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A LIKELIHOOD RATIO FRAMEWORK FOR HIGH-DIMENSIONAL
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We propose a new inferential framework for high-dimensional semipara-
metric generalized linear models. This framework addresses a variety of chal-
lenging problems in high-dimensional data analysis, including incomplete
data, selection bias and heterogeneity. Our work has three main contribu-
tions: (i) We develop a regularized statistical chromatography approach to
infer the parameter of interest under the proposed semiparametric general-
ized linear model without the need of estimating the unknown base measure
function. (ii) We propose a new likelihood ratio based framework to construct
post-regularization confidence regions and tests for the low dimensional com-
ponents of high-dimensional parameters. Unlike existing post-regularization
inferential methods, our approach is based on a novel directional likelihood.
(iii) We develop new concentration inequalities and normal approximation
results for U-statistics with unbounded kernels, which are of independent in-
terest. We further extend the theoretical results to the problems of missing
data and multiple datasets inference. Extensive simulation studies and real
data analysis are provided to illustrate the proposed approach.

1. Introduction. Modern data are characterized by their high dimensional-
ity, complexity and heterogeneity. More specifically, the datasets usually contain
(1) a large number of explanatory variables, (2) complex sampling and missing
value schemes due to design or incapability of contacting study subjects and
(3) heterogeneity due to the combination of different data sources. To handle
these challenges, regularization based methods are proposed. For instance, the
L1-regularized maximum likelihood estimation for linear models is proposed by
[36] and the nonconvex penalized maximum likelihood estimation is considered
by [11]. During the past decades, these methods enjoy great success in handling
high- dimensional data. However, the existing framework is not flexible enough
to handle more challenging settings with incomplete data, complex sampling, and
multiple heterogeneous datasets. To motivate our study, consider the following two
examples.

EXAMPLE 1 (Missing data and selection bias). Given a univariate random
variable Y and a d dimensional random vector X, assume that Y given X follows
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from a generalized linear model with the canonical link,

(1.1) p(y | x) = exp
{
xT β · y − b

(
xT β, f

) + logf (y)
}
,

where β is a d-dimensional unknown parameter, f (·) is a known base measure
function and b(·, ·) is a normalizing function. Let (Y1,X1), . . . , (Yn,Xn) denote
n independent copies of (Y,X). In high-dimensional data analysis, the samples
(Y1,X1), . . . , (Yn,Xn) may contain missing values or they are observed after some
unknown selection process. To account for the effect of missingness or selection
bias, we introduce an indicator variable δi , whose value is 1 if (Yi,Xi ) is com-
pletely observed or selected, and 0 otherwise. Due to the selection effect, the
standard penalized maximum likelihood estimator under model (1.1) with only
selected data (i.e., δi = 1) is often inconsistent for β . To account for the missing
data and selection bias, we need to develop a new framework to infer the high-
dimensional parameter β .

EXAMPLE 2 (Multiple datasets inference with heterogeneity). Modern data-
sets are often collected by aggregating multiple data sources. Analysis of such
types of data has been studied in the fields of multitask learning in machine learn-
ing [1, 22] and seemingly unrelated regression in econometrics [33]. In the multi-
task learning setting, each dataset corresponds to a learning task. More specifically,
assume that the data in the t th task, t = 1, . . . , T are i.i.d. copies of (Y(t),X(t)),
which follows from (1.1), that is,

(1.2) p(y(t) | x(t)) = exp
{
xT

(t)β t · y(t) − b
(
xT

(t)β t , ft

) + logft (y(t))
}
,

where β t is a task-specific regression parameter. Most of the existing literature
only focuses on the analysis of homogeneous datasets that means ft (·) = f (·) for
any t = 1, . . . , T . However, the aggregated data are often highly heterogeneous.
For instance, the learning tasks obtained from different areas may contain clas-
sification for binary responses as well as regression for continuous and count re-
sponses, which implies different forms of ft (·) in (1.2). Thus, to take into account
data heterogeneity, we need a new inferential procedure for β t that does not de-
pend on the knowledge of ft (·).

To handle the above challenges, we propose a new semiparametric model, which
takes the form (1.1) but with both β and f (·) as unknown parameters. It naturally
handles data with missing values, complex sampling and heterogeneity. This paper
contains three major contributions.

Our first contribution is to provide a new regularized statistical chromatography
procedure to directly estimate the finite dimensional regression parameter β and
leave the nonparametric component f (·) as a nuisance. In particular, we model the
data at a more refined granularity of rank and order statistics, so that sophisticated
conditioning arguments and the structure of exponential family distributions can
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be exploited to separate the parameter of interest and nuisance component (thus
the whole procedure is named “statistical chromatography”). Once the parameter
of interest and nuisance parameter are separated, we eliminate the nuisance com-
ponent to construct a pseudo-likelihood of rank statistics and exploit lower order
approximation to speed up computation.

Our second contribution is to develop a new likelihood ratio inferential frame-
work for low-dimensional parameters under the high-dimensional model. In par-
ticular, we propose a directional likelihood ratio statistic for hypothesis testing and
a maximum directional likelihood estimator for confidence regions in the high-
dimensional setting. Compared to the existing post-regularization inferential meth-
ods, our procedure has two important features: (1) We allow general regularized
estimators including nonconvex regularized estimators and pseudo-likelihood; and
(2) We do not need any signal strength assumption for model selection consis-
tency. Our third contribution is to develop new technical tools for studying high-
dimensional inference related to U-statistics. First, we prove a concentration in-
equality in Lemma A.3 for U-statistics with unbounded kernels with subexponen-
tial decay. A more general maximal inequality is shown in Lemma F.2 of Sup-
plementary Material [29], which plays the key role to derive improved rates of
convergence for multiple datasets inference problems. Second, to apply the central
limit theorem for U-statistics, we provide the theoretical justification of the Hájek
projection in increasing dimensions for normal approximation. More details are
provided in Lemma A.5. These U-statistic results are of independent interest.

Comparison with related works: The proposed model is closely related to the
proportional likelihood ratio model [7, 23]. However, unlike their model we do not
require the density assumption for the nonparametric function. The proposed esti-
mation procedure is related to the permutation based test [16] and the second-order
approximation reduces to the pairwise likelihood considered by [7, 18]. To the best
of our knowledge, the proposed estimation method dates back to the original work
by [18], in which a pairwise likelihood method is used to eliminate the nonpara-
metric function. We follow their idea and generalize it to the missing data and
multitask learning problems. Our investigation mainly focuses on the theoretical
properties in high-dimensional regimes, which have not been studied before.

In the literature, a marginal rank likelihood method is proposed to eliminate the
nuisance functions in the linear transformation model [30] and the copula model
[14]. However, unlike the marginal rank likelihood, our likelihood function can be
viewed as a conditional rank likelihood constructed by the conditional rank prob-
ability given the order statistics. To handle high-dimensional data with missing
values, [34] proposed an expectation-maximization algorithm. When the explana-
tory variables are missing completely at random (MCAR), Loh and Wainwright
[20] developed the theory of a nonconvex optimization approach. Compared with
these works, we consider a much broader class of missing data mechanisms.

In the linear models, the estimation, prediction error bounds and variable se-
lection consistency for the L1-regularized estimator have been well studied by
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[5, 6, 24, 27, 42]. More recently, the estimation bounds and oracle properties for
the nonconvex regularized estimator are established by [12, 21, 38], among others.
In addition to these estimation results, significant progress has been made toward
understanding the high-dimensional inference (e.g., constructing confidence inter-
vals or testing hypotheses) under the generalized linear models. Examples include
[2–4, 15, 37, 41]. All these procedures lead to asymptotically normally distributed
estimators that can be used to construct Wald-type statistics. Other related inferen-
tial procedures include the data-splitting method [26, 39], stability selection [25,
32], L2 confidence set [28] and conditional inference [19, 35]. Under a stronger
oracle property, the asymptotic normality of nonconvex estimators is established
by [11].

This paper proposes a new directional likelihood based method for constructing
confidence regions and testing hypotheses in high dimensions. Compared to the
existing work on high-dimensional inference under the generalized linear model,
our method and theory are different in the following three aspects. First, our pro-
posed semiparametric model is much more sophisticated than the generalized lin-
ear model. In particular, the U-statistic structure due to the statistical chromatog-
raphy leads to additional technical challenge (see the third contribution above)
and requires more refined analysis to control the variability of the estimated nui-
sance parameters in the proposed directional likelihood function. Second, from
the hypothesis testing perspective, our main inferential tool is a new directional
likelihood ratio test, whereas the existing methods mainly focus on the Wald or
score- type tests. Third, we can conduct the inference based on local solutions of
a nonconvex regularized problem, while the method in [37] based on inverting the
Karush–Kuhn–Tucker condition may not be directly applicable.

The rest of this paper is organized as follows. In Section 2, we formally define
the proposed semiparametric model. In Section 3, we introduce the main ideas of
regularized statistical chromatography, along with the directional likelihood based
inference for hypothesis tests and confidence regions. In Section 4, we analyze the
theoretical properties of the obtained confidence regions and establish the asymp-
totic distributions of the directional likelihood ratio test statistics. Section 5 con-
tains both simulation and real data analysis results. The last section includes re-
marks and discussions. The proofs of main results are shown in the Appendix.

