
The Annals of Statistics
2016, Vol. 44, No. 5, 1837–1853
DOI: 10.1214/16-AOS1490
© Institute of Mathematical Statistics, 2016

PETER HALL’S CONTRIBUTIONS TO NONPARAMETRIC
FUNCTION ESTIMATION AND MODELING

BY MING-YEN CHENG1 AND JIANQING FAN2

National Taiwan University and Princeton University

Peter Hall made wide-ranging and far-reaching contributions to nonpara-
metric modeling. He was one of the leading figures in the developments of
nonparametric techniques with over 300 published papers in the field alone.
This article gives a selective overview on the contributions of Peter Hall to
nonparametric function estimation and modeling. The focuses are on density
estimation, nonparametric regression, bandwidth selection, boundary correc-
tions, inference under shape constraints, estimation of residual variances,
analysis of wavelet estimators, multivariate regression and applications of
nonparametric methods.

1. Introduction. Peter Hall made wide ranging and far-reaching contribu-
tions to nonparametric function estimation and modeling. His work not only broke
new ground in methodology, but also had a profound influence on statistical theory.
He significantly altered the toolbox available for studying nonparametric func-
tion estimation, and as a result of his contributions, new areas of nonparametric
modeling became tractable for rigorous theoretical analysis. He was one of most
influential figures in leading the developments of nonparametric techniques, as
exemplified by over 300 papers in the field. In addition to his phenomenal con-
tributions to the core of nonparametric modeling, he also played a leading role
in applying nonparametric techniques to various areas of statistics such as decon-
volution and measurement error models, classification, functional data analysis,
high-dimensional statistical learning, which accounts for over 50 papers. As his
contributions to these areas will be highlighted in other papers, they will not be
covered here.

It is Hall’s contributions on various vital issues in nonparametric function es-
timation, both of practical and intellectual significance, that the era of neoclassic
nonparametric modeling was born, resulting in an active and broad field of statisti-
cal modeling techniques. Hall was always in the forefront of these developments.
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These developments are the dawn of sparse inferences and high-dimensional statis-
tics, which are the foundation of statistical analysis of big data nowadays.

Hall had a very distinguished career. In addition to garnering various awards
and honors outlined in the preface by Runze Li and contributing seminally to non-
parametric smoothing (this article), Hall had also made fundamental contributions
to various areas such as bootstrap [Chen (2016)], deconvolution [Delaigle (2016)],
functional data analysis and random objects [Mueller (2016)], high-dimensional
data and classification [Samworth (2016)], as well as probability and stochastic
processes.

In addition to his extraordinary scholarly achievements and his dedicated pro-
fessional services such as President of the Institute of Mathematical Statistics
(2011) and Co-Editor of the Annals of Statistics (2013–2015), Peter Hall was also
a great citizen and mentor. He fostered many generations of statisticians through
collaborations, guidance, mentoring and encouragements. In 1992, Peter Hall ap-
proached Jianqing Fan, the co-author of this article, on the collaboration of a mini-
max estimation under the L1-loss [Fan and Hall (1994)]. What an honor and shock
to a then postdoctoral fellow at the institute. This shows his efforts of promoting
and encouraging a young mind and did his homework. Figure 1 is a photo of Peter
Hall, Jianqing Fan and Irene Gijbels, taken at Berkeley in 1992. Hall’s scholastic
thinking and attitude, his humbleness and politeness, and his persistency, intense
scientific interest and hard-work have everlasting impact on this then-young man’s
career. Ming-Yen Cheng, another co-author of this article, benefited equally from
Peter Hall’s mentoring. When she worked on her first joint paper with Peter Hall
[Cheng, Hall and Titterington (1997)] in 1995, she was a fresh PhD on a visit to
the Australian National University, where Peter Hall spent most of his career. She
always remembers clearly that she was very much surprised when Peter Hall hap-
pily took into account her suggestions to modify the methodology. Later, during
her postdoctoral study under his supervision in 1996–1997 and years afterward,
she gradually realized that the reason Peter Hall reacted to young people’s sug-
gestions in such an encouraging way was because he was truly an open-minded
scholar, a great mentor and a very kind person. Figure 2 is a photo of Peter Hall,
Jeannie Hall, Shu-Hui Chang, David Siegmund and Ming-Yen Cheng, taken in
Taipei in 2011.

