHa
1 ⊂ √

cbHb
1 for a universal constant c.

When a ↓ 0, sample paths of Wa tend to concentrate near a constant value by
the following lemma. This property is crucial in controlling the variation of sample
paths for small a.

LEMMA 4.8. For h ∈ H
a
1, we have |h(0)| ≤ 1 and |h(t) − h(0)| ≤ 2

√
2πat

for every t ∈ [0,1].
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5. Sampling algorithms. We assume that the origin (center of the image) is
inside the boundary, and thus use it as the reference point to represent the observed
image in a polar coordinate system as (ω, r;Y ), where (ω, r) = {(ωi, ri)}ni=1 are
the locations using polar coordinates and Y = {Yi}ni=1 are the image intensities.
Let γ be a closed curve, and γ be values of γ evaluated at each ω.

For most kernels, the eigenfunctions and eigenvalues are challenging to obtain
although there are several exceptions ([37], Chapter 4.3). Therefore, a randomly
rescaled GP prior may be infeasible in practice since the numerical inversion of a
covariance matrix is often needed when no analytical forms are available. How-
ever, thanks to the analytical eigendecomposition the SEP kernel in Lemma 4.2,
we can implement this theoretically appealing prior in an computationally effi-
cient way. If a curve γ (ω) ∼ GP(μ(ω),Ga(·, ·)/τ ), we then have the equivalent
representation γ (ω) = μ(ω) + ∑∞

k=1 zkψk(ω), where zk ∼ N(0, vk(a)/τ) inde-
pendently.

The modified Bessel function of the first kind used in vk(a)’s is a library func-
tion in most software, such as besselI in R language. Figure 1(a) shows that
eigenvalues decay very fast when a = 1,10. When a increases, the smoothness
level of the kernel decreases. In practice, we typically do not use values as large
as 100 since then the kernel becomes very close to the identity matrix, and thus
the resulting prior paths become very rough. The fast decay rate of vk(a) for
fixed a [Proposition 8.1(c3)] guarantees that some suitable finite order trunca-
tion of the Karhunen–Loève expansion is able to approximate the kernel function
well. If we use L = 2J + 1 basis functions, then the truncated process is given
by γ (ω) = ∑L

k=1 zkψk(ω) + μ(ω). Let PVEa = ∑L
k=1 vk(a)/

∑∞
k=1 vk(a) be the

percentage of variance explained by the first L basis functions, where the denom-

FIG. 1. Decay rate of the eigenvalues of the squared exponential kernel. Figure (a) plots the values
of v2J+1(a) at J = 0, . . . ,20 when a = 1,10,100. Figure (b) plots the percentage of the variance
explained (i.e., PVEa ) if using the first 21 (J = 10) basis functions at different values of a.



2204 M. LI AND S. GHOSAL

inator
∑∞

k=1 vk(a) = e−2a2 ∑∞
k=−∞ Ik(2a2) = 1 according to the definition of vk

in Lemma 4.2 and the properties of modified Bessel functions of the first kind
obtained in Proposition 8.1. Figure 1(b) shows that with J = 10, we are able to
explain at least 98% of all the variability for a reasonable range of a’s from 0
to 10.

Let � be the n by L matrix with the kth column comprising of the evaluations
of ψk(·) at the components of ω, and μ comprising of the evaluations of μ(·) at
the components of ω. Then the Gaussian process prior for the boundary curve can
be expressed as

γ = �z + μ; z ∼ N(0,�a/τ ),

where �a = diag(v1(a), . . . , vL(a)). We use the following priors for the hyper-
parameters involved in the covariance kernel: τ ∼ Gamma(ατ = 500, βτ = 1) and
a ∼ Gamma(αa = 2, βa = 1). For the mean μ(·), we use a constant 0.1. Note that
here we also can use the empirical Bayes approach to estimate the prior mean by
any ordinary one-dimensional change-point method with an extra step of smooth-
ing. However, our numerical investigation shows that our method is robust with
respect to the specification of μ(·).