Notation: For positive sequences an and bn, we write an � bn, if an/bn = O(1).
We denote an � bn if an � bn and bn � an. Denote Xn �X for some random vari-
able X if Xn converges weakly to X. For v = (v1, . . . , vd)T ∈ R

d , and 1 ≤ q ≤ ∞,
we define ‖v‖q = (

∑d
i=1 |vi |q)1/q , ‖v‖0 = | supp(v)|, where supp(v) = {j : vj �=

0} and |A| is the cardinality of a set A. Denote ‖v‖∞ = max1≤i≤d |vi | and
v⊗2 = vvT . For a matrix M, let ‖M‖2, ‖M‖∞, ‖M‖1 and ‖M‖L1 be the spec-
tral, elementwise supreme, elementwise L1 and matrix L1 norms of M. For two
matrices M1 and M2, we write M1 ≤ M2 if M2 − M1 is positive semidefinite. For
S ⊆ {1, . . . , d}, let vS = {vj : j ∈ S} and Sc be the complement of S. The gradient
and subgradient of a function f (x) are denoted by ∇f (x) and ∂f (x), respectively.
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For a univariate function f (x), its derivative can also be represented by f ′(x). Let
∇Sf (x) denote the gradient of f (x) with respect to xS . Let Id be the d by d iden-
tity matrix. Let k� denote the largest integer less than k. Throughout the paper, we
use bold letters to denote vectors and matrices and unbold letters to denote scalars.
We use the following definition of subexponential random variables.

DEFINITION 1.1. A random variable Y is subexponential if there exist con-
stants C,C′ > 0, such that P(|Y | ≥ δ) ≤ C ′ exp(−Cδ), for any δ > 0.

2. The semiparametric generalized linear model. We first define a semi-
parametric natural exponential family model, which further leads to the definition
of the semiparametric generalized linear model.

DEFINITION 2.1 (Semiparametric natural exponential family). A random
variable Y ∈ Y ⊆ R satisfies the semiparametric natural exponential family (spEF)
with parameters (θ, f ), if its density satisfies

(2.1) p(y; θ, f ) = exp
{
θ · y − b(θ, f ) + logf (y)

}
,

where f (·) is an unknown base measure, θ is an unknown canonical parameter,
and b(θ, f ) = log

∫
Y exp(θ · y)f (y) dy < ∞ is the log-partition function.

The spEF extends the classical natural exponential family by treating the base
measure f (y) as an infinite dimensional parameter. By choosing a suitable base
measure, the spEF recovers the whole class of natural exponential family distri-
butions. However, the spEF suffers from the identifiability issue. For instance,
spEF(θ, f ) is identical to spEF(θ, c · f ), where c is any positive constant. To ad-
dress this problem, we need to impose some identifiability conditions, such as
f (y0) = 1, for some y0 ∈ Y , or

∫
Y f (y) · dy = 1 if f (y) is integrable. Later, we

can see that these identifiability conditions will not affect our inference procedures.
We now define the semiparametric generalized linear model.

DEFINITION 2.2 (Semiparametric generalized linear model). Given a vector
of d-dimensional covariates X = (X1, . . . ,Xd)T and response Y ∈ R, assume Y

given X follows the semiparametric natural exponential family

(2.2) p(y | x) = exp
{
θ(x) · y − b

(
θ(x), f

) + logf (y)
}

and θ(x) = βT x,

where b(·, ·) is the log-partition function and β is a d-dimensional parameter. We
say that Y given X follows the semiparametric generalized linear model (GLM)
with parameters (β, f ).

Note that we directly set θ(x) = βT x in (2.2), because we implicitly adopt the
canonical link, that is, we choose a link function g such that g−1(·) = b′(·, f ).
Compared with the classical generalized linear models (GLMs), the proposed
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model contains unknown parameters β and f (·), where β characterizes the co-
variate effect, and f (·) determines the distribution in the natural exponential fam-
ily. For instance, the linear regression with standard Gaussian noise has f (y) =
exp(−y2/2); the logistic regression has f (y) = 1; and the Poisson regression has
f (y) = 1/y!. Thus, these GLMs are parametric submodels of the semiparametric
generalized linear model.

REMARK 1. Some exponential family distributions, such as the normal dis-
tribution, involve dispersion parameters. In this case, the semiparametric natural
exponential family can be written as

p(y; θ , τ, f ) = exp
{[

θ · y − b(θ, f )
]
/a(τ ) + logf (y; τ)

}
,

where f (·; ·) is an unknown positive function, θ is the natural parameter, a(τ) is
a known function of the dispersion parameter τ and b(θ, f ) is the log-partition
function. Then, with θ(x) = βT x, the semiparametric generalized linear model
reduces to

p(y | x;β, τ, f ) = exp
{
β̄

T
x · y − b̄

(
β̄

T
x, τ, f

) + logf (y; τ)
}
,

where β̄ = β/a(τ ) and b̄(β̄
T
x, τ, f ) = b(a(τ )β̄

T
x, f )/a(τ ). Hence, with the new

reparametrization β̄ , the proposed model is identical to (2.2), except that we allow
b̄(·) and f (·; ·) to depend on the dispersion parameter τ . Later, we will see that
this dependence does not lead to any extra level of difficulty in terms of inference
on β̄ .

The semiparametric generalized linear model has broad applicability to address
the challenging problems involving complex and heterogeneous data. In the fol-
lowing, we illustrate how the semiparametric model can be used to handle the
missing data and selection bias problems in Example 1 and heterogeneous multi-
task learning problem in Example 2.

Revisit of Example 1: Missing data and selection bias. Recall that Yi given Xi

follows the GLM in (1.1) and we are interested in making inference on β . To
account for the missing data and selection effect, we assume that the selection
indicator δi given Yi and Xi satisfies the following decomposable selection model.

DEFINITION 2.3 (Decomposable selection model). The missing data or se-
lection model is decomposable, if there exist two nonnegative functions g1(·) and
g2(·) such that P(δi = 1 | Yi,Xi ) = g1(Yi) · g2(Xi ), where

∫
g1(y) · dy = 1 and∫

g2(x) · dx = 1.

Under the assumption of MCAR, the missing data model satisfies P(δi =
1|Yi,Xi ) = P(δi = 1), which implies that MCAR is decomposable. Indeed, the
decomposable model is much more general. Consider the following partition of
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covariates Xi = (Xio,Xim), and assume that (Yi,Xim) are subject to missingness.
It is seen that the missing at random (MAR), defined by P(δi = 1|Yi,Xi ) = P(δi =
1|Xio), is also decomposable. So is the outcome dependent sampling model [17].
In addition, the decomposable model can be missing not at random (MNAR). For
instance, if Yi is subject to missingness and the missing mechanism only depends
on the potentially unobserved value of Yi , then the missing data pattern is not at
random but is still decomposable. Thus, the decomposable selection model is a
very flexible nonparametric model for missing data and selection bias. In general,
the functions g1(·) and g2(·) may not be identifiable. Later, we will see that this
nonidentifiability issue can be handled by using the proposed method.

To specify the likelihood based on the selected data, we derive the probability
density function of Yi given Xi and δi = 1. Using the Bayes formula,

p(yi | xi , δi = 1) = P(δi = 1 | yi,xi ) · p(yi | xi )/Ti(xi ),

where Ti(xi ) = ∫
P(δi = 1 | yi,xi )p(yi | xi ) dyi and (yi,xi ) is the observed value

of (Yi,Xi). Under the generalized linear model in (1.1) and the decomposable
selection model, we obtain

(2.3) p(yi | xi , δi = 1) = exp
{
xT

i β · yi − b
(
xT

i β, f m) + logf m(yi)
}
,

where f m(y) = g1(y)f (y). Hence, if Yi given Xi follows the GLM (1.1) or more
generally the semiparametric version (2.2) and the selection model is decompos-
able, then Yi given Xi and δi = 1 satisfies (2.2) with the same unknown parameter
β and the unknown based measure f m(y) = g1(y)f (y). We call this the invari-
ance property of semiparametric GLMs under the decomposable selection model.
Hence, the inference on β with missing data and selection bias is equivalent to the
inference problem under the semiparametric GLM (2.2).

Revisit of Example 2: Multiple datasets inference with heterogeneity. In Exam-
ple 2 of Section 1, to take into account of data heterogeneity, we can assume that
the based measure function ft (·) is a task-specific unknown function. Thus, the
multiple datasets inference with heterogeneity can be handled by the semipara-
metric GLM framework, and an inferential method that is invariant to f (·) under
the model (2.2) is needed.

3. Semiparametric inference. In this section, we consider how to construct
confidence intervals and perform hypothesis tests for a single component of β un-
der the semiparametric GLM. The extension to the confidence regions and tests for
multidimensional components of β is standard and is deferred to the Supplemen-
tary Material [29].

3.1. Regularized statistical chromatography. Due to the presence of the un-
known function f (·), the likelihood of the semiparametric GLM is complicated,
making likelihood based inference of β intractable. To handle this problem, we
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propose a new procedure called statistical chromatography to extract information
on β .

