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NONPARAMETRIC CHANGE-POINT ANALYSIS OF VOLATILITY

BY MARKUS BIBINGER1, MORITZ JIRAK1 AND MATHIAS VETTER

Philipps-Universität Marburg, Technische Universität Braunschweig and
Christian-Albrechts-Universität zu Kiel

In this work, we develop change-point methods for statistics of high-
frequency data. The main interest is in the volatility of an Itô semimartingale,
the latter being discretely observed over a fixed time horizon. We construct
a minimax-optimal test to discriminate continuous paths from paths with
volatility jumps, and it is shown that the test can be embedded into a more
general theory to infer the smoothness of volatilities. In a high-frequency
setting, we prove weak convergence of the test statistic under the hypothe-
sis to an extreme value distribution. Moreover, we develop methods to infer
changes in the Hurst parameters of fractional volatility processes. A simu-
lation study is conducted to demonstrate the performance of our methods in
finite-sample applications.

1. Introduction. Change-point theory traditionally focused on detecting one
or several structural breaks in the trend of time series. Statistical methods to infer
change-points have a long and rich history, dating back to the pioneering work
of Page (1955). Prominent approaches—here, we mention Hinkley (1971), Pettitt
(1980), Andrews (1993), Bai and Perron (1998) among many others—provide
statistical tests for the hypothesis of no change-point against the alternative that
changes occur. Moreover, they allow for localization of change-points (estima-
tion) and confidence intervals. Change-point methods usually rely on the order
statistics and exploit limit theorems from extreme value theory; see Csörgő and
Horváth (1997) for an overview. Less focus, however, has been laid on discrim-
inating jumps from continuous motion in a nonparametric framework. Important
exceptions are Müller (1992), Müller and Stadtmüller (1999), Spokoiny (1998)
and Wu and Zhao (2007) in the context of nonparametric regression analysis. The
latter serves as an important point of orientation for this work.

Statistics of high-frequency data is concerned with discretizations of contin-
uous-time stochastic processes, most generally Itô semimartingales. The continu-
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ous part of an Itô semimartingale is of the form

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs,(1)

defined on a filtered probability space (�,F, (Ft ),P) with a standard (Ft )-
Brownian motion W and adapted drift and volatility processes a and σ . One key
topic is statistical inference on the volatility under high-frequency asymptotics
when the mesh �n = n−1 of a discretization on the fixed time horizon [0,1] tends
to zero. There is a vast body of works related to this problem and its economic im-
plications; see, for example, Andersen and Bollerslev (1998), Mykland and Zhang
(2009) and Jacod and Rosenbaum (2013), among many others. As highlighted by
Mykland (2012), statistics for discretized continuous-time martingales is closely
related to Gaussian calculus. This observation turns out to be central for our anal-
ysis as well.

A natural question in high-frequency statistics is whether or not jumps are
present in the Itô semimartingale modeling the log-price of a financial asset, and a
statistical test was developed in Aït-Sahalia and Jacod (2009). More involved, but
of key interest for economics and finance, too, is to infer the smoothness of the
underlying stochastic volatility process and to check whether volatility jumps oc-
cur. In particular, inference on volatility jumps allows us to investigate the impact
of certain news arrivals on financial risk. A first empirical study by Todorov and
Tauchen (2011) indicates that volatility jumps indeed occur, but it has been based
on direct observations of the VIX, the most prominent available volatility index. So
far, there has been a lack of appropriate statistical methods when working with the
price processes only. Further contributions consider joint price-volatility jumps.
Jacod and Todorov (2010) have designed a test to decide from high-frequency
observations whether common jumps of an Itô semimartingale and its volatility
process have taken place at least once over some fixed time interval. These meth-
ods do not generalize directly to test for volatility jumps on the considered time
interval, as one has to restrict to a finite set of large changes in the price first. One
main profit from our change-point analysis of high-frequency data is a general test
for volatility jumps. Moreover, results on estimation of the time of a volatility jump
are provided.

As an example, we illustrate in Figure 1 the evolution of the log-prices of two
blue-chip stocks, 3M and GE, over the NASDAQ intra-day trading period (6.5 h
rescaled to the unit interval) on March 18, 2009. We consider one minute returns
from executed trades2 to ensure that the semimartingale model is adequate and to
limit a manipulation by market microstructure frictions. It seems as if a common
source of news drives both price dynamics at the end of that day, but standard tests
do not identify jumps in both price processes with high significance. In particular,

2Reconstructed from the order book using LOBSTER, https://lobster.wiwi.hu-berlin.de/.

https://lobster.wiwi.hu-berlin.de/
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FIG. 1. Log-price intra-day evolutions (top) and estimated spot squared volatilities (bottom) for
3M (left) and GE (right) on March 18, 2009.

the test by Jacod and Todorov (2010) cannot be applied. The picture becomes
much clearer, however, when focusing on the estimated spot squared volatilities in
Figure 1, for which we average at each time point the previous 20 rescaled squared
returns. The volatilities of both assets shoot up at exactly the same time, which
suggests that at least volatility dynamics vary over time. This common volatility
jump coincides with a press release at 02:15 p.m. EST subsequent to a meeting
of the Federal Open Market Committee. The time is marked in Figure 1 by the
dashed lines. In light of increasing economic slack, the FOMC announced “to
employ all available tools to promote economic recovery and to preserve price
stability,”3 including a guarantee for an exceptionally low level of the federal funds
rate for an extended period and a considerable increase of the size of the Federal
Reserve’s balance sheet. The statistical concepts developed in this work provide a
novel device to infer volatility dynamics and jumps.

Change-point methods for volatility in a time-series environment, which is quite
different to our high-frequency semimartingale setting, have been discussed by
Spokoiny (2009). Quasi-likelihood estimation of a change-point in a diffusion pa-
rameter in a high-frequency setting has been considered by Iacus and Yoshida
(2012), pointing out already one very useful bridge between change-point theory
and high-frequency statistics. Our main focus is on testing for the presence of
changes in a general setup. Beyond the analysis of possible jumps of the volatility,
there is great interest in the smoothness regularity of volatilities, not least because

3www.federalreserve.gov/monetarypolicy/fomcminutes20090318.htm.

http://www.federalreserve.gov/monetarypolicy/fomcminutes20090318.htm
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of its crucial role for setting up volatility models; see, for example, Gatheral, Jais-
son and Rosenbaum (2014) for a recent work.

We focus on volatilities which are almost surely locally bounded and strictly
positive adapted processes. For our testing problem, we consider classes of squared
volatilities

�(a,Ln) =
{(

σ 2
t

)
t∈[0,1]

∣∣ sup
s,t∈[0,1],|s−t |<δ

∣∣σ 2
t − σ 2

s

∣∣≤ Lnδ
a
}
,(2)

for an appropriate sequence Ln converging to infinity; cf. Assumption 3.1 for a
precise statement about the conditions under the null hypothesis. The regularity
exponent a > 0 is the key parameter to describe the null hypothesis H0. We may
now more formally ask the following questions:

(i) Is there a jump in the volatility, that is, �σ 2
θ = (σ 2

θ − lims↑θ σ 2
s ) > 0 for

some θ ∈ (0,1)?
(ii) Does volatility get rougher in the sense that the regularity exponent drops

to a′ < a on (θ,1]?
Question (i) poses a local problem, whereas question (ii) refers to a local or a
global problem. Here, we call a change-point problem global if the regularity
parameter changes from a to a′ < a for some θ ∈ (0,1).4 This means that for
t ∈ [0, θ) we have σ 2

t ∈ �(a,Ln), but for t ∈ [θ,1] we only have σ 2
t ∈ �(a′,Ln)

and σ 2
t /∈ �(a,Ln). In other words, starting from θ the volatility σ 2

t fluctuates con-
siderably more, and this stronger fluctuation persists for the remaining time period.
As a key example, the global problem covers a change in the Hurst parameter in a
fractional stochastic volatility model.

Contrarily, we speak of a local change-point problem if the assumption σ 2
t ∈

�(a,Ln) is at least violated once for a very short time period. This may even hap-
pen only at a single point θ ∈ (0,1), for instance, if the volatility σ 2

t exhibits a
jump at θ , that is, �σ 2

θ > 0. Related, but of different nature, are abrupt yet contin-
uous adjustments in the volatility over a short time period, which are also covered
by our theory. Note that local changes may happen multiple times, and they may
even happen jointly with a global change on top, like presumably in Figure 1.

In this work, we present methods to test local and global alternatives, both rely-
ing on different foundations. A desirable property for a global approach is robust-
ness with respect to local changes. This is crucial to distinguish the two problems,
as it means that a test statistic to decide the question of global changes should not
be affected by a fixed number of volatility jumps, which is nested in the hypothesis
of no global change. On the other hand, an approach to test for local changes may
very well be affected by a global change as well, for instance, at the very time
of change or by an exceptionally large fluctuation. In practice, it is attractive to
interconnect both methods which complement each other.

4One may as well consider the symmetric case a′ > a.



1546 M. BIBINGER, M. JIRAK AND M. VETTER

We consider minimax-optimal testing and estimation in both situations, cover-
ing broad classes of volatility processes. For a conceptual introduction to minimax-
optimal tests, let us focus first on the discrimination of smooth volatilities in the
sense of (2) from volatilities with at least one jump. From a statistical perspective,
the key question is which sizes of volatility jumps can be detected. For example, it
is clear that we cannot detect jumps of arbitrarily small size. Loosely speaking, if
we say that “no jump” is our null hypothesis H0 and “there is a jump” is our alter-
native H1, then we face the problem of distinguishability between H0 and H1. The
minimum size bn of a jump �σ 2

θ , such that we are still able to uniformly control
the type I and type II errors, is called the detection boundary. If we are interested to
test for the presence of jumps, we are thus led to consider for θ ∈ (0,1) alternatives
of the form

(3) SJ
θ (a, bn,Ln) = {(

σ 2
t

)
t∈[0,1]|

(
σ 2

t − �σ 2
t

)
t∈[0,1] ∈ �(a,Ln);

∣∣�σ 2
θ

∣∣≥ bn

}
with a decreasing sequence bn. We then address the testing problem

H0 : (σ 2
t (ω)

)
t∈[0,1] ∈ �(a,Ln) vs.(4)

H1 : ∃θ ∈ (0,1) with
(
σ 2

t (ω)
)
t∈[0,1] ∈ SJ

θ (a, bn,Ln).