The priors for (ξ, ρ) depend on the error distributions. We also need to use the
order information between the parameters to keep the two regions distinguishable.
We use OIB, OIN, OIG for ordered independent beta, normal and gamma distribu-
tions, respectively. If not specified explicitly, the parameters are assumed to be in a
decreasing order. It is easy to see that this convention is for simplicity of notation,
and any order between the two region parameters are allowed in practice. Below
we give the conjugate priors for (ξ, ρ) for some commonly used noise distribu-
tions:

• Binary images: the parameters are the probabilities (π1, π2) ∼ OIB(α1, β1,

α1, β1);
• Gaussian noise: the parameters are the mean and standard deviation

(μ1, σ1,μ2, σ2) with prior distributions (μ1,μ2) ∼ OIN(μ0, σ
2
0 ,μ0, σ

2
0 ) and

(σ−2
1 , σ−2

2 ) ∼ OIG(α2, β2, α2, β2).
• Poisson noise: the parameters are the rates (λ1, λ2) ∼ OIG(α3, β3, α3, β3);
• Exponential noise: the parameters are the rates (λ1, λ2) ∼ OIG(α4, β4, α4, β4).

In fact, any error distributions with conjugacy properties conditionally on the
boundary can be directly used. We specify the hyper-parameters such that the cor-
responding prior distributions are spread out. For example, in the simulation, we
use α1 = β1 = 0 for binary images; we use μ0 = ȳ, σ0 = 103 and α2 = β2 = 10−2

for Gaussian noise.
We use the slice sampling technique [30] within the Gibbs sampler to draw

samples from the posterior distribution for (z, ξ, ρ, τ, a). Below is a detailed de-
scription of the sampling algorithms for binary images:
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1. Initialize the parameters to be z = 0, τ = 500 and a = 1. The parameters
(ξ, ρ) = (π1, π2) are initialized by the maximum likelihood estimates (MLE)
given the boundary to be μ(·).

2. z|(π1, π2, τ, a,Y ): the conditional posterior density of z (in a logarithmic
scale and up to an additive constant) is equal to

∑
i∈I1

logf (Yi;π1) + ∑
i∈I2

logf (Yi;π2) − τzT �−1
a z

2

= N1 log
π1(1 − π2)

π2(1 − π1)
+ n1 log

1 − π1

1 − π2
− τzT �−1

a z

2
,

where n1 = ∑
i 1(ri < γ i ) and N1 = ∑

i 1(ri < γ i )Yi . We use slice sampling of
one-coordinate-at-a-time for this step.

3. τ |(z, a) ∼ Gamma(α∗
τ , β∗

τ ), where α∗
τ = ατ + L/2 and β∗

τ = βτ +
zT �−1

a z/2;
4. (π1, π2)|(z,Y ) ∼ OIB(α1 + N1, β1 + n1 − N1, α1 + N2, β1 + n2 − N2),

where N2 is the count of 1’s outside γ and n2 is the number of observations out-
side γ .

5. a|z, τ : use slice sampling by noting that the conditional posterior density of
a (in a logarithmic scale and up to an additive constant) is

− log |�a|/2 − τzT �−1
a z/2 + (αa − 1) loga − βa

= −
L∑

k=1

logvk(a)/2 −
L∑

k=1

τz2
k/

{
2vk(a)

} + (αa − 1) loga − βa.

The above algorithm is generic beyond binary images. For other noise distribu-
tions, the update of τ and a are the same. The update of z and (ξ, ρ) in Step 2 and
Step 4 will be changed using the corresponding priors and conjugacy properties.
For example, for Gaussian noise, the parameters (ξ, ρ) are (μ1, σ1,μ2, σ2), and
the conditional posterior density (in the logarithmic scale and up to an additive
constant) used in Step 2 is changed to

−n1(logσ1 − logσ2) − ∑
i∈I1

(yi − μ1)
2

2σ 2
1

− ∑
i∈I2

(yi − μ2)
2

2σ 2
2

− τzT �−1
a z

2
.

For Step 4, the conjugacy step is changed to

(μ1,μ2)|(z, σ1, σ2,Y ) ∼ OIN,
(
σ−2

1 , σ−2
2

)|(z,μ1,μ2,Y ) ∼ OIG.

Similarly, it is straightforward to apply this algorithm to images where the noise
follows Poisson, exponential or another distribution family with ordered conjugate
prior.
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6. Simulations.

6.1. Numerical results for binary images. We use jitteredly random design for
locations (ω, r) and three cases for boundary curves:

• Case B1. Ellipse given by r(ω) = b1b2/
√

(b2 cosω)2 + (b1 sinω)2, where b1 ≥
b2 and ω is the angular coordinate measured from the major axis. We set b1 =
0.35 and b2 = 0.25.

• Case B2. Ellipse with shift and rotation: centered at (0.1, 0.1) and rotated by
60◦ counterclockwise. We use this setting to investigate the influence of the
specification of the reference point.