For i = 1, . . . , n, suppose that the data (Yi,Xi ) are i.i.d. By the discriminative
modeling approach, the probability distribution of the data is p(y,x;β, f ) = p(y |
x;β, f ) · p(x), where y = (y1, . . . , yn) and x = (x1, . . . ,xn) are the observed val-
ues of Y = (Y1, . . . , Yn) and X = (X1, . . . ,Xn). Since the marginal distribution
of X does not involve β or f , we only focus on the first conditional distribu-
tion p(y | x;β, f ). However, its dependence on β and f is still intertwined and
the inference on β is hindered by the nuisance parameter f . To tackle this prob-
lem, we need to further separate the parameters β and f in the conditional like-
lihood. To this end, we decompose Y = (Y1, . . . , Yn) into R = (R1, . . . ,Rn) and
Y (·) = (Y(1), . . . , Y(n)), which denote the rank and order statistics of Y , respec-
tively. Let r and y(·) denote the observed values of R and Y (·), respectively. Thus,
we have

(3.1) p(y | x;β, f ) = P(R = r | x,y(·);β) · p(y(·) | x;β, f ),

where by the definition of conditional probabilities we can show that

(3.2)

P(R = r | x,y(·);β) =
∏n

i=1 p(yi | xi;β, f )∑
π∈�

∏n
i=1 p(yπ(i) | xi;β, f )

= exp(
∑n

i=1 βT xi · yi)∑
π∈� exp(

∑n
i=1 βT xi · yπ(i))

,

where � is the set of all one-to-one maps from {1, . . . , n} to {1, . . . , n}. The intu-
ition behind the data decomposition is that the rank statistic given the order statis-
tic has no information on f . Mathematically, the product

∏n
i=1 f (yi) appearing in

both numerator and denominator of (3.2) only depends on Y (·) and is eliminated.
Since we separate parameters β and f at a more refined granularity of rank and
order statistics, we call this procedure as statistical chromatography.

Given the chromatography decomposition in (3.1), one may opt to only keep
the conditional probability (3.2) for estimation and inference of β . However, the
probability in (3.2) is computationally intensive due to the combinatorial nature of
permutations. To this end, we consider a surrogate of P(R = r | x,y(·);β) using the
kth order information. For notational simplicity, we only present k = 2, and leave
the discussion for k > 2 to the Supplementary Material [29]. For any i and j , let
RL

ij denote the local rank statistic of Yi and Yj among the pair (Yi, Yj ) [i.e., RL
ij =

(1,2) or (2,1)]. Instead of considering the full conditional probability in (3.2),
we study the product of all possible combinations of the local rank conditional
probability,

(3.3)

∏
i<j

P
(
RL

ij = rL
ij | xi ,xj ,y

L
(i,j);β

)

= ∏
i<j

exp(βT xiyi + βT xj yj )

exp(βT xiyi + βT xj yj ) + exp(βT xiyj + βT xj yi)
,
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where YL
(i,j) = (min(Yi, Yj ),max(Yi, Yj )), and yL

(i,j) and rL
ij are the observed val-

ues of YL
(i,j) and RL

ij , respectively. Applying the logarithmic transformation to
(3.3), we obtain the function

(3.4) �(β) = −
(
n

2

)−1 ∑
1≤i<j≤n

log
(
1 + Rij (β)

)
,

where Rij (β) = exp{−(yi − yj ) · βT (xi − xj )}. It is also known as the pairwise
log-likelihood, which has been considered by [7, 8, 18]. In high dimensions, we
may add a regularization term to �(β), which leads to the regularized chromatog-
raphy approach.

3.2. Confidence interval and hypothesis test: A likelihood ratio approach.
Given the composite log-likelihood (3.4), we consider the problem of testing a
pre-specified component of β . Without loss of generality, assume that β can be
partitioned as β = (α,γ T )T , where α ∈ R and γ ∈ R

d−1. Now, we consider the
null hypothesis H0 : α = α0, and treat γ as a (d − 1)-dimensional nuisance param-
eter. Let β∗ be the true value of β . It is well known that the classical likelihood
ratio test is not directly applicable to testing the null hypothesis H0, when the
nuisance parameter γ is high dimensional. In what follows, we propose a new di-
rectional likelihood function and the corresponding likelihood ratio test for H0,
which provides valid inferential results in high-dimensional settings.

Specifically, we define the directional likelihood function for α as

(3.5) �̂(α) = �
(
α, γ̂ + (α̂ − α)ŵ

)
,

where β̂ := (α̂, γ̂ ) is an initial estimator for β∗, and ŵ is an estimator for

(3.6) w∗T := Hαγ (Hγ γ )−1 ∈ R
d−1 where H = −E

{∇2�
(
β∗)}

.

Here, the estimators β̂ and ŵ will be introduced later and Hαγ and Hγ γ are the
corresponding partitions of H. Later, we can show that the directional likelihood
function �̂(α) can be treated as a standard likelihood function for a single unknown
parameter α. For instance, we define the maximum directional likelihood estimator
as

(3.7) α̂P = argmax
α∈R

�̂(α).

To test the null hypothesis H0 : α∗ = α0, we define the maximum directional like-
lihood ratio test (DLRT) statistic as

(3.8) 
n = 2n
{
�̂
(
α̂P ) − �̂(α0)

}
.

In the following, we explain the intuition behind the directional likelihood (3.5)
based on the geometry of submodels in the semiparametric literature and the or-
thogonality property for nuisance parameters. We note that a similar orthogonality
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property has been used by [3, 4] for the post-selection inference. We leave the
detailed comparison and discussion to Remark 2.

Given the likelihood function �(β), we consider a parametrization for a surface
S ⊂ R

d+1, in which the coordinates of points can be expressed as (β, �(β)) ∈
R

d+1. Consider two smooth functions α(·) ∈ R and γ (·) ∈ R
d−1, satisfying

α(0) = α∗, α′(0) �= 0 and γ (0) = γ ∗. Define a smooth curve δ : I →R
d+1, which

maps t ∈ I to (α(t),γ (t), �c(t)), where I is an interval in R containing a small
neighborhood of 0 and �c(t) = �(α(t),γ (t)). Note that the curve δ is within the
surface S and passes through the true values (α∗,γ ∗, �(β∗)) when t = 0. Since the
curve δ is determined by the form of (α(t),γ (t)), we need to decide how to choose
(α(t),γ (t)) such that the likelihood �c(t) along the curve has desired properties.
Taking the derivative with respect to t , the score function of �c(t) at t = 0 is given
by

Sc

(
α∗,γ ∗) := d�c(t)

dt

∣∣∣∣
t=0

= α′(0) · ∇α�
(
α∗,γ ∗) + [

γ ′(0)
]T · ∇γ �

(
α∗,γ ∗)

.

To construct a valid test statistic, the key insight is to ensure that Sc(α,γ ) is robust
to the perturbation of the high-dimensional nuisance parameter γ . Mathematically,
we require the following orthogonality property, that is, E[∇γ Sc(α

∗,γ ∗)] = 0;
see Remark 2 for further discussion. This implies α′(0)Hαγ + [γ ′(0)]T Hγ γ = 0,
which is equivalent to γ ′(0)/α′(0) = −w∗ by (3.6). Thus, for t in a small neigh-
borhood of 0, the Taylor theorem implies

α(t) = α∗ + α′(0)t + o(t) and γj (t) = γ ∗
j − α′(0)w∗

j t + o(t),

where 1 ≤ j ≤ d − 1. Ignoring the higher order terms, this gives �c(t) = �(α∗ +
α′(0)t,γ ∗ −α′(0)w∗t). Finally, a reparametrization of �c(t) with α := α∗ +α′(0)t

yields a function �̄c(α) of α, defined as

�̄c(α) := �c

(
α − α∗

α′(0)

)
= �

(
α,γ ∗ + (

α∗ − α
)
w∗)

.

Replacing α∗, γ ∗ and w∗ by the corresponding estimators α̂, γ̂ and ŵ, the function
�̄c(α) becomes the directional likelihood in (3.5). This gives the geometric intu-
ition on how the directional likelihood is derived. When �(β) is the log-likelihood
function, the curve (α(t),γ (t)) corresponds to the least favorable curve up to a
reparametrization [31].

Next, we consider how to obtain estimators α̂, γ̂ and ŵ in the directional like-
lihood (3.5). To estimate β∗, our proposed framework allows a wide class of esti-
mators β̂ = (α̂, γ̂ ) including the regularized estimators with nonconvex (or folded
concave) penalty functions; see Remark 3. To estimate the (d − 1)-dimensional
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vector w∗, we use the following Lasso-type estimator:

(3.9) ŵ = arg max
w

{
1

2
wT ∇2

γ γ �(β̂)w − wT ∇2
γα�(β̂) − λ1‖w‖1

}
,

where λ1 ≥ 0 is a tuning parameter.
To analyze the semiparametric GLM, one technical challenge is that ∇�(β) is a

high-dimensional U-statistic with a possibly unbounded kernel function, that is,

∇�(β) = 2

n(n − 1)
· ∑

1≤i<j≤n

Rij (β) · (yi − yj ) · (xi − xj )

1 + Rij (β)
.

To decouple the correlation between summands in ∇�(β), we resort to the Hájek
projection [13] and define

(3.10) Ûn = 2

n

n∑
i=1

g
(
yi,xi ,β

∗)
where g(yi,xi ,β) = n

2
·E{∇�(β) | yi,xi

}
.

