
The Annals of Statistics
2017, Vol. 45, No. 5, 2102–2132
DOI: 10.1214/16-AOS1520
© Institute of Mathematical Statistics, 2017
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A common problem in Phase II clinical trials is the comparison of dose
response curves corresponding to different treatment groups. If the effect of
the dose level is described by parametric regression models and the treat-
ments differ in the administration frequency (but not in the sort of drug), a
reasonable assumption is that the regression models for the different treat-
ments share common parameters.

This paper develops optimal design theory for the comparison of differ-
ent regression models with common parameters. We derive upper bounds on
the number of support points of admissible designs, and explicit expressions
for D-optimal designs are derived for frequently used dose response models
with a common location parameter. If the location and scale parameter in the
different models coincide, minimally supported designs are determined and
sufficient conditions for their optimality in the class of all designs derived.
The results are illustrated in a dose-finding study comparing monthly and
weekly administration.

1. Introduction. Adequately describing the dose-response relationship of a
pharmaceutical compound is of paramount importance for achieving a successful
clinical development. Sacks et al. (2014) recently conducted a review of the rea-
sons for delay or denial of approval of drugs by the Food and Drug Administration
(FDA). For those drug submissions that were not approved in the first-time appli-
cation, one of the most frequent deficiencies was a statistical uncertainty related to
the selected dose, illustrating the importance of clearly determining an efficacious
and safe dose in Phase II dose-finding trials.

Efforts to improve this situation have led to the introduction of dose-response
modeling approaches in a prospective manner as the primary analysis method
in dose finding studies, and have become increasingly widespread in the past
few years [see among many others, Grieve and Krams (2005), Bretz, Pinheiro
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and Branson (2005), Thomas (2006), Dragalin, Hsuan and Padmanabhan (2007),
Bornkamp et al. (2007), Thomas, Sweeney and Somayaji (2014)]. These methods
can more adequately address the main questions of interest in Phase II dose-finding
studies (i.e., determination of the dose-response curve and estimation of target
doses of interest) than AN(C)OVA based pairwise comparisons. Moreover, it was
pointed out by numerous authors that an appropriate choice of the experimental
conditions can improve the statistical accuracy in dose-finding studies substan-
tially. For this reason, there exists a large amount of literature discussing the prob-
lem of constructing optimal experimental designs for regression models, which are
commonly used to describe the dose relationships [see Dragalin, Hsuan and Pad-
manabhan (2007), Dette et al. (2008), Dragalin, Fedorov and Wu (2008), Fang and
Hedayat (2008), Gilbert (2010), or Bretz, Dette and Pinheiro (2010) among many
others].

For many compounds, a question closely related to “dose”, the amount of drug,
is the administration frequency of the drug. In most situations, it is not adequate to
assume that the same amount of drug per time unit (e.g., total daily dose) admin-
istered at different dosing intervals (e.g., once a day or twice a day) will lead to
the same pharmacological effect. For example, for once a day administration the
drug exposure inside the body will generally be higher just after administration
and lower just before the next administration, compared to a twice a day adminis-
tration, where the same amount of drug is split into two doses in the morning and
the evening, leading to more uniform drug exposure over the day.

These considerations often lead to the need of evaluating the question of finding
the right dose as well as dosing frequency in dose-finding studies in Phase II. One
way of modeling the dose-response curves in the different treatment groups is to
estimate the dose response curve corresponding to each of them separately. This
can, however, be wasteful as certain aspects of the dose-response curves for dif-
ferent groups can be similar for both groups, suggesting a borrowing of strength.
When dose-response modeling is done in terms of parametric dose-response mod-
els, one can often assume that certain parameters of the dose-response curves for
the two (or more) groups are shared, while other parameters might be assumed to
be different between the curves. For example, if the Emax function

(1.1) f
(
d, θ

(i)
0 , θ

(i)
1 , θ

(i)
2

) = θ
(i)
0 + θ

(i)
1 d

θ
(i)
2 + d

, i = 1,2

is used to model the dose response relationship for both groups [see Gabrielsson
and Weiner (2007) or Thomas, Sweeney and Somayaji (2014)], it is often rea-
sonable to assume that the placebo effect is the same between groups, that is,
θ

(1)
0 = θ

(2)
0 = ϑ11. In some situations, it might also make sense to assume that the

maximum efficacy for high doses is similar, that is, θ
(1)
1 = θ

(2)
1 = ϑ12, as a biolog-

ical maximum attainable effect might exist. However, it might not be adequate to
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assume that the dose providing half of the maximum efficacy is the same for differ-
ent treatment frequencies, which means θ

(1)
2 �= θ

(2)
2 . The common parameters can

then be estimated more precisely allowing for a more accurate statistical analysis.
An example motivating the research of this paper can be found in Section 5.

The major question when planning such a dose-finding study then is which
doses to utilize in the different treatment groups and how to split the total sam-
ple size between the groups. Statistically, this corresponds to the construction of
optimal designs for different regression models (modeling the effect of the drug in
the different groups) which share some common parameters. To our best knowl-
edge, design problems in this case have not been considered in the literature, and
the goal of the present paper is to derive optimal designs for such situations. In
Section 2, the model (in the context of M treatment groups) is introduced and
the main differences between the situation considered in the paper and the com-
mon optimal design problems are explained. In Section 3, we derive some results
on the comparison of different designs for regression models with common pa-
rameters with respect to the Loewner ordering. In particular, we generalize recent
results of admissible designs as presented in Yang (2010), Dette and Melas (2011)
and Yang and Stufken (2012) and derive upper bounds on the number of support
points which cannot be improved upon in the Loewner ordering. Section 4 is de-
voted to the construction of D-optimal designs which are well suited for a “global”
inference as they minimize the maximum confidence interval length around the
predicted dose-response curve. Explicit expressions for locally D-optimal designs
for the commonly used dose response models are derived, if some parameters of
the models for the different groups coincide. We also discuss minimally supported
optimal designs and investigate if these designs are optimal within the class of all
designs. In Section 5, we illustrate the developed methods in a particular clini-
cal dose-finding study investigating two different treatment groups. Some techni-
cal details are given in the Appendix while the Supplement (Feller et al., 2017)
provides further proofs and some more background on the modeling problem dis-
cussed in Section 5.

For the sake of brevity and transparency, most parts of this paper consider lo-
cally optimal designs which require a-priori information about the unknown model
parameters if the models are nonlinear [see Chernoff (1953)]. In several situations,
preliminary knowledge regarding the unknown parameters of a nonlinear model is
available but not in a form that is accurate enough to specify one parameter guess.
As illustrated in Section 5, locally optimal designs can be used as benchmarks for
commonly used designs and also serve as basis for constructing optimal designs
with respect to more sophisticated optimality criteria, which are robust against a
misspecification of the unknown parameters (and model) [see Pronzato and Walter
(1985) or Chaloner and Verdinelli (1995), Dette (1997) among others]. Following
this line of research the methodology introduced in the present paper can be further
developed to address uncertainty in the preliminary information on the unknown
parameters, and we will illustrate this approach in Section 5, where we also discuss
robust designs for the data example under consideration.
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2. Models with common parameters. Consider regression models

(2.1) Yij� = f
(
d

(i)
j , θ1, θ

(i)
2

) + εij�

(� = 1, . . . , nij , j = 1, . . . , ki , i = 1, . . . ,M), where εij� are independent centered
normally distributed random variables, that is, εij� ∼ N (0, σ 2

i ). The assumption
of a normal distribution in (2.1) is made for the sake of transparency. Other dis-
tributional assumptions can be treated exactly in the same way. This means that
M different groups are investigated and in each group observations are taken at
different experimental conditions d

(i)
1 , . . . , d

(i)
ki

, which vary in possibly different

design spaces, say Xi = [0, d
(i)
max] (i = 1, . . . ,M). At each dose level d

(i)
j , the

experimenter can take nij observations and ni = ∑ki

j=1 nij denotes the number
of observations in the ith group (i = 1, . . . ,M). Moreover, the total sample size
is given by n = ∑M

i=1 ni . In general, the regression model f (·, θ1, θ
(i)
2 ) with a

(p + q)-dimensional parameter vector θ(i) = (θT
1 , (θ

(i)
2 )T )T is used to describe

the dependency between the response and the effect in every group. We consider
the same parametric form for all groups. Moreover, the parameter vector θ1 ∈ R

p

is assumed to be the same in all groups (i = 1, . . . ,M), while θ
(i)
2 ∈ R

q is dif-
ferent for different groups. Consequently, the vector of unknown parameters is
given by θ = (θT

1 , (θ
(1)
2 )T , . . . , (θ

(M)
2 )T )T ∈R

m, where m = p +qM . The compo-

nents of the vector are denoted by θ1 = (ϑ1, . . . , ϑp)T and θ
(i)
2 = (ϑ

(i)
1 , . . . , ϑ

(i)
q )T

(i = 1, . . . ,M).
Following Kiefer (1974), we define for i = 1, . . . ,M approximate designs ξi (on

the design space Xi ) as probability measures with masses ξij at the experimental

conditions d
(i)
j ∈ Xi (j = 1, . . . , ki ) and a design μ as a probability measure on

the set {1, . . . ,M} assigning mass λi to the ith group. We collect these designs in
the vector ξ = (ξ1, . . . , ξM,μ), which is also called design (on the design space
X1 × · · · × XM × {1, . . . ,M}) throughout this paper. If an approximate design
ξ = (ξ1, . . . , ξM,μ) is given and N observations can be taken, a rounding proce-
dure is applied to obtain integers ni and nij (i = 1, . . .M, j = 1, . . . , ki) from the
not necessarily integer valued quantities λin and ξijni , respectively. Then, under
common assumptions of regularity and the assumption

(2.2) lim
ni→∞

nij

ni

= ξij ∈ (0,1) and lim
n→∞

ni

n
= λi ∈ (0,1)

(i = 1, . . . ,M , j = 1, . . . , ki), the maximum likelihood estimate θ̂ T = (θ̂1, θ̂
(1)
2 ,

. . . , θ̂
(M)
2 ) satisfies

√
n(θ̂ − θ)

D−→ N (0,M−1(ξ, θ)) as n → ∞, where the symbol
D−→ denotes weak convergence. Here, the matrix

(2.3) M(ξ, θ) =
∫ ∫

Xz

hz(d)hT
z (d) dξz(d) dμ(z) =

M∑
i=1

λiM
(i)(ξi, θ)
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is called the information matrix of the design ξ = (ξ1, . . . , ξM,μ) and will be de-
rived in the Supplement (Feller et al., 2017). In (2.3), the matrices M(i) are defined
by

(2.4) M(i)(ξi, θ) =
∫
Xi

hi(d)hT
i (d) dξi(d)

(i = 1, . . . ,M) and

hi(d) = 1

σi

((
∂

∂θ1
f

(
d, θ1, θ

(i)
2

))T

,0T
q(i−1),

(
∂

∂θ
(i)
2

f
(
d, θ1, θ

(i)
2

))T

,0T
q(M−i)

)T

(2.5)
∈ R

m

is the gradient of the function f (d, θ1, θ
(i)
2 ) with respect to the parameter θ ∈ R

m,
where m = p+qM , 0q(i−1) ∈ R

q(i−1) and 0q(M−i) ∈ R
q(M−i) denote vectors with

all entries equal to 0.