2. Nonparametric density estimation. Hall ventured into the realm of non-
parametric curve estimation as early as in 1980. His very first two papers in this
field are “Estimating a density on a positive half-line by the method of orthog-
onal series” and “On trigonometrics series estimates of a density” published re-
spectively in Annals of the Institute of Statistical Mathematics [Hall (1980)] and
the Annals of Statistics [Hall (1981a)]. The former concerns nonparametric den-
sity estimation on (0,∞) using Hermite and Laguerre polynomials with focus on
the mean integrated square errors and the latter studies a similar problem using
the Fourier methods, correcting several mistakes and results in Walter and Blum
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FIG. 1. Peter Hall, Jianqing Fan, and Irene Gijbels were at Mathematical Sciences Research Insti-
tute at Berkeley 1992.

(1979). In both papers, Hall was among the first to note the importance of the
boundary effect. These are also the first two papers that Peter Hall published in
statistical journals. Starting from then, his interest in statistics, with emphasis on

FIG. 2. Peter Hall, Jeannie Hall, Shu-Hui Chang, David Siegmund and Ming-Yen Cheng in Taipei
in 2011.
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nonparametric curve estimation, surged. His work touched virtually all theoretical
and practical aspects of nonparametric density estimation.

In Hall (1981b), he unveiled beautifully the laws of the iterated logarithm for
kernel density estimators, trigonometric series estimators and orthogonal poly-
nomial estimators. He established convincingly the central limit theorem for the
mean integrated error [Hall (1984a)], pioneered the work on the estimation of in-
tegrated squared functions derivatives [Hall and Marron (1987a)] and discovered
some interesting phenomenon on parametric and nonparametric behavior of such
functionals, and introduced and studied the two classes of kernel density estima-
tors for spherical data [Hall, Watson and Cabrera (1987)]. Furthermore, he studied
the choice of the order of kernel from both mean integrated squared error and
asymptotic optimality with cross-validation choice of bandwidths [Hall and Mar-
ron (1988)], addressed the challenging issue on constructing confidence intervals
for probability densities [Hall (1992a)] and investigated the binning effect on the
kernel density estimation [Hall and Wand (1996)]. In addition, he pioneered a num-
ber of important and practical issues of nonparametric density such as bandwidth
selection, boundary bias correlation, discontinuities, shape constraints, among oth-
ers. These will be addressed in separate sessions.

3. Nonparametric regression. Hall’s earliest work on nonparametric regres-
sion was analysis of integrated square error of kernel regression and the use of
cross-validation as an estimate [Hall (1984b, 1984c)]. Although it was noted that
nonparametric regression and bandwidth selection for kernel methods can be af-
fected by dependent errors, the effect of long-range dependence on the conver-
gence rate was not clear until Hall and Hart (1990). The paper established min-
imax convergence rates in the presence of dependent errors, and gave necessary
and sufficient condition for the minimax convergence rates when the errors are
independent to be maintained in the dependent case. In particular, the conver-
gence rate is slower in the case of long-range dependence. This work led to sub-
sequent developments of bandwidth selection rules with dependent errors. For ex-
ample, Hall, Lahiri and Polzehl (1995) analyzed the effect of dependence on opti-
mal bandwidth, and suggested ways to adjust the block length in block bootstrap
and the leave-out number in cross-validation in order to obtain a first-order op-
timal data-driven bandwidth. He further exploited various ideas for construction
of confidence intervals and simultaneous confidence bands based on kernel re-
gression, including interpolation [Hall and Titterington (1988)], undersmoothing
[Hall (1992a)], bias correction [Hall (1992b)], pivoting [Hall (1993)] and averag-
ing [Hall and Horowitz (2013)]. He pioneered this topic and established many of
the key techniques. These are just a few examples to remind us how remarkable
and unusual Peter Hall was in that he mastered various areas in probability and
statistics and that he was able to make connections between seemingly unrelated
problems in different areas and come up with innovative theory and methodology.
Besides, although he did not produce many papers on nonparametric change-point
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detection and estimation, his works in this direction are highly pioneering and in-
fluential. Realizing the estimated curve may not be smooth, Hall and Titterington
(1992) introduced the use of left-, central- and right-smooths in kernel methods for
diagnosis and estimation of jumps and peaks, and the use of kernel derivative es-
timates to achieve optimal n−1 convergence in estimation of jump points [Gijbels,
Hall and Kneip (1999)].

