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We consider large-scale studies in which thousands of significance tests
are performed simultaneously. In some of these studies, the multiple test-
ing procedure can be severely biased by latent confounding factors such as
batch effects and unmeasured covariates that correlate with both primary vari-
able(s) of interest (e.g., treatment variable, phenotype) and the outcome. Over
the past decade, many statistical methods have been proposed to adjust for
the confounders in hypothesis testing. We unify these methods in the same
framework, generalize them to include multiple primary variables and mul-
tiple nuisance variables, and analyze their statistical properties. In particular,
we provide theoretical guarantees for RUV-4 [Gagnon-Bartsch, Jacob and
Speed (2013)] and LEAPP [Ann. Appl. Stat. 6 (2012) 1664–1688], which
correspond to two different identification conditions in the framework: the
first requires a set of “negative controls” that are known a priori to follow
the null distribution; the second requires the true nonnulls to be sparse. Two
different estimators which are based on RUV-4 and LEAPP are then applied
to these two scenarios. We show that if the confounding factors are strong,
the resulting estimators can be asymptotically as powerful as the oracle es-
timator which observes the latent confounding factors. For hypothesis test-
ing, we show the asymptotic z-tests based on the estimators can control the
type I error. Numerical experiments show that the false discovery rate is also
controlled by the Benjamini–Hochberg procedure when the sample size is
reasonably large.

1. Introduction. Multiple hypothesis testing has become an important statis-
tical problem for many scientific fields, where tens of thousands of tests are typi-
cally performed simultaneously. Traditionally, the tests are assumed to be indepen-
dent of each other, so the false discovery rate (FDR) can be easily controlled by,
for example, the Benjamini–Hochberg procedure [8]. Recent years have witnessed
an extensive investigation of multiple hypothesis testing under dependence, rang-
ing from permutation tests [33, 60], positive dependence [9], weak dependence
[14, 56], accuracy calculation under dependence [18, 44] to mixture models [19,
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57] and latent factor models [20, 21, 35]. Many of these works provide theoretical
guarantees for FDR control under the assumption that the individual test statistics
are valid and may even be correlated.

In this paper, we investigate a more challenging setting. The test statistics may
be correlated with each other due to latent factors and those latent factors may also
be correlated with the variable of interest. As a result, the test statistics are not only
correlated but are also confounded. We use the phrase “confounding” to empha-
size that these latent factors can significantly bias the individual p-values, there-
fore, this problem is fundamentally different from the literature in the previous
paragraph and poses an immediate threat to the reproducibility of the discoveries.
Many confounder adjustment methods have already been proposed for multiple
testing over the last decade [25, 39, 49, 59]. Our goal is to unify these methods in
the same framework and study their statistical properties.

The confounding problem. We start with three real data examples to illustrate
the confounding problem. The first microarray data [Figure 1(a)] is used by Singh
et al. [55] to identify candidate genes associated with a chronic lung disease called
emphysema. The second [Figure 1(b) and (d)] and third [Figure 1(c)] data are used
by Gagnon-Bartsch, Jacob and Speed [25] to study the performance of various con-
founder adjustment methods. For each dataset, we plot the histogram of t-statistics
of a simple linear model that regresses the gene expression on the variable of inter-
est (disease status for the first and gender for the second and third datasets). These
statistics are commonly used in genome-wide association studies (GWAS) to find
potentially interesting genes. See Section 6.2.1 for more detail of these datasets.

The histograms of t-statistics in Figure 1 clearly depart from the approximate
theoretical null distribution N(0,1). The bulk of the test statistics can be skewed
[Figure 1(a) and (b)], overdispersed [Figure 1(a)], underdispersed [Figure 1(b)
and (d)] or noncentered [Figure 1(c)]. In these cases, neither the theoretical null
N(0,1), nor even the empirical null as shown in the histograms, look appropriate
for measuring significance. Schwartzman [52] proved that a largely overdispersed
histogram like Figure 1(a) cannot be explained by correlation alone, and is possibly
due to the presence of confounding factors. For a sneak preview of the confounder
adjustment, the reader can find the histograms after our confounder adjustment in
Figure 3 at the end of this paper. The p-values of our test of confounding (Sec-
tion 3.3.2) in Table 2 indicate that all the three datasets suffer from confounding
latent factors.

Other common sources of confounding in gene expression profiling include
systematic ancestry differences [49], environmental changes [22, 27] and surgi-
cal manipulation [41]. See [36] for a survey. In many studies, especially for ob-
servational clinical research and human expression data, the latent factors, either
genetic or technical, are confounded with primary variables of interest due to the
observational nature of the studies and heterogeneity of samples [50, 51]. Similar
confounding problems also occur in other high-dimensional datasets such as brain
imaging [53] and metabonomics [15].
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FIG. 1. Dataset 1 is the COPD dataset [55]. Dataset 2 and 3 are from [25]. Histograms of regres-
sion t-statistics in three microarray studies show clear departure from the theoretical null distribution
N(0,1). The mean and standard deviation of the normal approximation are obtained from the median
and median absolute deviation of the statistics. See Section 6.2 for the empirical distributions after
confounder adjustment.

Previous methods. As early as [1], principal component analysis has been sug-
gested to estimate the confounding factors. This approach can work reasonably
well if the confounders clearly stand out. For example, in population genetics,
[49] proposed a procedure called EIGENSTRAT that removes the largest few prin-
cipal components from their SNP genotype data, claiming they closely resemble
the ancestry difference. In gene expression data, however, it is often unrealistic to
assume they always represent the confounding factors. The largest principal com-
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ponent may also correlate with the primary effects of interest. Therefore, directly
removing them can result in loss of statistical power.

More recently, an emerging literature considers the confounding problem in
similar statistical settings and a variety of methods have been proposed for con-
founder adjustment [24–26, 38, 39, 59]. These statistical methods are shown to
work better than the EIGENSTRAT procedure for gene expression data. However,
little is known about their theoretical properties. Indeed, the authors did not fo-
cus on model identifiability and rely on impressive heuristic calculations to derive
their estimators. In this paper, we address the identifiability problem, rederive the
estimators in [25, 59] in a more principled way and provide theoretical guarantees
for them.

Before describing the modeling framework, we want to clarify our terminology.
The confounding factors or confounders considered in the present paper are re-
ferred to by different names in the literature, such as “surrogate variables” [38],
“latent factors” [24], “batch effects” [37], “unwanted variation” [26] and “latent
effects” [59]. We believe they are all describing the same phenomenon: that there
exist some unobserved variables that correlate with both the primary variable(s) of
interest and the outcome variables (e.g., gene expression). This problem is gener-
ally known as confounding [23, 32]. A famous example is Simpson’s paradox. The
term “confounding” has multiple meanings in the literature. We use the meaning
from [28]: “a mixing of effects of extraneous factors (called confounders) with the
effect of interest.”

Statistical model of confounding. Most of the confounder adjustment methods
mentioned above are built around the following model:

(1.1) Y = XβT + Z�T + E.

Here, Y is a n×p observed matrix (e.g., gene expression); X is an n× 1 observed
primary variable of interest (e.g., treatment-control, phenotype, health trait); Z is
an n × r latent confounding factor matrix; E is often assumed to be a Gaussian
noise matrix. The p × 1 vector β contains the primary effects we want to estimate.

Model (1.1) is very general for multiple testing dependence. Leek and Storey
[39], Proposition 1, suggest that multiple hypothesis tests based on linear regres-
sion can always be represented by (1.1) using sufficiently many factors. However,
equation (1.1) itself is not enough to model confounded tests. To elucidate the
concept of confounding, we need to characterize the relationship between the la-
tent variables Z and the primary variable X. To be more specific, we assume the
regression of Z on X also follows a linear relationship:

(1.2) Z = XαT + W,

where W is a n × r random noise matrix independent of X and E and the r × 1
vector α characterizes the extent of confounding in this data. By plugging (1.2) in



CONFOUNDER ADJUSTMENT 1867

(1.1), the linear regression of Y on X gives an unbiased estimate of the marginal
effects

(1.3) τ = β + �α.

When α �= 0, τ is not the same as β by (1.3). In this case, the data (X,Y) are con-
founded by Z. Since the confounding factors Z are data artifacts in this model, the
statistical inference of β is much more interesting than that of τ . See Section 5.2
for more discussion on the marginal and the direct effects.

Following LEAPP [59], we use a QR decomposition to decouple the estimation
of � from β . The inference procedure splits into the following two steps:

Step 1. By regressing out X in (1.1), � is the loading matrix in a factor analysis
model and can be efficiently estimated by maximum likelihood.

Step 2. Equation (1.3) can be viewed as a linear regression of the marginal ef-
fects τ on the factor loadings �. To estimate α and β , we replace τ by its observed
value and � by its estimate in Step 1.