EXAMPLE 2.1. We assume that M = 2 and that the regression functions
f (·, θ1, θ

(i)
2 ) can be written as

(2.6) f
(·, θ1, θ

(i)
2

) = ϑ1 + ϑ2f0
(·, θ(i)

2

)
with a given function f0 [see Bretz, Pinheiro and Branson (2005)]. Here, the loca-
tion and scale parameters θ1 = (ϑ1, ϑ2)

T ∈ R
2 are the same for all groups, while

the parameters θ
(i)
2 ∈ R

q are different. In this case, we have p = 2 and the vectors
h1(d) and h2(d) are given by
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As a further example, consider a regression function f (·, θ1, θ
(i)
2 ) of the form

(2.7) f
(·, θ1, θ

(i)
2

) = θ1 + f0
(·, θ(i)

2

); i = 1,2,

with a given function f0. If the location parameter θ1 is the same for the two
groups and the parameters θ

(i)
2 ∈ R

q are different, we have p = 1 and the vectors

hT
1 (d) and hT
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(2)
2

f0(d, θ
(2)
2 ))T ).
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3. Comparing designs in the Loewner ordering. An optimal design ξ =
(ξ1, . . . , ξM,μ) maximizes a concave real valued function, say 
, of the in-
formation matrix. Numerous criteria have been proposed in the literature [see
Pukelsheim (2006) among others] which can be used to discriminate between
competing designs and the particular case of D-optimality will be discussed in
the subsequent section. The commonly used optimality criteria are monotone with
respect to the Loewner ordering, that is the relation M(ξ1, θ) ≤ M(ξ2, θ) implies

(M(ξ1, θ)) ≤ 
(M(ξ2, θ)). For this reason we discuss at first some results for
this ordering, which will be very helpful for the explicit determination of optimal
designs in the following sections.

Throughout this paper, let |A| denote the cardinality of a set A and we denote
by supp(ξ) the support of the design ξ = (ξ1, . . . , ξM,μ). Moreover, we define
the index I (ξi) of the design ξi on the interval [0, d

(i)
max] as the number of support

points, where the boundary points 0 and d
(i)
max are only counted by 1/2 if they are

support points of the design ξi (i = 1, . . . ,M).
Note that the gradient (2.5) can be rewritten in the form

hi(d) = 1

σi

⎛
⎜⎜⎝

Ip×p 0p×q

0(i−1)q×p 0(i−1)q×q

0q×p Iq×q

0(M−i)q×p 0(M−i)q×p

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

∂

∂θ1
f

(
d, θ1, θ

(i)
2

)
∂

∂θ
(i)
2

f
(
d, θ1, θ

(i)
2

)
⎞
⎟⎟⎟⎠

(3.1)
:= Pig

(
d, θ(i)),

where Pi is a (p+Mq)× (p+q) block matrix, Ip×p is the p-dimensional identity

matrix and g(d, θ(i)) is the (p + q)-dimensional gradient of f (d, θ1, θ
(i)
2 ) with

respect to θ(i) = (θT
1 , (θ

(i)
2 )T )T (i = 1, . . . ,M). Consequently, for the information

matrix (2.4) the representation

M(i)(ξi, θ) = Pi

∫
Xi

g
(
d, θ(i))gT (

d, θ(i))dξi(d)P T
i := PiC

(
ξi, θ

(i))P T
i

holds, where the (p + q) × (p + q) matrix C(ξi, θ
(i)) is given by

C
(
ξi, θ

(i)) =
∫
Xi

⎛
⎜⎜⎝

ψ1,1
(
d, θ(i)) . . . ψ1,p+q

(
d, θ(i))

...
. . .

...

ψp+q,1
(
d, θ(i)) . . . ψp+q,p+q

(
d, θ(i))

⎞
⎟⎟⎠dξi(d)

(i = 1, . . . ,M) and the functions ψs,t (d, θ(i)) are the entries of the matrix
g(d, θ(i))gT (d, θ(i)).

In the following, we will present a generalization of the results in Yang (2010),
Dette and Melas (2011) and Yang and Stufken (2012) for the situation where M ≥
1 groups are considered. To be precise for i = 1, . . . ,M , we define �0(d) ≡ 1 and
choose a basis, say {�0(·),�i

1(·), . . . ,�i
k−1(·),�i

k(·)} for the space

L = span
({

ψs,t

(·, θ(i))|1 ≤ s, t ≤ p + q
} ∪ {1}),
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where the dependence on the parameters is reflected by the upper index i for the
sake of a transparent notation. Note that k is the dimension of L and depends on
the considered regression model. We further assume that the function �i

k(·) is a
diagonal element of the matrix C(ξi, θ

(i)), does not coincide with any of the other
elements ψs,t (·, θ(i)) and that {�0(·),�i

1(·), . . . ,�i
k−1(·)} is a basis of the space

L̃ = span
({

ψs,t

(·, θ(i)) | s, t ∈ {1, . . . , p + q};ψs,t

(·, θ(i)) �= �i
k(·)

} ∪ {1}).
Note again that the spaces L and L̃ determine the value k, which is basically a
constant determined by the regression model.

For our first results, we require the notation of a Chebyshev system [see Karlin
and Studden (1966)]. A set of k real valued functions �0, . . . ,�k−1 : [A,B] →
R is called Chebychev system on the interval [A,B] if and only if it fulfills the
inequality

det
(
�i(xj )

)
i,j=0,...,k−1 > 0

for any points x0, . . . , xk−1 with A ≤ x0 < x1 < · · · < xk−1 ≤ B .

LEMMA 3.1. (1) If {�0(·),�i
1(·), . . . ,�i

k−1(·)} and {�0(·),�i
1(·), . . . ,

�i
k−1(·),�i

k(·)} are Chebychev systems on the interval Xi = [0, d
(i)
max] (for all

i = 1, . . . ,M), then for any design ξ there exists a design ξ+ = (ξ+
1 , . . . , ξ+

M,μ)

such that | supp(ξ+
i )| ≤ k+2

2 (i = 1, . . . ,M) and M(ξ+, θ) ≥ M(ξ, θ). If the index
of the design ξi satisfies I (ξi) < k

2 the design coincides with the design ξ . In the
case I (ξi) ≥ k

2 , the following two assertions are valid:

(1a) If k is odd, then ξ+
i has at most k+1

2 support points and ξ+
i can be chosen

such that its support contains d
(i)
max (i = 1, . . . ,M).

(1b) If k is even, then ξ+
i has at most k+2

2 support points and ξ+
i can be chosen

such that its support contains the points 0 and d
(i)
max (i = 1, . . . ,M).

(2) If {�0(·),�i
1(·), . . . ,�i

k−1(·)} and {�0(·),�i
1(·), . . . ,�i

k−1(·),−�i
k(·)} are

Chebychev systems on the interval Xi = [0, d
(i)
max] (for all i = 1, . . . ,M), then for

any design ξ there exists a design ξ− = (ξ−
1 , . . . , ξ−

M,μ) such that | supp(ξ−
i )| ≤

k+2
2 (i = 1, . . . ,M) and M(ξ−, θ) ≥ M(ξ, θ). If the index of the design ξi satis-

fies I (ξi) < k
2 , the design coincides with the design ξ . In the case I (ξi) ≥ k

2 , the
following two assertions are valid.

(2a) If k is odd, then ξ−
i has at most k+1

2 support points and ξ−
i can be chosen

such that its support contains 0.
(2b) If k is even, then ξ−

i has at most k
2 support points.

Lemma 3.1 provides an upper bound for the maximal number of support points
if {�0(·),�i

1(·), . . . ,�i
k−1(·)} and {�0(·),�i

1(·), . . . ,�i
k−1(·),�i

k(·)} are Cheby-
chev systems for the different groups i = 1, . . . ,M . Note that this bound is the
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same independently from the dimension of the common parameter vector θ1, since
the number of support points is bounded in every group 1, . . . ,M separately. For
the case M = 1, we obtain the classic results of Yang (2010), Dette and Melas
(2011) and Yang and Stufken (2012) by setting μ = δ1, where δt is the dirac mea-
sure in t .

Note that Lemma 3.1 refers to the principal representations of the elements
of the moment space {∫X (1,�

(i)
1 (d), . . . ,�

(i)
k (d)) dξi(d)|ξi measure on Xi} [see

Karlin and Studden (1966), pages 51 and 53]. For the case M = 1, Dette and Melas
(2011) proved that for every design ξ with more than (k+2)/2 support points there
exists a design ξ+ with at most (k + 2)/2 support points and M(ξ+, θ) ≥ M(ξ, θ).
The support points of the design ξ+ are given either by the lower or the upper
principal representation of the element

∫
X (1,�1(d), . . . ,�k(d)) dξ(d) depending

both on k and on the conditions given in Lemma 3.1. The second part of Lemma 3.1
refers to the lower principal representations and if k is even this lower principal
representation neither includes the lower boundary nor the upper boundary point
of X .