In this context, θ is commonly referred to as a change-point. Under the alternative
at least one jump occurs, but we do not exclude multiple jumps. The dependence
on ω in (4) is natural in the definition of the hypotheses, as different realizations
might lead to different paths on [0,1].

For the testing problem (4), we establish the minimax-optimal rate of con-
vergence under high-frequency asymptotics. We follow the notion of minimax-
optimality of statistical tests from the seminal contribution of Ingster (1993): For
tests ψ that map a sample Xn to zero or one, where ψ accepts the null hypoth-
esis H0 if ψ = 0 and rejects it if ψ = 1, we consider the maximal type I er-
ror αψ(a) = supσ 2∈�(a,Ln)Pσ (ψ = 1) and the maximal type II error βψ(a, bn) =
supθ∈(0,1) supσ 2∈SJ

θ (a,bn,Ln) Pσ (ψ = 0) and define the global testing error as

γψ(a, bn) = αψ(a) + βψ(a, bn).(5)

The primary interest now is to find tests that minimize γψ(a, bn), given the bound-
ary bn. We aim to find sequences of tests ψn and boundaries bn with the property
that

γψn(a, bn) → 0 as n → ∞.

The smaller bn > 0, the harder it is for a test to control the global testing error, that
is, to distinguish between H0 and H1. It is thus natural to ask: given a, what is the
minimal size of bn > 0 such that

lim
n→∞ inf

ψ
γψ(a, bn) = 0(6)
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holds? The optimal b
opt
n is called the minimax distinguishable boundary, and a se-

quence of tests ψn that satisfies (6) for all bn ≥ b
opt
n is called minimax-optimal. If

Ln = L in (2) is constant, we prove that bn ∝ (n/ log(n))
−a

2a+1 constitutes the min-
imax distinguishable boundary for testing (4) and that the constructed test attains
minimax-optimality.5 If Ln is indeed a sequence, the rate only slightly changes;
see Section 4.1 for precise results.

For the proof of the lower bound, we simplify the problem by information-
theoretic reductions passing to more informative subclasses of the parameter space.
The lower bound established for the subclass then serves a fortiori as a lower bound
in the more general and less informative model. After gradually transforming the
problem by showing strong Le Cam equivalences of the considered subexperiment
to more common situations with i.i.d. chi-square and Gaussian variables, the lower
bound is proved by classical arguments based on the theory in Ingster and Suslina
(2003).

The paper is organized as follows: Section 2 serves as an illustration for the
benefit of cusum-based statistics in the simple but important model of a continuous
Itô semimartingale with constant volatility. More involved, but also more impor-
tant in practice, is the case where the volatility is both time-varying and random.
Section 3 is devoted to this nonparametric local problem. As the volatility pro-
cess is latent, which requires estimation based on smoothed squared increments
of the semimartingale, this poses a complex statistical problem which to the best
of the authors’ knowledge had not been addressed so far. We establish a consis-
tent test and derive a limit theorem under the hypothesis. The asymptotic analysis
utilizes nonparametric change-point theory, stochastic calculus and bounds on the
approximation error in the invariance principle. Our test allows us to distinguish
paths with jumps from continuous paths under remarkably general smoothness as-
sumptions on the hypothesis. In Section 3.2, we discuss the situation in which the
underlying Itô semimartingale might have jumps as well. Section 4.1 provides the
theory on minimax-optimality by discussing the lower bound, while Section 4.2
deals with the estimation of the location of the change in the volatility under the
alternative. Finally, a minimax-optimal nonparametric test for the global problem
is established in Section 5. A simulation study which investigates the finite-sample
performance of the proposed methods and discusses some practical issues can be
found in Section 6. Proofs are postponed to the Appendix and the supplementary
material [Bibinger, Jirak and Vetter (2016b)].

2. Change-points in a parametric volatility model. The simplest model of
a continuous-time Itô diffusion X is the case of no drift and a constant volatility:

Xt = X0 +
∫ t

0
σ dWs, t ∈ [0,1],(7)

5The notation ∝ means proportional to, that is, an identity if the right-hand side is multiplied with
some constant.
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where W denotes a standard Brownian motion. Throughout this work, the under-
lying process X is recorded at the discrete regular times i�n with a mesh �n → 0.
To keep the notation simple, we assume to be on the fixed time interval [0,1] and
set n = �−1

n ∈ N, so that we have observations Xi�n , i = 0, . . . , n.
Inference on the squared volatility σ 2 is usually based on the squares of the

increments �n
i X = Xi�n − X(i−1)�n . In case one is interested in changes in the

volatility, a natural quantity to discuss is the cusum statistic, that is,

Sn,m = 1√
n

m∑
i=1

(
n(�n

i X)2 −
n∑

j=1

(
�n

jX
)2)

, m ∈ {1, . . . , n}.(8)

In order to derive the asymptotics of the cusum statistic, recall the functional
(stable) central limit theorem for the realized volatility from observations of a con-
tinuous Itô semimartingale (1) by Jacod (1997). Under mild assumptions, we have

√
n

(�nt∑
i=1

(
�n

i X
)2 −

∫ t

0
σ 2

s ds

)
→
∫ t

0

√
2σ 2

s dBs, t ∈ [0,1],(9)

as n → ∞, weakly in the Skorokhod space with a standard Brownian motion B ,
independent of W . In particular, if σs = σ is constant, this result directly implies

Sn,�nt → γ (Bt − tB1),(10)

with γ 2 = limn→∞ nVar(
∑n

i=1(�
n
i X)2) = 2σ 4, which coincides with a standard

cusum limit theorem in the vein of Phillips (1987). The quarticity estimator by
Barndorff-Nielsen and Shephard (2002),

γ̂ 2 = (2n/3)

n∑
i=1

(�n
i X)4,

may be used to obtain a self-normalizing version(
γ̂ 2)−1/2

Sn,�nt → Bt − tB1,(11)

where the limiting process is a standard Brownian bridge. A test for jumps (resp.,
structural breaks, change-points) in the volatility is then based on the test statistic

Tn = sup
m=1,...,n

∣∣(γ̂ 2)−1/2
Sn,m

∣∣,(12)

which (under the null hypothesis of a constant volatility) tends to a Kolmogorov–
Smirnov law as n → ∞; see Marsaglia et al. (2003). Under the alternative, Tn

diverges almost surely.
Figure 2 shows an example in which we observe n = 10,000 values of a stan-

dard Brownian motion under the hypothesis, while under the alternative the volatil-
ity jumps at t = 1/2 from 1 to 1.1. Out of 10,000 Monte Carlo iterations under the



NONPARAMETRIC CHANGE-POINT ANALYSIS OF VOLATILITY 1549

FIG. 2. Left: One realized path of X with a structural break in the volatility at t = 1/2. Right:
Empirical results for the test statistic from 10,000 iterations under the alternative and the hypothesis.

hypothesis and the alternative, only 21 realizations of (12) under the hypothesis are
larger than the minimum under the alternative. On the other hand, in 11 iterations
the values under the alternative fall below the maximum of the generated values
from the hypothesis. The cusum approach hence clearly allows us to separate hy-
pothesis and alternative here, even for the relatively small volatility jump which is
not readily identifiable from the path of X in Figure 2.

This observation is illustrated on the right-hand side of Figure 2. The left part of
the histogram stems from the realizations under the hypothesis which closely track
the limiting Kolmogorov–Smirnov law. The right part is due to realizations under
the alternative instead. For larger volatility jumps, the right part moves further
to the right such that the two distributions separate even more clearly. Thus, the
Kolmogorov–Smirnov type test based on (12) allows us to test the hypothesis of a
constant volatility against structural breaks in an efficient way.

Beyond this bridging of classical change-point analysis and structural breaks in
a parametric volatility model, our main focus in the sequel is nonparametric: to
distinguish volatility jumps from a continuous motion of volatility or to identify
changes in the regularity exponent.

3. A nonparametric change-point test for the volatility against jumps.

3.1. Construction of the test and its limit behavior under the hypothesis. Sup-
pose we observe a continuous Itô semimartingale (1) at the regular times i�n,
i = 0, . . . , n. In this setting, we want to construct a test for (4). With the volatility
process being time-varying, it becomes apparent from (9) that the test statistic (12)
is not suitable to test H0 against H1. Our core idea is to utilize local two-sample
t-tests over asymptotically small time blocks instead. As a first test statistic, we
consider

Vn = max
i=0,...,�n/kn−2

|RVn,i/RVn,i+1 − 1|,(13)
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where kn → ∞ is an auxiliary sequence of integers depending on n and

RVn,i = n

kn

kn∑
j=1

(
�n

ikn+jX
)2

, i = 0, . . . , �n/kn − 1,(14)

is a rescaled local version of realized volatility over blocks of the partition [ikn�n,

(i + 1)kn�n]. The RVn,i estimate a blockwise constant proxy of the spot volatil-
ity σikn�n on the respective blocks. Asymptotic properties of RVn,i were derived,
for example, in Alvarez et al. (2012). By construction, a large distance between
RVn,i and RVn,i+1 suggests the presence of a jump, or of unsmooth breaks, in
the volatility close to time ikn�n. In order to obtain normalized statistics we work
with ratios instead of differences. Thus, Vn appears to be a reasonable test statistic
for our purpose.

The second test statistic is of the same nature as (13), but it takes all overlapping
blocks of kn increments into account:

V ∗
n = max

i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(�

n
jX)2

n
kn

∑i+kn

j=i+1(�
n
jX)2

− 1

∣∣∣∣∣.(15)

In comparison to nonparametric change-point approaches, like the one by Wu and
Zhao (2007), both statistics (13) and (15) are based on ratios rather than differ-
ences. This makes sense intuitively, since we are not dealing with the typical ad-
ditive error structure of time series models. In our setting, we have, for example,
n(�n

i X)2 ≈ σ 2
i�n

ξ2
i , i = 1, . . . , n, with i.i.d. χ2

1 -distributed random variables ξ2
i , so

that the volatility σ plays the role of a multiplicative error. Therefore, by comput-
ing ratios first, we basically deal with a maximum of identically distributed vari-
ables in the asymptotics. This is of key importance in order to obtain a distribution-
free limit under the hypothesis.

In order to discuss the asymptotics of Vn and V ∗
n under the null hypothesis,

we need a couple of additional assumptions, all of which are rather mild and are
covered by a variety of stochastic volatility models.