By definition, 2n−1g(yi,xi ,β
∗) is the projection of ∇�(β∗) onto the σ -field gen-

erated by (yi,xi ), and we sum over all samples to construct Ûn. We therefore
approximate the U-statistic ∇�(β∗) by the sum of independent random variables
Ûn. Let � = E{(g∗

i )
⊗2} denote the variance of g∗

i , where g∗
i = g(yi,xi ,β

∗). In
Theorem 4.1, we prove

n1/2 · (
α̂P − α∗)

� N
(
0,4 · σ 2 · H−2

α|γ
)
,

where σ 2 = �αα − 2w∗T �γα + w∗T �γγ w∗, Hα|γ = Hαα − Hαγ H−1
γ γ Hγα and

�αα , �γα and �γγ are corresponding partitions of �. To construct confidence
intervals and Wald-type hypothesis test, one needs to estimate the asymptotic vari-
ance, which depends on the unknown covariance and Hessian matrices � and H.
By exploiting the U-statistic structure of ∇�(β), we can estimate � by

(3.11) �̂ = 1

n
·

n∑
i=1

{
1

n − 1

n∑
j=1,j �=i

Rij (β̂) · (yi − yj ) · (xi − xj )

1 + Rij (β̂)

}⊗2

.

Thus, we define σ̂ 2 = �̂αα − 2ŵT �̂γα + ŵT �̂γ γ ŵ. Moreover, we can estimate
Hα|γ by Ĥα|γ = −∇2

αα�(β̂) + ŵT ∇2
γα�(β̂). Therefore, a two-sided confidence in-

terval for α∗ with (1 − ξ) coverage probability is given by [α̂P − ζn−1/2, α̂P +
ζn−1/2], where ζ = 2σ̂ Ĥ−1

α|γ �−1(1 − ξ/2).
In addition, to test the null hypothesis H0 : α∗ = α0, Theorem 4.2 shows

that the maximum directional likelihood ratio test statistic 
n in (3.8) satisfies
(4σ 2)−1Hα|γ 
n � χ2

1 . Hence our test with the significance level ξ is

(3.12) ψDLRT(ξ) = 1
{(

4 · σ̂ 2)−1 · Ĥα|γ · 
n ≥ χ2
1ξ

}
,

where χ2
1ξ is the (1 − ξ)th quantile of a χ2

1 random variable. The null hypothe-
sis is rejected if and only if ψDLRT(ξ) = 1, and the associated p-value is given by
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PDLRT = 1 − χ2
1 ((4σ̂ 2)−1Ĥα|γ 
n), where χ2

1 (·) is the c.d.f. of a chi-squared dis-
tribution with degree of freedom 1. In Corollary 4.2, we prove that the proposed
test can control the type I error asymptotically, that is, limn→∞ P(ψDLRT(ξ) = 1 |
H0) = ξ and the p-value is asymptotically uniformly distributed, that is, PDLRT �
Uniform[0,1], under H0.

REMARK 2 (Orthogonality condition). Recall that the orthogonality condi-
tion plays an important role in deciding the direction of the curve δ at t = 0 in our
geometric interpretation. Under the GLM and the median regression, [4] and [3]
developed an alternative method based on a similar orthogonality property, called
immunization, to perform post-selection inference. For instance, in the context of
the logistic regression model, the key idea of [4] is to construct an instrument
zi = z(xi ) ∈ R such that the orthogonality condition ∇γE[{yi − G(βT xi )}zi] = 0
holds, where G(·) = exp(·)/(1 + exp(·)). Their test statistic for H0 : α∗ = α0 is

given by Tn = n−1 ∑n
i=1{yi − G(β̂

T

0 xi )}̂zi , where β̂0 = (α0, γ̂ ) for some regu-
larized estimator γ̂ and ẑi is an estimate of zi . They proved that under regularity
conditions n1/2Tn is asymptotically normal with mean 0 and the variance can be
consistently estimated. Our likelihood ratio method is different in the following
two aspects. First, while our procedure also relies on a similar orthogonality con-
dition, we do not explicit construct the instrumental variable zi in our testing pro-
cedure. Second, our test statistic is different. Namely, their test statistic Tn is based
on the sample version of the moment condition E[{yi −G(βT xi )}zi] = 0, whereas
our test statistic 
n in (3.8) is based on the ratio of the directional likelihood.

4. Main results. We first prove the asymptotic normality of the maximum di-
rectional likelihood estimator α̂P in (3.7). We then derive the limiting distribution
of 
n as well as the validity of the maximum directional likelihood ratio test in
(3.12) under the null hypothesis H0 : α∗ = α0.

In the following, we present some regularity conditions. Recall that we define
g(yi,xi ,β

∗) and H in (3.10) and (3.6), respectively. Denote

� = E
{
g
(
yi,xi ,β

∗)⊗2}
, Hα|γ = Hαα − Hαγ H−1

γ γ Hγα.

ASSUMPTION 4.1. Assume that Y is subexponential which satisfies Defini-
tion 1.1, and ‖X‖∞ ≤ m for a positive constant m. Assume that c ≤ λmin(�) ≤
λmax(�) ≤ c′, and c ≤ λmin(H) ≤ λmax(H) ≤ c′, for some constants c, c′ > 0.

It is easily seen that the subexponential condition holds for most commonly used
GLMs in practice. Following [37], we assume the bounded covariates for simplic-
ity. It can be easily relaxed to the sub-Gaussian or subexponential assumptions.
Note that � can be interpreted as the second moment of the Hájek projection,
which approximates the asymptotic variance of ∇�(β∗), and Hα|γ is known as the
partial information matrix for α in the literature. This condition assumes that the
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eigenvalues of � and H are lower and upper bounded by positive constants. They
are standard regularity conditions even for low dimensional models.

The following main theorem establishes the asymptotic normality of the maxi-
mum directional likelihood estimator α̂P . Let s = ‖β∗‖0 and s1 = ‖w∗‖0, where
w∗ is defined in (3.6).

THEOREM 4.1. Under the semiparametric GLM in Definition 2.2 and
Assumption 4.1, assume that β̂ satisfies ‖�̂‖2 = OP(

√
s logd/n), ‖�̂‖1 =

OP(s
√

logd/n), and |�̂T ∇2�(β∗)�̂| = OP(s logd/n), where �̂ = β̂ − β∗. Given
any small constant δ > 0, it holds

(4.1) lim
n→∞

max{s, s1}2 · logd

n1/2−δ
= 0.

Then with λ1 � logn · √logd/n, we have

n1/2(
α̂P − α∗)

�N
(
0,4σ 2H−2

α|γ
)

where σ 2 = �αα − 2w∗T �γα + w∗T �γγ w∗.

PROOF. A detailed proof is provided in Appendix A. �

Our condition (4.1) essentially requires that w∗ and β∗ are sufficiently sparse
such that the estimation errors of w∗ and β∗ and the approximation error in the Há-
jek projection are controllable. Similarly, under the GLM, [37] assumed that the
inverse of the Fisher information matrix � = H−1 is sparse. Let �∗α and �∗γ de-
note the columns of � corresponding to α and γ . To see the connections, consider
the following block matrix inverse formula, �∗α = H−1

α|γ (1,−Hαγ H−1
γ γ )T , where

Hα|γ = Hαα −Hαγ H−1
γ γ Hγα . Since w∗ = H−1

γ γ Hγα , we have ‖w∗‖0 = ‖�∗α‖0 −1.
Hence, our sparsity assumption on w∗ is implied by the sparsity of �. Moreover,
our results reveal that the sparsity of �∗γ is not needed for the inference on α.

Under the GLM, [37] and [4] imposed the condition that max{s, s1}2 · logk d =
o(n) for some constant k > 0, which is weaker than our condition (4.1). This is
mostly due to the technical differences between the composite likelihood derived
by the chromatography approach (which has a U-statistic structure) and the likeli-
hood of the generalized linear model.

We also note that, the rate of λ1 agrees with the conventional
√

logd/n rate
for tuning parameters up to a logn factor, due to the subexponential tail of the
response variable Y . In particular, if Y is bounded (e.g., 0–1 binary response), the
logn factor can be eliminated so that we have λ1 � √

logd/n.
It is seen that our assumptions do not contain any type of minimal signal

strength condition on the nonzero components of β∗. Therefore, unlike the oracle-
type results in [11], variable selection consistency is not a priori for our approach
and a valid p-value can be produced even if a covariate is not selected in the model.
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REMARK 3 (Estimation consistency). Note that Theorem 4.1 requires that
the initial estimator β̂ satisfies ‖β̂ − β∗‖2 = OP(

√
s logd/n), ‖β̂ − β∗‖1 =

OP(s
√

logd/n) and |(β̂ − β∗)T ∇2�(β∗)(β̂ − β∗)| = OP(s logd/n). In high-
dimensional settings, we can estimate β by maximizing the following penalized
composite likelihood function with a generic penalty function pλ(·):

(4.2) β̂ ∈ argmax
β∈Rd

{
�(β) −

d∑
j=1

pλ(βj )

}
,

where λ ≥ 0 is a tuning parameter. In GLMs, [12, 21, 38] showed such conditions
hold. We prove that the same conclusion holds for β̂ under the semiparametric
GLM. To save space, we leave the detailed analysis of the finite sample estima-
tion error bound of β̂ with both Lasso penalty and the nonconvex penalty to the
Supplementary Material [29]. Here, we emphasize that our inferential framework
allows general regularized estimators such as nonconvex penalty functions. Thus,
it is more flexible than [37] based on inverting the Karush–Kuhn–Tucker condition
for the Lasso estimator.