The next lemma shows that (for the commonly used dose response models) it
is sufficient to allocate only patients from the group with the smallest population
variance to placebo.

LEMMA 3.2. Assume that the design spaces are given by Xi = [0, d
(i)
max] (i =

1, . . . ,M) and that the regression models are given by (2.6) or by (2.7), where the
function f0 is differentiable with respect to θ2 (i = 1, . . . ,M). Moreover, assume
that f0(0, θ2) = 0 and ∂

∂θ2
f0(0, θ2) = 0q .

If η = (η1, . . . , ηM, ν) denotes a design with 0 ∈ supp(ηj ) for (at least) one in-
dex j , then there exists a design ξ = (ξ1, . . . , ξM,μ) such that M(η, θ) ≤ M(ξ, θ)

and ξ has the following properties:

0 ∈ supp(ξj∗), 0 /∈ supp(ξj ) for all j �= j∗, j∗ ∈ arg mini=1,...,M σ 2
i .

Note that Lemma 3.2 remains correct in the case of more than one group with
minimal variance. Moreover, if for example two groups have minimal variances
one can improve the design with respect to the Loewner ordering by shifting
the placebo dose 0 to each of these two groups (for details, see the proof of
Lemma 3.2).

In the following discussion, we will apply the previous results to some of the
commonly used dose response models, namely the Emax model, linear-in-log and
exponential model [see Gabrielsson and Weiner (2007)], which are listed in Ta-
ble 1. In this table, we also illustrate our notation again. The left part of the table
corresponds to a model with a common location parameter (namely θ1), while the
right part of the table shows a model with a common location (ϑ1) and scale pa-
rameter (ϑ2). We note that all these models satisfy the conditions of Lemma 3.1
and Lemma 3.2.
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TABLE 1
Commonly used dose response models for i = 1, . . . ,M . Left column: The placebo effect is the same
in every group (common location). Right column: Both the placebo effect and the scale parameter

coincide in every group (common location and scale)

Emax

Linear-in-log

Exponential

location

(3.2) θ1 + ϑ
(i)
1

d

ϑ
(i)
2 +d

(3.3) θ1 + ϑ
(i)
1 log( d

ϑ
(i)
2

+ 1)

(3.4) θ1 + ϑ
(i)
1 (exp( d

ϑ
(i)
2

) − 1)

location and scale

(3.5) ϑ1 + ϑ2
d

θ
(i)
2 +d

(3.6) ϑ1 + ϑ2 log( d

θ
(i)
2

+ 1)

(3.7) ϑ1 + ϑ2(exp( d

θ
(i)
2

) − 1)

COROLLARY 3.3. Let ξ = (ξ1, . . . , ξM,μ) denote an arbitrary design with
| supp(ξi)| ≥ 3 (i = 1, . . . ,M) and assume (w.l.o.g) that σ 2

1 = mini=1,...,M σ 2
i .

(1) If the regression model is given by the Emax model (3.2) or (3.5), then there
exists a design ξ+ = (ξ+

1 , . . . , ξ+
M,μ) with at most 2M +1 support points such that

M(ξ+, θ) ≥ M(ξ, θ). Moreover, ξ+ can be chosen such that | supp(ξ+
1 )| = 3 with

0, d
(1)
max ∈ supp(ξ+

1 ) and | supp(ξ+
i )| = 2 with d

(i)
max ∈ supp(ξ+

i ) (i = 2, . . . ,M).
(2) If the regression model is given by the linear-in-log model (3.3) or (3.6),

then there exists a design ξ+ = (ξ+
1 , . . . , ξ+

M,μ) with at most 2M + 1 sup-
port points such that M(ξ+, θ) ≥ M(ξ, θ). Moreover, ξ+ can be chosen such
that | supp(ξ+

1 )| = 3 with 0, d
(1)
max ∈ supp(ξ+

1 ) and | supp(ξ+
i )| = 2 with d

(i)
max ∈

supp(ξ+
i ) (i = 2, . . . ,M).

(3) If the regression model is given by the exponential model (3.4) or (3.7), then
there exists a design ξ+ = (ξ+

1 , . . . , ξ+
M,μ) with at most 3M support points such

that M(ξ+, θ) ≥ M(ξ, θ). Moreover, ξ+
i can be chosen such that | supp(ξ+

i )| = 3

and d
(i)
max ∈ supp(ξ+

i ) (i = 1, . . . ,M).

4. D-optimal designs. When one of the major purposes of the study is to
determine the dose-response curve, D-optimal designs are well suited as they
minimize the maximum confidence interval length around the predicted dose-
response curve [see Silvey (1980)]. Following Chernoff (1953), a design ξ =
(ξ1, . . . , ξM,μ) is called (locally) D-optimal for the information matrix given in
(2.3) if it maximizes the determinant of the information matrix det(M(ξ, θ)) in
the class of all designs ξ on X1 × · · · × XM × {1, . . . ,M}. A main tool of opti-
mal design theory are equivalence theorems which, on one hand provide a simple
checking condition for the optimality of a given design, and on other hand, are
the basis of many procedures for their numerical construction. Moreover, these
characterizations of optimality can also be used to derive structural properties of
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optimal designs. The following result provides the equivalence theorem for the
D-optimality criterion corresponding to the matrix given in (2.3). The proof can
be found in the Supplement (Feller et al., 2017).

THEOREM 4.1. The design ξ� = (ξ�
1 , . . . , ξ�

M,μ�) is D-optimal if and only if
the M inequalities

(4.1) κi

(
d, ξ�, θ

) = hT
i (d)M−1(

ξ�, θ
)
hi(d) ≤ m = p + qM,

are satisfied for all d ∈ Xi , i = 1, . . . ,M . Equality holds in (4.1) for any points
(d1, . . . , dM, z) ∈ supp(ξ�

1 ) × · · · × supp(ξ�
M) × supp(μ�).

Denote

(4.2) �M
m =

{
ξ = (ξ1, . . . , ξM,μ)

∣∣∣ M∑
i=1

∣∣supp(ξi)
∣∣ = m

}

as the set of all designs on X1 × · · · × XM × {1, . . . ,M} with exactly m different
dose levels in the M groups. The proof of the next lemma follows by similar argu-
ments as in the standard case [see Silvey (1980) among others], and can be found
in the Supplement (Feller et al., 2017).

LEMMA 4.2. Let ξ = (ξ1, . . . , ξM,μ) ∈ �M
m denote a design on X1 × · · · ×

XM ×{1, . . . ,M} and mi denote the number of support points of ξi (i = 1, . . . ,M).
Assume that the m = ∑M

i=1 mi vectors h1(d
(1)
1 ), . . . , h1(d

(1)
m1 ), . . . , hM(d

(M)
1 ), . . . ,

hM(d
(M)
mM ) are linearly independent where d

(i)
j ∈ supp(ξi), j = 1, . . . ,mi , i =

1, . . . ,M .
If ξ is locally D-optimal in the class �M

m , then each component ξi has equal
weights at its support points. Moreover, the weights of μ at the points 1, . . . ,M

are given by m1
m

, . . . , mM
m

, respectively.

In the following two sections, we present some locally D-optimal designs for
the Emax, the exponential and the linear-in-log model. The proofs of these results
are complicated and, therefore, deferred either to the Appendix or the Supplement
(Feller et al., 2017).

4.1. Models with the same location parameter. First, we consider the case
where only the location parameter is the same in the different models. In ap-
plications, this reflects the situation of a common placebo effect for all groups
(cf. the first column of Table 1), and we are able to identify the locally D-
optimal design explicitly. We begin with a general result for regression func-
tions of the form (2.7) where the unknown parameter vectors are given by θ =
(θ1, (θ

(1)
2 )T , . . . , (θ

(M)
2 )T )T ∈ R

m with m = 1 + Mq . The following result pro-
vides a solution of the D-optimal design problem if the D-optimal design for the
single models are known.
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THEOREM 4.3. Let σ 2
1 = mini=1,...,M σ 2

i and consider the model given by
(2.7), which satisfies

(4.3) f0
(
0, θ

(i)
2

) = 0, η0
(
0, θ

(i)
2

) = ∂

∂θ
(i)
2

f0
(
d, θ

(i)
2

) ∣∣∣∣
d=0

= 0q

(i = 1, . . . ,M). If the design

(4.4) ξ̃ (i) =
⎛
⎜⎝ 0 d

(i)
1 . . . d(i)

q

1

q + 1

1

q + 1
. . .

1

q + 1

⎞
⎟⎠

is locally D-optimal for the single model f (d, θ1, θ
(i)
2 ) (i = 1, . . . ,M), then the

locally D-optimal design for model (2.7) is given by ξ� = (ξ�
1 , . . . , ξ�

M,μ�) where

ξ�
1 =ξ̃ (1), ξ �

i =
⎛
⎜⎝d

(i)
1 . . . d(i)

q

1

q
. . .

1

q

⎞
⎟⎠ , i = 2, . . . ,M,

μ� =
⎛
⎝ 1 2 . . . M

q + 1

m

q

m
. . .

q

m

⎞
⎠ .

(4.5)

Using Theorem 4.3, the placebo effect θ1 is estimated in the group where the
variance is smallest (see also Lemma 3.2 and Corollary 3.3). Moreover, it follows
from the proof of Lemma 3.2 that the D-optimal design given by Theorem 4.3 is
not unique if there exist more than one group with minimal variance. For exam-
ple, if both the first and the second group have minimal variance (σ 2

1 = σ 2
2 ), then

another D-optimal design [besides the one stated in (4.5)] is given by ξ�
2 = ξ̃ (2),

μ� =
⎛
⎝ 1 2 . . . M

q

m

q + 1

m
. . .

q

m

⎞
⎠ ,

ξ�
i =

⎛
⎜⎝d

(i)
1 . . . d(i)

q

1

q
. . .