ASSUMPTION 3.1. The following conditions on a and σ are satisfied:

(1) a and σ are locally bounded processes.
(2) σ is almost surely strictly positive, that is, inft∈[0,1] σ 2

t ≥ σ 2− > 0.
(3) On the hypothesis, �c ⊂ �, the modulus of continuity

wδ(σ)t = sup
s,r≤t

{|σs − σr | : |s − r| < δ
}

is locally bounded in the sense that there exists a > 0 and a sequence of stopping
times Tn → ∞ such that wδ(σ)(Tn∧1) ≤ Lnδ

a, for some a > 0 and some (a.s. finite)
random variables Ln.
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In particular, Assumption 3.1 implies that σ 2
t ∈ �(a,Ln) for some n almost

surely on �c. Considering sequences Ln becomes important when developing
lower bounds; see the first paragraph of Section 4.1 for a detailed explanation.

We choose the sequence kn → ∞, as n → ∞, such that the following growth
condition holds:

k−1
n �−ε

n +√kn(kn�n)
a
√

log(n) → 0,(16)

for some ε > 0 and with a> 0 from Assumption 3.1(3). Condition (16) consists of
two assumptions which are reciprocal by nature. First, kn → ∞ faster than some
power of n which gives a mild lower bound on the growth of kn and ensures consis-
tency of the estimates (14). The second condition gives an upper bound related to
the continuity of σ . Naturally, the smaller a (and the less smooth σ ) is, the smaller
we have to choose the size of the blocks over which we estimate σ .

THEOREM 3.2. Set mn = �n/kn and γmn = [4 log(mn)−2 log(log(mn))]1/2.
If Assumption 3.1 holds and kn satisfies condition (16), then we have on �c (under
H0) √

log(mn)
((

k1/2
n /

√
2
)
Vn − γmn

) w−→ V,(17) √
log(mn)

(
k1/2
n /

√
2
)
V ∗

n − 2 log (mn) − 1

2
log log (mn) − log (3)

w−→ V,(18)

where V follows an extreme value distribution with distribution function

P(V ≤ x) = exp
(−π−1/2 exp(−x)

)
.(19)

REMARK 3.3. It is remarkable that Theorem 3.2, in combination with condi-
tion (16), already allows us to distinguish between volatility paths with and without
jumps, where we only require some smoothness a > 0 in Assumption 3.1(3). Note
that less smooth paths require smaller block lengths kn by (16) which reduces the
rate in Theorem 3.2 and the power of the test. Most importantly, we can cope
with standard models for σ . For a continuous semimartingale volatility, we have
a ≈ 1/2. In this case, we take kn ∝ n1/2−ε for ε > 0 and ε small in order to pre-
serve the highest possible power. Similarly, for a Lipschitz volatility, that is, a= 1,
one might choose kn ∝ n2/3−ε . Thus, the choice of the block length is close to the
optimal window size for spot volatility estimation.

As we show in Theorem 4.3 that V ∗
n and Vn diverge almost surely under the

alternative, Theorem 3.2 provides a consistent test with asymptotic power 1, if we
use the critical values from the limit law under the hypothesis.
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3.2. A test in the presence of jumps in the observed process. In order to pro-
vide an approach which is feasible in various economic applications, an important
aim is to account for possible jumps in the process X as well. We consider a gen-
eral Itô semimartingale

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

κ
(
δ(s, x)

)
(μ − ν)(ds, dx)

(20)

+
∫ t

0

∫
R

κ̄
(
δ(s, x)

)
μ(ds, dx),

where a truncation function κ , κ̄(x) = x − κ(x), separates large jumps from com-
pensated small jumps. The compensating intensity measure ν of the Poisson ran-
dom measure μ admits the form ν(ds, dx) = ds ⊗λ(dx) for a σ -finite measure λ.
Our notation follows Jacod (2008).

ASSUMPTION 3.4. Suppose Assumption 3.1 for the continuous part of X

holds. Assume that supω,x |δ(s, x)|/γ (x) is locally bounded for some determin-
istic nonnegative function γ which satisfies for some r < 2:∫

R

(
1 ∧ γ r(x)

)
λ(dx) < ∞.(21)

In condition (21), r is a jump activity index which bounds the pathwise gener-
alized Blumenthal–Getoor index from above. Imposing r < 1 restricts to jumps of
finite variation and r = 0 to finite jump activity. We develop test statistics which
are robust against jumps by using the truncation principle which was originally
introduced for the estimation of integrated volatility by Mancini (2009). The ana-
logue of (13) with truncated squared increments is

Vn,un = max
i=0,...,�n/kn−2

|TRVn,un,i/TRVn,un,i+1 − 1| where(22)

TRVn,un,i = n

kn

kn∑
j=1

(
�n

ikn+jX
)21{|�n

ikn+jX|≤un},

(23)
i = 0, . . . , �n/kn − 1.

The truncation sequence, un ∝ n−τ , τ ∈ (0,1/2), is used to exclude large squared
increments which are ascribed to jumps. In the same way, we can generalize statis-
tic (15) with overlapping blocks:

V ∗
n,un

= max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(�

n
jX)21{|�n

j X|≤un}
n
kn

∑i+kn

j=i+1(�
n
jX)21{|�n

j X|≤un}
− 1

∣∣∣∣∣.(24)

We prove that truncation is an appropriate concept to asymptotically eliminate the
influence by jumps, at least under certain restrictions on the jump activity, on kn
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and on τ . In particular, under the hypothesis we obtain the same limit behavior of
the test statistics as in Theorem 3.2.

PROPOSITION 3.5. Suppose kn ∝ nβ for 0 < β < 1, such that condition (16)
is satisfied. Furthermore, grant Assumption 3.4 for some

r < min
(
2
(
2 − τ−1(1 − β/2)

)
, τ−1 min(1/2,1 − β)

)
(25)

as well. Then, with mn = �n/kn and γmn = [4 log(mn) − 2 log(log(mn))]1/2 as
before, and if either r = 0 or the jump process is a time-inhomogeneous Lévy
process, we have on �c (under H0)√

log(mn)
((

k1/2
n /

√
2
)
Vn,un − γmn

) w−→ V,(26) √
log(mn)

(
k1/2
n /

√
2
)
V ∗

n,un
− 2 log (mn) − 1

2
log log (mn) − log (3)

w−→ V,(27)

where V is distributed according to (19).

REMARK 3.6. A simple computation shows that a necessary condition in or-
der for (25) to hold is r < 1, but in general further conditions on the interplay
between r , β and τ have to be taken into account. Thus, this restriction on the
jump activity is stronger than the usual r < 1 for truncated realized volatility as in
Jacod (2008). This is because we use a maximum in (24) instead of linear estima-
tors.

REMARK 3.7. It appears to be most relevant from an applied perspective that
the test based on (24) copes with finite activity jumps. In this case, (25) reads
as τ > 1/2 − β/4, and the only requirement is that un is not chosen too large.
Beyond the finite activity case, the choice of the tuning parameters becomes more
complex and depends on the statistician’s interest. Ideally, one would choose β

large to secure a high power, but it should not become too large as (25) then is
more restrictive, and interesting models on the jumps might be ruled out. As an
equilibrium choice β ≈ 1/2 is recommended in which case τ ≈ 1/2 is optimal,
leading to the condition r < 1. Choosing τ close to 1/2 and un small improves the
precision of the localized truncated realized volatilities (23). As an exact choice for
un one typically picks it sufficiently large to just not interfere with the continuous
component of Xt . Based on extreme value theory for Gaussian sequences,

un = C
√

2 log(n)n−1/2(28)

with constant C is a suitable choice. Once it is guaranteed that C > supt∈[0,1] σ 2
t ,

almost surely no increments of the continuous part of (20) are truncated. In prac-
tice, some suitable upper bound C for the volatility can be obtained from historical
data.
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4. Asymptotic minimax-optimality results for the local change problem.

4.1. Consistency and minimax-optimal rate of convergence. In this section, it
becomes important that the stochastic squared volatility processes lie in �(a,Ln),
defined in (2), under H0, where we take into account strictly positive increasing
sequences Ln. This is crucial as we cannot assume the random processes to be
members of a fixed Hölder class in general. For instance, if σ 2

t satisfies

E
[∣∣σ 2

t − σ 2
s

∣∣b]≤ C|t − s|γ+ba for some b,C > 0 and γ > 1,

then the Kolmogorov–C̆entsov theorem implies limn→∞P((σ 2
t )0≤t≤1 ∈ �(a,

Ln)) = 1, provided Ln → ∞ arbitrarily slowly. Hence, up to a negligible set,
�(a,Ln) contains the paths generated by a huge number of popular volatility mod-
els when considering Ln → ∞. On the other hand, if Ln = L is fixed, we are in
the familiar framework of Hölder classes.

At this stage, we integrate alternatives where the volatility is less smooth than
under the hypothesis, but which do not necessarily include jumps. The statistical
devices developed above may be applied to discriminate H0 from alternatives with-
out jumps where, until some change-point θ ∈ [0,1), the process (σ 2

t∧θ ) behaves as
a process in �(a,Ln). After θ , the regularity exponent drops to some 0 < a′ < a.
Since �(a,Ln) ⊂ �(a′,Ln), we have to ensure that the processes “exploit their
roughness” (close to θ ), such that in particular (σ 2

t )t∈[0,1] /∈ �(a,Ln). To describe
the alternative sets formally, define

�a′
h ft = ft+h − ft

ha
′ , t ∈ [0,1], h ∈ [0,1 − t].

Then the set of possible alternatives is given by

SR
θ

(
a,a′, bn,Ln

)= {(
σ 2

t∧θ

)
t∈[0,1] ∈ �(a,Ln)

∣∣ inf
h∈[0,2kn�n)

�a′
h σ 2

θ ≥ bn

or sup
h∈[0,2kn�n)

�a′
h σ 2

θ ≤ −bn

}
,

and we consider the testing problem

H0 : (σ 2
t (ω)

)
t∈[0,1] ∈ �(a,Ln) vs.(29)

HR
1 : ∃θ ∈ [0,1)|(σ 2

t (ω)
)
t∈[0,1] ∈ SR

θ

(
a,a′, bn,Ln

)
.