The popular local linear regression enjoys many theoretical and numerical ad-
vantages [Fan (1992, 1993)], and it has been extensively used in many semi-
parametric regression models such as varying coefficient models [Fan and Zhang
(1999, 2008), Hastie and Tibshirani (1993)]. Seifert and Gasser (1996) pointed
out that its finite sample variance is often infinite, due to design sparseness, and
suggested a shrinkage approach to remedy the problem. Hall and Marron (1997)
provided necessary and sufficient conditions on the shrinkage parameter to guar-
antee the traditional mean squared error formula. At the same time, Cheng, Hall
and Titterington (1997) suggested shrinking toward another local linear estimate
based on an infinitely supported kernel with sufficiently heavy tails, and Hall and
Turlach (1997a) suggested to create pseudo data points by interpolation and apply
local linear regression to the union of the observed and pseudo data. These simple
methods are less sensitive to the choices of the tuning parameters, and are effec-
tive in ensuring superior performance of local linear regression in finite sample
situations.

In nonparametric regression, the optimal convergence rate depends on both the
degree of smoothness of the unknown curve and that of the local regression model.
Determination of the order of the local model is thus somehow subjective, and the
convention in practice is to employ lower order local models to avoid erratic nu-
merical behaviors due to over-fitting. In the case of local polynomial regression,
usually local linear regression is used. It has several theoretical and numerical ad-
vantages over local constant regression, the Nadaraya–Watson estimator. On the
other hand, when the fourth-order derivative exists, it has slower convergence rate
than local quadratic and local cubic estimators. In that case, Choi and Hall (1998)
proposed a novel skewing approach to reduce the bias by two orders of magnitude
at the expense of a slight increase in variance. Hall and Turlach (1999) suggested
to use the biased bootstrap [Hall and Presnell (1999a)] to achieve bias reduction.
Note that these two methods assume the existence of higher order derivatives. To
exploit the unknown degree of smoothness of the curve, Hall and Racine (2015)
gave deep insights into the theoretical performance with infinite order local poly-
nomial, and showed that leave-one-out cross-validation can be used to determine
simultaneously the order of the local polynomial and the bandwidth.

Penalized spline regression is a popular alternative to regression spline models,
and smoothing spline regression may be viewed as a special case. However, com-
pared to regression spline and smoothing spline regression, there existed very lim-
ited theory for penalized spline regression. Hall and Opsomer (2005) was the first
to derive explicit expressions for asymptotic bias and variance of penalized spline
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regression. Moreover, the paper showed that it achieves the optimal nonparametric
convergence rate, and provided useful insights into the role of the penalty.

Traditionally, it is assumed that the error term is uncorrelated with the regressor.
The case where this assumption is violated, that is, the regressor is endogenous,
had been much less studied despite the fact that the situation occurs often in social
science such as economics and sociology. Hall and Horowitz (2005) introduced
kernel and orthogonal series methods in a general nonparametric setup with avail-
able instrumental variables, based on the inversion of a linear operator on the space
of square-integrable functions. The case where an additional exogenous variable
is present was also studied, and thorough theoretical justifications were given for
both cases.

Group testing for collecting data with a binary response is a common technique
in large screening studies. Work on nonparametric regression modeling of group
testing data is limited, however. Delaigle and Hall (2012) and Delaigle, Hall and
Wishart (2014) developed kernel regression models when the pooling is homoge-
neous, and investigated the effect of over-pooling on the convergence rate.

4. Bandwidth selection. Hall made fundamental contributions to smoothing
parameter estimation in nonparametric curve estimation. His methods basically
can be classified as “cross-validation” based approaches and the plug-in based
approaches. He led the developments in both areas.