1

q

⎞
⎟⎠ , i = 1,3, . . . ,M.

We now use Theorem 4.3 to determine D-optimal designs for the Emax, exponen-
tial and linear-in-log model explicitly.

COROLLARY 4.4. Let σ 2
1 = mini=1,...,M σ 2

i . The locally D-optimal design
for the Emax, exponential and linear-in-log model (3.2) is of the form ξ� =
(ξ�

1 , . . . , ξ�
M,μ�), where

ξ�
1 =

⎛
⎝0 x�,(1) d(1)

max
1

3

1

3

1

3

⎞
⎠ , ξ�

i =
⎛
⎝x�,(i) d(i)

max
1

2

1

2

⎞
⎠ , i = 2, . . . ,M,
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μ� =
⎛
⎝ 1 2 . . . M

3

m

2

m
. . .

2

m

⎞
⎠

and the point x�,(i) is given by

(4.6) x�,(i) = x�,(i)
emax = ϑ

(i)
2 d

(i)
max

d
(i)
max + 2ϑ

(i)
2

, i = 1, . . . ,M

for the Emax model, by

(4.7) x�,(i) = x�,(i)
exp = (d

(i)
max − ϑ

(i)
2 ) exp(d

(i)
max/ϑ

(i)
2 ) + ϑ

(i)
2

exp(d
(i)
max/ϑ

(i)
2 ) − 1

, i = 1, . . . ,M

for the exponential model and by

x�,(i) = x
�,(i)
log = (d

(i)
max + ϑ

(i)
2 )ϑ

(i)
2 log(d

(i)
max/ϑ

(i)
2 + 1) − ϑ

(i)
2 d

(i)
max

d
(i)
max

,

(4.8)
i = 1, . . . ,M

for the linear-in-log model.

It is worthwhile to mention that the locally D-optimal design for model (2.7)
with an Emax curve consists of the designs which are locally D-optimal for the
models given by an individual Emax model with parameter θ(1) = (θ1, θ

(1)
2 )T and

by an Emax model with location parameter equal to zero and parameter θ
(i)
2 , i =

2, . . . ,M . This effect can also be observed for the exponential and the linear-in-log
model.

4.2. Models with the same location and scale parameters. In this section, we
consider model (2.6) and assume that the location and scale parameter coincide
across the different models (cf. the second column in Table 1). It turns out that in
this case the D-optimal design problem is substantially harder, and for the sake
of a transparent presentation, we restrict ourselves to the case of M = 2 groups.
Similar results can be obtained in the case M > 2 with an additional amount of
notation. We begin with some general properties of locally D-optimal designs for
the model (2.6) in the case of an Emax, linear-in-log and exponential curve. For

this purpose, we define r = σ 2
1

σ 2
2

as the ratio of the two population variances.

LEMMA 4.5.

(A) The locally D-optimal design ξ� = (ξ�
1 , ξ�

2 ,μ) for the Emax model (3.5) and
the linear-in-log (3.6) have the following properties:
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(A1) | supp(ξ�
1 )| + | supp(ξ�

2 )| ∈ {4,5}.
(A2) If | supp(ξ�

1 )| + | supp(ξ�
2 )| = 5, then d

(i)
max ∈ supp(ξ�

i ), i = 1,2.

(A3) If | supp(ξ�
1 )| + | supp(ξ�

2 )| = 4, then d
(1)
max ∈ supp(ξ�

1 ) or d
(2)
max ∈

supp(ξ�
2 ).

(B) The locally D-optimal design ξ� = (ξ�
1 , ξ�

2 ,μ) for the exponential model (3.7)
satisfies ∣∣supp

(
ξ�

1
)∣∣ + ∣∣supp

(
ξ�

2
)∣∣ ∈ {4,5,6}.

By the previous lemma, the number of support points of the locally D-optimal
designs is at most 5 for the Emax and linear-in-log model and at most 6 for the
exponential model. On the other hand, at least four support points are required
to estimate all parameters in both models (note that the scale and location are
assumed to be the same throughout this section). In the following discussion, we
determine such “minimally” supported D-optimal designs explicitly for the Emax,
exponential and linear-in-log model.

4.2.1. Minimally supported designs. Recall the definition of the set �M
m in

(4.2). We call a design ξ = (ξ1, ξ2,μ) minimally supported (for the Emax, linear-
in-log and exponential model) if ξ ∈ �2

4 (note that for these models the information
matrix is of size 4×4 as the scale and location parameter coincide in both models).
It turns out the minimally supported D-optimal designs for the three models under
consideration have a very similar structure. On the other hand, the question, if these
designs are D-optimal in the class of all designs does not have a simple answer and
will be discussed in the following section.

THEOREM 4.6. Let r = σ 2
1

σ 2
2

, θ̄
(i)
2 = θ

(i)
2

d
(i)
max

, i = 1,2 and 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1,

define y� = θ
(2)
2 , z� = θ

(1)
2 and x�,(i) = x

�,(i)
emax by (4.6) (i = 1,2).

(1) If r ≤ 1, the locally D-optimal design for model (3.5) in the class �2
4 is

given by

(4.9) ξ
a,�
1 =

⎛
⎝0 x�,(1) d(1)

max
1

3

1

3

1

3

⎞
⎠ , ξ

a,�
2 =

(
y�

1

)
, μa,� =

⎛
⎝1 2

3

4

1

4

⎞
⎠ .

(2) If 1 < r ≤ (
1+θ̄

(2)
2

1+θ̄
(1)
2

)6, the locally D-optimal design for model (3.5) in the

class �2
4 is given by

(4.10) ξ
b,�
1 =

⎛
⎝x�,(1) d(1)

max
1

2

1

2

⎞
⎠ , ξ

b,�
2 =

⎛
⎝0 y�

1

2

1

2

⎞
⎠ , μb,� =

⎛
⎝1 2

1

2

1

2

⎞
⎠ .
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(3) If r > (
1+θ̄

(2)
2

1+θ̄
(1)
2

)6, the locally D-optimal design for model (3.5) in the class

�2
4 is given by

(4.11) ξ
c,�
1 =

(
z�

1

)
, ξ

c,�
2 =

⎛
⎝0 x�,(2) d(2)

max
1

3

1

3

1

3

⎞
⎠ , μc,� =

⎛
⎝1 2

1

4

3

4

⎞
⎠ .

We can also obtain the minimally supported D-optimal designs for the expo-
nential model and the linear-in-log with common location and scale parameter.

THEOREM 4.7. Let r = σ 2
1

σ 2
2

, θ̄
(i)
2 = θ

(i)
2

d
(i)
max

, i = 1,2, 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1, define

g(θ, x) = 1 + (x − 1) exp
(

x

θ

)
− x exp

(
x − 1

θ

)

and y� = d
(2)
max, z� = d

(1)
max and the point x�,(i) = x

�,(i)
exp by (4.7) for i = 1,2.

(1) If r ≤ 1, the D-optimal design for model (3.7) in the class �2
4 is given by

(4.9).

(2) If 1 < r ≤ g2(θ
(1)
2 ,x

�,(1)
exp )

g2(θ
(2)
2 ,x

�,(2)
exp )

, the D-optimal design for model (3.7) in the class

�2
4 is given by (4.10).

(3) If r >
g2(θ

(1)
2 ,x

�,(1)
exp )

g2(θ
(2)
2 ,x

�,(2)
exp )

, the D-optimal design for model (3.7) in the class �2
4 is

given by (4.11).

THEOREM 4.8. Let r = σ 2
1

σ 2
2

, θ̄
(i)
2 = θ

(i)
2

d
(i)
max

i = 1,2, 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1, define

g(θ, x) =
(

x

x + θ

)(
log

(
1

θ
+ 1

)
(1 + θ) − log

(
x

θ
+ 1

)(
1 + θ

x

))

and y� = d
(2)
max, z� = d

(1)
max and the point x�,(i) = x

�,(i)
log by (4.8) for i = 1,2.

(1) If r ≤ 1, the D-optimal design for model (3.6) in the class �2
4 is given by

(4.9).

(2) If 1 < r ≤ g2(θ
(1)
2 ,x

�,(1)
log )

g2(θ
(2)
2 ,x

�,(2)
log )

, the D-optimal design for model (3.6) in the class

�2
4 is given by (4.10).

(3) If r >
g2(θ

(1)
2 ,x

�,(1)
log )

g2(θ
(2)
2 ,x

�,(2)
log )

, the D-optimal design for model (3.6) in the class �2
4 is

given by (4.11).

The proof of Theorem 4.6 can be found in the Supplement (Feller et al., 2017),
the proofs of Theorems 4.7 and 4.8 are similar.
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4.2.2. D-optimal designs in the class of all designs. The question if a min-
imally supported D-optimal design for one of the models considered in Sec-
tion 4.2.1 is in fact D-optimal in the class of all designs is an extremely diffi-
cult one. Its answer depends sensitively on the particular parameters in the model
under consideration and differs for the three dose response models under consider-
ation. We exemplarily state a result for the Emax model, which provides sufficient
conditions for the D-optimality of a minimally supported D-optimal design, and
illustrates the general structure and difficulties in results of this type. The proof
is based on the equivalence Theorem 4.1 and given in the Appendix. Similar but
substantially more complicated statements can also be obtained of the linear-in-log
and the exponential model (note that in contrast to the Emax model these models
contain transcendental functions).

THEOREM 4.9. Let r = σ 2
1

σ 2
2

, θ̄
(i)
2 = θ

(i)
2

d
(i)
max

, i = 1,2 and assume 0 < θ̄
(1)
2 <

θ̄
(2)
2 < 1.