Since kn will be chosen to depend on Ln and a, the dependence of SR
θ on kn above

is not indicated in our notation.
Let us elaborate on the specific form of the alternative sets. In general, it is

impossible to test �(a,Ln) against �(a′,Ln) for a > a′, and it is necessary to
consider special subsets of �(a′,Ln). Intuitively, it is clear that one needs at least
to remove �(a,Ln) from �(a′,Ln), but this is not sufficient. In fact, one needs
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to focus on those functions which exploit their roughness in a certain sense; cf.
Hoffmann and Nickl (2011) for a detailed discussion in a related context. Geomet-
rically, this means that the functions of interest are those with discontinuities or
with rough behavior as characterized in SR

θ (or which fluctuate considerably more,
like the ones considered in Section 5). However, as the sample size n grows, we
only require the difference quotient to exceed a level bn that becomes smaller and
smaller. Assuming that the exceedance period of the difference quotient in SR

θ is
at least two block lengths finally ensures that our blockwise comparison in the test
statistics (13) and (15) is able to detect the roughness, also for θ = 0.

For the testing problems (4) and (29), we first present a negative result which
also serves as a minimax lower bound for the problem described in (6).

THEOREM 4.1. Assume that a> a′ > 0 and inft σ 2
t ≥ σ 2− > 0. Consider either

set of hypotheses {H0,H1} or {H0,H
R
1 }. Then for

bn ≤ (n/ log(mn)
)− a−a′

2a+1 (Ln)
2a′+1
2a+1 σ 2−,(30)

with a′ = 0 for H1, we have in both cases limn→∞ infψ γψ(a, bn) = 1.

REMARK 4.2. In the proof of Theorem 4.1, we show that the local change-
point problem is asymptotically equivalent (in strong Le Cam sense) to a high-
dimensional location problem which is of independent interest. We then use this
result to deduce the lower bound.

Theorem 4.1 reveals that it is impossible to construct a minimax-optimal test in
the sense of (6) if bn is bounded as in (30). In Theorem 4.3, we shall establish a
corresponding upper bound up to a constant, and thus the right-hand side of (30)
already gives the optimal rate for the minimax distinguishable boundary. Observe
that based on V ∗

n from (15), we can obtain the following test ψ�:

ψ�((Xi�n)0≤i≤n

)= 1 if V ∗
n ≥ 2C�

√
2 log

(
m�

n

)
/k�

n,(31)

where C� > 2 and k�
n =

(√
log
(
m�

n

)
na/Ln

) 2
2a+1

, m�
n = ⌊

n/k�
n

⌋
.(32)

Alternatively, one might base a test on Vn from (13).
To simplify the discussion, we restrict ourselves to positive volatility jumps,

inft �σt ≥ 0, which appears natural from an economic point of view. We point
out that an analogous result can be shown for negative, or positive and negative
jumps, which, however, requires a further technical condition—stating that suc-
cessive jumps do not cancel in case of multiple jumps close to each other.

THEOREM 4.3. Consider (4) with inft �σt ≥ 0, or (29) with 0 < a′ < a ≤ 1
and Ln = O((n/k�

n)a−a′
). If

b�
n >

(
4C�√2 sup

t∈[0,1]
σ 2

t + 2
)(

n/ log(mn)
)− a−a′

2a+1 (Ln)
2a′+1
2a+1 ,(33)
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where k�
n , m�

n and C� are as in (32), then limn→∞ γψ�(a, b�
n) = 0. This implies

bopt
n ∝ (n/ log(mn)

)− a−a′
2a+1 (Ln)

2a′+1
2a+1 .

REMARK 4.4. If Ln = L defined in (2) is a deterministic constant, we get the

minimax distinguishable boundary bn ∝ (n/ log(n))
−(a−a′)

2a+1 .

REMARK 4.5. Volatility paths in SR
θ locally have a rough—but still contin-

uous—increase or decrease and cannot be distinguished from volatility paths with
jumps at or below the boundary bn stated in (30). Still, even though both alter-
natives H1 and HR

1 are in this sense intimately connected, we cannot include SJ
θ

in SR
θ by setting a′ = 0, since for SR

θ we require the roughness to persist over an
(asymptotically small) interval.

Let us also point out that in this testing problem, the union of hypothesis and
alternative does not cover the set of all possible volatility paths. One situation of
interest in which σ 2

t /∈ {SR
θ ∪ SJ

θ ∪ �(a,Ln)} is the case of fractional processes
with a Hurst parameter a′ < a. This different situation is addressed in Section 5.

4.2. Estimating the change-point. Once one has opted to reject the null hy-
pothesis of no change, the actual locations of jumps become of interest for further
inference. Such location problems have been extensively discussed in the literature
in different frameworks; see, for instance, Csörgő and Horváth (1997) and Müller
(1992).

4.2.1. One change-point alternative. First, we restrict ourselves to the “one
change-point alternative” involving a jump in the volatility, that is, we specify the
alternative hypothesis H ∗

1 as

H ∗
1 : ∣∣σ 2

θ − σ 2
θ−
∣∣=: δn > 0 for a unique θ ∈ (0,1).

The jump size δn may be fixed or we consider a decreasing sequence (δn). To assess
the possible time of change, we use slightly modified versions of the building
blocks of the test statistic V ∗

n from (15), namely

V �
n,i = 1√

kn

∣∣∣∣∣
i∑

j=i−kn+1

n
(
�n

jX
)2 −

i+kn∑
j=i+1

n
(
�n

jX
)2∣∣∣∣∣,

for i = kn, . . . , n − kn, and V �
n,i = 0 else. The possible time of the change is then

estimated via

nθ̂n = argmax
i=kn,...,n−kn

V �
n,i .(34)

In contrast to the construction of V ∗
n we use a simpler unweighted version here,

but one could also consider the rescaled versions as in V ∗
n , and we conjecture



NONPARAMETRIC CHANGE-POINT ANALYSIS OF VOLATILITY 1557

that the following theoretical results of these estimators coincide. Switching from
ratios to differences, however, simplifies the analysis and yet allows us to obtain
the following properties.

PROPOSITION 4.6. Assume that the assumptions of Theorem 3.2 hold and that
H ∗

1 is valid. Then, for δn ≥ 2k
−1/2
n

√
log(n) supt∈[0,1] σ 2

t , we have that

|θ̂n − θ | = OP

(√
kn log(n)

nδn

)
.(35)

If δn does not tend to zero, the condition on δn in the proposition is always
satisfied.

REMARK 4.7. The estimator extends to more general situations:

(i) In case of jumps in the process X, we use truncation as in (24), and Proposi-
tion 4.6 then applies to the generalized estimator under the assumptions of Propo-
sition 3.5.

(ii) In the setup of continuous breaks under alternative SR
θ the same estimator is

consistent only when the volatility is a-regular except on a small interval around θ .
When the maximal length of this interval is

√
kn log(n)/(nδn), (35) applies when

we replace δn by δn(kn�n)
a′

. Clearly, when the volatility violates a-regularity over
longer time horizons such a result is not available.

Obviously, the quality of the estimator θ̂n depends on the bandwidth kn, and
the smaller, the better. This is the complete opposite case compared to the test
based on statistic V ∗

n , where a larger choice of kn increases the power. This is no
contradiction, since both problems have a different, essentially reciprocal nature.
Also note that kn cannot be chosen arbitrarily small; see condition (16).

While classical estimators as the argmax of statistic (8) attain a standard
√

n-
rate, corresponding to kn ≈ n, our nonparametric localization approach allows for
improved convergence rates as known for state-of-the-art change-point estimators
like, for example, in Aue et al. (2009). The following proposition sheds light on
optimal convergence rates for the estimation problem.

PROPOSITION 4.8. If the assumptions of Proposition 4.6 hold, then a consis-
tent estimator for θ does not exist in the case that δn = O(

√
log(n)k

−1/2
n ).

4.2.2. Multiple change-point alternatives. In the sequel, we demonstrate how
the previous theory can be extended to multiple change-points. To keep this exposi-
tion at a reasonable length, we focus on the alternative where the volatility exhibits
jumps. From a general perspective, multiple change-point detection is typically a
much more challenging multiple testing problem than the one change-point de-
tection problem. The main probabilistic difficulty usually lies in controlling the
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overall stochastic error. Fortunately, in the present context we have already dealt
with the overall stochastic error successfully; see Theorems 3.2 and 4.3. Thus,
treating the multiple change-point problem only requires small adjustments. For
N ∈N, let

0 < θ1 < · · · < θN < 1, �N = {θ1, . . . , θN }.(36)

We then consider the alternative

H ∗
1 : ∣∣σ 2

θi
− σ 2

θi−
∣∣=: δn,i > 0 for 1 ≤ i ≤ N .

The number of changes N is unknown to the experimenter, and the goal is to
provide uniformly consistent estimates for the multiple change-points. To this end,
given an index set I ⊆ {kn, . . . , n − kn}, we define in analogy to (34)

nθ̂n(I) = argmax
i∈I

V �
n,i .(37)

Based on the test ψ� introduced in (31), we propose the following algorithm for
the multiple change-point detection.

ALGORITHM 4.9.
Initialize Set Î = {kn, . . . , n − kn}, �̂ = ∅ and select rn = O(n) such that kn =
O(rn), kn → ∞.

(i) If ψ�((Xi�n)i∈Î) = 0, stop and return Î and �̂. Otherwise go to step (ii).
(ii) Estimate one time of change θ using θ̂n(Î) from (37).
(iii) Set Î = Î \ {�θ̂n(Î)n − rn, . . . , �θ̂n(Î)n� + rn}, �̂ = �̂ ∪ {θ̂n(Î)}, and go to

step (i).

Algorithm 4.9 is a sequential top-down algorithm, similar in spirit to the well-
known bisection methods. Observe that it not only returns an estimate for the set
of change-points �N , but also the set Î of noncontaminated indices, which can
be used for further inference. The following result provides consistency of the
proposed set estimators.

PROPOSITION 4.10. On the assumptions of Theorem 3.2 and under H ∗
1 , if:

(i) for some N ′ = O(n/rn), it holds that inf1≤i≤N−1 |θi+1 − θi | ≥ (N ′)−1,
(ii) inf1≤i≤N δn,i ≥ 2k

−1/2
n

√
log(n) supt∈[0,1] σ 2

t ,

then we have consistency of �̂: P(|�̂| = N) → 1, and supn=1,...,N |θ̂n−θn| P−→ 0.

Note that we can allow for increasing N = O(N ′) as the sample size n increases.
The bound in condition (ii) is optimal if kn is selected in the optimal way kn ∝
(
√

log(n)na)
2

2a+1 .
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5. Change-point test and asymptotic results for the global change problem.
In Section 3, we present methods to test the hypothesis of a-regular volatilities
against local alternatives of less regular volatilities. An important example have
been volatility jumps which violate the hypothesis for any a > 0. If the hypothesis
is rejected for a pre-specified a, however, the test does not reveal if this is due to a
volatility jump or due to a change of the regularity where the volatility is a-regular
on [0, θ) and a′-regular on (θ,1] with a′ < a. In case of global changes the test
(under certain conditions) rejects as well. Moreover, the alternatives in Section 4
do not cover a change in the Hurst parameter of a fractional volatility process.