Hall pioneered theoretical analysis on the kernel density estimation with band-
width selected by cross-validation. His very first paper on this topic discovered the
surprising suboptimality of a version of cross-validation in kernel density estima-
tion [Hall (1982a)]. This led him to analyze the Bowman and Dudemo version of
cross-validation. There, he demonstrated for the first time that a cross-validatory
procedure for density estimation is asymptotically optimal in terms of mean in-
tegrated error [Hall (1983)]. Realizing that the Kullback–Leibler loss is a more
appropriate measure, he made determined efforts [Hall (1987)] to show how ker-
nel function should be appropriately chosen so that the likelihood cross-validation
does result in asymptotic minimization of the Kullback–Leibler loss. Instead of
studying the Integrated Square Errors (ISE) or Mean ISE (MISE), Hall and Mar-
ron (1987b) investigated the bandwidth that minimizes ISE or MISE and argued
that the former bandwidth should be the benchmark. It is convincingly and sur-
prisingly demonstrated that in comparison to the benchmark bandwidth, the band-
width selected by the least-squares criterion performs as well as the “oracle” se-
lector, both in the first- and the second-order. The results and technical proofs
are extremely remarkable. In the very article by Härdle, Hall and Marron (1988),
Hall derived further the asymptotic normality for a family of generalized cross-
validation type of bandwidth selectors to their benchmarks, not only in rates but
also in the asymptotic distributions, for both bandwidth selectors and MISE. The
results are truly remarkable and useful. To further improve the performance and
stability of cross-validatory bandwidths, Hall, Marron and Park (1992) introduced
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a smoothed cross-validation bandwidth and demonstrated that it achieves the op-
timal rates of convergence in terms of the relative errors. Hall and Marron (1991)
investigated in depth why the cross-validation function has multiple local minima
through modeling the cross-validation function as a Gaussian stochastic process.
The results are very insightful.

Hall’s contributions to the theory and methods of cross-validation do not limit to
the kernel density estimation. He also analyzed the methods in the image analysis
[Hall and Koch (1992)], kernel regression [Härdle, Hall and Marron (1988)], short-
range and long-range dependent data [Hall, Lahiri and Polzehl (1995)], estimation
of conditional density [Hall, Racine and Li (2004)], among others.

Realizing the high variance of cross-validation methods in bandwidth selection,
Hall was also instrumental in developing plug-in bandwidth selection. Hall et al.
(1991) developed a plug-in estimator of bandwidth and demonstrated that it has
n−1/2 rate of convergency, a surprising feast by the nonparametric standard.

5. Nonparametric boundary issues. Boundary effects in nonparametric den-
sity and regression estimators are serious problems in both theory and applica-
tions. Boundary kernels [Gasser and Müller (1979)] and the generalized jackknife
method [Rice (1984)] apply to the Nadaraya–Watson regression estimator and ker-
nel density estimators to correct the boundary biases, and Schuster (1985) sug-
gested a reflection principle for kernel density estimation. The former two meth-
ods can cope with the boundary effects and result in the same order of bias as in
the interior, and the straight line reflection corrects only for jumps at the boundary
points and the bias is of the same order as the bandwidth. Boundary kernels tend
to inflate the variance, and it is necessary to decide the ratio of the two bandwidths
used in Rice’s generalized jackknife method.

Hall created novel and simple alternatives that do not have the above side issues
when coping with boundary effects. Hall and Wehrly (1991) suggested a reflection
method for Nadaraya–Watson regression: pseudodata are produced by reflecting
the observed data asymmetrically with respect to the Nadaraya–Watson estimator
evaluated at the endpoints. The final estimator based on the combined data has the
same order of bias across the entire support, because the pseudodata are created
in a way that they centered around a curve that differs from the true curve by an
amount of the same order. For kernel density estimation, noting that mean of an
order statistic is asymptotically a respective quantile of the true density, Cowling
and Hall (1996) suggested to estimate an extension of the quantile function beyond
the design interval in a way that the estimate is sufficiently smooth. The extended
quantile function, the pseudodata are based on, is a polynomial fit to data close to
the endpoint. This method is very simple to implement, and to adopt it to higher
order kernels we need only to change the order of the fitted polynomial. Cross-
validation can be used when choosing bandwidth for the new estimator and there is
no need to downweight at the ends of the support. Interestingly, there are numerical
evidences that these simple pseudodata methods do not have the variance inflation
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problem the boundary kernel approach suffers from. The intuition is clear: there
are the same number of observations near the two sides of the boundary. Hall and
Park (2002) observed the connection between density support boundary estimation
and density estimation near the boundary, and based a new boundary bias corrected
density estimator on the translation idea in boundary estimation.