(1) Let r ≤ 1. The design ξa,� defined in (4.9) is locally D-optimal for model
(3.5) if the condition

(4.12) θ̄
(2)
2 ≥ r(6θ̄

(1)
2 (θ̄

(1)
2 + 1)(2θ̄

(1)
2 + 1)2) − (1 − r)

(6 + 2rθ̄
(1)
2 (1 + 2θ̄

(1)
2 ))

is satisfied.
(2) Let r > 1. The design ξb,� defined in (4.10) is locally D-optimal for model

(3.5) if and only if the condition

(4.13) θ̄
(2)
2 ≥ (θ̄

(1)
2 )2(1 + 2θ̄

(1)
2 )2 + r(1 + θ̄

(1)
2 )2(1 + 4θ̄

(1)
2 + 20(θ̄

(1)
2 )2) − 1

6 + 2θ̄
(1)
2 (1 + 2θ̄

(1)
2 )

is satisfied.
(3) Let r > 1. The design ξc,� defined in (4.11) is locally D-optimal for model

(3.5) if the condition

(4.14) θ̄
(1)
2 ≥

1
r
(6θ̄

(2)
2 (θ̄

(2)
2 + 1)(2θ̄

(2)
2 + 1)2) − (1 − 1

r
)

(6 + 21
r
θ̄

(2)
2 (1 + 2θ̄

(2)
2 ))

is satisfied.

Figure 1 illustrates the parameter domains for different ratios r = σ 2
1

σ 2
2

. The case

where the variance is equal in both groups is presented in the third panel. Obvi-
ously, there are several parameter constellations θ

(1)
2 ≥ θ

(2)
2 where the minimally

supported D-optimal design ξa,� is not D-optimal in the class of all designs.
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FIG. 1. The marked regions describe the parameter spaces, where the minimally supported
D-optimal design is optimal in the Emax model (3.5) (see Theorem 4.9). The different figures corre-
spond to different values of r = σ 2

1 /σ 2
2 . The domain for the first case of Theorem 4.9 is represented

in gray for the case r = 1/10, r = 1/2 and r = 1 (see the first three panels from the left). In the right
panel, we display the case r = 2 of Theorem 4.9 [here the gray region corresponds to case (2), while
the dark gray region corresponds to case (3)].

5. Application to a dose-finding study. In this section, we illustrate the ap-
plication of the results of the previous sections and discuss the problem of de-
signing experiments for a dose finding study with different treatment groups. Our
example refers to a Phase II study on a drug that works by increasing the level of
a biomarker that induces a beneficial clinical effect in patients. The dosing groups
under consideration are monthly and weekly administration. The primary objec-
tive of the study is the characterization of dose-response relationships at a given
time-point, say T , after initiation of treatment for each of these two dosing groups.
This will support the selection of an appropriate dose level and group to be used in
phase III clinical trials. To maintain the confidentiality of the trial the dose-range
has been rescaled and the considered range (in terms of total monthly dose) is
[0,400] for the weekly group and [0,1000] for the once-a-month group. The nat-
ural questions for the design of this study are (i) which doses should be studied in
each treatment group and (ii) how to split the total sample size between the two
treatment groups. Here, the objective of the study is addressed by deriving the best
estimates of the dose response curves, a task for which a D-optimal design is best
suited.

To arrive at a suitable design for the Phase II study, we need to quantify the
available information. This quantification can generate a best guess for the dose-
response curves, but even better, it can be used to obtain a candidate set of dose-
group-response scenarios to reflect the uncertainty about the true dose-group-
response relationship. In this case, information was available from a very small
early trial, which was used to develop a nonlinear mixed effects pharmacokinet-
ics (PK)/pharmacodynamics (PD) model linking drug concentrations to biomarker
levels. Using this model, data of the new trial were predicted for the time-point
T of the dose-response analysis and dose-group-response models were fitted to
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the data. Under the assumption of a normal distribution for the logarithm of the
biomarker level, it turned out that the Emax function was able to adequately de-
scribe the population average predicted by the PK/PD model. The Emax model
utilized total monthly dose as input and had different ED50 parameters in the two
groups (θ(1)

2 and θ
(2)
2 ), but the same placebo ϑ11 and Emax parameter ϑ12, so that

the model function in the weekly and monthly group is given by

f
(
d, θ1, θ

(i)
2

) = ϑ11 + ϑ12
d

θ
(i)
2 + d

, i = 1,2.

Here, group i = 1 contains patients receiving monthly administration and the
group i = 2 the weekly administration. The parameter estimates can be found in
Table 2 as model 1, which can be considered as population average fit. We now
use these estimates as a guess and determine the locally D-optimal design for
these values. The variability is expected to be the same in both treatment groups.
Recalling the design spaces for the monthly and weekly doses are X1 = [0,1000]
and X2 = [0,400], respectively, we obtain from Theorem 4.6 and Theorem 4.9 the
(locally) D-optimal design ξ� = (ξ�

1 , ξ�
2 ,μ�), where ξ�

1 puts equal masses at the
dose levels 0, 13.45, 1000, the design ξ�

2 is a one-point design at the point 10.46
and the design μ� has masses 3

4 and 1
4 at the points 1 and 2, respectively. It can

be seen that based on the population average fit, it is sufficient to investigate the
low dose-range in both groups and a high dose in one of the two groups. Here,
the maximum dose is placed in the monthly group because θ

(1)
2 /d

(1)
max < θ

(2)
2 /d

(2)
max,

so relative to the allowed maximum dose a larger ED50 parameter exists for the
weekly group and thus patients are allocated to the monthly group.

In practice, it is not realistic to assume that the data and model from previous
small trials completely represent the underlying truth (otherwise no further study
would need to be conducted). So it is important to derive ranges covering the un-
certainty about the available information to use for the design of the new study.
First, uncertainty with respect to the model parameters in the Emax model family,
but also in terms of uncertainty on the parametric form of the model function. This
is important, because the population to be included in the Phase II trial will cover
a broader range of characteristics than in the small proof of concept trial. For this
purpose, the PK/PD model was used to predict individual dose-response curves
and the Emax model was fitted to the individual dose-response curves to derive a
range of plausible dose-response parameters. Quantiles of the derived parameter
distributions were used to derive four additional candidate model shapes. More de-
tails on how these candidate shapes were derived can be found in the Supplement
(Feller et al., 2017). The parameters for these four additional candidate models
can be found in Table 2 under the numbers 2–5. These models are depicted in the
first row of Figure 2. To robustify the design calculation with respect to this set of
candidate models, the design maximizing the mean efficiency

(5.1) gc(ξ, s) =
s∑

i=1

πiEffi (ξ)
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TABLE 2
Set of candidate models used in the robust criterion (5.1)

Model type id ϑ11 ϑ12 θ
(1)
2 θ

(2)
2 γ

Emax 1 5.48 0.90 13.82 10.46 1
Emax 2 5.47 0.93 2.93 2.39 1
Emax 3 5.47 0.93 2.93 40.40 1
Emax 4 5.47 0.93 53.49 2.39 1
Emax 5 5.47 0.93 53.49 40.40 1
Sigmoid Emax 6 5.48 0.90 13.82 10.46 3

Model type id θ1 ϑ
(1)
1 ϑ

(2)
1 ϑ

(1)
2 ϑ

(2)
2 γ

Emax 7 5.48 0.85 0.95 13.82 10.46 1
Sigmoid Emax 8 5.48 0.65 0.75 2.93 2.39 3
Sigmoid Emax 9 5.48 0.95 1.05 53.49 40.40 3
Log 10 5.44 0.13 0.14 0.32 0.41

can be calculated, where s is the number of candidate models (here 5 or 10),
π1, . . . , πs are nonnegative model weights chosen to reflect prior probability as-
sociated the model function 1, . . . , s (throughout this paper we will use πi = 1/s,
i = 1, . . . , s). The efficiencies Effi (ξ) of the experimental design ξ with respect

FIG. 2. Candidate models for the dose-response curve in monthly and weekly group. In the first
row, models 1–5 are depicted and in the second row models 6–10 (see Table 2). The solid line repre-
sents the population average of the new trial data generated with the PK/PD model. The grey area
represents the biomarker level between the 25th and 75th quantiles of the patient responses of the
new trial data. Dotted curves correspond to the Emax models. Sigmoid Emax models are depicted as
dotted-dashed lines and the linear-in-log models as dashed lines.
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to the (locally) D-optimal design ξ�,i associated to the model i is defined as
Effi (ξ) = (|Mi(ξ, θi)|/|Mi(ξ

�,i , θi)|)1/mi , where Mi is the Fisher information ma-
trix associated to the model i with parameter specification θi and mi is the number
of parameters of this model. The criterion (5.1) is called Bayesian or compound
optimality criterion in the literature [see Dette (1990), Cook and Wong (1994) or
Tsai and Zen (2004), Zen and Tsai (2004) among many others]. In the follow-
ing, we will denote the designs maximizing (5.1) by ξ�

c,s = (ξ�
1,c,s , ξ

�
2,c,s ,μ

�
c,s) and

call it compound optimal design. We emphasize that the definition of the crite-
rion (5.1) requires knowledge of the locally optimal designs ξ�,i , which have been
determined in Section 4.

The compound optimal design based on the first 5 models in Table 2 can be
calculated numerically and is given by ξ�

c,5 = (ξ�
1,c,5, ξ

�
2,c,5,μ

�
c,5), where ξ�

1,c,5 puts
the weights 0.26, 0.24, 0.25, 0.25 at the dose levels 0, 3.02, 43.67, 1000, the design
ξ�

2,c,5 puts the weights 0.48,0.52 at the points 2.53,37.51 and the design μ� has
masses 0.67 and 0.33 at the points 1 and 2, respectively. Its optimality can be
proved by an analogue of Theorem 4.1 for the Bayesian optimality criterion (5.1).
Compared to the design using only the best guess model, now the low dose-range
is investigated in finer granularity by using two instead of one dose (safeguarding
against different possible values of the ED50). In addition, still more patients are
evaluated for the monthly group, as the high dose is only used there.