The latter constitutes a different testing problem of great interest which is ad-
dressed in this section. We develop a new test which discriminates between volatil-
ities which are a-regular on [0,1], except for a finite number of discontinuities, and
volatilities where at θ ∈ (0,1) the regularity exponent drops to a′ < a such that a-
regularity is permanently violated on [θ,1]. We consider processes which satisfy
the following regularity assumptions.

ASSUMPTION 5.1. (i) Drift and volatility process in (1) are càdlàg with
inft∈[0,1] σ 2

t > 0.

(ii) Only for a finite set T = {τ1, . . . , τN } of stopping times we have στj
�=

limt<τj ,t→τj
σt , and we assume supj=1,...,N |στj

− limt<τj ,t→τj
σt | ≤ K with a

constant K < ∞.
(iii) σ 2

t = νt + �t with the σ -algebra σ(�s,0 ≤ s ≤ 1) being independent of
σ(Ws, νs,0 ≤ s ≤ 1). For any 0 ≤ s, τ ≤ 1 with [s, τ ] ∩ T = ∅, we have with a
constant K and some ε > 0:(

E
[|ντ − νs |8])1/8 ≤ K|τ − s|(1/2+ε).(38)

(iv) For �n
i � = n

∫ i�n

(i−1)�n
(�s − �s−�n) ds, it holds that

max
2≤m≤n

∣∣∣∣∣
m∑

i=2

((
�n

i �
)2 −E

[(
�n

i �
)2])∣∣∣∣∣= OP(

√
n).(39)

TESTING PROBLEM 5.2. Hypothesis: The process (�t )t∈[0,1] is a-regular in
the following sense:

E
[(

�n
i �
)2]= ϑ2

n + O
(
n−1/2) for all i, ϑ2

n ≤ Kn−2a,(40) (
E
[(

�n
i �
)8])1/8 ≤ Kn−a for all i,(41)

for some constant K and a> 0. Thus, on the hypothesis (σ 2
t )t∈[0,1] is min(1/2,a)-

regular.
Alternative: For θ ∈ (0,1), (�t∧θ )t≥0 satisfies (40) and (41) on [0, θ). For some

a′ < min(1/2,a), b′
n > 0 and for all i�n ≥ θ , we have

E
[(

�n
i �
)2]≥ b′

nn
−2a′

.(42)
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Contrary to the setup of Section 3, the hypothesis allows for a finite num-
ber of discontinuities in (νt )t∈[0,1]. On the other hand, under the alternative the
volatility permanently “exploits its roughness” in the sense of violating (40) per-
manently over [θ,1]. Condition (38) can be extended also to the case where ν is an
Itô semimartingale with jumps of finite activity. Assumption 5.1(iv) ensures that
E[(�t − �s)

2] does not vary too much over time. This condition is obsolete for
a> 1/4.

Our setup covers many stochastic volatility models, and in particular it applies
to discriminate fractional volatility models with different Hurst parameters. While
most fractional stochastic volatility models include independence of log-price and
volatility, possible dependence (leverage) is usually allowed in the literature when
one uses a semimartingale volatility. In this light, the decomposition in Assump-
tion 5.1 appears natural, where (�t )t≥0 is independent of (Wt)t≥0 and (νt )t≥0,
whereas (νt )t≥0 comprises leverage. The following simple example reveals the
interplay of Assumption 5.1(iv) and (40) and the Hurst parameter.

EXAMPLE 5.3 (Fractional Brownian motion). Suppose that (�t ) is a fractional
Brownian motion with a Hurst parameter H . Let ξk = nH (�k�n −�(k−1)�n), k ≥ 1.
Then, see, for example, Embrechts and Maejima (2000):

(i) �r − �s
d= �r−s

d= (r − s)H ξ1, r ≥ s,
(ii) |E[ξ0ξk]| ≤ K(k + 1)2H−2, k ≥ 1, for some constant K .

The scaling property (i) implies (40) and (41) with H = a. If 1/4 ≤ H ≤ 1, then
(i) suffices also to guarantee the validity of Assumption 5.1(iv). If 0 < H < 1/2,
we have

E

[
max

2≤m≤n

∣∣∣∣∣
m∑

i=2

((
�n

i �
)2 −E

[(
�n

i �
)2])∣∣∣∣∣

]

≤ n−2H
∫
[0,1]2

E

[
max

2≤m≤n

∣∣∣∣∣
m−1∑
k=1

(
ξk+rξk+s −E[ξk+rξk+s])

∣∣∣∣∣
]

dr ds.

Then (ii) together with the joint Gaussianity of (ξk+r , ξk+s) implies that (ξk+rξk+s)

is a short memory sequence. In particular, using the results in Arcones (1994) and
Móricz, Serfling and Stout (1982) we obtain

n−2H sup
0≤r,s≤1

E

[
max

2≤m≤n

∣∣∣∣∣
m−1∑
k=1

(
ξk+rξk+s −E[ξk+rξk+s])

∣∣∣∣∣
]

= O
(
n−2H+1/2),

and hence the validity of Assumption 5.1(iv).

More generally, our setup includes prominent realistic volatility models, such as
fractional Ornstein–Uhlenbeck processes discussed in Comte and Renault (1998)
which will be considered in Section 6.
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Because of the different permanent nature of the change we derive a statistical
device to address Testing problem 5.2 which differs from the methods in Section 3.
In particular, we propose a global cusum-type test statistic instead of localized
ones. Define for i = 2, . . . , n,

Qn,i = n2
(((

�n
i X
)2 − (�n

i−1X
)2)2 − 2

3

((
�n

i X
)4 + (�n

i−1X
)4))

.(43)

Our cusum-type test statistic based on the statistics (43) is

V †
n = 1√

n − 1
max

m=2,...,n

∣∣∣∣∣
m∑

i=2

(
Qn,i −

∑n
i=2 Qn,i

n − 1

)∣∣∣∣∣.(44)

Intuitively, statistics Qn,i are small if |σ 2
i�n

−σ 2
(i−1)�n

| is small and become larger

the larger |σ 2
i�n

− σ 2
(i−1)�n

|. The regularity a thus directly influences the average
behavior of the Qn,i , and a change at time θ can be detected by (44).

THEOREM 5.4. Suppose that we are under the hypothesis of Testing prob-
lem 5.2 and that Assumption 5.1 holds. Then the cusum-process associated with
statistic (44) satisfies the functional convergence

(45)

√
3/80√
n − 1

(�nt∑
i=2

(
Qn,i −

∑n
i=2 Qn,i

n − 1

))
ω−(st)−→

(∫ t

0
σ 4

s dBs − t

∫ 1

0
σ 4

s dBs

)
,

stable with respect to F , weakly in the Skorokhod space, where (Bs) denotes a
Brownian motion independent of F .

As an immediate consequence of Theorem 5.4, we obtain√
3

80
V †

n

ω−(st)−→ V †, V † = sup
0≤t≤1

∣∣∣∣∫ t

0
σ 4

s dBs − t

∫ 1

0
σ 4

s dBs

∣∣∣∣.(46)

In order to construct a test ψ† based on V †
n , the key object are the (conditional)

quantiles

qα

(
V †|F)= inf

{
x ≥ 0 : P(V † ≤ x|F)≥ α

}
.(47)

The latter depend on the unknown volatility (σt )t∈[0,1] and are therefore a priori
not available. One way to circumvent this problem is to estimate (σt )t∈[0,1] locally
and to apply an appropriate bootstrap procedure to approximate qα(V †|F). Alter-
natively, as seen in Proposition 5.6, a standardized version of (45) converges to a
Kolmogorov–Smirnov limit law under an additional condition, and hence allows
for the construction of a test as well. Consider for Kn → ∞, Kn/n → 0,

σ̂ 4
i�n

= n2

3Kn

i∑
j=i−Kn

(
�n

jX
)4

, Kn + 1 ≤ i ≤ n.(48)
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For a sequence of i.i.d. standard normals {Zi}1≤i≤�nK−1
n , let

V̂ †
n = sup

0≤t≤1
|Ŝnt − t Ŝn|, Ŝnt =

(
Kn

n

)1/2 �nt/Kn∑
i=1

σ̂ 4
(iKn+1)�n

Zi.(49)

Based on V̂ †
n , we construct the approximate (conditional) quantiles

q̂α

(
V̂ †

n |F)= inf
{
x ≥ 0 : P(V̂ †

n ≤ x|F)≥ α
}
.(50)

We can compute q̂α(V̂ †
n |F) as accurate as we want by using Monte Carlo approx-

imations. Testing problem 5.2 is now addressed with the test

ψ†
α

(
(Xi�n)0≤i≤n

)=
⎧⎪⎨⎪⎩1, if

√
3

80
V †

n > q̂1−α

(
V̂ †

n |F),
0, otherwise.

(51)

Observe that this test does not require any pre-specification of a,a′. It reacts to
the change under the alternative for any a,a′. From a statistical perspective, it is
important that:

(A) ψ†
α (asymptotically) correctly controls the type I error under H0,

(B) ψ†
α provides optimal power (in the minimax sense).

Both properties are established in Theorem 5.5 and Theorem 5.7, respectively.

THEOREM 5.5. Suppose that Assumption 5.1 holds. Then, for any fixed α > 0,∣∣P(V †
n ≤ q̂α

(
V̂ †

n |F))− α
∣∣→ 0.

Before discussing property (B) of the test, let us first touch on a second approach
that avoids a bootstrap. Slightly modified assumptions allow for the following stan-
dardized version of (44).

PROPOSITION 5.6. Suppose that Assumption 5.1 is satisfied and that the hy-
pothesis of Testing problem 5.2 holds with a > 1/4. Then (45) holds true. More-
over, (3/80)1/2V̄ †

n with

V̄ †
n = n−1/2 max

Kn+1≤m≤n

∣∣∣∣∣
m∑

i=Kn+1

(
σ̂ 4

(i−2)�n

)−1
Qn,i

− (m/n)

n∑
i=Kn+1

(
σ̂ 4

(i−2)�n

)−1
Qn,i

∣∣∣∣∣
weakly converges to a Kolmogorov–Smirnov law and the associated limiting pro-
cess in (45) becomes a standard Brownian bridge.
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THEOREM 5.7. For this testing problem, the minimax distinguishable bound-
ary satisfies

bn ∝ (n−1/2+2a′ + n−2(a−a′)).(52)

In particular, for bn = O(n−1/2+2a′ + n−2(a−a′)) a consistent test does not exist:

lim
n→∞ inf

ψ
γψ(a, bn) = 1.