• Case B3. Regular triangle centered at the origin with the height to be 0.5. We use
this setting to investigate the performance of our method when the true boundary
is not smooth at some points.

We keep using π2 = 0.2 and vary the values of π1 to be (0.5,0.25). For each com-
bination of (π1, π2), the observed image is m × m where m = 100,500 (therefore
the total number of observations is n = m2). The MCMC procedure is iterated
5000 times after 1000 steps burn-in period. For the estimates, we calculate the
Lebesgue error (area of mismatched regions) between the estimates and the true
boundary. For the proposed Bayesian approach, we use the posterior mean as the
estimate and construct a variable-width uniform credible band. Specifically, let
{γi(ω)}5000

1000 be the posterior samples and (γ̂ (ω), ŝ(ω)) be the posterior mean and
standard deviation functions derived from {γi(ω)}. For each MCMC run, we cal-
culate the distance ui = ‖(γi − γ̂ )/s‖∞ = supω{|γi(ω) − γ̂ (ω)|/̂s(ω)} and obtain
the 95th percentile of all the ui’s, denoted as L0. Then a 95% uniform credible
band is given by [γ̂ (ω) − L0ŝ(ω), γ̂ (ω) + L0ŝ(ω)].

We compare the proposed approach with a maximum contrast estimator (MCE)
which first detects boundary pixels followed by a post-smoothing via a penalized
Fourier regression. In the 1-dimensional case, the MCE selects the location which
maximizes the differences of the parameter estimates at the two sides. This is simi-
lar to many pixel boundary detection algorithms discussed in [32]. In images, for a
selected number of angles (say 1000 equal-spaced angles from 0 to 2π ), we choose
the neighboring bands around each angle and apply MCE to obtain the estimated
radius and then smooth those estimates via a penalized Fourier regression. Note
that unlike the proposed Bayesian approach, a joint confidence band is not conve-
niently obtainable for the method of MCE, due to its use of a two-step procedure.

As indicated by Table 1, the proposed Bayesian method has Lebesgue errors
typically less than 2.5%. In addition, the proposed method outperforms the bench-
mark method MCE significantly. We also observe that the MCE method is highly
affected by the number of basis functions; in contrast, the proposed Bayesian
method adapts to the smoothness level automatically. The comparison between
Case B1 and Case B2 shows that the specification of the reference point will not
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TABLE 1
Lebesgue errors (×10−2) of the methods based on 100 simulations. The standard errors are

reported below in the parentheses

m = 100, (π1,π2) = (0.50,0.20) m = 100, (π1,π2) = (0.25,0.20)

Case B1 Case B2 Case B3 Case B1 Case B2 Case B3

Bayesian method 0.64 0.67 2.26 0.71 0.8 2.36
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

MCE with 5 bases 6.57 6.58 6.03 6.39 10.09 7.03
(0.25) (0.21) (0.07) (0.19) (0.20) (0.11)

MCE with 31 bases 8.75 7.84 5.96 9.19 11.8 7.86
(0.18) (0.19) (0.10) (0.16) (0.19) (0.14)

influence the performance of our methods since the differences are not significant
compared with the standard error.

Figure 2 confirms the superior performance of the proposed method compared
with the smoothed MCE method with 5 and 31 basis functions when the true
boundary curve is an ellipse, an ellipse with shift and rotation and a triangle.
Even in the case of π1 = 0.25 where the contrast at two sides of the boundary
is small, the proposed method is still able to capture the boundary when m = 500.
This observation is consistent with the result derived from the infill asymptotics
when the number of data points increase within images of fixed size. In addition,
we also obtain joint credible bands using the samples drawn from the joint poste-
rior distribution. Figure 3 plots the trace plots of (a,π1, π2) and the histogram of
a to illustrate the mixing and convergence of the posterior samples for Case B1
when m = 500 and the true parameters (π1, π2) = (0.25,0.20). Similar plots are
obtained for other scenarios but are not presented here.

6.2. Numerical results for Gaussian noised images. For Gaussian noised im-
ages, we keep using an ellipse with shift and rotation as the true boundary curve
(i.e., Case B2). We consider the following scenarios where the two standard devi-
ations are all given by (σ1, σ2) = (1.5,1) and the observed image is 100 × 100:

• Case G1. μ1 = 4,μ2 = 1, that is, distributions in the two regions differ in both
of the first two moments;

• Case G2. μ1 = μ2 = 1, that is, distributions in the two regions only differ in the
standard deviation;

• Case G3. (μ1,μ2) are functions of the location. Let rI be the smallest radius
inside the boundary, and rO the largest radius outside the boundary. We use μ(i)

for the mean of Yi and let μ(i) = ri −rI +0.2 if it is inside, while μ(i) = ri +rO

if outside. Therefore, the mean values vary at each location but have a gap of
0.2 between the two regions.