Based on general plausibility considerations, five further candidate shapes were
included as example of models different from the Emax function (e.g., the sigmoid
Emax and the linear-in-log function), or of models where the maximum efficacy
differed between the two groups. These models are shown in the second row of
Figure 2 and the corresponding parameters are given in the rows with ids 6–10 in
Table 2. First, a sigmoid Emax model

f
(
d, θ1, θ

(i)
2 , γ

) = ϑ11 + ϑ12
dγ

(θ
(i)
2 )γ + dγ

, i = 1,2,

with Hill coefficient γ = 3 (model 6) is also considered as a possible dose response
function. Note that this model provides a steeper dose-response curve compared
to the Emax model, but with the same ED50 values as model 1. Furthermore, an
Emax and a sigmoid Emax model

f
(
d, θ1, θ

(i)
2 , γ

) = θ1 + ϑ
(i)
1 dγ

(ϑ
(i)
2 )γ + dγ

, i = 1,2

is added that allows for different Emax parameters in the two treatment group
(models 7, 8, 9). In addition, a linear-in-log model (id 10) is utilized. The locally
D-optimal designs for these models are computed using the results of Section 4.
For the sigmoid Emax models, a transformation has to be used to reduce it to the
case of an Emax model, such that the derived theory is applicable (note that the
parameter γ is assumed to be fixed).
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TABLE 3
Efficiency Effi (ξ

�
c,s ) of the two compound optimal designs compared to each of the locally

D-optimal designs for the 10 models

gc(·, s) 1 2 3 4 5 6 7 8 9 10

ξ�
c,5 0.82 0.71 0.84 0.88 0.85 0.85 0.10 0.80 0.93 0.91 0.63

ξ�
c,10 0.75 0.83 0.75 0.78 0.77 0.79 0.75 0.90 0.76 0.75 0.75

When using all s = 10 candidate models, we obtain ξ�
c,10 = (ξ�

1,c,10, ξ
�
2,c,10,

μ�
c,10) where ξ�

1,c,10 puts the weights 0.27, 0.13, 0.22, 0.13, 0.24 at the dose levels
0, 2.90, 12.98, 41.91, 1000, the design ξ�

2,c,10 puts the weights 0.33, 0.21, 0.31,
0.15 at the dose levels 3.01, 13.16, 49.46, 400 and the design μ�

c,10 has masses
0.58, 0.42 at the points 1 and 2. This design investigates the lower dose range
comparably to the previous design based on the first five candidate models, but
the maximum dose is studied in both groups. The efficiencies of the two designs
ξ�
c,5 and ξ�

c,10 in the different models are displayed in Table 3. We observe that the
design ξ�

c,5 has reasonable efficiencies in all models except in the sigmoid Emax
(6). Note that this design has been constructed on the basis of the models (1)–(5).
On the other hand, the the design ξ�

c,10 maximizes the criterion (5.1), where un-
certainty with respect to all models (1)–(10) is addressed. As a consequence, this
design has efficiencies varying between 75%–90% in all competing models un-
der consideration. Moreover, it can be used for a goodness-of-fit test of the Emax
model, as both components have more than 3 support points. For these reasons, we
recommend this design for the Phase II study under consideration.

APPENDIX: TECHNICAL DETAILS

PROOF OF LEMMA 3.1. We only discuss the first part of the proof. The sec-
ond assertion follows by similar argument. Let ξ = (ξ1, . . . , ξM,μ) be an arbitrary
design with | supp(ξi)| ≥ (k+2)

2 (i = 1, . . . ,M) and assume that there exists a de-
sign ξ+ = (ξ+

1 , . . . , ξ+
M,μ) such that C(ξ+, θ (i)) ≥ C(ξ, θ(i)) for all i = 1, . . . ,M .

Recalling the definition of the matrix Pi in (3.1) it then follows by Theorem 14.2.9
of Harville (1997) that

M(i)(ξ+
i , θ

) = PiC
(
ξ+
i , θ (i))P T

i ≥ PiC
(
ξi, θ

(i))P T
i = M(i)(ξi, θ),

i = 1, . . . ,M.

This implies

M
(
ξ+, θ

) =
M∑
i=1

λiM
(i)(ξ+

i , θ
) ≥

M∑
i=1

λiM
(i)(ξi, θ) = M(ξ, θ)

and the design ξ+ increases the information matrix M(·, θ) with respect to the
Loewner ordering.
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It now follows from Theorem 3.1 of Dette and Melas (2011) that there exists a
design ξ+ with components ξ+

i with at most k+2
2 support points (i = 1, . . . ,M).

The statements (1a) and (1b) in Lemma 3.1 also follows from Theorem 3.1 in Dette
and Melas (2011). �

PROOF OF LEMMA 3.2. We only prove the lemma for the model given by
(2.6). The proof for model (2.7) is analogous. Note that in the model under con-
sideration we have ∂

∂θ1
f (d, θ1, θ

(i)
2 ) = (1, f0(d, θ

(i)
2 ))T for the gradient in (2.5).

Consequently, if δ0 denotes the Dirac measure at the point 0, it follows for the
matrices M(i) defined in (2.4) that

(A.1) σ 2
i M(i)(δ0, θ) = σ 2

1 M(1)(δ0, θ), i = 1, . . . ,M.

Now, we consider the design η = (η1, . . . , ηM, ν) and represent its components as

ηi = ω
(i)
0 δ0 + (

1 − ω
(i)
0

)
η0

i , i = 1, . . . ,M, ν =
M∑
i=1

λiδi .

Here, δt is the Dirac measure at the point t , λi,ω
(i)
0 ∈ [0,1], i = 1, . . . ,M

and η0
1, . . . , η

0
M denote designs with 0 /∈ supp(η0

i ). Moreover, at least for one

i ∈ {1, . . . ,M} we have λiω
(i)
0 > 0.

We now assume without loss of generality that j∗ = 1 and construct a “better”
design ξ = (ξ1, . . . , ξM,μ) as follows:

ξ1 = ω�δ0 + (
1 − ω�)η0

1, ξi = η0
i , i = 2, . . . ,M, μ =

M∑
i=1

λ�
i δi,

where λ�
1 = λ1 + ∑M

i=2 λiω
(i)
0 ∈ [0,1], λ�

i = λi(1 − ω
(i)
0 ) (i = 2, . . . ,M), ω� =

(
∑M

i=1 λiω
(i)
0 )/(λ1 + ∑M

i=2 λiω
(i)
0 ). Note that we shift the weights of the measures

ηi at the point 0 to the design for the group with the smallest population variance.
Observing (A.1) gives for the difference M(ξ, θ) − M(η, θ)

ω�λ�
1M

(1)(δ0, θ) + (
1 − ω�)λ�

1M
(1)(η0

1, θ
) +

M∑
i=2

λ�
i M

(i)(η0
i , θ

)

−
(

M∑
i=1

ω
(0)
i λiM

(i)(δ0, θ) +
M∑
i=1

λi

(
1 − ω

(0)
i

)
M(i)(η0

i , θ
))

=
(
ω�λ�

1 −
M∑
i=1

σ 2
1

σ 2
i

ω
(0)
i λi

)
M(1)(δ0, θ)

≥
(
ω�λ�

1 −
M∑
i=1

λiω
(i)
0

)
M(1)(δ0, θ) = 0,

since σ 2
1 ≤ σ 2

i (i = 1, . . . ,M). �
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PROOF OF COROLLARY 3.3. Lemma 3.1 can be applied in the case of an
Emax model or linear-in-log model with k = 4 [see Yang (2010)]. Consequently,
there exists a design ξ+ with 3M support points and each component ξ+

i contains

the placebo 0 and d
(i)
max, i = 1, . . . ,M . Now we apply Lemma 3.2 with η = ξ+ and

we allocate the placebo 0 in the group with the smallest variance. For the exponen-
tial model, Lemma 3.1 can be applied with k = 5 [see Yang (2010)]. Consequently,
there exists a design ξ+ with 3M support points and each component ξ+

i contains

d
(i)
max, i = 1, . . . ,M . �

PROOF OF THEOREM 4.3. For the sake of transparency, we restrict ourselves
to the case M = 2 such that m = Mq + 1 = 2q + 1.We use the equivalence Theo-
rem 4.1 to establish the D-optimality of the design ξ�. In the present situation, this
means that the D-optimality of the design ξ� defined in (4.5) for model (2.7) with
assumption (4.3) can be proved by checking the two inequalities:

κ1
(
t, ξ �, θ

) = 1

σ 2
1

(
1, ηT

0
(
t, θ

(1)
2

)
,0T

q

)
M−1(

ξ�, θ
)(

1, ηT
0

(
t, θ

(1)
2

)
,0T

q

)T
≤ 2q + 1,

(A.2)

κ2
(
t, ξ �, θ

) = 1

σ 2
2

(
1,0T

q , ηT
0

(
t, θ

(2)
2

))
M−1(

ξ�, θ
)(

1,0T
q , ηT

0
(
t, θ

(2)
2

))T
≤ 2q + 1,

(A.3)

for t ∈ [0, d
(1)
max], t ∈ [0, d

(2)
max], respectively, where η0(t, θ

(i)
2 ) = ∂

∂θ
(i)
2

f0(t, θ
(i)
2 ) (i =

1,2). A straightforward calculation shows that the information matrix of the design
ξ� can be represented as

(A.4) M
(
ξ�, θ

) = 1

m
X

(
σ1, θ

(1)
2 , σ2, θ

(2)
2

)
XT (

σ1, θ
(1)
2 , σ2, θ

(2)
2

)
,

where the matrix X(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) is given by(

X11
(
σ1,0, d

(1)
1 , . . . , d(1)

q , θ
(1)
2

)
X12(σ2)

0 X22
(
σ2, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)
)

,

and the matrices X11(σ,0, d
(1)
1 , . . . , d

(1)
q , θ

(1)
2 ) ∈ R

(q+1)×(q+1), X22(σ, d
(2)
1 , . . . ,

d
(2)
q , θ

(2)
2 ) ∈ R

q×q and X12(σ ) ∈R
(q+1)×q are defined by

X22
(
σ, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

) = 1

σ

(
η0

(
d

(2)
1 , θ

(2)
2

)
, . . . , η0

(
d(2)
q , θ

(2)
2

))
,

X11
(
σ,0, d

(1)
1 , . . . , d(1)

q , θ
(1)
2

) = 1

σ

(
1 1T

q

0q X22
(
σ, d

(1)
1 , . . . , d(1)

q , θ
(1)
2

)
)

,

X12(σ ) = 1

σ

(
1 . . . 1
0q . . . 0q

)
.
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Consequently, the inverse of M(ξ�, θ) is obtained as

M−1(
ξ�, θ

) = m
(
XT (

σ1, θ
(1)
2 , σ2, θ

(2)
2

))−1
X−1(

σ1, θ
(1)
2 , σ2, θ

(2)
2

)
,

where the matrix X−1(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) is given by(

X−1
11

(
σ,0, d

(1)
1 , . . . , d(1)

q , θ
(1)
2

)
Xinv

12

0 X−1
22

(
σ, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)
)

with

Xinv
12 = −X−1

11

(
σ,0, d

(1)
1 , . . . , d(1)

q , θ
(1)
2

)
X12(σ2)X−1

22

(
σ, d

(2)
1 , . . . , d(2)

q , θ
(2)
2 , θ

(2)
2

)
.