As mentioned before, other existing confounder adjustment methods including
SVA [39] and RUV-4 [25] can be unified in this two-step statistical procedure. See
Section 5.3 for a detailed discussion of these methods.

Contributions. Our first contribution in Section 2 is to establish identifiabil-
ity for the confounded multiple testing model. In the first step of estimating fac-
tor loadings �, identifiability is well studied in classical multivariate statistics.
However, the second step of estimating the effects β is not identifiable without
additional constraints. We consider two different sufficient conditions for global
identifiability. The first condition assumes the researcher has a “negative control”
variable set for which there should be no direct effect. This negative control set
often serves as a quality control precaution in microarray studies [26], but they
can also be used to adjust for the confounding factors. The second identification
condition assumes at least half of the true effects are zero, that is, the true alterna-
tive hypotheses are sparse. These two identification conditions correspond to the
approaches of RUV-4 [25] and LEAPP [59], respectively.

Our second contribution in Section 3 is to derive valid and efficient statistical
methods under these identification conditions in the second step. In order to esti-
mate the effects, it is essential to estimate the coefficients α relating the primary
variable to the confounders. Under the two different identification conditions, we
study two different regression methods which are analytically tractable and equally
well performing alternatives to RUV-4 and LEAPP. For the negative control (NC)

scenario, α̂NC and β̂
NC

are obtained by generalized least squares using the neg-

ative controls. For the sparsity scenario, α̂RR and β̂
RR

are obtained by using a
simpler and more analytically tractable robust regression (RR) than the one used
in LEAPP.



1868 WANG, ZHAO, HASTIE AND OWEN

When the factors are strong (as large as the noise magnitude), for both scenarios
we find that the resulting estimators of β are asymptotically as efficient as the ora-
cle estimator which is allowed to observe the confounding factors. It is surprising
that no essential loss of efficiency is incurred by searching for the confounding
variables. Our asymptotic analysis relies on some recent theoretical results for fac-
tor analysis due to [3]. The asymptotic regime we consider has both n, the number
of observations, and p, the number of outcome variables (e.g., genes), going to
infinity. The most important condition that we require for asymptotic efficiency
in the negative control scenario is that the number of negative controls increases
to infinity; in the sparsity scenario, we need the L1 norm of the effects to satisfy
‖β‖1

√
n/p → 0. The fact that p � n in many multiple hypothesis testing prob-

lems plays an important role in these asymptotics.
Next, in Section 3, we show that the asymptotic z-statistics based on the effi-

cient estimators of β can control the type I error. This is not a trivial corollary from
the asymptotic distribution of the test statistics because the size of β is growing
and the z-statistics are weakly correlated. Proving FDR control is more technically
demanding and is beyond the scope of this paper. Instead, we use numerical sim-
ulations to study the empirical performance (including FDR) of our tests. We also
give a significance test of confounding (null hypothesis α = 0) in Section 3. This
test can help the experimenter to determine if there is any hidden confounder in
the design or the experiment process.

In Section 4, we generalize the confounder adjustment model to include mul-
tiple primary variables and multiple nuisance covariates. We show the statistical
methods and theory for the single primary variable regression problem (1.1) can
be smoothly extended to the multiple regression problem.

Outline. Section 2 introduces the model and describes the two identification
conditions. Section 3 studies the statistical inference. Section 4 extends our frame-
work to a linear model with multiple primary variables and multiple known con-
trolling covariates. Section 5 discusses our theoretical analysis in the context of
previous literature, including the existing procedures for debiasing the confounders
and existing theoretical results of multiple hypothesis testing under dependence
(but no confounding). Section 6 studies the empirical behavior of our estimators in
simulations and real data examples. Technical proofs of the results are provided in
the supplementary material [62].

To help the reader follow this paper and compare our methods and theory with
existing approaches, Table 1 summarizes some related publications with more de-
tailed discussion in Section 5.

Notation. Throughout the article, we use bold upper-case letters for matrices
and lower-case letters for vectors. We use Latin letters for random variables and
Greek letters for model parameters. Subscripts of matrices are used to indicate
row(s) whenever possible. For example, if C is a set of indices, then �C is the
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TABLE 1
Selected literature in multiple hypothesis testing under dependence. The categorization is partially

subjective as some authors do not use exactly the same terminology

Noise conditional on latent factors

Independent Correlated

Positive or weak dependence Benjamini and Yekutieli [9]
Storey, Taylor and Siegmund [56]

Clarke and Hall [14]

Unconfounding factors Friguet, Kloareg and Causeur [24] Fan, Han and Gu [21]
Desai and Storey [16] Lan and Du [35]

Discussed in Sections 5.1 and 5.2

Confounding factors Leek and Storey [38, 39] Discussed in Section 5.4
Gagnon-Bartsch and Speed [26] (future research)

Sun, Zhang and Owen [59]
Studied in Sections 2–4
Discussed in Section 5.3

corresponding rows of �. The L0 norm of a vector is defined as the number of
nonzero entries: ‖β‖0 = |{1 ≤ j ≤ p : βj �= 0}|. A random matrix E ∈ R

n×p is
said to follow a matrix normal distribution with mean M ∈ R

n×p , row covariance
U ∈ R

n×n and column covariance V ∈ R
p×p , abbreviated as E ∼ MN(M,U,V),

if the vectorization of E by column follows the multivariate normal distribution
vec(E) ∼ N(vec(M),V ⊗ U). When U = In, this means the rows of E are i.i.d.
N(0,V). We use the usual notation in asymptotic statistics that a random variable
is Op(1) if it is bounded in probability, and op(1) if it converges to 0 in probability.
Bold symbols Op(1) or op(1) mean each entry of the vector is Op(1) or op(1).

2. The model.

2.1. Linear model with confounders. We consider a single primary variable
of interest in this section. It is common to add intercepts and known confounder
effects (such as lab and batch effects) in the regression model. This extension to
multiple linear regression does not change the main theoretical results in this paper
and is discussed in Section 4.

For simplicity, all the variables in this section are assumed to have mean 0
marginally. Our model is built on equation (1.1) that is already widely used in
the existing literature and we rewrite it here:

(2.1a) Yn×p = Xn×1β
T
p×1 + Zn×r�

T
p×r + En×p.

As mentioned earlier, it is also crucial to model the dependence of the confounders
Z and the primary variable X. We assume a linear relationship as in (1.2)

(2.1b) Z = XαT + W,
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and in addition some distributional assumptions on X, W and the noise matrix E

Xi
i.i.d.∼ mean 0, variance 1, i = 1, . . . , n,(2.1c)

W ∼ MN(0, In, Ir ), W ⊥⊥ X,(2.1d)

E ∼ MN(0, In,�), E ⊥⊥ (X,Z).(2.1e)

The parameters in the model (2.1a)–(2.1e) are β ∈ R
p×1 the primary effects

we are most interested in, � ∈ R
p×r the influence of confounding factors on the

outcomes, α ∈ R
r×1 the association of the primary variable with the confounding

factors, and � ∈ R
p×p the noise covariance matrix. We assume � is diagonal

� = diag(σ 2
1 , . . . , σ 2

p), so the noise for different outcome variables is independent.
We discuss possible ways to relax this independence assumption in Section 5.4.

In (2.1c), Xi is not required to be Gaussian or even continuous. For example,
a binary or categorical variable after normalization also meets this assumption.
As mentioned in Section 1, the parameter vector α measures how severely the
data are confounded. For a more intuitive interpretation, consider an oracle pro-
cedure of estimating β when the confounders Z in (2.1a) are observed. The best
linear unbiased estimator in this case is the ordinary least squares (β̂OLS

j , �̂OLS
j ),

whose variance is σ 2
j Var(Xi,Zi)

−1/n. Using (2.1b) and (2.1d), it is easy to show

that Var(β̂OLS
j ) = (1 + ‖α‖2

2)σ
2
j /n and Cov(β̂j

OLS, β̂k
OLS) = 0 for j �= k. In sum-

mary,

(2.2) Var
(
β̂OLS) = 1

n

(
1 + ‖α‖2

2
)
�.

Notice that in the unconfounded linear model in which Z = 0, the variance of the
OLS estimator of β is �/n. Therefore, 1 + ‖α‖2

2 represents the relative loss of ef-
ficiency when we add observed variables Z to the regression which are correlated
with X. In Section 3.2, we show that the oracle efficiency (2.2) can be asymptoti-
cally achieved even when Z is unobserved.

Let θ = (α,β,�,�) be all the parameters and � be the parameter space.
Without any constraint, the model (2.1a)–(2.1e) is unidentifiable. In Sections 2.3
and 2.4, we show how to restrict � to ensure identifiability.