6. Nonparametric estimation with shape constraints. Often the function of
interest is known to follow certain shape constraints such as unimodality, mono-
tonicity, convexity, etc. In the earlier days, Hall was interested in estimation of
the mode of a unimodal density function, and he developed rigorous theory for
the convergence of Grenander’s and kernel estimators [Grund and Hall (1995),
Hall (1982b)]. Later, he became interested in the problems of testing unimodality
and monotonicity, and nonparametric estimation under shape constraints. For the
problem of testing unimodality of a density function, Cheng and Hall (1998) and
Cheng and Hall (1999) established asymptotic properties of the excess mass and
Silverman’s bandwidth tests and proposed methods to calibrate the tests, based on
asymptotic distributions of the test statistics or bootstrap. Cheng and Hall (1999)
noted that when the unimodal density has a shoulder, the asymptotic distributions
of the test statistics are very different, and to make unimodality tests adaptive they
need to be calibrated for the most difficult null hypothesis where the density has
one mode and one shoulder. Hall and York (2001) extended this approach to the
problem of testing multimodality using Silverman’s bandwidth test. The conven-
tion in Silverman’s bandwidth test for multimodality uses the Gaussian kernel be-
cause the number of modes is monotonely nonincreasing in this case. Hall, Min-
notte and Zhang (2004) showed theoretical and numerical justifications for the
use of non-Gaussian kernels, including the popular Epanechnikov, biweight and
triweight kernels. The main reason is that the nonmonotonicity has negligible ef-
fects. Compared to testing multimodality, testing monotonicity was a much less
addressed issue although it is an important problem. Hall was one of the first to
study this topic. Hall and Heckman (2000) introduced a test for monotonicity of
a regression function based on running gradients, and calibrated it so that it over-
comes problems caused by flat parts of the curve. Gijbels et al. (2000) developed
another test for monotonicity using signs of differences of observations on the re-
sponse variable. It is robust against heavy-tailed errors.

The main reason nonparametric kernel estimation is popular is its simplicity.
On the other hand, it is difficult to force kernel estimators to satisfy qualitative
constraints such as unimodality and monotonicity. Cheng, Gasser and Hall (1999)
successfully constructed unimodal and monotone kernel density estimators by an
iterative transformation algorithm. In the same year, Hall and Presnell (1999b)
discussed an alternative tilting approach originated from the biased bootstrap tech-
niques suggested by Hall and Presnell (1999a) but no numerical or theoretical
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results were provided. Hall and Huang (2001, 2002) employed quadratic program-
ming in the implementation of the tilting approach in kernel estimation of a mono-
tone regression and a monotone density function, respectively, and provided the-
oretical justifications. Braun and Hall (2001) suggested a general data sharpening
technique to improve the performance of a statistical method, which involves per-
turbing the data, and applied it to the estimation of monotone and unimodal den-
sity functions and other problems including bias reduction. Hall and Kang (2005)
showed that, when the true density is unimodal, the unimodal kernel density esti-
mator obtained by data sharpening generally improves on the usual kernel density
estimator in terms of mean integrated squared error. The numerical comparisons
also suggested that the data sharpening approach is advantageous to the titling
approach as the latter requires to remove spurious wiggles in the tails of the tradi-
tional kernel density estimator.

7. Estimation of residual variances. Residual variance is fundamentally im-
portant in statistical inference and bandwidth selection and provides a benchmark
for forecasting. How can this parameter be estimated in the nonparametric regres-
sion model? In the nonparametric environment, there are always biases in the esti-
mation of the mean function. What is then the impact of the estimation of the mean
function on the residual variance or variance function in general? Hall and Carroll
(1989) pioneered the study on this issue. They provided elegantly the results on
the extent to which the smoothness of the mean regression function impacts on
the best rate of convergence for estimating variance function. In particular, they
showed that as long as the mean function satisfies a Lipschitz condition of order
1/3 or more, the nonparametric variance function can be estimated with the rate of
convergence O(n−2/5). If the residual variance is a parametric function, it can be
estimated with root-n consistency as long as f is Lipchitz of order 1/2 or more.

Realizing bias is important to residual variance estimation, Hall, Kay and Tit-
terington (1990) proposed and computed the optimal difference sequences for es-
timating error variance in homoscedastic nonparametric regression. This corre-
sponds to undersmoothing estimates for nonparametric mean function. It is shown
that the optimal difference sequences do not depend on unknown parameters. This
results in a very easily implementable procedure. The asymptotic efficiency of
such a simple method was also established, which is 2m/(2m + 1) for the mth-
order difference.