To apply Theorem 4.1 to construct confidence intervals, one needs to estimate
the asymptotic variance σ 2H−2

α|γ , which depends on the unknown covariance ma-

trix � and Hα|γ . Recall that such an estimator �̂ is given in (3.11). The following
corollary justifies the validity of the confidence interval.

COROLLARY 4.1. Under the conditions in Theorem 4.1, the confidence inter-
val

CIξ = {
α ∈ R : ∣∣α − α̂P

∣∣ ≤ 2 · σ̂ · Ĥ−1
α|γ · �−1(1 − ξ/2)/n1/2}

has the asymptotic coverage 1 − ξ , that is, limn→∞P(α∗ ∈ CIξ ) = 1 − ξ .

PROOF. A detailed proof is shown in the Supplementary Material [29]. �

We note that the estimator α̂P is not semiparametrically efficient, because not all
information about β is retained in the statistical chromatography. Our numerical
results seem to suggest that α̂P is nearly as efficient as the estimator under the
classical generalized linear model. Thus, our method gains model flexibility and
computational efficiency without paying much price on the information loss.

Next, we prove the asymptotic distribution of the test statistic 
n and the valid-
ity of the maximum likelihood ratio test under the same conditions in Theorem 4.1
and Corollary 4.1.

THEOREM 4.2. Under the conditions in Theorem 4.1 and α∗ = α0, then(
4 · σ 2)−1 · Hα|γ · 
n � χ2

1 .
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PROOF. A detailed proof is shown in the Supplementary Material [29]. �

As before, to apply the theorem in practice, we replace σ 2 and Hα|γ with their
estimators. The following corollary shows that under H0, type I error of the test
ψDLRT(ξ) converges to the desired significance level ξ and the p-value is asymp-
totically uniform.

COROLLARY 4.2. Suppose the conditions in Corollary 4.1 hold. Then

lim
n→∞P

(
ψDLRT(ξ) = 1 | H0

) = ξ and PDLRT � Uniform[0,1] under H0,

where ψDLRT(ω) is defined in (3.12) and PDLRT = 1 − χ2
1 ((4 · σ̂ 2)−1 · Ĥα|γ · 
n)

is the associated p-value.

PROOF. A detailed proof is shown in the Supplementary Material [29]. �

Finally, we conclude this section with the following remarks on the extensions
to missing data and multiple datasets inference. Due to the space constraint, we
defer the detailed results to the Supplementary Material [29].

REMARK 4 (Missing data and multiple datasets inference). In the missing
data setup, as shown in equation (2.3), Y given X and δ = 1 satisfies the semipara-
metric GLM with the same finite dimensional parameter β and unknown function
f m(·). The inferential results in this section can be easily extended to the missing
data setup; see the Supplementary Material [29] for details. In the multiple datasets
inference setup, the sparsity patterns of the d-dimensional parameter β∗

t in (1.2)
are usually identical across t = 1, . . . , T . To encourage the common sparsity of
β∗

t and meanwhile account for the heterogeneity of different datasets, we can use
similar estimation procedures to (4.2) with the group Lasso penalty. In the Sup-
plementary Material [29], we obtain the finite sample error bounds for parameter
estimation and the corresponding inferential results. In particular, by establishing
a new maximal inequality for U-statistic with unbounded kernels (i.e., Lemma F.2
of the Supplementary Material [29]), we prove that the group Lasso estimator at-
tains faster rates of convergence than the Lasso estimator. This extends the results
in linear models [22] to the more challenging semiparametric setting.

5. Numerical results. In this section, we provide synthetic and real data ex-
amples to back up the theoretical results.

5.1. Simulation studies. We conduct simulation studies to assess the finite
sample performance of the proposed methods. We generate the outcomes from
(1) the linear regression with the standard Gaussian noise or (2) the logistic regres-
sion, and the covariates from N(0,�), where �ij = 0.6|i−j |. The true values of β
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are β∗
j = μ for j = 1,2,3 and β∗

j = 0 for j = 4, . . . , d . Thus, the cardinality of the
support set of β∗ is s = 3. The sample size is n = 100, the number of covariates is
d = 200 and the number of simulation replications is 500.

We calculate the �1-regularized estimator β̂ by using the glmnet package in R.
In particular, we determine the regularization parameter λ by minimizing the K-
fold cross validated loss function,

CV(λ) =
K∑

k=1

{
�
(
β̂

(−k)

λ

) − �(−k)(β̂(−k)

λ

)}
,

where �(−k) stands for the loss function evaluated without the kth subset and simi-
larly β̂

(−k)

λ stands for the regularized estimator derived without using the kth sub-
set. In the simulation studies, we use 5-fold cross validation. The tuning parameter
for the Dantzig selector λ1 in (3.9) is chosen by 4

√
log(nd)/n. We find that the

simulation results are not sensitive to the choice of λ1. We only present the results
with the Lasso penalty. Similar results are observed by using the folded concave
penalty based on the LLA algorithm [12].

For the linear regression, we consider the directional likelihood ratio test
(DLRT) and the Wald test based on the asymptotic normality of α̂P , as well as
the desparsifying method in [37, 41] and debias method in [15]. Both of these two
methods are tailored for the linear regression with the L2 loss and are optimal for
confidence intervals and hypothesis testing. To examine the validity of our tests, we
report their type I errors for the null hypothesis H0 : β1 = μ with various choices
of μ ∈ [0,1] at the 0.05 significance level. The results are summarized in Table 1.
We find that, our Wald test and DLRT yield accurate type I errors, which are com-
parable to the desparsifying and debias methods. In addition, we also compare the
powers of these tests. In particular, we test the null hypothesis H0 : β1 = 0, but
increase μ from 0 to 1 in the data generating procedure. As shown in the left panel

TABLE 1
Type I errors of the Wald test and directional likelihood ratio test (DLRT), the desparsifying and
debias methods for linear and logistic regressions for H0 : α = μ, at the 0.05 significance level,

where μ = 0.00, . . . ,1.00

Model Method 0.00 0.10 0.20 0.40 0.60 0.80 1.00

Linear Wald 0.048 0.066 0.060 0.052 0.054 0.046 0.054
DLRT 0.040 0.052 0.064 0.042 0.032 0.034 0.040

Desparsity 0.044 0.054 0.058 0.044 0.058 0.058 0.056
Debias 0.034 0.030 0.036 0.024 0.028 0.028 0.028

Logistic Wald 0.054 0.060 0.054 0.054 0.066 0.068 0.038
DLRT 0.052 0.048 0.058 0.056 0.054 0.050 0.038

Desparsity 0.052 0.044 0.058 0.046 0.050 0.058 0.058
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FIG. 1. Power curves for testing H0 : β1 = 0 for the linear (left panel) and logistic (right panel)
regressions at the 0.05 significance level.

of Figure 1, our Wald test and DLRT based on the semiparametric GLM are nearly
as efficient as the desparsifying and debias methods. Such results show that the
semiparametric GLM gains model flexibility by losing little inferential efficiency.

For the logistic model, we only consider the desparsifying method, because the
debias method is not defined. As shown in Table 1, our proposed tests yield well
controlled type I errors. Similarly, the power comparison for testing H0 : β1 = 0
in Figure 1 reveals that our tests under the more flexible semiparametric model
are comparable to the desparsifying method. Moreover, the DLRT is more pow-
erful than the remaining two tests, which demonstrates the numerical advantages
of the likelihood ratio inference over the Wald-type tests. This observation is also
consistent with the literature for low dimensional inference.