REMARK 5.8. The lower bound in Theorem 5.7 reveals that detecting an al-
ternative with “too smooth” volatility, a′ > 1/4, is not possible in a high-frequency
setting.

The boundary bn in Theorem 5.7 is of slightly different nature than the one
in Theorem 4.1. Roughly speaking, the testing problem in Section 4.1 can be
associated with a high-dimensional statistical experiment, whereas the one here
is connected to a univariate statistical experiment. In this case, an optimal test
ψ = ψα can only reach the lower bound up to a pre-specified nominal level 1 − α,
0 < α < 1, see Ingster and Suslina (2003). Equivalently, we call a sequence of tests
ψn minimax-optimal if for any b′

n with n−1/2+2a′ + n−2(a−a′) = O(b′
n)

lim
n→∞γψn

(
a, b′

n

)= 0.(53)

PROPOSITION 5.9. The test ψ†
α in (51) is minimax-optimal. A corresponding

test based on Proposition 5.6 is also minimax-optimal if a > 1/4. In particular,

under the alternative of Testing problem 5.2 we have V †
n

P−→ ∞, when

n−1/2+2a′ + n−2(a−a′) = O
(
b′
n

)
.(54)

REMARK 5.10. Truncation in (44), analogous to Section 3.2, gives a method
robust to jumps of (Xt). Also, the time of change θ can be estimated using the
argmax. Precise results on the latter aspects are left for future research.

We have established a minimax-optimal test for global changes. The methods
from Section 3 react under some conditions also to global changes, but do not at-
tain optimality. Combining both approaches provides the statistician with suitable
devices to analyze volatility dynamics.

6. Simulations. We examine the finite-sample properties of the proposed
methods in a simulation study. Complementary simulations including a concise
discussion of data applications are given in Bibinger, Jirak and Vetter (2016a).
Here, we consider a moderate sample size n = 500 which is realistic when analyz-
ing high-frequency data from only one single day.6 In Bibinger, Jirak and Vetter

6Cf. our discussion in Bibinger, Jirak and Vetter (2016a).
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(2016a), we additionally consider larger and even smaller sample sizes. We simu-
late observations at regular times of (1) with a stochastic semimartingale volatility
model:

σt =
(∫ t

0
c · ρ dWs +

∫ t

0

√
1 − ρ2 · c dW⊥

s + 1
)

· vt(55)

which fluctuates around a deterministic seasonality function

vt = 1 − 0.2 sin
(

3
4πt

)
, t ∈ [0,1],(56)

with c = 0.1 and ρ = 0.5, where W⊥ is a standard Brownian motion independent
of W . The start value is X0 = 4, and the drift is constant, a = 0.1. (56) mimics a
realistic volatility shape with a strong decrease after opening and a slight increase
before closing, and the model poses an intricate setup to discriminate jumps from
continuous motion based on the n = 500 discrete recordings of X.

Under the local alternative, we add one jump of size 0.2 at the fixed time t = 2/3
to σt , which equals the range of the continuous movement in (56) and shifts the
volatility back to its maximum start value. This is in line with effects evoked from
macroeconomic news in the financial context. Changing the time of the volatility
jump does not affect the results substantially, though. One jump of X at a uniformly
drawn arrival time is implemented for the hypothesis and the alternative as well,
and under the alternative X additionally exhibits a common jump of X and σ at
t = 2/3. All these jumps are N(0.5,0.1) distributed.

Since X contains jumps, we apply the test statistic (24). We focus on V ∗
n,un

with
overlapping blocks as it significantly outperforms the test with nonoverlapping
blocks. For the truncation sequence, we set un = √

2 log (n)n−1/2 ≈ 3.53 n−1/2;
see Remark 3.7. In all cases, we iterate 10,000 Monte Carlo runs.

Since the approximation of the limit law is often imprecise for limit theorems
with extreme value distributions in finite-sample applications, it is common prac-
tice to apply bootstrap procedures; see, for example, Hall (1991). We apply a wild
bootstrap-type procedure based on Monte Carlo simulations. For example, one can
use the statistics (23) to pre-estimate the (in practice) unknown volatility first. Af-
terwards, a linear filter with equal weights and kn lags can be used to derive an
estimated volatility shape. Then the statistics (15) are iteratively simulated, with X

being a discretized Itô process without jumps and drift and with the pre-estimated
volatility, to obtain critical values from the bootstrapped distribution. It is also
possible to simply perform this procedure without pre-estimated volatility by just
using discretized Brownian motion which is close to the procedure of Wu and Zhao
(2007), or to use any convex combination of both statistics.

Let us briefly touch on the motivation and the consistency of both bootstrap
methods. Looking at the proof of Theorem 3.2, one finds that both methods mimic
specific stages of the proof, where it is shown that the underlying model can be
subsequently reduced to (nested) simpler models. In particular, consistency of the
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proposed bootstrap methods is implied. In our simulations, both methods work
reasonably well. The simpler method without pre-estimation tends to underes-
timate quantiles of the test statistic, especially in more complex configurations,
whereas the version with pre-estimation slightly overestimates the quantiles. We
fix a convex combination with weights 0.8 and 0.2 in favor of the version with
pre-estimation across all our experiments.

In our simulations, we work with k500 = 125, but minor modifications of kn

do not change the results substantially. In general, kn is chosen according to the
optimal theoretical value

kn = ck

(
log(n)

) 1
2a+1 n

2a
2a+1 L

− 2
2a+1

n ,(57)

with some proportionality constant ck , and for a = 1/2 we obtain the best per-
formance for ck ∈ [1.5,3.5].7 As illustrated in Figure 3, null and alternative are
reasonably well distinguished, and even the fit by the asymptotic distribution at-
tains a high accuracy here. In some other experiments given in Bibinger, Jirak and
Vetter (2016a), the bootstrap does more clearly a better job than relying on the
asymptotic results. Nevertheless, the latter are remarkably accurate across all set-
tings as well. In light of the intricate setup, Figure 3 confirms a good finite-sample
performance. In Bibinger, Jirak and Vetter (2016a), we further show that having
n = 1000 observations or, as in Figure 1, a larger jump increases the finite-sample
accuracy considerably. The density curve of the bootstrapped law in Figure 3 is ob-
tained from a kernel density estimate with R’s standard bandwidth selection using
Silverman’s rule of thumb.

In the financial literature, many stochastic volatility models rely on fractional
nonsemimartingale processes, and in particular the interest in volatilities with
small regularity has increased recently; see Gatheral, Jaisson and Rosenbaum
(2014). To see how our methods perform in such models, we modify our setup
using the prominent fractional log-volatility model by Comte and Renault (1998),
that is, we replace the semimartingale above by a fractional OU-process

d
(
log(σ̃t )

)= −0.1 log(σ̃t ) dt + 0.1dBH
t , σt = σ̃t · vt ,(58)

with a fractional Brownian motion (BH
t )0≤t≤1 and a Hurst parameter H . The frac-

tional process is implemented following Choleski’s method with a code similar to
the one in Appendix A.3 of Coeurjolly (2000).

The upper part of Figure 4 presents the finite-sample precision of the test for
volatility jumps when using a small Hurst parameter H = 0.2 to model the volatil-
ity. The outcomes are almost as accurate as for the semimartingale volatility and
broadly give a similar picture. Therefore, there is even finite-sample precision for
detecting jumps in a fractional volatility process with a small Hurst parameter.

7We conjecture that the asymptotic sharp minimax constant lies in this interval. We further address
robustness against different choices of kn in Bibinger, Jirak and Vetter (2016a).
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FIG. 3. Top: Histograms of (24) for k500 = 125 under the hypothesis and the alternative (right)
and a rescaled version comparing the left hand side with the limit law of (27) and the bootstrapped
law (left); limit law density marked by dotted and bootstrapped by solid line. Bottom: Empirical size
(left) and power (right) of the test by comparing the empirical percentiles to the ones of the limit law
under H0 (light points) and to the bootstrapped percentiles (dark points).

Coming back to our introductory data example from Figure 2 for intra-day
prices on March 18, 2009, the test rejects the null for both 3M and GE with p-
values very close to zero. The point in time where the difference of adjacent statis-
tics is maximized estimates the time of the structural change under the alternative.
In both examples, we find grid point 285, corresponding to 02:15 p.m. EST, as the
estimated change-point.

Finally, we examine the test for global changes based on (44) in a simulation.
Consider hypothesis (55) for the volatility against the alternative that (σt )t≥θ fol-
lows (58) with a Hurst parameter H = 0.15, where under the alternative the change
in smoothness happens at θ = 0.5. The lower part of Figure 4 confirms a remark-
able finite sample performance of this test. Small modifications of H under the
alternative do not affect the results substantially. Therefore, we expect that the
methodology in Section 5 opens up valuable new ways for inference on the reg-



NONPARAMETRIC CHANGE-POINT ANALYSIS OF VOLATILITY 1567

FIG. 4. Empirical size (left) and power (right) of the tests by comparing the empirical percentiles
to ones of the limit law under H0 (light points) and to the bootstrapped ones (dark points). Top: Test
(24) with k500 = 125; bottom: Test (44).

ularity of volatlity, which is useful for studies as the one in Gatheral, Jaisson and
Rosenbaum (2014).

APPENDIX A: PROOF OF THEOREM 3.2

First, we reduce the proof of Theorem 3.2 to Propositions A.1–A.5. The main
part in the analysis of Vn from (13) is to replace it by the statistic

Un = max
i=0,...,�n/kn−2

|Yn,i/Yn,i+1 − 1|,(59)
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in which the original statistics RVn,i from (14) are approximated by

Yn,i = n

kn

kn∑
j=1

σ 2
ikn�n

(
�n

ikn+jW
)2

.(60)

Up to different (random) factors in front, the maximum in Un is constructed from
functionals of the i.i.d. increments of Brownian motion, which helps a lot in the
derivation of its asymptotic behavior. We start with a result on the approximation
error due to replacing Vn by Un.