2208 M. LI AND S. GHOSAL

FIG. 2. Performance on binary images (Column 1: observations) in various cases. Columns 2–4
plot the estimate (solid line in red) against the true boundary (dotted line in black). A 95% uniform
credible band (in gray) is provided for the Bayesian estimate (Column 2).
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FIG. 3. Trace plots and histograms of posterior samples of (π1,π2, a) for Case B1 when m = 500
and π1 = 0.25.

• Case G4. We use mixture normal distribution 0.6N(2, σ 2
1 )+ 0.4N(1, σ 2

2 ) for the
inside distribution; the outside distribution is still Gaussian with mean μ2 = 1.

Cases G3 and G4 allow us to investigate the performance of the proposed method
when the distribution f (·) in the model is misspecified. For comparison, we
use a 1-dimensional change-point detection algorithm [8, 21] via the R package
changepoint [20]. For the post-smoothing step, we use a penalized Fourier re-
gression with 5 and 31 basis functions (method CP5 and CP31 in Table 2). Here,
we use the estimates of CP5 as the mean in the Gaussian process prior. Table 2
shows that the proposed method has good performance for all the four cases. The
method of CP5 and CP10 produce small errors in Case G1, but suffer a lot from
the other three cases. It shows that the change-point method highly depends on
the distinction between the means (Case G2), and also it loses its way when the
model is misspecified. In fact, for Cases G2, G3 and G4, the CP5 and CP31 meth-
ods lead to a curve almost containing the whole frame of the image. The proposed
Bayesian approach which models the boundary directly, seems to be not affected
even when the model is substantially misspecified (Case G3). Figure 4 shows the
noisy observation and our estimation from 1 replication for all the four cases. We
can see the impressive performance of the proposed method. It also shows that the

TABLE 2
Performance of the methods for Gaussian noised images based on 100 simulations. The Lebesgue

error (×10−2) between the estimated boundary the true boundary is presented. The maximum
standard errors of each column are reported in the last row

Case G1 Case G2 Case G3 Case G4

Bayesian Method 0.11 0.99 0.69 0.99
CP5 2.90 62.91 62.2 61.12
CP31 1.99 64.00 63.26 62.10

SE 0.01 0.26 0.19 0.27
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FIG. 4. Proposed Bayesian estimates for Gaussian noised images with elliptic boundary. The first
row plots the noisy observations, while the second row is the corresponding estimate (solid line in
red) against the true boundary (dotted line in black), with a 95% uniform credible band (in gray).

contrast between the two regions are visible for Cases G3 and G4, and the pro-
posed method is capable of capturing the boundary even though the distributions
are misspecified.

7. Proofs to main theorems.

PROOF OF THEOREM 3.1. Step 1: Prior concentration. Let

B∗
n(θ0, ε) =

{
θ : 1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1

n

n∑
i=1

Vi(θ0, θ) ≤ ε2

}
,

where Ki(θ0, θ) = K(Pθ0,i , Pθ,i) and Vi(θ0, θ) = V (Pθ0,i , Pθ,i). When ‖ξ −ξ0‖ ≤
ε2 and ‖ρ − ρ0‖ ≤ ε2 for some small ε, it follows that

(7.1)

Ki(θ0, θ) = K(ξ0, ξ)P (Xi ∈ �0 ∩ �) + K(ρ0, ρ)P
(
Xi ∈ �c

0 ∩ �c)
+ K(ξ0, ρ)P

(
Xi ∈ �0 ∩ �c) + K(ρ0, ξ)P

(
Xi ∈ �c

0 ∩ �
)

� ‖ξ0 − ξ‖2 + ‖ρ0 − ρ‖2 + P
(
Xi ∈ �c

0 ∩ �
) + P

(
Xi ∈ �0 ∩ �c)

= ‖ξ0 − ξ‖2 + ‖ρ0 − ρ‖2 + nλ
[
(�0 � �) ∩ Ti

]
,

according to the Assumption (A). Consequently, the average Kullback–Leibler di-
vergence:

(7.2)

1

n

n∑
i=1

Ki(θ0, θ)� ‖ξ0 − ξ‖2 + ‖ρ0 − ρ‖2 + 1

n
nλ

[
(�0 � �) ∩ (∪Ti)