Using these block structures, the function κ1(t, ξ
�, θ) defined in (A.2) reduces for

the design ξ� = (ξ�
1 , ξ�

2 ,μ�) to

κ1
(
t, ξ �, θ

)
= m

σ 2
1

gT (
t, θ (1))(X−1

11

(
σ,0, d

(1)
1 , . . . , d(1)

q

))T
× X−1

11

(
σ,0, d

(1)
1 , . . . , d(1)

q

)
g
(
t, θ (1))

= m

(q + 1)σ 2
1

gT (
t, θ (1))M−1

1

(
ξ�

1 , θ (1))g(
t, θ (1)),

where

gT (
t, θ (1)) = (

1, ηT
0

(
t, θ

(1)
2

))
and

M1
(
ξ�

1 , θ (1)) = 1

σ 2
1

∫ 1

0
g
(
t, θ (1))gT (

t, θ (1))dξ�
1 (t)

denote the gradient and the information matrix of the design ξ�
1 in the single model

with parameter θ(1) = (θ1, (θ
(1)
2 )T )T . Consequently, the function κ1(t, ξ

�, θ1, θ
(1)
2 )

only depends on the first component ξ�
1 and is proportional to the left-hand side

of the standard equivalence theorem for D-optimality for the single model. The
inequality κ1(t, ξ

�, θ) ≤ m for all t ∈ [0, d
(1)
max] follows from the fact that the design

ξ�
1 given in (4.4) is locally D-optimal for the single model with parameter θ(1) =

(θ1, (θ
(1)
2 )T )T . This proves (A.2).

In order to show the remaining inequality (A.3) for all t ∈ [0, d
(2)
max], we use the

fact that the information matrix in (A.4) can be represented as

M
(
ξ�, θ

) = SX
(
σ2, θ

(2)
2 , σ1, θ

(1)
2

)
diag

(
σ 2

2

mσ 2
1

,
1

m
, . . . ,

1

m

)

× XT (
σ2, θ

(2)
2 , σ1, θ

(1)
2

)
S,
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where S denotes a m × m permutation matrix, defined by

S =
⎛
⎜⎝ 1 0T

q 0T
q

0q 0q×q Iq×q

0q Iq×q 0q×q

⎞
⎟⎠ ,

0q×q denotes a matrix with all entries equal to zero and Iq×q the q ×q identity ma-

trix. Observing that Sh2(t) = 1
σ2

(1, ηT
0 (t, θ

(2)
2 ),0T

q )T , it follows that the function
κ2(t, ξ

�, θ) in (A.3) can be represented as

1

σ 2
2

(
1, ηT

0
(
t, θ

(2)
2

))(
X−1

11

(
σ2,0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

))T

×
[
diag(m · 1q+1 − m

(
1 − σ 2

1

σ 2
2

)
diag(1,0q)

]

× X−1
11

(
σ2,0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)(
1, ηT

0
(
t, θ

(2)
2

))T
= m

(q + 1)σ 2
2

(
1, ηT

0
(
t, θ

(2)
2

))
M−1

2

(
ξ̃2, θ1, θ

(2)
2

)(
1, ηT

0
(
t, θ

(2)
2

))T

− m

(
1 − σ 2

1

σ 2
2

)
1

σ 2
2

× [(
1,0T

q

)
X−1

11

(
σ2,0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)(
1, ηT

0
(
t, θ

(2)
2

))T ]2
,

where M2(ξ̃2, θ1, θ
(2)
2 ) is the information matrix of the design ξ̃2 given by (4.4)

for the single model. The first term of this expression is proportional to the left-
hand side of the equivalence theorem corresponding to the D-optimality in the
single model with parameter θ(2) = (θ1, (θ

(2)
2 )T )T . Moreover, it follows that the

design ξ̃2 is D-optimal for the single model with parameter θ(2) = (θ1, (θ
(2)
2 )T )T ,

which implies that the first term is always smaller than m. By the assumption
σ 2

1 ≤ σ 2
2 , we obtain that the second term of this expression is nonpositive, which

shows κ2(t, ξ
�, θ) ≤ m for all t ∈ [0, d

(2)
max]. This proves the inequality (A.3) and

completes the proof of Theorem 4.3 in the case M = 2. �

PROOF OF COROLLARY 4.4. The locally D-optimal designs for the (single)
Emax, the linear-in-log and the exponential model were calculated by Dette et al.
(2010). The corollary now follows by an application of Theorem 4.3. �

PROOF OF LEMMA 4.5. Let ξ� = (ξ�
1 , ξ�

2 ,μ�) denote the locally D-optimal
design for the Emax, the linear-in-log or the exponential model. Since the infor-
mation matrix M(ξ�, θ) of a locally D-optimal design must be nonsingular, one
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can easily deduce | supp(ξ�
1 )| + | supp(ξ�

2 )| ≥ 4 and

If
∣∣supp

(
ξ�

1
)∣∣ + ∣∣supp

(
ξ�

2
)∣∣ = 4, then 0 /∈ supp

(
ξ�

1
) ∩ supp

(
ξ�

2
)
,

(A.5)
If

∣∣supp
(
ξ�
i

)∣∣ = 1, then 0 /∈ supp
(
ξ�
i

)
, i = 1,2.

Moreover, it follows by Corollary 3.3 that the locally D-optimal design has at most
5 support points for the Emax and the linear-in-log model and at most 6 support
points for the exponential model. This proves Assertion (A1) and (B). Assertion
(A2) also follows by Corollary 3.3.

For a proof of (A3), we note that (| supp(ξ�
1 )|, | supp(ξ�

2 )|) ∈ {(1,3), (2,2),

(3,1)} if the locally D-optimal design is given by a design in �4
2. If (| supp(ξ�

1 )|,
| supp(ξ�

2 )|) = (1,3), ξ�
2 must contain the boundary points 0, d

(2)
max, otherwise it

could be improved with respect to the Loewner ordering (see Theorem 3.1). If
(| supp(ξ�

1 )|, | supp(ξ�
2 )|) = (2,2), both designs must contain at least one of the

boundary points, otherwise I (ξ�
i ) = 2 (i = 1,2) and the designs could be improved

with respect to the Loewner ordering (see again Theorem 3.1). Using (A.5), it fol-
lows that at least one of the designs contains the corresponding upper boundary
point. If (| supp(ξ�

1 )|, | supp(ξ�
2 )|) = (3,1), ξ�

1 must contain the boundary points

0, d
(1)
max, otherwise it could be improved with respect to the Loewner ordering (see

Theorem 3.1). Assertion (A3) now follows. �

PROOF OF THEOREM 4.9. By similar arguments as given in the proof of The-
orem 4.6 [see Supplement (Feller et al., 2017)], we obtain that it is sufficient to
consider the case d

(1)
max = d

(2)
max = 1.

(1) In the case r ≤ 1, it follows from Theorem 4.1 that the design ξa,� defined
in (4.9) is locally D-optimal for model (3.5) if and only if the two inequalities

1

σ 2
1

(
1,

t

t + θ
(1)
2

,
−t

(t + θ
(1)
2 )2

,0
)
M−1(

ξa,�, θ
)

(A.6)

×
(

1,
t

t + θ
(1)
2

,
−t

(t + θ
(1)
2 )2

,0
)T

≤ 4,

1

σ 2
2

(
1,

t

t + θ
(2)
2

,0,
−t

(t + θ
(2)
2 )2

)
M−1(

ξa,�, θ
)

(A.7)

×
(

1,
t

t + θ
(2)
2

,0,
−t

(t + θ
(2)
2 )2

)T

≤ 4

hold for all t ∈ [0,1] [here (A.6) and (A.7) represent the functions κ1 and κ2 in
Theorem 4.1], respectively. The information matrix of the design ξa,� can be rep-
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resented as M(ξa,�, θ) = 1
4X̃(σ1, θ

(1)
2 , σ2, θ

(2)
2 )X̃T (σ1, θ

(1)
2 , σ2, θ

(2)
2 ), where

X̃
(
σ1, θ

(1)
2 , σ2, θ

(2)
2

) =

⎛
⎜⎜⎝X11

(
σ1,0,

θ
(1)
2

2θ
(1)
2 + 1

,1
)