PROPOSITION A.1. Suppose that we are under the null. If Assumption 3.1
and (16) hold, then we have√

log (n)kn(Vn − Un)
P−→ 0.

Recall that the variables Yn,i are not only computed over different intervals, but
come with different volatilities in front as well. In order to obtain a statistic which
is independent of σ let us define

Ỹn,i = n

kn

kn∑
j=1

σ 2
(i−1)kn�n

(
�n

ikn+jW
)2

,(61)

where the volatility factor is shifted in time now. Set then

Ũn = max
i=0,...,�n/kn−2

|Yn,i/Ỹn,i+1 − 1|.(62)

PROPOSITION A.2. Suppose that we are under the null. If Assumption 3.1
and (16) hold, then we have√

log (n)kn(Un − Ũn)
P−→ 0.

In the final step, we replace Ỹn,i+1 in the denominator by its limit σ 2
ikn�n

. Set

Ṽn = max
i=0,...,�n/kn−2

∣∣∣∣Yn,i − Ỹn,i+1

σ 2
ikn�n

∣∣∣∣.(63)

PROPOSITION A.3. Suppose that we are under the null. If condition (16) is
satisfied, then we have √

log (n)kn(Ũn − Ṽn)
P−→ 0.
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From Propositions A.1 to A.3, we have
√

log (n)kn(Vn − Ṽn)
P−→ 0, while

Ṽn = max
i=0,...,�n/kn−2

∣∣∣∣∣ 1

kn

kn∑
j=1

(√
n�n

ikn+jW
)2

(64)

− 1

kn

kn∑
j=1

(√
n�n

(i+1)kn+jW
)2∣∣∣∣∣.

This statistic corresponds to the statistic Dn given in (13) of Wu and Zhao (2007);
see as well Proposition A.5. Precisely, after subtracting the mean on both sides
above, their (Xk)1≤k≤n correspond to ((

√
n�n

kW)2) − 1)1≤k≤n, which forms an
i.i.d. sequence of shifted χ2

1 -variables.
In the same fashion, we can prove that the asymptotics of V ∗

n in (15) can be
traced back to the statistics D∗

n in (12) of Wu and Zhao (2007); see Proposition A.5.

PROPOSITION A.4. We have that
√

log (n)kn(V
∗
n − Ṽ ∗

n )
P−→ 0, with

Ṽ ∗
n = max

i=kn,...,n−kn

∣∣∣∣∣ 1

kn

i+kn∑
j=i+1

((√
n�n

jW
)2 − (√n�n

j−kn
W
)2)∣∣∣∣∣.(65)

Theorem 1 of Wu and Zhao (2007) establishes limit theorems of the form (17)
and (18) under more restrictive assertions on kn than (16), as they consider the
behavior for a class of weakly dependent random sequences (Xk)k≥1. The next
proposition provides a more specific limit theorem tailored to the asymptotic anal-
ysis of the statistics (64) and (65). In particular, instead of using the strong ap-
proximation theory under weak dependence from Wu (2007), we rely on classi-
cal bounds for the approximation error in the invariance principle for i.i.d. vari-
ables with existing moments. This is applicable in a more general setup with much
smaller block lengths kn.

PROPOSITION A.5. Consider a sequence (Xk)k∈N of i.i.d. random variables
with Var[Xk] = ς2 and E[|Xk|p] < ∞ for some p ≥ 4. If

k−p/2
n n = O

((
log(n)

)−p/2)
,(66)

then with mn = �n/kn the statistic

D∗
n = 1

kn

max
kn≤i≤n−kn

∣∣∣∣∣
kn+i∑

j=i+1

Xj −
i∑

j=i−kn+1

Xj

∣∣∣∣∣.
obeys the weak convergence√

log(mn)
(
k1/2
n ς−1)D∗

n − 2 log (mn) − 1

2
log log(mn) − log 3

w−→ V,
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where V is distributed according to (19). The statistic

Dn = max
1≤i≤�n/kn−2

∣∣∣∣∣
kn∑

j=1

Xikn+j − X(i+1)kn+j

∣∣∣∣∣
using nonoverlapping blocks satisfies under the same assumptions√

log(mn)
((

k1/2
n ς−1)Dn − [

4 log(mn) − 2 log
(
log(mn)

)]1/2) w−→ V.

As all moments of the χ2
1 distribution exist and kn is at least of polynomial

growth in n, Proposition A.5 applied to (64) and (65) implies Theorem 3.2. We
provide proofs of Propositions A.1–A.5 in the supplement Bibinger, Jirak and Vet-
ter (2016b).

APPENDIX B: LOWER BOUND FOR THE LOCAL PROBLEM

PROOF OF THEOREM 4.1. The proof is based on equivalences of statistical
experiments in the strong Le Cam sense. After information-theoretic reductions,
we subsequently move to statistical experiments that allow a simpler treatment; see
(69) below. Our final experiment E4 is a special high-dimensional signal detection
problem, from which we will deduce the lower bound by classical arguments.

First, consider alternatives with a jump as in (4). Throughout this proof, we set

kn = ck

(√
log(mn)n

a/Ln

) 2
2a+1 ,(67)

with a constant ck > 0. In the preliminary step, we first grant the experimenter
additional knowledge. We restrict to a subclass of SJ

θ (a, bn,Ln), where we have
one jump at time θ ∈ (0,1) in the volatility, |σ 2

θ −σ 2
θ−| ≥ bn. Then we assume that

θnk−1
n ∈ {1,2, . . . , �n/kn−1}, such that the jump time is in the set of observation

grid points which are multiples of kn. Furthermore, we can stick to X0 = 0 and
as = 0, s ∈ [0,1]. From an information-theoretic view, obtaining this additional
knowledge can only decrease the lower boundary on minimax distinguishability.
Consequently, a lower bound derived for the submodel carries over to the less
informative general situation.

To ease the exposition, we first set σ 2− = 1 and Ln = 1 and generalize the result
at the end of this proof. Next, denote with [a]b = a mod b and let

σ 2
j�n

=
{

1 + (kn − [j ]kn

)a
n−a, θn ≤ j < θn + kn,

1, else.
(68)

The discretized squared volatility exhibits a jump (resp., change-point) of order
bn at θ and then decays on the window [θ, θ + kn�n] smoothly with regularity a

and is constant elsewhere. It suffices to consider the subclass Σθ ⊂ SJ
θ (a, bn,Ln)
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of squared discretized volatility processes of the above form for which it remains
unknown on which window the jump occurs.

Introduce a sequence rn with rn → ∞ such that rnk
−1
n → 0 as n → ∞. We

specify the following stepwise approximation of (σ 2
j�n

)0≤j≤n ∈ Σθ :

σ̃ 2
j�n

=
{

1 + (kn − irn)
an−a, θn + (i − 1)rn ≤ j ≤ θn + irn,1 ≤ i ≤ kn

rn
,

1, else.

Denote the observations by ηj = σ(j−1)�n(Wj�n − W(j−1)�n) and η̃j = σ̃(j−1)�n

(Wj�n − W(j−1)�n), j = 1, . . . , n, respectively, with W the Wiener process in Xt .
In the sequel, we distinguish the two cases where a> 1/2 and a≤ 1/2.

Case a> 1/2: As alluded to above, we relate different experiments:

E1 : Observe (ηj )1≤j≤n and information θnk−1
n ∈ {1,2, . . . , �n/kn − 1} is

provided.
E2 : Observe (η̃j )1≤j≤n and information θnk−1

n ∈ {1,2, . . . , �n/kn − 1} is
provided.

E3 : Observe χ = ((σ̃ 2
ikn�n

χi)i∈I1, (σ̃
2
θ+(i−1)rn�n

χ̃i)i∈I2), where indices (ikn,
i ∈ I1) expand over all multiples of kn, except the one where the jump is lo-
cated, that is, I1 = {1, . . . , θnk−1

n − 1, θnk−1
n + 1, . . . , �n/kn − 1}, and (θn +

(i − 1)rn, i ∈ I2) over all multiples of rn in the window of length kn�n where
(σ 2

j ) is nonconstant, that is, I2 = {1,2, . . . , knr
−1
n }. (χi)i∈I1 and (χ̃i)i∈I2 are i.i.d.

random variables having chi-square distribution with degrees of freedom kn for
i ∈ I1 and rn for i ∈ I2. Moreover, information θnk−1

n ∈ {1,2, . . . , �n/kn − 1} is
provided.

E4 : We observe ξ = ((k
−1/2
n ξi σ̃

2
ikn�n

+ σ̃ 2
ikn�n

)i∈I1, (r
−1/2
n ξ̃i σ̃

2
θ+(i−1)rn�n

+
σ̃ 2

θ+(i−1)rn�n
)i∈I2) where (ξi, ξ̃i) are i.i.d. standard normal random variables.

Moreover, information θnk−1
n ∈ {1,2, . . . , �n/kn − 1} is provided.

When considering the above experiments, we always have (σ 2
j�n

) ∈ Σθ [or

(σ̃ 2
j�n

) ∈ Σθ ] as unknown parameter that index a family of probability measures
{P(σ 2

j�n
)}. For the sake of readability, we move this formalism to the background

and omit subscripts indicating the parameter space. We show the following re-
lations for the experiments, where ∼ marks strong Le Cam equivalence and ≈
asymptotic equivalence:

E1 ≈ E2 ∼ E3 ≈ E4.(69)

Finally, we shall derive the lower bound in E4 which carries over to E1 by the above
relations and thus also to our general model. The proof is now divided into four
main steps.

Step 1 E1 ≈ E2: For random variables U,V and their laws PU,PV , we denote the
Kullback–Leibler divergence D(U‖V ) = D(PU‖PV ) = ∫

log(dPU/dPV ) dPU .
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For normal families with unknown variance Pθ = N(0, θ), it is known that

D(Pθ‖Pθ ′) = Eθ

[
log
(

dPθ

dPθ ′

)]
= −1

2

(
log
(

θ

θ ′
)

+ 1 − θ

θ ′
)
,

such that for θ = θ ′ + δ and considering asymptotics where δ → 0, we obtain

D(Pθ ′+δ‖Pθ ′) = −1

2

(
log
(

1 + δ

θ ′
)

− δ

θ ′
)

= δ2

4(θ ′)2 +O
(
δ3).(70)

As E1 and E2 share a common space on which the considered random variables are
accommodated, asymptotic equivalence holds if ‖P(ηj ) −P(η̃j )‖T V → 0 as n → ∞
where ‖ · ‖T V denotes the total variation distance and P(ηj ) the law of observations
(ηj ). We exploit Pinsker’s inequality

‖P(ηj ) − P(η̃j )‖2
T V ≤ 1

2
D
(
(ηj )‖(η̃j )

)
.(71)

By Gaussianity and independence of Brownian increments, implying additivity of
the Kullback-Leibler divergences, it follows with (70) for a piecewise constant
approximation of a function with regularity a on knr

−1
n intervals of length rn�n:

D
(
(ηj )‖(η̃j )

)= O(1)

knr−1
n∑

i=1

rn∑
j=1

(j�n)
2a = O

(
n−2aknr

2a
n

)
,

which tends to zero for rnk
−1
n = O(n−ε) for some ε > 0.