]
= ‖ξ0 − ξ‖2 + ‖ρ0 − ρ‖2 + λ(�0 � �).
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Similarly, the second moment Vi of the log-likelihood ratio is bounded in the same
way, that is, Vi(θ0, θ)� ‖ξ0 − ξ‖2 + ‖ρ0 − ρ‖2 + λ(�0 � �), which leads to

B∗
n(θ0, ε) ⊃ {

(ξ, ρ, γ ) : ‖ξ0 − ξ
∥∥2≤ ε2/3,

∥∥ρ0 − ρ‖2 ≤ ε2/3, λ(�0 � �) ≤ ε2/3
}
.

Therefore, we have �(B∗
n(θ0, ε)) � �(‖ξ0 − ξ‖2 ≤ ε2/3,‖ρ0 − ρ‖2 ≤ ε2/3) ×

�(λ(�0 � �) ≤ ε2/3), or equivalently,

− log�
(
B∗

n(θ0, εn)
)
�− log�

(‖ξ0 − ξ‖2 ≤ ε2/3,‖ρ0 − ρ‖2 ≤ ε2/3
)

− log�
(
γ : λ(�0 � �) ≤ ε2/3

)
.

By Assumption (B1), the prior density of (ξ, ρ) is bounded below in a neighbor-
hood of (ξ0, ρ0), indicating that �(‖ξ0 − ξ‖2 ≤ ε2/3,‖ρ0 − ρ‖2 ≤ ε2/3) � ε2p ,
and thus − log�(‖ξ0 − ξ‖2 ≤ ε2/3,‖ρ0 − ρ‖2 ≤ ε2/3)� log(1/ε2).

Let εn be a sequence such that εn → 0 and nε2
n/ logn bounded away from 0, and

hence log(1/ε2
n)� logn � nε2

n. In order to ensure that − log�(B∗
n(θ0, εn))� nε2

n,
it suffices that − log�(γ : λ(�0 � �) ≤ ε2

n)� nε2
n in equation (3.1).

Step 2: Sieves. For each prior, we shall define a sieve �n for γ , and consider
�n = [−cn, cn]p × [−cn, cn]p × �n as the sieve for θ . Because

�
(
�c

n

) ≤ �
(
ξ : ξ /∈ [−cn, cn]p) + �

(
ρ : ρ /∈ [−cn, cn]p) + �(γ : γ /∈ �n),

in order to ensure that the sieve contains most of the prior mass, it is sufficient
to show − log�(�c

n) � nε2
n as in equation (3.2) provided that − log�(ξ : ξ /∈

[−cn, cn]p)� nε2
n and − log�(ρ : ρ /∈ [−cn, cn]p)� nε2

n. For the later two condi-

tions, we let cn = enε2
n . Then − log�(ξ : ξ /∈ [−cn, cn]p)� − log c

−t2
n by Assump-

tion (B2), which is t2 ·nε2
n � nε2

n; similarly, we have − log�(ξ : ξ /∈ [−cn, cn]p)�
nε2

n.
Step 3: Entropy bounds. Let σn = supγ∈�n

‖γ ‖∞, for γ, γ ′ ∈ �n, we then have

λ
(
γ, γ ′) =

∫
Sd−1

∣∣∣∣∫ γ ′(ω)

γ (ω)
rd−1 dr

∣∣∣∣dω ≤ σd−1
n

∥∥γ ′ − γ
∥∥∞

∫
Sd−1

dω

� σd−1
n

∥∥γ − γ ′∥∥∞.

Like in equation (7.2), the average squared Hellinger distance d2
n has the fol-

lowing bound when ‖ξ − ξ ′‖ ≤ ε and ‖ρ − ρ′‖ ≤ ε for some small ε and
max(‖ξ‖,‖ξ ′‖,‖ρ‖,‖ρ′‖) ≤ M :

d2
n

(
θ, θ ′) = 1

n

n∑
i=1

∫
h2(

φi,φ
′
i

)
dPXi

� h2(
ξ, ξ ′) + h2(

ρ,ρ′) + λ
(
� � �′)

�
(
1 + Mb0

)(∥∥ξ − ξ ′∥∥2 + ∥∥ρ − ρ′∥∥2) + σd−1
n

∥∥γ − γ ′∥∥∞
by Condition (A2). Therefore, the entropy logN(εn,�n, dn) is bounded by