2.2. Rotation. Following [59], we introduce a transformation of the data to
make the identification issues clearer. Consider the Householder rotation matrix
QT ∈ R

n×n such that QT X = ‖X‖2e1 = (‖X‖2,0,0, . . . ,0)T . Left-multiplying Y
by QT , we get Ỹ = QT Y = ‖X‖2e1β

T + Z̃�T + Ẽ, where

(2.3) Z̃ = QT Z = QT (
XαT + W

) = ‖X‖2e1α
T + W̃,

and W̃ = QT W d= W, Ẽ = QT E d= E. As a consequence, the first and the rest of
the rows of Ỹ are

Ỹ1 = ‖X‖2β
T + Z̃1�

T + Ẽ1 ∼ N
(‖X‖2(β + �α)T ,��T + �

)
,(2.4)

Ỹ−1 = Z̃−1�
T + Ẽ−1 ∼ MN

(
0, In−1,��T + �

)
.(2.5)



CONFOUNDER ADJUSTMENT 1871

Here, Ỹ1 is a 1 × p vector, Ỹ−1 is a (n − 1) × p matrix, and the distributions are
conditional on X.

The parameters α and β only appear in (2.4), so their inference (step 1 in our
procedure) can be completely separated from the inference of � and � (step 2
in our procedure). In fact, Ỹ1 ⊥⊥ Ỹ−1|X because Ẽ1 ⊥⊥ Ẽ−1, so the two steps use
mutually independent information. This in turn greatly simplifies the theoretical
analysis.

We intentionally use the symbol Q to resemble the QR decomposition of X.
In Section 4, we show how to use the QR decomposition to separate the primary
effects from confounder and nuisance effects when X has multiple columns. Us-
ing the same notation, we discuss how SVA and RUV decouple the problem in a
slightly different manner in Section 5.3.1.

2.3. Identifiability of �. Equation (2.5) is just the exploratory factor analysis
model, thus � can be easily identified up to some rotation under some mild con-
ditions. Here, we assume a classical sufficient condition for the identification of �
([2], Theorem 5.1).

LEMMA 2.1. Let � = �0 be the parameter space such that:

1. If any row of � is deleted, there remain two disjoint submatrices of � of
rank r , and

2. �T �−1�/p is diagonal and the diagonal elements are distinct, positive and
arranged in decreasing order.

Then � and � are identifiable in the model (2.1a)–(2.1e).

In Lemma 2.1, condition (1) requires that p ≥ 2r +1. Condition (1) identifies �
up to a rotation which is sufficient to identify β . To see this, we can reparameterize
� and α to �U and UT α using an r × r orthogonal matrix U. This reparameteri-
zation does not change the distribution of Ỹ1 in (2.4) if β remains the same. Con-
dition (2) identifies the rotation uniquely but is not necessary for our theoretical
analysis in later sections.

2.4. Identifiability of β . The parameters β and α cannot be identified from
(2.4) because they have in total p + r parameters while Ỹ1 is a length p vector.
If we write P� and P�⊥ as the projection onto the column space and orthogonal
space of � so that β = P�β +P�⊥β , it is impossible to identify P�β from (2.4).

This suggests that we should further restrict the parameter space �. We will
reduce the degrees of freedom by restricting at least r entries of β to equal 0. We
consider two different sufficient conditions to identify β:

Negative control �1 = {(α,β,�,�) : βC = 0, rank(�C) = r} for a known neg-
ative control set |C| ≥ r .
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Sparsity �2(s) = {(α,β,�,�) : ‖β‖0 ≤ �(p − s)/2�, rank(�C) = r,∀C ⊂
{1, . . . , p}, |C| = s} for some r ≤ s ≤ p.

PROPOSITION 2.1. If � = �0 ∩�1 or � = �0 ∩�2(s) for some r ≤ s ≤ p,
the parameters θ = (α,β,�,�) in the model (2.1a)–(2.1e) are identifiable.

PROOF. Since � ⊂ �0, we know from Lemma 2.1 that � and � are identifi-
able. Now consider two combinations of parameters θ (1) = (α(1),β(1),�,�) and
θ (2) = (α(2),β(2),�,�) both in the space � and inducing the same distribution in
the model (2.1a)–(2.1e), that is, β(1) + �α(1) = β(2) + �α(2).

Let C be the set of indices such that β
(1)
C = β

(2)
C = 0. If � = �0 ∩ �1, we

already know |C| ≥ r . If � = �0 ∩ �2(s), it is easy to show that |C| ≥ s is also
true because both β(1) and β(2) have at most �(p − s)/2� nonzero entries. Along
with the rank constraint on �C , this implies that �Cα(1) = �Cα(2). However, the
conditions in �1 and �2 ensure that �C has full rank, so α(1) = α(2), and hence
β(1) = β(2). �

REMARK 2.1. The condition (2) in Lemma 2.1 that uniquely identifies � is
not necessary for the identification of β . This is because for any set |C| ≥ r and any
orthogonal matrix U ∈ R

r×r , we always have rank(�C) = rank(�C)U. Therefore,
� only needs to be identified up to a rotation.

REMARK 2.2. Almost all dense matrices of � ∈ R
p×r satisfy the conditions.

However, for �2(s) the sparsity of � allowed depends on the sparsity of β . The
condition �2(s) rules out some too sparse �. In this case, one may consider using
confirmatory factor analysis instead of exploratory factor analysis to model the
relationship between confounders and outcomes. For some recent identification
results in confirmatory factor analysis, see [29, 34].

REMARK 2.3. The maximum allowed ‖β‖0 in �2, �(p − r)/2�, is exactly
the maximum breakdown point of a robust regression with p observations and r

predictors [42]. Indeed, we use a standard robust regression method to estimate β
in this case in Section 3.2.2.

REMARK 2.4. To the best of our knowledge, the only existing literature that
explicitly addresses the identifiability issue is [58], Chapter 4.2, where the au-
thor gives sufficient conditions for local identifiability of β by viewing (2.1a) as a
“sparse plus low rank” matrix decomposition problem. See [13], Section 3.3, for
a more general discussion of the local and global identifiability for this problem.
Local identifiability refers to identifiability of the parameters in a neighborhood
of the true values. In contrast, the conditions in Proposition 2.1 ensure that β is
globally identifiable in the restricted parameter space.
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3. Statistical inference. As mentioned earlier in Section 1, the statistical in-
ference consists of two steps: the factor analysis (Section 3.1) and the linear re-
gression (Section 3.2).

3.1. Inference for � and �. The most popular approaches for factor analysis
are principal component analysis (PCA) and maximum likelihood (ML). Bai and
Ng [6] derived a class of estimators of r by principal component analysis using
various information criteria. The estimators are consistent under Assumption 3 in
this section and some additional technical assumptions in [6]. Due to this reason,
we assume the number of confounding factors r is known in this section. See [45],
Section 3, for a comprehensive literature review of choosing r in practice.

We are most interested in the asymptotic behavior of factor analysis when both
n,p → ∞. In this case, PCA cannot consistently estimate the noise variance � [3].
For theoretical analysis, we use the quasi maximum likelihood estimate in [3] to
get �̂ and �̂. This estimator is called “quasi”-MLE because it treats the factors Z̃−1
as fixed quantities. Since the confounders Z in our model (2.1a)–(2.1e) are random
variables, we introduce a rotation matrix R ∈ R

r×r and let Z̃(0)
−1 = Z̃−1(R−1)T ,

�(0) = �R be the target factors and factor loadings that are studied in [3].
To make Z̃(0)

−1 and �(0) identifiable, [3] consider five different identification con-
ditions. However, the parameter of interest in model (2.1a)–(2.1e) is β instead of
� or �(0). As we have discussed in Section 2.4, we only need the column space of
� to estimate β , which gives us some flexibility of choosing the identification con-
dition. In our theoretical analysis, we use the third condition (IC3) in [3], which
imposes the constraints that (n − 1)−1(Z̃(0)

−1)
T Z̃(0)

−1 = Ir and p−1�̃(0)T �−1�(0) is

diagonal. Therefore, the rotation matrix R satisfies RRT = (n − 1)−1Z̃T−1Z̃−1.
The quasi-log-likelihood being maximized in [3] is

(3.1) − 1

2p
log det

(
�(0)(�(0))T + �

) − 1

2p
tr

{
S
[
�(0)(�(0))T + �

]−1}
,

where S is the sample covariance matrix of Ỹ−1.
The theoretical results in this section rely heavily on recent findings in [3]. They

use these three assumptions.

ASSUMPTION 1. The noise matrix E follows the matrix normal distribution
E ∼ MN(0, In,�) and � is a diagonal matrix.

ASSUMPTION 2. There exists a positive constant D such that ‖�j‖2 ≤ D,
D−2 ≤ σ 2

j ≤ D2 for all j , and the estimated variances σ̂ 2
j ∈ [D−2,D2] for all j .