To gain more insightful results, Hall and Marron (1990) considered again the
homoscedastic nonparametric regression model with the aim of estimating the ho-
mogeneous variance σ 2. Based on the kernel density regression estimator, Hall
and Marron (1990) defined the estimator σ̂ 2 as the residual sum of squares with
degree of freedom properly corrected so that it will be an unbiased estimator when
the mean regression is zero. It was nicely demonstrated that

E
(
σ̂ 2 − σ 2)2 = n−1{

var
(
ε2) + O

(
n−(4r−1)/(4r+1))},
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where r is the degree of smoothness of the regression function and ε is the noise
random variable. Furthermore, it is shown that such an estimator is asymptotically
optimal to the first- and the second-order.

8. Analysis of wavelet estimators. Hall made seminal contributions to non-
parameteric function estimation. Soon after wavelets techniques were introduced
to statistics for denoising via thresholding [Donoho and Johnstone (1994), Donoho
et al. (1995)], Hall took on a different path on analyzing the properties of wavelets
from a lens of traditional smoothing point of view. Hall and Patil (1995a) unveiled
the MISE of nonlinear wavelets estimator for estimating nonparametric regression
function and its derivatives for both cases where the nonlinear part is negligible.
“This MISE formula is relatively unaffected by assumptions of continuity,” pointed
out correctly by Hall. After this derivation, Hall continued to quest the effect and
performance of wavelet thresholding for smoothing and spatial adaptation in a se-
ries of work.

Hall and Patil (1995b) pointed out that the linear part of wavelet estimator is
very analogous to the kernel smoothing and illustrated the adaptive qualities of the
nonlinear component of a wavelet estimator by describing its performance when
the target function is smooth but has high-frequency oscillations. He set to under-
stand the property of spatial adaptation of nonlinear wavelet estimator via analyz-
ing its local property. In 1993, he derived the pointwise property of the nonlinear
wavelet thresholding estimator to demonstrate the spatial adaptation through ex-
plicit local modeling and also showed that such spatial adaptations can also be
achieved via adaptive local smoothing. The papers were published respectively in
Fan et al. (1996, 1999). Hall, McKay and Turlach (1996) investigated the limits
to which wavelet methods can be pushed for adaptation to discontinuity by allow-
ing the number of discontinuities to increase and their sizes to decrease with the
sample size.

After deeply understanding wavelet estimators, Hall started to address a number
of practical challenges when applying wavelets to statistical smoothing problems.
Hall and Patil (1996) developed theory and methods for nonlinear wavelet estima-
tors of regression means, in the context of general error distributions and general
designs, and addressed the choice of threshold and truncation parameters. Hall and
Turlach (1997b) introduced two interpolation methods for wavelet estimators to be
applicable to nonparametric regression with stochastic design, or nondyadic reg-
ular design. Hall and Nason (1997) addressed the issue of choosing a noninteger
resolution level for wavelet methods.

Recognizing the term-by-term thresholding is not optimal, Hall, Kerkyachar-
ian and Picard (1998) proposed and analyzed the block-thresholding rules using
kernel and wavelet methods and demonstrated the advantages of these rules. Hall,
Kerkyacharian and Picard (1999) showed further that such procedures are indeed
minimax optimal for a broad class of functions.
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9. Multivariate nonparametric regression. It is well known that nonpara-
metric regression suffers from serious variance inflation in the high-dimensional
case, due to data sparseness, and it is common practice to perform dimension re-
duction or assume some model structure. Hall (1989) introduced the projection
pursuit regression model constructed via kernel estimation of the first projective
approximation to the regression function. He showed that the projection direction
estimator can be estimated at the

√
n rate using a two-stage estimation scheme

which employs two different bandwidths in the two stages. A single-index model
is similar to projection pursuit regression but differs from the latter in the sense
that the model is exact. Before, it was not clear whether or not it is necessary to
use two different bandwidths in the estimation. Härdle, Hall and Ichimura (1993)
suggested a simultaneous estimation method for the index parameter and the non-
parametric function, and showed that the same bandwidth can be used to achieve√

n-consistent estimation of the index parameter. The objective function involves
both the index vector and the bandwidth. Härdle, Hall and Ichimura (1993) pointed
out that the

√
n-consistency is attained because the objective function admits an

asymptotic expansion that is decomposed into two terms with one depending only
on the index parameter and the other depending only on the bandwidth. Hall et al.
(1997) analyzed the design sparseness problem with local linear regression when
a high-dimensional design is projected into a lower dimensional space, which is
the case in projection pursuit regression and estimation in single index models.
The theoretical study led to an adaptive local bandwidth method to deal with the
problem.