X̃12
(
σ2, θ

(2)
2

)
0 X̃22

(
σ2, θ

(2)
2

)
⎞
⎟⎟⎠

and the matrices X11, X̃12 and X̃22 are defined by

X11
(
σ1, d

(1)
1 , d

(1)
2 , d

(1)
3

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

d
(1)
1

d
(1)
1 + θ

(1)
2

d
(1)
2

d
(1)
2 + θ

(1)
2

d
(1)
3

d
(1)
3 + θ

(1)
2

−d
(1)
1

(d
(1)
1 + θ

(1)
2 )2

−d
(1)
2

(d
(1)
2 + θ

(1)
2 )2

−d
(1)
3

(d
(1)
3 + θ

(1)
2 )2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X̃12(σ2, θ
(2)
2 ) = ( 1

σ2
, 1

2σ2
)T , X̃12(σ2, θ

(2)
2 ) = ( −1

4θ
(2)
2 σ2

). A straightforward calcula-

tion of the inverse of the matrix X̃ yields

X̃−1(
σ1, θ

(1)
2 , σ2, θ

(2)
2

) =

⎛
⎜⎜⎝X−1

11

(
σ1,0,

θ
(1)
2

2θ
(1)
2 + 1

,1
)

X̃inv
12

0 X̃−1
22

(
σ2, θ

(2)
2

)
⎞
⎟⎟⎠ ,

with X̃inv
12 = −X−1

11 (σ1,0,
θ

(1)
2

2θ
(1)
2 +1

,1)X̃12(σ2, θ
(2)
2 )X̃−1

22 (σ2, θ
(2)
2 ) and we obtain for

the left-hand side of (A.6) the representation

4

3σ 2
1

gT (
t, θ (1))3X−T

11

(
σ1,0,

θ
(1)
2

2θ
(1)
2 + 1

,1
)
X−1

11

(
σ1,0,

θ
(1)
2

2θ
(1)
2 + 1

,1
)
g
(
t, θ (1))

= 4

3σ 2
1

gT (
t, θ (1))M−1

1

(
ξ

a,�
1 , θ (1))g(

t, θ (1)),
where gT (t, θ(1)) = (1, t

t+θ
(1)
2

, −t

(t+θ
(1)
2 )2

) and M1(ξ
a,�
1 , θ (1)) are the gradient and the

information matrix of the design ξ
a,�
1 in the Emax model with parameter vector

θ(1) = (θT
1 , θ

(1)
2 )T . Because the design ξ

a,�
1 given in (4.9) is in fact locally D-

optimal for this model, it follows that κ1(t, ξ
a,�, θ) ≤ 4, which proves the first

inequality of the equivalence theorem.
In order to show that the inequality in (A.7) holds for all t ∈ [0,1], we note that

this inequality is equivalent to

(A.8) P(t) = α21t
4 + α22t

3 + α23t
2 + α24t + α25 ≤ 0,



2128 C. FELLER ET AL.

where the last identity defines the coefficients α2j in an obvious manner. For ex-
ample, the leading coefficient and the intercept are given by

α21 = 1

σ 2
2

(1,1,0,0)M−1(
ξa,�, θ

)
(1,1,0,0)T − 4

= 24rθ
(1)
2

(
θ

(1)
2 + 1

)(
2θ

(1)
2 + 1

)2 − 4(1 − r),

α25 = (
θ

(2)
2

)4
(

1

σ 2
2

(1,0,0,0)M−1(
ξa,�, θ

)
(1,0,0,0)T − 4

)
= 4

(
θ

(2)
2

)4
(r − 1),

respectively. Consider the case r < 1 (the case r ≤ 1 is finally obtained considering
the corresponding limit) and note that P(0) = α25 < 0. Consequently, (A.8) holds
if either there are no roots of P in the interval (0,1) or all roots of P in the interval
(0,1) have multiplicity 2. The roots of P(t) are easily calculated as

d
(2)
1 = θ

(2)
2 , d̃1 = θ

(2)
2

3 + rθ
(1)
2 (1 + 2θ

(1)
2 ) −

√
s(θ

(1)
2 )

0.25α21
,

d̃2 = θ
(2)
2

3 + rθ
(1)
2 (1 + 2θ

(1)
2 ) +

√
s(θ

(1)
2 )

0.25α21
,

where we use the notation

s
(
θ

(1)
2

) = 8 − r2(
1 + θ

(1)
2

)2(
1 + 4θ

(1)
2 + 20

(
θ

(1)
2

)2)
+2r

(
1 + 6θ

(1)
2 + 21

(
θ

(1)
2

)2 + 24
(
θ

(1)
2

)3 + 12
(
θ

(1)
2

)4)
.

Note that s(θ
(1)
2 ) is positive (because θ

(1)
2 > 0 and r ≤ 1) and that θ

(2)
2 ∈ (0,1) is

a root of multiplicity 2. Moreover, P(−θ
(2)
2 ) > 0 [since M−1(ξa,�, θ) is positive

definite], and it follows from P(0) < 0 that P has a root in the interval (−θ
(2)
2 ,0).

This is either d̃1 or d̃2 depending on the sign of the leading coefficient α21. The
inequality (A.8) holds, if the other root is not in (0,1).

In order to check the location of the roots d̃1 and d̃2, we consider the condition
(4.12) and the case that the right-hand side of (4.12) is positive. This implies that
the leading coefficient α21 is positive and the root d̃2 is also positive. We obtain

the inequality 3 + r θ
(1)
2 (1 + 2θ

(1)
2 ) <

√
s(θ

(1)
2 ) from the condition d̃1 ∈ (−θ

(2)
2 ,0).

This gives for the second root d̃2 > 4θ
(2)
2 (6 + 2r θ

(1)
2 (1 + 2θ

(1)
2 ))α21. Therefore,

it follows from (4.12) (with positive right-hand side) that the inequality d̃2 ≥ 1 is
satisfied.

If the right-hand side of (4.12) is negative, the leading coefficient α21 is nega-
tive and the conditions P(0) < 0 and P(−θ

(2)
2 ) > 0 imply that both roots d̃1 and

d̃2 must be negative, because otherwise the polynomial P does not satisfy (A.8).
Observing that d̃2 < d̃1 in this case, it is easy to see that the condition (4.12) (with
negative right-hand side) implies d̃1 < 0.
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Summarizing, in the case r ≤ 1 the inequality (4.12) implies (A.8) for all
t ∈ [0,1] and the D-optimality of the designs ξa,� follows by an application of
Theorem 4.1.

(2) At first, we show that the condition (4.13) and r > 1 imply that 1 < r ≤
(1+θ

(2)
2 )6

(1+θ
(1)
2 )6

. The last inequality is equivalent to θ
(2)
2 ≥ r1/6(1 + θ

(1)
2 )− 1 and we have

to show that

(θ
(1)
2 )2(1 + 2θ

(1)
2 )2 + r(1 + θ

(1)
2 )2(1 + 4θ

(1)
2 + 20(θ

(1)
2 )2) − 1

6 + 2θ
(1)
2 (1 + 2θ

(1)
2 )

(A.9)
> r1/6(

1 + θ
(1)
2

) − 1.

This inequality can be rewritten by

(20r + 4)
(
θ

(1)
2

)4 + (
44r − 6

√
r + 1

)(
θ

(1)
2

)3 + (
29r − 6 6

√
r + 5

)(
θ

(1)
2

)2

+ (
6r − 8 6

√
r + 2

)(
θ

(1)
2

) + (
r − 6 6

√
r + 5

)
> 0.

Note that the coefficients of the polynomial are positive for all r > 1. It follows by
the rule of Decartes that this polynomial has no positive roots, and consequently,
(A.9) is satisfied for all positive θ

(1)
2 .

Thus, if r ≥ 1 and the inequality (4.13) holds, we investigate the D-optimality
of the design ξb,� defined by (4.10) checking the two inequalities

1

σ 2
1

(
1,

t

t + θ
(1)
2

,
−t

(t + θ
(1)
2 )2

,0
)
M−1(

ξb,�, θ
)

(A.10)

×
(

1,
t

t + θ
(1)
2

,
−t

(t + θ
(1)
2 )2

,0
)T

≤ 4,

1

σ 2
2

(
1,0,

t

t + θ
(2)
2

,0,
−t

(t + θ
(2)
2 )2

)
M−1(

ξb,�, θ
)

(A.11)

×
(

1,
t

t + θ
(2)
2

,0,
−t

(t + θ
(2)
2 )2

)T

≤ 4,

for t ∈ [0,1] [here (A.10) and (A.11) represent the functions κ1 and κ2 in Theo-
rem 4.1]. Analogously to the proof of part (1) it can be shown that the first inequal-
ity (A.10) is satisfied for all t ∈ [0,1]. In order to establish the inequality (A.11)
for all t ∈ [0,1], f we consider the polynomial

P(t) = (
t + θ

(2)
2

)4(
κ2

(
t, ξb,�, θ

) − 4
)

= α21t
4 + α22t

3 + α23t
2 + α24t + α25,
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where the intercept and leading coefficient the are now given by α25 = 0.

α21 = 4
((

θ
(1)
2

)2(
1 + 2θ

(1)
2

)2 + r
(
1 + θ

(1)
2

)2(
1 + 4θ

(1)
2 + 20

(
θ

(1)
2

)2)) − 4.

Moreover, P(−θ
(2)
2 ) > 0 [since M−1(ξb,�, θ) is positive definite] and the lead-

ing coefficient α21 is always positive, since α21(0) = 4r − 4 > 0 and α21 is in-
creasing for θ

(1)
2 ≥ 0. The roots of P(t) are given by d

(2)
1 = 0, d

(2)
2 = θ

(2)
2 , and

d̃1 = 4θ
(2)
2 (6 + 2θ

(1)
2 (1 + 2θ

(1)
2 ))/α21 where d

(2)
2 is a root of second order. Now

the inequality P(t) ≤ 0 holds for all t ∈ [0,1] if and only if d̃1 ≥ 1. It is easy to see
that this condition is equivalent to (4.13).

(3) At first, one can show that condition (4.14) and r > 1 imply that r ≥
(1+θ

(2)
2 )6

(1+θ
(1)
2 )6

. The result follows by similar arguments as given in the proof of part

(1), which are omitted for the sake of brevity. �
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