Step 2 E2 ∼ E3: The vector of averages((
k−1
n

kn∑
j=1

η̃2
ikn+j−1

)
i∈I1

,

(
r−1
n

rn∑
j=1

η̃2
θn+(i−1)rn+j−1

)
i∈I2

)

forms a sufficient statistic for (σ̃ 2
j−1)1≤j≤n. Thereby, we conclude [see, e.g.,

Lemma 3.2 of Brown and Low (1996)] the strong Le Cam equivalence.
Step 3 E3 ≈ E4: Let χ� = (k

−1/2
n (σ̃ 2

ikn�n
(χi − kn))i∈I1, r

−1/2
n (σ̃ 2

θ+(i−1)rn�n

(χ̃i − rn))i∈I2) and ξ� = ((ξi σ̃
2
ikn�n

)i∈I1, (ξ̃i σ̃
2
θ+(i−1)rn�n

)i∈I2). In both experi-
ments, random variables are accommodated on the same space. Rescaling and a
location shift yield with Pinsker’s inequality

‖Pχ − Pξ‖2
T V = ‖Pχ� − Pξ�‖2

T V ≤ 1

2
D
(
χ�‖ξ�).

By independence, it follows that

D
(
χ�‖ξ�)≤ ∑

i∈I1

D
(
k−1/2
n σ̃ 2

ikn
n

(χi − kn)‖ξi σ̃
2
ikn
n

)
+ ∑

i∈I2

D
(
r−1/2
n σ̃ 2

θ+ (i−1)rn
n

(χ̃i − rn)‖ξ̃i σ̃
2
θ+ (i−1)rn

n

)
.
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An application of Theorem 1.1 in Bobkov, Chistyakov and Götze (2013) yields∑
i∈I1

D
(
k−1/2
n σ̃ 2

ikn�n
(χi − kn)‖ξi σ̃

2
ikn�n

)= O
(
nk−2

n

)
,

∑
i∈I2

D
(
r−1/2
n σ̃ 2

θ+(i−1)rn�n
(χ̃i − rn)‖ξ̃i σ̃

2
θ+(i−1)rn�n

)= O
(
knr

−2
n

)
.

For a > 1/2, we have nk−2
n = O(1). Choosing rn sufficiently large such that

knr
−2
n = O(1), it follows that

‖Pχ − Pξ‖T V = O(1),(72)

what ensures the claimed asymptotic equivalence.
Step 4: By the previous steps, it suffices to establish a lower bound for the dis-

tinguishability in experiment E4. Adding an additional drift, which gives clearly an
equivalent experiment, we consider observations ξ = ((k

−1/2
n ξi σ̃

2
ikn�n

+ σ̃ 2
ikn�n

−
1)i∈I1, (r

−1/2
n ξ̃i σ̃

2
θ+(i−1)rn�n

+ σ̃ 2
θ+(i−1)rn�n

− 1)i∈I2). Then the testing problem
can be interpreted as a high dimensional location signal detection problem in the
sup-norm. More precisely, we test the hypothesis:

(73) H0 : sup
j

(
σ̃ 2

j − 1
)= 0 against the alternative H1 : sup

j

(
σ̃ 2

j − 1
)≥ bn,

and we are interested in the maximal value bn → 0 such that the hypothesis H0
and H1 are nondistinguishable in the minimax sense. Nondistinguishability in the
minimax sense is formulated as

lim
n→∞ inf

ψ
γψ(a, bn) = 1,(74)

and the detection boundary here is bn ∝ (kn�n)
a ∝ n− a

2a+1 . In order to show (74),
we proceed in the fashion of Section 3.3.7 of Ingster and Suslina (2003). Let Pξ

be the law of the observations. We consider the probability measures

P0 = Pξ × Pθ0 and P1 = Pξ × Pθ1,

where Pθ0 means the hypothesis of the test applies (no jump) and Pθ1 draws a
jump-time θ with θnk−1

n ∈ {1, . . . , �n/kn−1} uniformly from this set. Therefore,
P0 represents the probability measure without signal, and P1 the measure where a
signal is present. It then follows that

inf
ψ

γψ(a, bn) ≥ 1 − 1

2
‖P1 − P0‖T V

≥ 1 − 1

2

∣∣EP0

[
L2

0,1 − 1
]∣∣1/2

,
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with L0,1 = dP1/dP0 the likelihood ratio of the measures P1 and P0. For the va-
lidity of (74), it thus suffices to establish

EP0

[
L2

0,1
]→ 1 as n → ∞.(75)

To this end, for given θ we denote with u
θnk−1

n

i = σ̃ 4
θ+(i−1)rn�n

for i ∈ I2, v
θnk−1

n

i =
(u

1/2
i − 1)r

1/2
n . We first perform some preliminary computations. Denote with

ϕY (x) the density function of a Gaussian random variable Y , not necessarily stan-
dard normal, and for a, b ∈ {1, . . . , �n/kn − 1}

Ia,b(x, y) := ∏
i∈I2

ϕξ̃i(u
a
i )1/2+va

i
(xi)

ϕξ̃i
(xi)

∏
i∈I2

ϕξ̃i(u
b
i )

1/2+vb
i
(yi)

ϕξ̃i
(yi)

.

Then we have that Ia,b := ∫
Ia,b(x, y)

∏
i∈I2

ϕξ̃i
(xi) dxi

∏
i∈I2

ϕξ̃i
(yi) dyi = 1.

Next, for a ∈ {1, . . . , �n/kn − 1}, consider

IIa(x) := ∏
i∈I2

(ϕξ̃i(u
a
i )1/2+va

i
(xi)

ϕξ̃i
(xi)

)2
.

Observe that for a standard Gaussian random variable Z and s, t ∈ R, |s| < 1/2:

E
[
exp

(
sZ2 + tZ

)]= (1 − 2s)−1/2 exp
(

t2

2 − 4s

)
.(76)

This, together with the inequality

C0kn(kn�n)
2a ≤ rn

kn/rn−1∑
i=0

(
(kn − irn)�n

)2a ≤ kn(kn�n)
2a

for some constant C0 > 0 and routine calculations, yields for some C0 ≤ C1 ≤ 1

IIa :=
∫

IIa(x)
∏
i∈I2

ϕξ̃i
(xi) dxi ≤ eC1kn(kn�n)2a(

1 + O(1)
)
.

With all the preliminary calculations, we are now ready to derive a bound for

EP0

[
L2

0,1
]− 1 =

�n/kn−1∑
a,b=1,a �=b

P
(
θnk−1

n = a
)
P
(
θnk−1

n = b
)
(Ia,b − 1)

+
�n/kn−1∑

a=1

P
(
θnk−1

n = a
)2

(IIa − 1),

where the first sum vanishes. For an appropriate choice of ck > 0 in (67), we
have that kn(kn�n)

2a = C2 log(n/kn) for some C2 < C−1
1 . Since P(θnk−1

n = a) =
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kn�n, we thus obtain

∣∣EP0

[
L2

0,1
]− 1

∣∣ ≤ �n/kn∑
a=1

P
(
θnk−1

n = a
)2(

eC1kn(kn�n)2a − 1
)

(77)
= (

1 + O(1)
)
kn�ne

C1kn(kn�n)2a
.

We conclude (75) using

kn�ne
C1kn(kn�n)2a = kn�n exp

(
C1C2 log(n/kn)

)
= (kn�n)

1−C1C2 = O(1).

Case a ≤ 1/2: The only time we make use of the condition a > 1/2 above is in
Step 3 to obtain n/k2

n = O(1). The necessity of this relation is due to the large num-
ber of blocks n/kn, when operating with the entropy bounds. To establish the lower
bound, this constraint can be removed by granting the experimenter even more ad-
ditional information what is briefly sketched in the following. Indeed, suppose
we know in addition that θn ∈ {kn,2kn, . . . , lnkn} where ln = nl � n/kn, l > 0
arbitrarily small but strictly positive and such that ln ∈ N. Using the sufficiency
argument of Step 2, we can gather all the information contained in (ηi)lnkn<i≤n in
one single average (n − (ln + 1)kn)

−1∑n
i=lnkn+1 η2

i . Then one can repeat Steps 3
and 4, subject to the weaker condition ln/kn = O(1). Selecting l > 0 sufficiently
small for each 0 < a ≤ 1, this is always possible. Substituting nk−1

n by ln in the
sum and (squared) probability in Step 4, we obtain instead of (77)∣∣EP0

[
L2

0,1
]− 1

∣∣= (
1 + O(1)

)
l−1
n eC1kn(kn�n)2a

.

For an appropriate choice of ck > 0 in (67), kn(kn�n)
2a = C2 log(n/kn) with C2 <

lC−1
1 . Hence, we conclude that the term tends to zero and the lower bound in Step 4

gives the same minimax detection boundary.
Let us now touch on the general case with some σ 2− > 0 and sequences Ln. We

can divide formulas in (73) by σ 2− to rescale. Exactly the same arguments lead to
limn→∞ infψ γψ(a, bn) = 1 for kn given in (67) with bn ≤ Ln(kn�n)

aσ 2−. Finally,
for regularity alternative HR

1 , the proof is along the same lines as for jumps where
instead of a jump of size Ln(kn�n)

a we observe a sudden, more regular increase
in σ 2

t of size Ln(kn�n)
a+a′

. Then the arguments are almost identical. �
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SUPPLEMENTARY MATERIAL

Complete proofs (DOI: 10.1214/16-AOS1499SUPPA; .pdf). We provide all re-
maining proofs for the results from Sections 3, 4 and 5.

Application and simulations (DOI: 10.1214/16-AOS1499SUPPB; .pdf). We
present complementary simulations for different sample sizes accompanied by a
sensitivity analysis of the dependence on kn and a discussion of data applications.
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