ASSUMPTION 3. The limits limp→∞ p−1�T �−1� and limp→∞
∑p

j=1 σ−4
j ×

(�j ⊗ �j )(�
T
j ⊗ �T

j ) exist and are positive definite matrices.
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LEMMA 3.1 (Bai and Li [3]). Under Assumptions 1–3, the maximizer (�̂, �̂)

of the quasi-log-likelihood (3.1) satisfies
√

n
(
�̂j − �

(0)
j

) d→ N
(
0, σ 2

j Ir

)
and

√
n
(
σ̂ 2

j − σ 2
j

) d→ N
(
0,2σ 4

j

)
.

In the supplementary material [62], we prove some strengthened technical re-
sults of Lemma 3.1 that are used in the proof of subsequent theorems.

REMARK 3.1. Assumption 2 is Assumption D from [3]. It requires that the
diagonal elements of the quasi-MLE �̂ be uniformly bounded away from zero and
infinity. We would prefer boundedness to be a consequence of some assumptions
on the distribution of the data, but at present we are unaware of any other results
like Lemma 3.1 which do not use this assumption. In practice, the quasi-likelihood
problem (3.1) is commonly solved by the Expectation–Maximization (EM) algo-
rithm. Similar to [3, 4], we do not find it necessary to impose an upper or lower
bound for the parameters in the EM algorithm in the numerical experiments.

3.2. Inference for α and β . The estimation of α and β is based on the first
row of the rotated outcome Ỹ1 in (2.4), which can be rewritten as

(3.2) ỸT
1 /‖X‖2 = β + �

(
α + W̃1/‖X‖2

) + ẼT
1 /‖X‖2,

where W̃1 ∼ N(0, Ip) is from (2.3) and W̃1 is independent of Ẽ1 ∼ N(0,�). Note
that Ỹ1/‖X‖2 is proportional to the sample covariance between Y and X. All the
methods described in this section first try to find a good estimator α̂. They then use
β̂ = ỸT

1 /‖X‖2 − �̂α̂ to estimate β .
To reduce variance, we choose to estimate (3.2) conditional on W̃1. Also, to use

the results in Lemma 3.1, we replace � by �(0). Then we can rewrite (3.2) as

(3.3) ỸT
1 /‖X‖2 = β + �(0)α(0) + ẼT

1 /‖X‖2,

where �(0) = �R and α(0) = R−1(α + W̃1/‖X‖2). Notice that the random R only
depends on Ỹ−1, and thus is independent of Ỹ1. In the proof of the results in this
section, we first consider the estimation of β for fixed W̃1, R and X, and then show
the asymptotic distribution of β̂ indeed does not depend on W̃1, R or X, and thus
also holds unconditionally.

3.2.1. Negative control scenario. If we know a set C such that βC = 0 (so
� ⊂ �1), then Ỹ1 can be correspondingly separated into two parts:

ỸT
1,C/‖X‖2 = �

(0)
C α(0) + ẼT

1,C/‖X‖2, and
(3.4)

ỸT
1,−C/‖X‖2 = β−C + �

(0)
−Cα

(0) + ẼT
1,−C/‖X‖2.

The number of negative controls |C| may grow as p → ∞. We impose an addi-
tional assumption on the latent factors of the negative controls.
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ASSUMPTION 4. limp→∞ |C|−1�T
C �−1

C �C exists and is positive definite.

We consider the following negative control (NC) estimator where α(0) is esti-
mated by generalized least squares:

α̂NC = (
�̂

T

C �̂
−1
C �̂C

)−1
�̂

T

C �̂
−1
C ỸT

1,C/‖X‖2 and(3.5)

β̂
NC
−C = ỸT

1,−C/‖X‖2 − �̂−Cα̂
NC

.(3.6)

This estimator matches the RUV-4 estimator of [25] except that it uses quasi-
maximum likelihood estimates of � and � instead of using PCA, and general-
ized linear squares instead of ordinary linear squares regression. The details are in
Section 5.3.2.

Our goal is to show consistency and asymptotic variance of β̂
NC
−C . Let �C repre-

sents the noise covariance matrix of the variables in C. We then have

THEOREM 3.1. Under Assumptions 1–4, if n,p → ∞ and (logp)2/n → 0,
then for any fixed index set S with finite cardinality and S ∩ C = ∅, we have

(3.7)
√

n
(
β̂

NC
S − βS

) d→ N
(
0,

(
1 + ‖α‖2

2
)
(�S + 	S)

)
,

where 	S = �S(�T
C �−1

C �C)−1�T
S .

If in addition, |C| → ∞, the minimum eigenvalue of �T
C �−1

C �C → ∞ by As-
sumption 4, then the maximum entry of 	S goes to 0. Therefore, in this case,

(3.8)
√

n
(
β̂

NC
S − βS

) d→ N
(
0,

(
1 + ‖α‖2

2
)
�S

)
.

The asymptotic variance in (3.8) is the same as the variance of the oracle least
squares in (2.2). Comparable oracle efficiency statements can be found in the
econometrics literature [7, 63]. This is also the variance used implicitly in RUV-4
as it treats the estimated Z as given when deriving test statistics for β . When the
number of negative controls is not too large, say |C| = 30, the correction term 	S is

nontrivial and gives more accurate estimate of the variance of β̂
NC

. See Section 6.1
for more simulation results.

3.2.2. Sparsity scenario. When the zero indices in β are unknown but sparse
(so � ⊆ �2), the estimation of α and β from ỸT

1 /‖X‖2 = β+�(0)α(0)+ẼT
1 /‖X‖2

can be cast as a robust regression by viewing ỸT
1 as observations and �(0) as design

matrix. The nonzero entries in β correspond to outliers in this linear regression.
The problem here has two nontrivial differences compared to classical robust

regression. First, we expect some entries of β to be nonzero, and our goal is to
make inference on the outliers; second, we do not observe the design matrix �(0)

but only have its estimator �̂. In fact, if β = 0 and �(0) is observed, the ordinary
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least squares estimator of α(0) is unbiased and has variance of order 1/(np), be-
cause the noise in (3.2) has variance 1/n and there are p observations. Our main
conclusion is that α(0) can still be estimated very accurately given the two technical
difficulties.

Given a robust loss function ρ, we consider the following estimator:

α̂RR = arg min
p∑

j=1

ρ

(
Ỹ1j /‖X‖2 − �̂

T

j α

σ̂j

)
and(3.9)

β̂
RR = Ỹ1/‖X‖2 − �̂α̂RR

.(3.10)

For a broad class of loss functions ρ, estimating α by (3.9) is equivalent to

(3.11)
(
α̂RR

, β̃
) = arg min

α,β

p∑
j=1

1

σ̂ 2
j

(
Ỹ1j /‖X‖2 − βj − �̂

T

j α
)2 + Pλ(β),

where Pλ(β) is a penalty to promote sparsity of β [54]. However, β̂
RR

is not
identical to β̃ , which is a sparse vector that does not have an asymptotic normal
distribution. The LEAPP algorithm [59] uses the form (3.11). Replacing it by the
robust regression (3.9) and (3.10) allows us to derive significance tests of H0j :
βj = 0.

We assume a smooth loss ρ for the theoretical analysis.

ASSUMPTION 5. The penalty ρ : R → [0,∞) with ρ(0) = 0. The function
ρ(x) is nonincreasing when x ≤ 0 and is nondecreasing when x > 0. The deriva-
tive ψ = ρ′ exists and |ψ | ≤ D for some D < ∞. Furthermore, ρ is strongly
convex in a neighborhood of 0.

A sufficient condition for the local strong convexity is that ψ ′ > 0 exists in a

neighborhood of 0. The next theorem establishes the consistency of β̂
RR

.

THEOREM 3.2. Under Assumptions 1–3 and 5, if n,p → ∞, (logp)2/n → 0

and ‖β‖1/p → 0, then α̂RR p→ α. As a consequence, for any j , β̂RR
j

p→ βj .

To derive the asymptotic distribution, we consider the estimating equation cor-
responding to (3.9). By taking the derivative of (3.9), α̂RR satisfies

(3.12) 

p,�̂,�̂

(
α̂RR) = 1

p

p∑
j=1

ψ

(
Ỹ1j /‖X‖2 − �̂

T

j α̂RR

σ̂j

)
�̂j /σ̂j = 0.

The next assumption is used to control the higher order term in a Taylor expan-
sion of 
 .
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ASSUMPTION 6. The first two derivatives of ψ exist and both |ψ ′(x)| ≤ D

and |ψ ′′(x)| ≤ D hold at all x for some D < ∞.

Examples of loss functions ρ that satisfy Assumptions 5 and 6 include smoothed
Huber loss and Tukey’s bisquare.

The next theorem gives the asymptotic distribution of β̂
RR

when the nonzero

entries of β are sparse enough. The asymptotic variance of β̂
RR

is, again, the oracle
variance in (2.2).