2 logN
(
ε2
n/(1 + cn)

b0, [−cn, cn]p,‖ · ‖) + logN
(
ε2
n/σ

d−1
n ,�n,‖ · ‖∞

)
� log

cn

ε2
n

+ logN
(
ε2
n/σ

d−1
n ,�n,‖ · ‖∞

)
.
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Recall that cn = enε2
n . Therefore, log(cn/ε

2
n) ≤ nε2

n + log(1/ε2
n) � nε2

n. Hence, in
order to ensure logN(εn,�n, dn) � nε2

n, it is sufficient to verify that
logN(ε2

n/σ
d−1
n ,�n,‖ · ‖∞)� nε2

n which is equation (3.3).
Then equation (3.4) follows by applying Theorem 4 of [15].
Equation (3.5) will follow if we show that dn(θ, θ0) ≤ εn implies λ(� � �0) �

ε2
n/c

2
0,n. As argued in the derivation of (7.1) and (7.2), d2

n(θ, θ0) is given by

1

n

n∑
i=1

∫
h2(

φ,φ0
)
dPXi

= h2(ξ0, ξ)λ(�0 ∩ �) + h2(ρ0, ρ)λ
(
�c

0 ∩ �c)
+ h2(ξ0, ρ)λ

(
�0 ∩ �c) + h2(ρ0, ξ)λ

(
�c

0 ∩ �
)
.

The above expression is larger than each of the following three expressions:

h2(ξ0, ξ)λ(�0 ∩ �) + h2(ρ0, ξ)λ
(
�c

0 ∩ �
)

≥ (h(ξ0, ξ) + h(ρ0, ξ))2

2
· (

λ(�0 ∩ �) ∧ λ
(
�c

0 ∩ �
))

,

h2(ρ0, ρ)λ
(
�c

0 ∩ �c) + h2(ξ0, ρ)λ
(
�0 ∩ �c)

≥ (h(ρ0, ρ) + h(ξ0, ρ))2

2
· (

λ
(
�c

0 ∩ �c) ∧ λ
(
�0 ∩ �c)),

h2(ξ0, ρ)λ
(
�0 ∩ �c) + h2(ρ0, ξ)λ

(
�c

0 ∩ �
)

≥ (h(ξ0, ρ) + h(ρ0, ξ))2

2
· (

λ
(
�0 ∩ �c) ∧ λ

(
�c

0 ∩ �
))

.

We further have h(ξ0, ξ) + h(ρ0, ξ) ≥ h(ξ0, ρ0) and h(ξ0, ρ) + h(ρ0, ρ) ≥
h(ξ0, ρ0), by the triangle inequality, and h(ξ0, ρ) + h(ρ0, ξ) ≥ c0,n > 0 by Condi-
tion (C). Combining with the last three displays respectively, we have

λ(�0 ∩ �) ∧ λ
(
�c

0 ∩ �
)
� ε2

n/c
2
0,n,(7.3)

λ
(
�c

0 ∩ �c) ∧ λ
(
�0 ∩ �c) � ε2

n/c
2
0,n,(7.4)

λ
(
�0 ∩ �c) ∧ λ

(
�c

0 ∩ �
)
� ε2

n/c
2
0,n,(7.5)

whenever d2
n(θ0, θ) ≤ ε2

n. By adding (7.3) and (7.4) to (7.5), we derive

(7.6) λ(�0) ∧ λ
(
�c

0 ∩ �
)
� ε2

n/c
2
0,n, λ

(
�c

0
) ∧ λ

(
�0 ∩ �c) � ε2

n/c
2
0,n.

Since �0 is fixed with λ(�0) > 0 and λ(�c
0) > 0 by the assumption, (7.6) implies

that λ(�c
0 ∩ �) � ε2

n/c
2
0,n, and λ(�0 ∩ �c) � ε2

n/c
2
0,n. Consequently, λ(�0 � �) =

λ(�c
0 ∩ �) + λ(�0 ∩ �c)� ε2

n/c
2
0,n, which completes the proof. �
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PROOF OF THEOREM 3.3. We verify equations (3.1), (3.2) and (3.3) in Theo-
rem 3.1. Since ‖γ0 − βT