To further demonstrate the advantage of the proposed methods, we consider
the data with missing values. Similar to the previous data generating proce-
dures, we first simulate the original data Yi and Xi . Then, for the linear regres-
sion, we consider the following two scenarios to create missing values: (1) the
response Yi is observed (i.e., δi = 1) if and only if Yi ≤ 0; and (2) Yi is al-
ways observed if Yi ≤ 0 and observed with probability 0.2 if Yi > 0, that is,
P(δi = 1 | Yi,Xi ) = 1−0.8I (Yi > 0). For the logistic regression, we also consider
two scenarios to create missing values: (1) P(δi = 1 | Yi,Xi ) = 0.2 + 0.6Yi ; and
(2) P(δi = 1 | Yi,Xi ) = 0.2 + 0.8Yi . Since the desparsifying and debias methods
are developed based on the assumption that no missing values exist, we consider
the following two practical procedures for handling missing data on Y . The first
approach is that we apply the desparsifying and debias methods directly to samples
with Y observed, which is known as the complete-case analysis. The second ap-
proach is that we apply these two methods to an imputed dataset. More specifically,
for those samples with missing values on Y , we impute Y by using the k-nearest
neighbors method, implemented by the R function impute.knn. The type I er-
rors are shown in Table 2. As expected, for the desparsifying and debias methods,
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TABLE 2
Type I errors of the Wald test and directional likelihood ratio test (DLRT), the desparsifying method

and debias method based on complete-case analysis (CC-) and imputation (Imp-) for linear and
logistic regressions with missing data (selection bias) for H0 : α = μ, at the 0.05 significance level,

where μ = 0.10, . . . ,0.25

Scenario Model Method 0.10 0.15 0.20 0.25 0.30 0.35

1 Linear Wald 0.062 0.048 0.064 0.046 0.064 0.050
DLRT 0.056 0.042 0.060 0.036 0.056 0.048

CC-Desparsity 0.076 0.156 0.214 0.278 0.334 0.580
Imp-Desparsity 0.068 0.128 0.176 0.198 0.270 0.448

CC-Debias 0.126 0.322 0.488 0.662 0.820 0.900
Imp-Debias 0.108 0.260 0.306 0.438 0.470 0.624

1 Logistic Wald 0.058 0.064 0.060 0.070 0.078 0.054
DLRT 0.044 0.052 0.044 0.054 0.052 0.042

CC-Desparsity 0.296 0.698 0.956 0.988 1.000 1.000
Imp-Desparsity 0.214 0.582 0.902 0.980 1.000 1.000

2 Linear Wald 0.060 0.068 0.048 0.060 0.072 0.052
DLRT 0.060 0.062 0.040 0.048 0.052 0.046

CC-Desparsity 0.086 0.098 0.164 0.370 0.524 0.660
Imp-Desparsity 0.080 0.088 0.146 0.236 0.268 0.362

CC-Debias 0.072 0.152 0.334 0.530 0.728 0.804
Imp-Debias 0.070 0.096 0.148 0.308 0.376 0.442

2 Logistic Wald 0.078 0.032 0.050 0.052 0.052 0.060
DLRT 0.074 0.022 0.040 0.044 0.042 0.046

CC-Desparsity 0.156 0.422 0.546 0.656 0.768 0.846
Imp-Desparsity 0.124 0.234 0.340 0.338 0.466 0.514

the type I errors of the complete-case analysis are far from the 0.05 significance
level. Although the imputation method shows some advantages over the complete-
case analysis, similar patterns are observed. Therefore, in the presence of missing
data, the existing methods cannot produce any result that is statistically reliable. In
contrast, the type I errors based on the proposed tests are well controlled, and they
are robust to the missing data and selection bias. The same conclusion holds under
all simulation scenarios.

In summary, our proposed testing procedures under the semiparametric GLM
are as competitive as the existing methods even if the assumed model is correct.
More importantly, in the presence of missing data or selection bias, the proposed
methods significantly outperform the existing ones.

5.2. Analysis of gene expression data. In this section, we apply the proposed
tests to analyze the AGEMAP (Atlas of Gene Expression in Mouse Aging Project)
gene expression data [40]. The dataset contains the expression values for 296 genes
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TABLE 3
Significant genes selected by the Wald and directional likelihood ratio tests under the

semiparametric GLM, the desparsifying method and debias method based on complete-case
analysis (CC-) and imputation (Imp-) for the gene expression data. Here, M% samples are missing

M Wald DLRT CC-Desparsity CC-Debias Imp-Desparsity Imp-Debias

0 Cdc42 Cdc42 Cdc42 Cdc42 Cdc42 Cdc42
15 Cdc42 Cdc42 – – Mapk13 –
25 Cdc42 Cdc42 – – Ppp3cb –
35 Cdc42 Cdc42 – – Nfatc3,Ppp3cb –

belonging to the mouse vascular endothelial growth factor (VEGF) signaling path-
way. The sample size is n = 40. Among these 296 genes, we are interested in iden-
tifying genes that are significantly associated with the target gene Casp9. Thus, we
treat the gene Casp9 as the response and the remaining 295 genes as covariates.

Since no missing value presents, we directly apply the desparsifying and de-
bias methods to test H0 : βj = 0 for each 1 ≤ j ≤ 295, under the linear model
assumption. Similarly, we can assume that the gene Casp9 given the remaining
variables follows the semiparametric GLM and the proposed Wald and likelihood
ratio tests can be applied. To take into account of the multiplicity of tests, we use
the step-down method in the R function p.adjust to adjust the p-values. At the
0.05 significance level, all these four methods claim that gene Cdc42 is significant;
see the first row of Table 3. This suggests that our tests are as effective as those
existing procedures when there are no missing values.

To further illustrate the advantage of our methods in the presence of missing
data, we create missing values for the outcome variable Yi . More specifically, if
Yi is among the top M% samples, where M = 0,15,25 and 35, we remove the
values of Yi . Here, M = 0 means no missing data is created. This corresponds to
the analysis of the original complete data. Similar to that in the simulation studies,
the considered missing data mechanism depends on the unobserved values, which
makes the analysis challenging.

The results are shown in Table 3, where the results based on the original com-
plete data (M = 0) can be used as a benchmark. Based on the incomplete dataset,
after the same adjustment for p-values, our Wald and likelihood ratio tests still se-
lect gene Cdc42, which are consistent with the results based on the original data.
This pattern is preserved, even after 35% data are removed. For the desparsifying
and debias methods, similar to the simulation studies, we can either apply them
to those samples with only complete data (complete-case analysis) or the full data
created by the imputation method. In particular, the CC-Desparsity and the CC-
Debias methods consistently select no genes, when there exist missing data. This
seems to suggest a lack of power for the existing methods based on the complete-
case analysis. In addition, Imp-Desparsity tends to select very different genes at
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different levels of missing data percentage. They are all different from the bench-
mark gene Cdc42. Our analysis suggests that the presence of missing values can
dramatically change the results of Imp-Desparsity. Finally, Imp-Debias performs
similar to CC-Debias and tends to have low powers.

In conclusion, the existing methods based on the imputation methods or com-
plete cases are either very sensitive to the missing data or have low powers. On the
other hand, the proposed tests are quite robust and potentially more reliable in the
presence of missing data.

6. Discussion. In this paper, we propose a new likelihood ratio inference
framework for high-dimensional semiparametric generalized linear models. The
proposed model is semiparametric in that the base measure function f (·) is un-
specified. This offers extra flexibility to handle the problems with missing data,
selection bias and heterogeneity. We note that the proposed model is different from
many standard semiparametric models such as the partially linear model. Although
in this paper we only consider the likelihood ratio inference for the semiparametric
GLM, similar inferential methods can be applied to more general high-dimensional
semiparametric models. This is an interesting direction to explore in the future.

Another future direction is to develop the joint confidence intervals for the en-
tire d-dimensional parameter β∗. Under the GLM, [4] constructed the joint con-
fidence intervals based on a multiplier bootstrap method for approximating max-
imum of sums of independent high-dimensional random vectors [9]. Under the
proposed semiparametric GLM, the gradient of the composite log-likelihood has
a U-statistic structure. To construct joint confidence intervals, it may require to
extend the high-dimensional multiplier bootstrap method based on sums of in-
dependent random vectors to U-statistics. Such extensions are worthy of further
investigation.

APPENDIX A: PROOF OF MAIN RESULTS

In this Appendix, we give the proof of Theorem 4.1. The proofs of the remaining
results, including Corollary 4.1, and Theorem 4.2 are deferred to the Supplemen-
tary Material [29].

We define an unbiased score function as S(β∗) := ∇α�(β∗) − w∗T ∇γ �(β∗),
which plays an important role in the proof. The proof of Theorem 4.1 has three
steps. First, we show that the first derivative of �̂(α) approximates S(β∗). Second,
we apply the central limit theorem for a linear combination of high- dimensional
U-statistics to conclude the asymptotic normality of S(β∗). Finally, we show that
the negative Hessian of �̂(α) approximates Hα|γ . For notational simplicity, denote
M := max1≤i<j≤n ‖(yi − yj ) · (xi − xj )‖∞. By Assumption 4.1, we have M =
OP(logn).

Step 1: Show the convergence of �̂′(α∗). Define γ̂ (α) := γ̂ + (α̂ − α)ŵ and
�̂γ = γ̂ (α∗) − γ ∗. Moreover, recall that S(β∗) := ∇α�(β∗) − w∗T ∇γ �(β∗). By
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the chain rule and mean value theorem, we have

�̂′(α∗) = ∇α�
(
α∗, γ̂

(
α∗)) − ŵT ∇γ �

(
α∗, γ̂

(
α∗)) = S

(
β∗) + I1 + I2,(A.1)

where I1 := (w∗ − ŵ)T ∇γ �(β∗) and I2 := {∇2
αγ �(α∗, γ̄ ) − ŵT ∇2

γ γ �(α∗, γ̃ )}�̂γ .
Here, γ̄ and γ̃ are intermediate values between γ ∗ and γ̂ (α∗). Thus, the first step
of the proof reduces to controlling the two terms I1 and I2 in (A.1). In particular, to
bound I1, we need the following Lemma A.1 to bound ‖ŵ − w∗‖1 and Lemma A.2
to bound ‖∇�(β∗)‖∞, respectively.

LEMMA A.1. Under the conditions in Theorem 4.1,

∥∥ŵ − w∗∥∥
1 = OP

(
M(s + s1) ·

√
logd

n

)
.