THEOREM 3.3. Under Assumptions 1–3, 5 and 6, if n,p → ∞, with
(logp)2/n → 0 and ‖β‖1

√
n/p → 0, then

√
n
(
β̂

RR
S − βS

) d→ N
(
0,

(
1 + ‖α‖2

2
)
�S

)
for any fixed index set S with finite cardinality.

If n/p → 0, then a sufficient condition for ‖β‖1
√

n/p → 0 in Theorem 3.3 is
‖β‖1 = O(

√
p). If instead n/p → c ∈ (0,∞), then ‖β‖1 = o(

√
p) suffices.

3.3. Hypothesis testing. In this section, we construct significance tests for β
and α based on the asymptotic normal distributions in the previous section.

3.3.1. Test of the primary effects. We consider the asymptotic test for H0j :
βj = 0, j = 1, . . . , p resulting from the asymptotic distributions of β̂j derived in
Theorems 3.1 and 3.3:

(3.13) tj = ‖X‖2β̂j

σ̂j

√
1 + ‖α̂‖2

, j = 1, . . . , p.

Here, we require |C| → ∞ for the NC estimator. The null hypothesis H0j is re-
jected at level-α if |tj | > zα/2 = 	−1(1−α/2) as usual, where 	 is the cumulative
distribution function of the standard normal. Note that here we slightly abuse the
notation α to represent the significance level and this should not be confused with
the model parameter α.

The next theorem shows that the overall type-I error and the family-wise error
rate (FWER) can be asymptotically controlled by using the test statistics tj , j =
1, . . . , p.

THEOREM 3.4. Let Np = {j |βj = 0, j = 1, . . . , p} be all the true null hy-
potheses. Under the assumptions of Theorem 3.1 or Theorem 3.3, |C| → ∞ for the
NC scenario, as n,p, |Np| → ∞,

1

|Np|
∑

j∈Np

I
(|tj | > zα/2

) p→ α and(3.14)
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lim sup P
( ∑

j∈Np

I
(|tj | > zα/(2p)

) ≥ 1
)

≤ α.(3.15)

Although the individual test is asymptotically valid as tj
d→ N(0,1), Theo-

rem 3.4 is not a trivial corollary of the asymptotic normal distribution in Theo-
rems 3.1 and 3.3. This is because tj , j = 1, . . . , p are not independent for finite
samples. The proof of Theorem 3.4 investigates how the dependence of the test
statistics diminishes when n,p → ∞. The proof of Theorem 3.4 already requires
a careful investigation of the convergence of β̂ in Theorem 3.3. It is more cum-
bersome to prove FDR control using our test statistics. In Section 6, we show that
FDR is usually well controlled in simulations for the Benjamini–Hochberg proce-
dure when the sample size is large enough.

REMARK 3.2. We find a calibration technique in [59] very useful to improve
the type I error and FDR control for finite sample size. Because the asymptotic
variance used in (3.13) is the variance of an oracle OLS estimator, when the sample
size is not sufficiently large, the variance of β̂RR should be slightly larger than this
oracle variance. To correct for this inflation, one can use median absolute deviation
(MAD) with customary scaling to match the standard deviation for a Gaussian
distribution to estimate the empirical standard error of tj , j = 1, . . . , p and divide
tj by the estimated standard error. The performance of this empirical calibration is
studied in the simulations in Section 6.1.

3.3.2. Test of confounding. We also consider a significance test for H0,α :
α = 0, under which the latent factors are not confounding.

THEOREM 3.5. Let the assumptions of Theorem 3.1 or Theorem 3.3 and
|C| → ∞ for the NC scenario be given. Under the null hypothesis that α = 0,
for α̂ = α̂NC in (3.5) or α̂ = α̂RR in (3.9), we have

n · α̂T α̂
d→ χ2

r ,

where χ2
r is the chi-square distribution with r degree of freedom.

Therefore, the null hypothesis H0,α : α = 0 is rejected if n · α̂T α̂ > χ2
r,α where

χ2
r,α is the upper-α quantile of χ2

r . This test, combined with exploratory factor
analysis, can be used as a diagnosis tool for practitioners to check whether the data
gathering process has any confounding factors that can bias the multiple hypothesis
testing.
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4. Extension to multiple regression. In Sections 2 and 3, we assume that
there is only one primary variable X and all the random variables X, Y and Z have
mean 0. In practice, there may be several predictors, or we may want to include
an intercept term in the regression model. Here, we develop a multiple regression
extension to the original model (2.1a)–(2.1e).

Suppose we observe in total d = d0 +d1 random predictors that can be separated
into two groups:

1. X0: n×d0 nuisance covariates that we would like to include in the regression
model, and

2. X1: n × d1 primary variables whose effects we want to study.

For example, the intercept term can be included in X0 as a n × 1 vector of 1 (i.e.,
a random variable with mean 1 and variance 0).

Leek and Storey [39] consider the case d0 = 0 and d1 ≥ 1 for SVA and [59]
consider the case d0 ≥ 0 and d1 = 1 for LEAPP. Here, we study the confounder
adjusted multiple regression in full generality, for any d0 ≥ 0 and d1 ≥ 1. Our
model is

Y = X0BT
0 + X1BT

1 + Z�T + E,(4.1a) (
X0i

X1i

)
are i.i.d. with E

[(
X0i

X1i

) (
X0i

X1i

)T
]

= �X,(4.1b)

Z | (X0,X1) ∼ MN
(
X0AT

0 + X1AT
1 , In, Ir

)
and(4.1c)

E ⊥⊥ (X0,X1,Z), E ∼ MN(0, In,�).(4.1d)

The model does not specify means for X0i and X1i ; we do not need them. The pa-
rameters in this model are, for i = 0 or 1, Bi ∈R

p×di , � ∈ R
p×r , �X ∈ R

d×d , and
Ai ∈ R

r×di . The parameters A and B are the matrix versions of α and β in model
(2.1a)–(2.1e). Additionally, we assume �X is invertible. To clarify our purpose,
we are primarily interested in estimating and testing for the significance of B1.

For the multiple regression model (4.1), we again consider the rotation matrix
QT that is given by the QR decomposition

(
X0 X1

) = QU where Q ∈ R
n×n is

an orthogonal matrix and U is an upper triangular matrix of size n × d . Therefore,
we have

QT (
X0 X1

) = U =
⎛
⎝U00 U01

0 U11
0 0

⎞
⎠ ,

where U00 is a d0 ×d0 upper triangular matrix and U11 is a d1 ×d1 upper triangular
matrix. Now let the rotated Y be

(4.2) Ỹ = QT Y =
⎛
⎜⎝ Ỹ0

Ỹ1

Ỹ−1

⎞
⎟⎠ ,
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where Ỹ0 is d0 × p, Ỹ1 is d1 × p and Ỹ−1 is (n − d) × p, then we can partition
the model into three parts: conditional on both X0 and X1 (hence U),

Ỹ0 = U00BT
0 + U01BT

1 + Z̃0�
T + Ẽ0,(4.3)

Ỹ1 = U11BT
1 + Z̃1�

T + Ẽ1 ∼ MN
(
U11(B1 + �A1)

T , Id1,��T + �
)
,(4.4)

Ỹ−1 = Z̃−1�
T + Ẽ−1 ∼ MN

(
0, In−d,��T + �

)
,(4.5)

where Z̃ = QT Z and Ẽ = QT E d= E. Equation (4.3) corresponds to the nuisance
parameters B0 and is discarded according to the ancillary principle. Equation (4.4)
is the multivariate extension to (2.4) that is used to estimate B1 and equation (4.5)
plays the same role as (2.5) to estimate � and �.

We consider the asymptotics when n,p → ∞ and d, r are fixed and known.
Since d is fixed, the estimation of � is not different from the simple regression case
and we can use the maximum likelihood factor analysis described in Section 3.1.
Under Assumptions 1–3, the precision results of �̂ and �̂ in Lemma 3.1 still hold.

Let �−1
X = � = (

�00 �01
�10 �11

). In the proof of Theorems 3.1 and 3.3, we consider

a fixed sequence of X such that ‖X‖2/
√

n → 1. Similarly, we have the following
lemma in the multiple regression scenario:

LEMMA 4.1. As n → ∞, 1
n

UT
11U11

a.s.→ �−1
11 .

Similar to (3.2), we can rewrite (4.4) as

ỸT
1 U−T

11 = B1 + �
(
A1 + W̃1U−T

11

) + Ẽ1U−T
11 ,

where W̃1 ∼ MN(0, Id1, Ip) is independent from Ẽ1. As in Section 3.2, we de-
rive statistical properties of the estimate of B1 for a fixed sequence of X, W̃1 and
Z, which also hold unconditionally. For simplicity, we assume that the negative
controls are a known set of variables C with B1,C = 0. We can then estimate each
column of A1 by applying the negative control (NC) or robust regression (RR) we
discussed in Sections 3.2.1 and 3.2.2 to the corresponding row of Ỹ1U−T

11 , and then
estimate B1 by

B̂1 = ỸT
1 U−T

11 − �̂Â1.