0,Jn
η‖∞ ≤ ε2

n/2, we have

�
{
γ : γ = βT η,‖γ − γ0‖∞ ≤ ε2

n

}
≥ �(J = Jn)�

(∥∥βT η − βT
0 η

∥∥∞ ≤ ε2
n/2|J = Jn

)
≥ �(J = Jn)�

(‖β − β0‖1 ≤ t−1
3 J−t4ε2

n/2|J = Jn

)
,

where the last step is because ‖βT
1,J η − βT

2,J η‖∞ ≤ ‖β1,J − β2,J ‖1 ×
max1≤j≤J ‖ηj‖∞ which is bounded by t3J

t4‖β1,J −β2,J ‖1 according to the trian-
gle inequality and Assumption (D). Therefore, equation (3.1) holds by noting that
− log�{γ = βT η : ‖γ − γ0‖∞ ≤ ε2

n} ≤ − log�(J = Jn) − log�(‖β − β0‖1 ≤
t−1
3 J−t4ε2

n/2|J = Jn)� Jn logJn + Jn log(Jn/εn)� Jn logn � nε2
n.

Considering the sieve �n = {γ : γ = βT η,β ∈ R
j , j ≤ Jn,‖β‖∞ ≤ √

n/C},
the estimate of the prior mass of the complement of the sieve is given by �(γ :
γ /∈ �n) ≤ �(J > Jn) + Jne

−n (see equation (2.10) in [39]). For any a, b > 0, we
have log(a + b) ≤ log(2(a ∨ b)), leading to − log(a + b) ≥ − log 2 + (− loga) ∧
(− logb). Noting that − log�(J > Jn) � Jn logJn, and − log(Jne

−n) = n −
logJn ≥ n − logn  n � Jn logJn (because Jn logJn � nε2

n � n), we then obtain
− log�(γ : γ /∈ �n)� Jn logJn � nε2

n verifying equation (3.2).
For the entropy calculation, we first notice that for any γ ∈ �n, we have

‖γ ‖∞ = ‖βT η‖∞ ≤ max1≤j≤Jn ‖ηj‖∞‖β‖1 � J
t4
n

√
n � nt4+1/2, which is an up-

per bound for σn. We estimate the packing number D(ε2
n/σ

d−1
n ,�n,‖ · ‖∞) by

Jn∑
j=1

D
(
ε2
n/σ

d−1
n ,

{
β ∈ R

j ,‖β‖∞ ≤ √
n/C

}
,‖ · ‖∞

) ≤
Jn∑

j=1

(
1 +

√
n/Cσd−1

n

ε2
n

)j

,

which is further bounded by Jn(1 + √
n/Cσd−1

n /ε2
n)

Jn . Equation (3.3) fol-
lows since logN(ε2

n/σ
d−1
n ,�n,‖ · ‖∞) ≤ logD(ε2

n/σ
d−1
n ,�n,‖ · ‖∞) � logJn +

Jn logn + Jn log(1/ε2
n)� Jn logn � nε2

n. �

PROOF OF THEOREM 3.7. We first obtain the contraction rate for determinis-
tic rescaling when the smoothness level α is known.

Let B be C
α(S1) equipped with the ‖ · ‖∞ norm. Let φa

γ0
(ε) =

infγ∈Ha :‖γ−γ0‖∞≤ε
1
2‖γ ‖2

Ha − log P(‖Wa‖∞ ≤ ε) stand for the concentration func-
tion at γ0. Note that φa

0 (ε) = − log P(‖Wa‖∞ ≤ ε).
The selection of sieves and entropy calculation is similar to Theorem 2.1 in

[42] with εn replaced by ε2
n and adjustment because of the involvement of σn later

on. Define the sieve as �n = (MnH
a
1 + 1

4ε2
nM

−1
n B1), where H

a
1 and B1 are the

unit balls of Ha and B, respectively. Let Mn = −2�−1(exp(−Cnε2
n)) for a large

constant C > 1. By Borell’s inequality, we can bound �(�c
n) ≤ �(γ /∈ MnH

a
1 +

ε2
nB1)� exp(−Cnε2

n), provided that φa
0 (1

4ε2
nM

−1
n ) ≤ nε2

n.
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For the entropy calculation, first observe that M2
n � nε2

n since |�−1(u)| ≤√
2 log(1/u) for u ∈ (0,1/2). We further notice that Ha

1 ⊂ B1 since by Lemma 4.3,

for any function h ∈ H
a
1, we have ‖h‖2∞ ≤ {∑∞

n=−∞ |bn,a|e−2a2
In(2a2)}2 ≤∑∞

n=−∞ |bn,a|2e−2a2
In(2a2) ·∑∞

n=−∞ e−2a2
In(2a2) = ‖h‖2

Ha ·1 [the last step uses
Proposition 8.1(a) by letting z = 1 and x = a2]. Therefore, the sieve �n is a subset
of (Mn + ε2

nM
−1
n /4)B1, and thus σn = sup{‖γ ‖∞ : γ ∈ �n} ≤ Mn + ε2

nM
−1
n /4 ≤

2Mn for sufficiently large n. By construction of �n, a 1
4ε2

nM
−2
n -net for H

a
1 is a

1
2ε2

2M
−1
n -net for �n. Therefore, by Lemma 4.5, we have

logN
(
ε2
n/σn,�n,‖ · ‖∞

) ≤ logN
(
ε2
n/

{
4M2

n

}
,Ha

1,‖ · ‖∞
)