LEMMA A.2. Assume that Assumption 4.1 holds. Then, for any C′′ > 0, we
have ‖∇�(β∗)‖∞ ≤ C′′ · √logd/n, with probability at least

(A.2) 1 − 2 · d · exp
[
−min

{
C2 · C′′2

29 · C′2 · m2 · logd

n
,

C · C′′

25 · C′ · m ·
√

logd

n

}
· k

]
,

where k = n/2�, and C,C′ are defined in Definition 1.1.

PROOF. To prove Lemma A.2, the key is to prove a new concentration inequal-
ity for U-statistics with subexponential kernel functions. In particular, the follow-
ing lemma allows the kernel function to be unbounded, which is more general than
most of existing concentration results for U-statistics with bounded kernels, such
as Theorem 4.1.13 in [10]. The following result can be of independent interest,
whose proof is shown in the Supplementary Material [29].

LEMMA A.3. Let X1, . . . ,Xn be independent random variables. Consider the
following U-statistics of order m,

Un =
(

n

m

)−1 ∑
i1<···<im

u(Xi1, . . . ,Xim),

where the summation is over all i1 < · · · < im selected from {1, . . . , n} and
E[u(Xi1, . . . ,Xim)] = 0 for all i1 < · · · < im. Assume that the kernel function
u(Xi1, . . . ,Xim) is symmetric in the sense that u(Xi1, . . . ,Xim) is independent of
the order of Xi1, . . . ,Xim . If there exist constants L1 and L2, such that

(A.3) P
(∣∣u(Xi1, . . . ,Xim)

∣∣ ≥ x
) ≤ L1 · exp(−L2 · x),

for all i1 < · · · < im and all x ≥ 0, then

P
(|Un| ≥ x

) ≤ 2 · exp
[
−min

{
L2

2 · x2

8 · L2
1

,
L2 · x
4 · L1

}
· k

]
,

where k = n/m� is the largest integer less than n/m.
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Given the above lemma, we need to verify that the kernel function hij (β
∗) has

mean 0, where

(A.4) hij (β) = Rij (β) · (yi − yj ) · (xi − xj )

1 + Rij (β)
,

and it satisfies (A.3). To show E{hij (β
∗)} = 0, let �ij denote the event {(YL

(i),

YL
(j)) = (yi, yj ),Xi = xi ,Xj = xj }. By (3.3), the conditional distribution of Yi

and Yj given �ij follows a binomial distribution,

(A.5) P(Yi = yi, Yj = yj | �ij ;β) = [
1 + Rij (β)

]−1
,

and P(Yi = yj , Yj = yi | �ij ;β) = Rij (β)/[1 + Rij (β)]. According to this bino-
mial distribution, the conditional expectation of hij (β

∗) given �ij is

E
{
hij

(
β∗) | �ij ;β∗}

= Rij (β
∗)(yi − yj )(xi − xj )

1 + Rij (β
∗)

P
(
Yi = yi, Yj = yj | �ij ;β∗)

+ R−1
ij (β∗)(yj − yi)(xi − xj )

1 + R−1
ij (β)

P
(
Yi = yj , Yj = yi | �ij ;β∗)

.

By plugging (A.5) into above equation, it is easy to verify that E{hij (β
∗) |

�ij } = 0. Finally, E{hij (β
∗)} = E[E{hij (β

∗)|�ij }] = 0. Next, we verify the kernel
function satisfies (A.3). Since Rij (β) > 0 and maxij |xij | ≤ m, we have∥∥hij

(
β∗)∥∥∞ ≤ ∥∥(yi − yj ) · (xi − xj )

∥∥∞ ≤ 2 · m · |yi − yj |.
By the subexponential tail condition on yi , for any x > 0 and k = 1, . . . , d ,

P
(∣∣[hij

(
β∗)]

k

∣∣ > x
) ≤ P

(|yi − yj | > (2m)−1x
) ≤ 2C′ exp

{−C(4m)−1x
}
.

Then we apply Lemma A.3 with k = n/2� to complete the proof. �

Hence, by Lemma A.1 and Lemma A.2, we can show that

|I1| ≤
∥∥w∗ − ŵ

∥∥
1

∥∥∇γ �
(
β∗)∥∥∞ =OP

(
M(s + s1) ·

√
logd

n
·
√

logd

n

)
= oP

(
1√
n

)
,

where the last step follows by the conditions in Theorem 4.1. We further
separate I2 into the following terms: |I2| ≤ I21 + I22 + I23, where I21 =
|{∇2

αγ �(β∗) − ŵT ∇2
γ γ �(β∗)}�̂γ |, I22 = |{∇2

αγ �(β∗) − ∇2
αγ �(α∗, γ̄ )}�̂γ | and

I23 = |ŵT {∇2
γ γ �(β∗) − ∇2

γ γ �(α∗, γ̃ )}�̂γ |. To control the three terms, we first
need to bound ‖�̂γ ‖1. By the conditions in Theorem 4.1, we have ‖γ̂ − γ ∗‖1 =
OP(s

√
logd/n) and |α̂ − α∗| = OP(s

1/2√logd/n). Moreover, by the Cauchy–
Schwarz inequality, it holds that ‖w∗‖1 ≤ √

s1‖w∗‖2 ≤ √
s1‖H−1

γ γ HT
αγ ‖2 ≤
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√
s1λmin(H)−1λmax(H) ≤ √

s1c
−1c′, where the last inequality is by Assump-

tion 4.1. Therefore,

‖�̂γ ‖1 ≤ ∥∥γ̂ − γ ∗∥∥ + ∣∣α̂ − α∗∣∣‖ŵ‖1 = OP

(
max{s, s1}

√
logd

n

)
,

where we used the fact that ‖ŵ‖1 = ‖w∗‖1 + oP(1) = OP(s
1/2
1 ). To control the

three terms in I2, the key step is to quantify the smoothness of the Hessian matrix
∇2�(α∗,γ ) in a small neighborhood of γ ∗.

LEMMA A.4. Under the conditions in Theorem 4.1, for any deterministic se-
quence δn such that M · δn = o(1), we have

sup
‖β−β∗‖1≤δn

∥∥∇2�(β) − ∇2�
(
β∗)∥∥∞ =OP(M · δn),

where M := max1≤i<j≤n ‖(yi − yj ) · (xi − xj )‖∞.

PROOF. Let wij = exp{−(yi − yj ) · �T (xi − xj )}, where � = β − β∗. By
definition, Rij (β) = Rij (β

∗) · wij . Thus,

∇2�(β) = −
(
n

2

)−1 ∑
1≤i<j≤n

uij · Rij (β
∗) · (yi − yj )

2 · (xi − xj )
⊗2

(1 + Rij (β
∗))2 ,

where uij = wij · (1 + Rij (β
∗))2(1 + wij · Rij (β

∗))−2. Note that if wij ≥ 1, then
(1 + Rij (β

∗))2/(1 + wij · Rij (β
∗))2 ≤ 1. On the other hand, if wij ≤ 1,

(1 + Rij (β
∗))2

(1 + wij · Rij (β
∗))2 ≤ (1 + Rij (β

∗))2

w2
ij · (1 + Rij (β

∗))2
= 1

w2
ij

.

Thus, uij ≤ max{wij ,w
−1
ij }. Therefore, for any 1 ≤ s, t ≤ d ,

(A.6)

∣∣∇2
st �(β) − ∇2

st �
(
β∗)∣∣

=
(
n

2

)−1 ∑
i<j

Rij (β)(yi − yj )
2(xis − xjs)(xit − xjt )(uij − 1)

(1 + Rij (β))2

≤ 2−1∣∣∇2
ss�

(
β∗) + ∇2

t t �
(
β∗)∣∣ max

i<j

∣∣max
{
wij ,w

−1
ij

} − 1
∣∣.

By Hölder’s inequality, we have

sup
‖β−β∗‖1≤δn

max
i<j

∣∣(yi − yj ) · �T (xi − xj )
∣∣ ≤ M · ‖�‖1 =OP(M · δn) = oP(1),

and sup‖β−β∗‖1≤δn
maxi<j |max{wij ,w

−1
ij } − 1| = OP(M · δn). Thus, by (A.6),

sup
‖β−β∗‖1≤δn

∥∥∇2�(β) − ∇2�
(
β∗)∥∥∞ �

{∥∥∇2�
(
β∗) + H

∥∥∞ + ‖H‖∞
}
Mδn.
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By Assumption 4.1, ‖H‖∞ is bounded. It remains to control ‖∇2�(β∗) + H‖∞.
Let r̄ij = Tij −E(Tij ), where

Tij = Rij (β
∗) · (yi − yj )

2 · (xi − xj )
⊗2

(1 + Rij (β
∗))2 .