Notice that Ẽ1U−T
11 ∼ MN(0,�,U−1

11 U−T
11 ). Thus, the “samples” in the robust re-

gression, which are actually the p variables in the original problem are still in-
dependent within each column. Though the estimates of each column of A1 may
be correlated, we will show that the correlation will not affect inference on B1.
As a result, we still get asymptotic results similar to Theorem 3.3 for the multiple
regression model (4.1).
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THEOREM 4.1. Under Assumptions 1–6, if n,p → ∞, with (logp)2/n → 0
and ‖vec(B1)‖1

√
n/p → 0, then for any fixed index set S with finite cardinality

|S|,
√

n
(
B̂

NC
1,S − B1,S

) d→ MN
(
0|S|×k1,�S + 	S,�11 + AT

1 A1
)

and(4.6)

√
n
(
B̂

RR
1,S − B1,S

) d→ MN
(
0|S|×k1,�S,�11 + AT

1 A1
)
,(4.7)

where 	S is defined in Theorem 3.1.

As for the asymptotic efficiency of this estimator, we again compare it to the
oracle OLS estimator of B1 which observes confounding variables Z in (4.1). In the

multiple regression model, we claim that B̂
RR
1 still reaches the oracle asymptotic

efficiency. In fact, let B = (B0 B1 �). The oracle OLS estimator of B, B̂
OLS

, is
unbiased and its vectorization has variance V−1 ⊗ �/n where

V =
(

�X �XAT

A�X Ir + A�XAT

)
for A = (

A0 A1
)
.

By the block-wise matrix inversion formula, the top left d × d block of V−1 is

�−1
X + AT A. The variance of B̂

OLS
1 only depends on the bottom right d1 × d1

sub-block of this d × d block, which is simply �11 + AT
1 A1. Therefore, B̂

OLS
1 is

unbiased and its vectorization has variance (�11 + AT
1 A1) ⊗ �/n, matching the

asymptotic variance of B̂
RR
1 in Theorem 4.1.

5. Discussion.

5.1. Confounding versus unconfounding. The issue of multiple testing depen-
dence arises because Z in the true model (1.1) is unobserved. We have focused
on the case where Z is confounded with the primary variable. Some similar re-
sults were obtained earlier for the unconfounded case, corresponding to α = 0 in
our notation. For example, [35] used a factor model to improve the efficiency of
significance tests of the regression intercepts. Jin [31], Li and Zhong [40] devel-
oped more powerful procedures for testing β while still controlling FDR under
unconfounded dependence.

In another related work, Fan, Han and Gu [21] imposed a factor structure on the
unconfounded test statistics, whereas this paper and the articles discussed later in
Section 5.3 assume a factor structure on the raw data. Fan, Han and Gu [21] used
an approximate factor model to accurately estimate the false discovery proportion.
Their correction procedure also includes a step of robust regression. Nevertheless,
it is often difficult to interpret the factor structure of the test statistics. In compari-
son, the latent variables Z in our model (2.1a)–(2.1e), whether confounding or not,
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can be interpreted as batch effects, laboratory conditions, or other systematic bias.
Such problems are widely observed in genetics studies (see, e.g., the review article
[37]).

As a final remark, some of the models and methods developed in the context of
unconfounded hypothesis testing may be useful for confounded problems as well.
For example, the relationship between Z and X needs not be linear as in (1.2). In
certain applications, it may be more appropriate to use a time-series model [57] or
a mixture model [19].

5.2. Marginal effects versus direct effects. In Section 1, we switched our in-
terest from the marginal effects τ in (1.3) to the direct effects β . We believe that
they are usually more scientifically meaningful and interpretable than the marginal
effects. For instance, if the treated (control) samples are analyzed by machine A
(machine B), and the machine A outputs higher values than B, we certainly do not
want to include the effects of this machine to machine variation on the outcome
measurements.

When model (2.1a)–(2.1e) is interpreted as a “structural equations model” [11],
β is indeed the causal effect of X on Y [46]. In this paper, we do not make such
structural assumptions about the data generating process. Instead, we use (2.1a)–
(2.1e) to describe the screening procedure commonly applied in high throughput
data analysis. The model (2.1a)–(2.1e) also describes how we think the marginal
effects can be confounded, and hence different from the more meaningful direct
effects β . Additionally, the asymptotic setting in this paper is quite different from
that in the traditional structural equations model.

5.3. Comparison with existing confounder adjustment methods. We discuss
in more detail how previous methods of confounder adjustment, namely SVA [38,
39], RUV-4 [25, 26] and LEAPP [59], fit in the framework (2.1a)–(2.1e). See [47]
for an alternative approach of bilinear regression with latent factors that is also
motivated by high-throughput data analysis.

5.3.1. SVA. There are two versions of SVA: the reduced subset SVA (subset-
SVA) of [38] and the iteratively reweighted SVA (IRW-SVA) of [39]. Both of them
can be interpreted as the two-step statistical procedure in the framework (2.1a)–
(2.1e). In the first step, SVA estimates the confounding factors by applying PCA
to the residual matrix (I − HX)Y where HX = X(XT X)−1XT is the projection
matrix of X. In contrast, we applied factor analysis to the rotated residual ma-
trix (QT Y)−1, where Q comes from the QR decomposition of X in Section 4.
To see why these two approaches lead to the same estimate of �, we introduce
the block form of Q = (

Q1 Q2
)

where Q1 ∈ R
n×d and Q2 ∈ R

n×(n−d). It is
easy to show that (QT Y)−1 = QT

2 Y and (I − HX)Y = Q2QT
2 Y. Thus, our ro-

tated matrix (QT Y)−1 decorrelates the residual matrix by left-multiplying by Q2
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(because QT
2 Q2 = In−d ). Because (QT

2 Y)T QT
2 Y = (Q2QT

2 Y)T Q2QT
2 Y, (QT Y)−1

and (I − HX)Y have the same sample covariance matrix, they will yield the same
factor loading estimate under PCA and also under MLE. The main advantage of
using the rotated matrix is theoretical: the rotated residual matrices have indepen-
dent rows.

Because SVA does not assume an explicit relationship between the primary
variable X and the confounders Z, it cannot use the regression (3.2) to estimate
α (not even defined) and β . Instead, the two SVA algorithms try to reconstruct
the surrogate variables, which are essentially the confounders Z in our framework.
Assuming the true primary effect β is sparse, the subset-SVA algorithm finds the
outcome variables Y that have the smallest marginal correlation with X and uses
their principal scores as Z. Then it computes the p-values by F-tests comparing
the linear regression models with and without Z. This procedure can easily fail
because a small marginal correlation does not imply no real effect of X due to the
confounding factors. For example, most of the marginal effects in the gender study
in Figure 1(b) are very small, but after confounding adjustment we find some are
indeed significant (see Section 6.2).

The IRW-SVA algorithm modifies subset-SVA by iteratively choosing the sub-
set. At each step, IRW-SVA gives a weight to each outcome variable based on
how likely βj = 0 the current estimate of surrogate variables. The weights are then
used in a weighted PCA algorithm to update the estimated surrogate variables.
IRW-SVA may be related to our robust regression estimator in Section 3.2.2 in the
sense that an M-estimator is commonly solved by Iteratively Reweighted Least
Squares (IRLS) and the weights also represent how likely the data point is an out-
lier. However, unlike IRLS, the iteratively reweighted PCA algorithm is not even
guaranteed to converge. Some previous articles [25, 59] and our experiments in
Section 6.1 and the supplementary material [62] show that SVA is outperformed
by the NC and RR estimators in most confounded examples.

5.3.2. RUV. Gagnon-Bartsch, Jacob and Speed [25] derived the RUV-4 esti-
mator of β via a sequence of heuristic calculations. In Section 3.2.1, we derived
an analytically more tractable estimator β̂NC which is actually the same as RUV-
4, with the only difference being that we use MLE instead of PCA to estimate the
factors and GLS instead of OLS in (3.5). To see why β̂NC is essentially the same as
β̂RUV−4, in the first step of RUV-4 it uses the residual matrix to estimate � and Z,
which yields the same estimate as using the rotated matrix (Section 5.3.1). In the
second step, RUV-4 estimates β via a regression of Y on X and Ẑ = Q(Z̃T−1 α̂T

)T .
This is equivalent to using ordinary least squares (OLS) to estimate α in (3.4).
Based on more heuristic calculations, the authors claim that the RUV-4 estima-
tor has approximately the oracle variance. We rigorously prove this statement in
Theorem 3.1 when the number of negative controls is large and give a finite sam-
ple correction when the negative controls are few. In Section 6.1, we show this
correction is very useful to control the type I error and FDR in simulations.
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5.3.3. LEAPP. We follow the two-step procedure and robust regression frame-
work in LEAPP [59] in this paper, thus the test statistics tRR

j are very similar to the
test statistics in LEAPP. The difference is that LEAPP uses the �-IPOD algorithm
of [54] for outlier detection, which is robust against outliers at leverage points
but is not easy to analyze. Indeed [59] replaced it by the Dantzig selector in its
theoretical Appendix. The classical M-estimator, although not robust to leverage
points [64], allows us to study the theoretical properties more easily. In practice,
LEAPP and RR estimator usually produce very similar results; see Section 6.1 for
a numerical comparison.