� a
(
logM2

n/
{
2ε2

n

})2 � a(logn)2.

To evaluate the prior concentration probability, we proceed as follows. Let �a(·)
be a SEP Gaussian process with the rescaling factor a. By the approximation prop-
erty of Ha in Lemma 4.4, there exists h0 ∈ H

a such that ‖h0 − γ0‖∞ � a−α and
‖h0‖2

Ha � a. Therefore, if a−α ≤ ε2
n/2, then

�a(
γ : ‖γ − γ0‖∞ ≤ ε2

n

) ≥ �a(
γ : ‖γ − h0‖∞ ≤ ε2

n/2
) ≥ exp

{−φa
0
(
ε2
n/4

)}
,

leading to − log�a(γ : ‖γ − γ0‖∞ ≤ ε2
n)� φa

0 (ε2
n/4).

Note that φa
0 (ε) � a(log(a/ε))2 (Lemma 4.6). To satisfy the conditions in The-

orem 3.1, we choose a = an depending on the sample size such that ε2
n  a−α

n ,
and an(logn)2  nε2

n. Then the posterior contraction rate is obtained as ε2
n =

n−α/(α+1)(logn)−2α/(α+1), with an = n1/(α+1)(logn)−2/(α+1).
Now consider the random rescaling for unknown smoothness α. The established

properties of the RKHS of Wa from Lemma 4.3 to Lemma 4.8 are parallel to the
case when a GP is indexed by [0,1]d−1 with a stationary kernel, therefore, we can
directly follow the argument in the proof of Theorem 3.1 in [43]. There is need for
a slight modification since the nesting property given in Lemma 4.7 has a universal
constant c, but this does not affect the asymptotic rate. The posterior contraction
rate ε2

n is thus obtained. �

8. Modified Bessel function of the first kind. Modified Bessel functions of
the first kind are solutions of the modified Bessel equation [45]. Throughout the
paper, we consider integer orders and positive argument, that is, In(x) with n ∈ Z

and x > 0. We first introduce some basic properties of In(x) in Proposition 8.1, for
easy reference.

PROPOSITION 8.1. For the modified Bessel functions In(2x), we have:

(a) Generating functions. For x ∈ R,

G(x, z) =: ex(z+1/z) =
∞∑

n=−∞
In(2x)zn, z ∈C, z �= 0.
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(b) Symmetry about the order: In(2x) = I−n(2x) for x ∈ R and n ∈ Z.
(c) For n ≥ 0 and fixed x > 0, the following properties hold:

(c1) Series representation: In(2x) = xn ∑∞
j=0 x2j /(j !(n + j)!).

(c2) In(2x) is positive and strictly decreasing in n.
(c3) In(2x) ≤ I0(2x)(2x)n/n!.

The estimate below is obtained when x → ∞ with n being fixed or n → ∞ in
such a way that nx−1/2 tends to a finite nonnegative number.

PROPOSITION 8.2. Let n ∈ Z and nx−1/2 → c for some constant c ≥ 0 as
x → ∞. Then

√
xe−xIn(x) → (2π)−1/2e−c2/2 as x → ∞.

PROPOSITION 8.3. For any x ≥ 0 and j = 0,1,2, . . . , we have

∞∑
n=−∞

e−2xIn(2x)n2j ≤ (4j)!
(2j)! max

(
xj ,1

)
.

PROPOSITION 8.4. The function fn(x) = √
xe−xIn(x) is increasing in x

when x ∈ Bn, where Bn = [0, n + 1/2] if n = 0,1 and Bn = [0,∞) if n ≥ 2.

PROPOSITION 8.5. For any x ≥ 0, we have
∑∞

n=−∞ e−2xIn(2x)n2 = 2x.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian detection of image boundaries” (DOI: 10.1214/16-
AOS1523SUPP; .pdf). The supplementary file contains proofs to all lemmas and
propositions in the paper.
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