Miller and Hall (2010) suggested an appealing approach to multivariate non-
parametric regression. Instead of making model structure or sparsity assumptions,
it performs variable selection locally on the usual multivariate local linear regres-
sion. Then, locally, those variables judged to be irrelevant are downweighted by
extending the bandwidths in the corresponding directions. This approach allows
for locally redundant variables and permits relevant variables to have zero gradi-
ent, and it attains a nonparametric oracle property on the entire domain.

10. Applications of nonparametric techniques. Peter Hall was interested
not only on the foundation of nonparametric function estimation, but also on its
various applications. An example of this is his important contributions to the es-
timation of fractal dimensionality with applications to understanding how the sur-
face roughness relates to the amount of water that is available for plant growth
[Constantine and Hall (1994), Davies and Hall (1999)]. In the paper read before
the Royal Statistical Society [Davies and Hall (1999)], Hall demonstrated that the
fractal index of line transects of a random field can vary with orientation is very
limited: for any three orientations, the two lowest fractal indices must be the same.
He then proceeded to provide novel estimate of the fractal index for isotropic case
and the antitropic case and obtained their asymptotic distributions. In a similar
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vein, Hall contributed to understanding of the degree of long range dependence
via estimating the Hurst index [Hall, Koul and Turlach (1997), Hall et al. (2000)].

Conditional distribution functions are very important for constructing predic-
tive intervals. Yet, a simple application of the local linear smoother to the indicator
function will result in a possibly negative and nonmonotonic estimate of the dis-
tribution function. To remedy this problem, in Hall, Wolff and Yao (1999), two
new methods for estimating conditional distributions were proposed. The first one
is based on locally fitting a logistic model, which always takes on values in the
interval [0,1]. The second method is based on an adjusted form of the Nadaraya–
Watson estimator, which results in a distribution function itself and preserves the
traditional bias and variance properties. Hall, Racine and Li (2004) addressed the
problem of variable selection and bandwidth selection for estimating the condi-
tional density. It is demonstrated surprisingly that cross-validation automatically
determines which components are relevant and which are not, through assigning
large smoothing parameters to the latter and removing irrelevant components from
contention and that the cross-validation smoothes the relevant components by as-
signing their smoothing parameters of optimal size.

The problems of estimating the endpoint of a univariate distribution and the
boundary of a bivariate distribution have many applications. In the former prob-
lem, Hall (1982c) suggested to use an increasing number of extreme order statistics
to improve on the existing methods that are based on finite number of extremes.
Fisher et al. (1997) addressed the problem of estimating the support function of
a convex set on the plane by employing local linear smoothing with an extended
version of the von Mises density on the circle as the kernel. A closely related prob-
lem is frontier estimation in productivity analysis. Production frontier models are
important and widely used in econometrics. There are two branches in modeling
productions: one is deterministic frontier models and the other is stochastic fron-
tier ones. The former is simpler and easier to work with in the sense that the latter
requires some parametric assumptions on the inefficiency and the errors which
are confounded with each other. Popular nonparametric approaches to estimation
of deterministic frontier curveness include data envelope analysis. Hall, Park and
Stern (1998) viewed the data as coming from a Poisson process on the plane, and
suggested a local maximum likelihood method to estimate the nonparametric fron-
tier function. The asymptotic analysis by Hall and Van Keilegom (2009) led to a
new approach to frontier estimation with multiple covariates by treating the errors
as being positioned at the frontier and by modeling their conditional distributions
given the covariates from an extreme value viewpoint.

In applications, the data we analyze often have periodic patterns such as sea-
sonal effects and observations on variable stars. Hall, Reimann and Rice (2000)
suggested a nonparametric method to estimate a periodic regression function with
unknown period. The period length is estimated by minimizing an least squares
objective function obtained by kernel regression given the period parameter. Some-
times, the period length is not a fixed constant. Genton and Hall (2007) suggested
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to approximate it by a linear model or an exponential model and approximate the
amplitude function by local polynomials. Then the changing period length and
amplitude functions are estimated simultaneously by a kernel method.
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