5.4. Inference when � is nondiagonal. Our analysis is based on the assump-
tion that the noise covariance matrix � is diagonal, though in many applications,
the researcher might suspect that the outcome variables Y in model (2.1a)–(2.1e)
are still correlated after conditioning on the latent factors. Typical examples in-
clude gene regulatory networks [17] and cross-sectional panel data [48], where
the variable dependence sometimes cannot be fully explained by the latent factors
or may simply require too many of them. Bai and Li [5] extend the theoretical
results in [3] to approximate factor models allowing for weakly correlated noise.
Approximate factor models have also been discussed in [20].

6. Numerical experiments.

6.1. Simulations. We have provided theoretical guarantees of confounder ad-
justing methods in various settings and the asymptotic regime of n,p → ∞ (e.g.,
Theorems 3.1–3.4 and 4.1). Now we use numerical simulations to verify these
results and further study the finite sample properties of our estimators and tests
statistics.

The simulation data are generated from the single primary variable model

(2.1a)–(2.1e). More specifically, Xi is a centered binary variable (Xi + 1)/2
i.i.d.∼

Bernoulli(0.5), and Yi , Zi are generated according to (2.1a)–(2.1e).

For the parameters in the model, the noise variances are generated by σ 2
j

i.i.d.∼
InvGamma(3,2), j = 1, . . . , p, and so E(σ 2

j ) = Var(σ 2
j ) = 1. We set each αk =

‖α‖2/
√

r equally for k = 1,2, . . . , r where ‖α‖2
2 is set to 1, so the variance of

Xi explained by the confounding factors is R2 = 50%. (Additional results for
R2 = 5% and 0 are in the supplementary material [62].) The primary effect β

has independent components βi taking the values 3
√

1 + ‖α‖2
2 and 0 with proba-

bility π = 0.05 and 1 − π = 0.95, respectively, so the nonzero effects are sparse
and have effect size 3. This implies that the oracle estimator has power approx-
imately P(N(3,1) > z0.025) = 0.85 to detect the signals at a significance level of
0.05. We set the number of latent factors r to be either 2 or 10. For the latent factor
loading matrix �, we take � = �̃D where �̃ is a p × r orthogonal matrix sampled
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uniformly from the Stiefel manifold Vr(R
p), the set of all p× r orthogonal matrix.

Based on Assumption 3, we set the latent factor strength D = √
p ·diag(d1, . . . , dr)

where dk = 3 − 2(k − 1)/(r − 1) thus d1 to dr are distributed evenly inside the in-
terval [3,1]. As the number of factors r can be easily estimated for this strong
factor setting (more discussions can be found in [45]), we assume that the number
r of factors is known to all of the algorithms in this simulation.

We set p = 5000, n = 100 or 500 to mimic the data size of many genetic studies.
For the negative control scenario, we choose |C| = 30 negative controls at random
from the zero positions of β . We expect that negative control methods would per-
form better with a larger value of |C| and worse with a smaller value. The choice
|C| = 30 is around the size of the spike-in controls in many microarray experi-
ments [26]. For the loss function in our sparsity scenario, we use Tukey’s bisquare
which is optimized via IRLS with an ordinary least-square fit as the starting values
of the coefficients. Finally, each of the four combinations of n and r is randomly
repeated 100 times.

We compare the performance of nine different approaches. There are two base-
line methods: the “naive” method estimates β by a linear regression of Y on just
the observed primary variable X and calculates p-values using the classical t-tests,
while the “oracle” method regresses Y on both X and the confounding variables Z
as described in Section 2.1. There are three methods in the RUV-4/negative con-
trols family: the RUV-4 method [25], our “NC” method which computes test statis-
tics using β̂NC and its variance estimate (1 + ‖α̂‖2

2)(�̂ + 	̂), and our “NC-ASY”
method which uses the same β̂NC but estimates its variance by (1 + ‖α̂‖2

2)�̂. We
compare four methods in the SVA/LEAPP/sparsity family: these are “IRW-SVA”
[39], “LEAPP” [59], the “LEAPP(RR)” method which is our RR estimator using
M-estimation at the robustness stage and computes the test-statistics using (3.13),
and the “LEAPP(RR-MAD)” method which uses the median absolute deviation
(MAD) of the test statistics in (3.13) to calibrate them (see Section 3.3).

To measure the performance of these methods, we report the type I error (The-
orem 3.4), power, false discovery proportion (FDP) and precision of hypotheses
with the smallest 100 p-values in the 100 simulations. For both the type I error and
power, we set the significance level to be 0.05. For FDP, we use the Benjamini–
Hochberg procedure with FDR controlled at 0.2. These metrics are plotted in Fig-
ure 2 under different settings of n and r .

First, from Figure 2, we see that the oracle method has exactly the same type
I error and FDP as specified, while the naive method and SVA fail drastically.
SVA performs performs better than the naive method in terms of the precision of
the smallest 100 p-values, but is still much worse than other methods. Next, for
the negative control scenario, as we only have |C| = 30 negative controls, ignor-
ing the inflated variance term 	S in Theorem 3.1 will lead to overdispersed test
statistics, and that is why the type I error and FDP of both NC-ASY and RUV-
4 are much larger than the nominal level. By contrast, the NC method correctly
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FIG. 2. Compare the performance of nine different approaches (from left to right): naive regres-
sion ignoring the confounders (Naive), IRW-SVA, negative control with finite sample correction (NC)
in (3.7), negative control with asymptotic oracle variance (NC-ASY) in (3.8), RUV-4, robust regres-
sion [LEAPP(RR)], robust regression with calibration [LEAPP(RR-MAD)], LEAPP, oracle regres-
sion which observes the confounders (Oracle). The error bars are one standard deviation over 100
repeated simulations. The three dashed horizontal lines from bottom to top are the nominal signifi-
cance level, FDR level and oracle power, respectively.

controls type I error and FDP by considering the variance inflation, though as ex-
pected it loses some power compared with the oracle. For the sparsity scenario, the
“LEAPP(RR)” method performs as the asymptotic theory predicted when n = 500,
while when n = 100 the p-values seem a bit too small. This is not surprising be-
cause the asymptotic oracle variance in Theorem 3.3 can be optimistic when the
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sample size is not sufficiently large, as we discussed in Remark 3.2. On the other
hand, the methods which use empirical calibration for the variance of test statis-
tics, namely the original LEAPP and “LEAPP(RR-MAD),” control both FDP and
type I error for data of small sample size in our simulations. The price for the finite
sample calibration is that it tends to be slightly conservative, resulting in a loss of
power to some extent.

In conclusion, the simulation results are consistent with our theoretical guaran-
tees when p is as large as 5000 and n is as large as 500. When n is small, the
variance of the test statistics will be larger than the asymptotic variance for the
sparsity scenario and we can use empirical calibrations (such as MAD) to adjust
for the difference.

6.2. Real data examples. In this section, we return to the three motivating
real data examples in Section 1. The main goal here is to demonstrate a practi-
cal procedure for confounder adjustment and show that our asymptotic results are
reasonably accurate in real data. In an open-source R package cate (available on
CRAN), we also provide the necessary tools to carry out the procedure.

6.2.1. The datasets. First, we briefly describe the three datasets. The first
dataset [55] tries to identify candidate genes associated with the extent of em-
physema and can be downloaded from the GEO database (Series GSE22148). We
preprocessed the data using the standard Robust Multi-array Average (RMA) ap-
proach [30]. The primary variable of interest is the severity (moderate or severe) of
the Chronic Obstructive Pulmonary Disease (COPD). The dataset also include age,
gender, batch and date of the 143 sampled patients which are served as nuisance
covariates.

The second and third datasets are taken from [25] where they used them to
compare RUV methods with other methods such as SVA and LEAPP. The original
scientific studies are [61] and [10], respectively. The primary variable of interest is
gender in both datasets, though the original objective in [10] is to identify genes as-
sociated with Alzheimer’s disease. Gagnon-Bartsch, Jacob and Speed [25] switch
the primary variable to gender in order to have a gold standard: the differentially
expressed genes should mostly come from or relate to the X or Y chromosome. We
follow their suggestion and use this standard to study the performance of our RR
estimator. In addition, as the first COPD dataset also contains gender information
of the samples, we apply this suggestion and use gender as the primary variable
for the COPD data as a supplementary dataset.

Finally, we want to mention that the second dataset has repeated samples from
the same individuals while the individual information is lost. We suspect that the
individual information are then strong latent factors which caused the atypical con-
centration of the histograms in Figure 1(b) and Figure 1(d). This suggests necessity
of a latent factor model for this dataset.
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6.2.2. Confounder adjustment. Recall that without the confounder adjust-
ment, the distribution of the regression t-statistics in these datasets can be skewed,
noncentered, underdispersed or overdispersed as shown in Figure 1. The adjust-
ment method used here is the maximum likelihood factor analysis described in
Section 3.1 followed by the robust regression (RR) method with Tukey’s bisquare
loss described in Section 3.2.2. Since the true number of confounders is unknown,
we increase r from 1 to n/2 and study the empirical performance. We report the
results without empirical calibration for illustrative purposes, though in practice
we suggest using calibration for better control of type I errors and FDP.

In Table 2 and Figure 3, we present the results after confounder adjustment for
the three datasets. We report two groups of summary statistics in Table 2: the first
group is several summary statistics of all the z-statistics computed using (3.13), in-
cluding the mean, median, standard deviation, median absolute deviation (scaled
for consistency of normal distribution), skewness and the medcouple. The medcou-
ple [12] is a robust measure of skewness. After subtracting the median observation,
some positive and some negative values remain. For any pair of values x1 ≥ 0 and
x2 ≤ 0 with x1 +|x2| > 0, one can compute (x1 −|x2|)/(x1 +|x2|). The medcouple
is the median of all those ratios. The second group of statistics has performance
metrics to evaluate the effectiveness of the confounder adjustment. See the caption
of Table 2 for more detail.

In all three datasets, the z-statistics become more centered at 0 and less skewed
as we include a few confounders in the model. Though the standard deviation
(SD) suggests overdispersed variance, the overdispersion will go away if we add
MAD calibration as SD and MAD have similar values. The similarity between SD
and MAD values also indicates that the majority of statistics after confounder ad-
justment are approximately normally distributed. Note that the medcouple values
shrink towards zero after adjustment, suggesting that skewness then only arises
from small fraction of the genes, which is in accordance with our assumptions that
the primary effects should be sparse.

In practice, some latent factors may be too weak to meet Assumption 3 (i.e.
dj � √

p), making it difficult to choose an appropriate r . A practical way to pick
the number of confounders r with presence of heteroscedastic noise we investi-
gate here is the bi-cross-validation (BCV) method of [45], which uses randomly
held-out submatrices to estimate the mean squared error of reconstructing factor
loading matrix. It is shown in [45] that BCV outperforms many existing methods in
recovering the latent signal matrix and the number of factors r , especially in high-
dimensional datasets (n,p → ∞). In Figure 3, we demonstrate the performance of
BCV on these three datasets. The r selected by BCV is respectively 33, 25 and 11
[Figure 3(a), (c) and (e)], and they all result in the presumed shape of z-statistics
distribution [Figure 3(b), (d) and (f)]. For the second and the third datasets where
we have a gold standard, the r selected by BCV has near optimal performance in
selecting genes on the X/Y chromosome [columns 3 and 4 in Table 2(b) and (c)].
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TABLE 2
Summary of the adjusted z-statistics. The first group is summary statistics of the z-statistics before

the empirical calibration. The second group is some performance metrics after the empirical
calibration, including total number of significant genes of p-value less than 0.01 in Remark 3.2

(#sig.), number of the genes on X/Y chromosome that have p-value less than 0.01 (X/Y), the number
among the 100 most significant genes that are on the X/Y chromosome (top 100) and the p-value of
the confounding test in Section 3.3.2. The bold row corresponds to the r selected by BCV (Figure 3)

(a) Dataset 1 (n = 143, p = 54,675). Primary variable: severity of COPD

r mean median sd mad skewness medc. #sig. p-value

0 −0.16 0.024 2.65 2.57 −0.104 −0.091 164 NA
1 −0.45 −0.39 2.85 2.52 −0.25 0.00074 1162 0.0057
2 0.012 −0.039 1.35 1.33 0.139 0.042 542 <1e–10
3 0.014 −0.05 1.43 1.41 0.169 0.048 552 <1e–10
5 −0.029 −0.11 1.52 1.48 0.236 0.057 647 <1e–10
7 −0.1 −0.14 1.42 1.35 0.109 0.027 837 <1e–10

10 −0.06 −0.085 1.13 1.12 0.103 0.022 506 <1e–10
20 −0.083 −0.095 1.2 1.19 0.0604 0.0095 479 <1e–10
33 −0.099 −0.11 1.33 1.3 0.0727 0.0056 579 <1e–10
40 −0.1 −0.12 1.43 1.4 0.0775 0.0072 585 <1e–10
50 −0.16 −0.17 1.58 1.53 0.0528 0.0032 678 <1e–10

(b) Dataset 2 (n = 84, p = 12,600). Primary variable: gender

r mean median sd mad skewness medc. #sig. X/Y top 100 p-value

0 0.11 0.043 0.36 0.237 2.99 0.2 1036 58 11 NA
1 −0.44 −0.47 1.06 1.04 0.688 0.035 108 20 20 0.74
2 −0.14 −0.15 1.15 1.13 0.601 0.015 113 21 21 0.31
3 0.013 0.012 1.13 1.08 0.795 −0.01 168 34 28 0.03
5 0.044 0.019 1.18 1.08 0.878 0.017 238 32 27 0.0083
7 0.03 0.012 1.26 1.15 0.784 0.0062 269 35 25 0.006
10 0.023 0.00066 1.36 1.24 0.661 0.011 270 38 27 0.019
15 0.049 0.022 1.46 1.31 0.584 0.012 296 36 29 0.00082
20 0.029 −0.0009 1.53 1.36 0.502 0.019 314 36 28 7.2e–07
25 0.048 0.012 1.68 1.48 0.452 0.026 354 37 27 1.1e–06
30 0.026 0.012 1.82 1.61 0.436 0.0068 337 40 27 8.7e–08
40 0.061 0.046 2.07 1.79 0.642 0.0028 363 41 27 7.7e–10

(c) Dataset 3 (n = 31, p = 22,283). Primary variable: gender

r mean median sd mad skewness medc. #sig. X/Y top 100 p-value

0 −1.8 −1.8 0.599 0.513 −3.46 0.082 418 39 20 NA
1 −0.55 −0.56 1.09 1.01 −1.53 0.01 261 29 23 0.00024
2 −0.2 −0.22 1.2 1.11 −0.99 0.014 320 38 22 0.00014
3 −0.096 −0.12 1.27 1.18 −0.844 0.017 311 42 25 0.00014
5 −0.33 −0.32 1.31 1.22 −1.29 −0.011 305 35 23 2.1e–07
7 −0.37 −0.36 1.46 1.36 −0.855 −0.0099 300 38 23 4.0e–07

11 −0.13 −0.12 1.51 1.36 −0.601 −0.0051 432 48 31 1.8e–09
15 −0.12 −0.13 1.83 1.62 −0.341 0.013 492 54 25 2.3e–08
20 −0.13 −0.14 2.61 2.23 −0.327 0.0045 613 50 26 4.0e–06
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FIG. 3. Histograms of z-statistics after confounder adjustment (without calibration) using the num-
ber of confounders r selected by bi-cross-validation.
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Another method we applied is proposed by [43] based on the empirical distribu-
tion of eigenvalues. This method estimates r as 2, 9 and 3, respectively, for the
three datasets. Table 3 of [25] has the “top 100” values for RUV-4 on the second
and third dataset. They reported 26 for LEAPP, 28 for RUV-4, and 27 for SVA
in the second dataset, and 27 for LEAPP, 31 for RUV-4, and 26 for SVA in the
third dataset. Notice that the precision of the top 100 significant genes is relatively
stable when r is above certain number. Intuitively, the factor analysis is applied to
the residuals of Y on X and the overestimated factors also have very small eigen-
values, thus they usually do not change β̂ a lot. See also [25] for more discussion
on the robustness of the negative control estimator to overestimating r .

Lastly, we want to point out that both the small sample size of the datasets and
presence of weak factors can result in overdispersed variance of the test statistics.
The BCV plots indicate presence of many weak factors in the first two datasets. In
the third dataset, the sample size n is only 31, so the adjustment result is not ideal.
Nevertheless, the empirical performance (e.g., number of X/Y genes in top 100)
suggests it is still beneficial to adjust for the confounders.
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SUPPLEMENTARY MATERIAL

Supplement to “Confounder adjustment in multiple hypothesis testing”
(DOI: 10.1214/16-AOS1511SUPP; .pdf). We provide detailed proof for the the-
oretical results in this paper and some additional numerical results.
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