Then ∇2�(β∗) + H = − 2
n(n−1)

· ∑
i<j r̄ij is a mean-zero second-order U-statistic

with kernel function r̄ij . For any 1 ≤ a, b ≤ d , r̄ij satisfies [r̄ij ](a,b) ≤ 2 · M2. The
Hoeffding inequality yields, for any x > 0,

P
(∣∣∇2

ab�
(
β∗) + Ha,b

∣∣ > x
) ≤ 2 · exp

(
− k · x2

8 · M4

)
,

where k = n/2�. Taking x = M2√logd/n, by union bound, we get with high
probability, ‖∇2�(β∗) + H‖∞ ≤ M2√logd/n. �

Now we consider these three terms in I2 one by one. For I21, by Lemmas A.1
and C.2 in the Supplementary Material [29],

I21 ≤ ∥∥∇2
αγ �

(
β∗) − w∗T ∇2

γ γ �(β)
∥∥∞‖�̂γ ‖1 + ∥∥ŵ − w∗∥∥

1

∥∥∇2
γ γ �

(
β∗)∥∥∞‖�̂γ ‖1

=OP

(
M · max{s, s1} · logd

n
+ M · max{s, s1}2 · logd

n

)
= oP

(
1√
n

)
,

where the last step follows from the scaling condition (4.1). Now, we consider
I22. By Lemma A.4 and the fact that ‖γ̄ − γ ∗‖1 ≤ ‖�̂γ ‖1 = OP(max{s, s1} ·√

logd/n), we have

I22 ≤ ∥∥∇2
αγ �

(
β∗) − ∇2

αγ �
(
α∗, γ̄

)∥∥∞‖�̂γ ‖1

=OP

(
M max{s, s1}2 logd

n

)
= oP

(
1√
n

)
,

where the last equality follows from the scaling condition (4.1). Following the
similar arguments as in the proof of Lemma A.4, we can prove that

(A.7) I23 ≤ C

(
M · max{s, s1} ·

√
logd

n

)
· ∣∣ŵT ∇2

γ γ �
(
β∗)

�̂γ

∣∣.
By Lemma A.1 and the similar argument to the proof of Lemma C.2,∣∣ŵT ∇2

γ γ �
(
β∗)

�̂γ

∣∣ ≤ ∣∣w∗T ∇2
γ γ �

(
β∗)

�̂γ

∣∣ + ∣∣(ŵ − w∗)T ∇2
γ γ �

(
β∗)

�̂γ

∣∣
=OP

(
max{s, s1} ·

√
logd

n
+ M · max{s, s1}2 · logd

n

)
.

Together with (A.7), we have

I23 = OP

(
M · max{s, s1}2 · logd

n

)
= oP

(
1√
n

)
.



HIGH-DIMENSIONAL SEMIPARAMETRIC INFERENCE 2323

Thus, we have proved the rate of convergence of n1/2|�̂′(α∗) − S(β∗)|, that is,

(A.8) n1/2 · ∣∣�̂′(α∗) − S
(
β∗)∣∣ =OP

(
M · max{s, s1}2 · logd√

n

)
= oP(1).

Step 2: Characterize the limiting distribution of S(β∗). We provide the follow-
ing lemma on the central limit theorem for U-statistics with increasing dimensions.

LEMMA A.5. Under Assumption 4.1, for any b ∈ R
d with ‖b‖0 ≤ s̃ and

‖b‖2 = 1, if s̃3/2 · n−1/2 · M3 = oP(1), then√
n

2
· (

bT �b
)−1/2 · bT ∇�

(
β∗)

�N(0,1).

PROOF. The lemma is proved by using the Hoeffding’s decomposition:√
n

2
· (

bT �b
)−1/2 · bT ∇�

(
β∗)

= (
bT �b

)−1/2 1√
n

n∑
i=1

bT g
(
yi,xi ,β

∗)
+

√
n

2

(
bT �b

)−1/2bT {∇�
(
β∗) − Ûn

}
,

where g(yi,xi ,β
∗) and Ûn are defined in (3.10). We can verify that the Lyapunov

central limit theorem for independent random variables can be applied for the first
term under the assumption that s1 = o(n1/3−δ). The remaining proof requires more
careful calculation of the moment of approximation error bT (∇�(β∗)− Ûn) in the
Hájek projection, because here we allow the intrinsic dimension s̃ to scale with n.
We defer the detailed proof to the Supplementary Material [29]. �

Since S(β∗) is a sparse linear combination of the U-statistic ∇�(0,γ ∗) and
‖w∗‖0 = s1, with b = (1,−w∗T )T , Lemma A.5 implies that

(A.9) n1/2S
(
β∗)

/(2σ) � N(0,1).

Step3: Show the convergence of �̂′′(ᾱ) for any ᾱ between 0 and α̂P . We now
show that |�̂′′

n(ᾱ) + Hα|γ | = oP(1). By chain rule, we have

(A.10)
�̂′′
n(ᾱ) = ∇2

αα�
(
ᾱ, γ̂ (ᾱ)

) − 2∇2
αγ �

(
ᾱ, γ̂ (ᾱ)

)T ŵ + ŵT ∇2
γ γ �

(
ᾱ, γ̂ (ᾱ)

)T ŵ

= (
1,−ŵT )∇2�

(
ᾱ, γ̂ (ᾱ)

)(
1,−ŵT )T

.

We then decompose �̂′′
n(ᾱ) + Hα|γ into two terms, namely,

(A.11)

�̂′′
n(ᾱ) + Hα|γ = [

�̂′′
n(ᾱ) − (

1,−ŵT )∇2�
(
β∗)(

1,−ŵT )T ]
+ [(

1,−ŵT )∇2�
(
β∗)(

1,−ŵT )T + Hα|γ
]

:= I3 + I4.
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Let �̄ = (ᾱ, γ̂ (ᾱ)T )T − β∗. We have

(A.12) ‖�̄‖1 ≤ ∣∣ᾱ − α∗∣∣ + ∥∥γ̂ − γ ∗∥∥
1 + |α̂ − ᾱ|‖ŵ‖1.

To control |ᾱ − α∗|, we need a bound on the rate of convergence of the post-
regularization estimator α̂P − α∗. The following lemma serves our purpose.

LEMMA A.6. Under the conditions in Theorem 4.1, we have

∣∣α̂P − α∗∣∣ = OP

(√
logn

n

)
.

By Lemma A.6, we have |ᾱ −α∗| ≤ |α̂P −α∗| =OP(
√

logn/n). Moreover, we
have ‖γ̂ − γ ∗‖1 = OP(s · √logd/n), ‖ŵ‖1 = ‖w∗‖1 + oP(1) and that

|α̂ − ᾱ| ≤ ∣∣α̂ − α∗∣∣ + ∣∣ᾱ − α∗∣∣ = OP

(√
s log(d ∨ n)

n

)
.

Putting together the above results and by (A.12), we conclude that ‖�̄‖1 =
OP(max{s, s1} · √log(d ∨ n)/n).

For the first term in (A.11), similar to the proof of Lemma A.4, we get

(A.13) |I3| ≤ C

(
M · max{s, s1} ·

√
log(d ∨ n)

n

)
· ∣∣̂vT ∇2�

(
β∗)̂

v
∣∣,

where v̂ = (1, ŵT )T . Let v∗ = (1,w∗T )T . By Lemma A.1 and Lemma C.2,∣∣̂vT ∇2�
(
β∗)̂

v
∣∣ ≤ ∣∣v∗T ∇2�

(
β∗)

v∗∣∣ + 2
∣∣(̂v − v∗)T ∇2�

(
β∗)

v∗∣∣
+ ∣∣(̂v − v∗)T ∇2�

(
β∗)(̂

v − v∗)∣∣
≤ ∣∣v∗T Hv∗∣∣ + oP(1).

Therefore, we conclude that

(A.14) |I3| =OP

(
M · max{s, s1} ·

√
log(d ∨ n)/n

) = oP(1).

We now focus on I4, which can be decomposed into the following terms: I4 =
I41 − 2I42 + I43, where I41 = ∇2

αα�(β∗) + Hαα , I42 = ŵT ∇2
αγ �(β∗) + w∗T Hαγ

and I43 = ŵT ∇2
γ γ �(β∗)ŵ + w∗T Hγ γ w∗. By the proof of Lemma A.4, we have

‖∇2�(β∗) + H‖∞ = OP(M
2 · √

logd/n). Hence, I41 = OP(M
2 · √

logd/n) =
oP(1). For the second term, it holds that I42 = ŵT (∇2

αγ �(β∗) + Hαγ ) − (ŵ −
w∗)T Hαγ . We have |ŵT (∇2

αγ �(β∗) + Hαγ )| ≤ ‖ŵ‖1‖∇2
αγ �(β∗) + Hαγ ‖∞ =

OP(M
2 · √

s1 logd/n), and |(ŵ − w∗)T Hαγ | ≤ ‖ŵ − w∗‖1‖Hαγ ‖∞ = oP(1).
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Therefore, we conclude that |I42| = oP(1). For the term I43, we apply similar ar-
guments to get I43 = OP(M(s1 + s)

√
logd/n) = oP(1). Hence, we conclude that

I4 = oP(1). Together with (A.14), this implies

(A.15)
∣∣�̂′′

n(ᾱ) + Hα|γ
∣∣ = oP(1).

Given (A.8), (A.9), (A.15), we now wrap up the whole proof. By first-order
optimality condition, we have �̂′(α̂P ) = 0. Applying mean-value theorem, we get
�̂′(α̂P ) = �̂′(α∗) + �̂′′(ᾱ)(α̂P − α∗), where ᾱ is an intermediate value between α̂P

and α∗. This implies

(A.16) α̂P − α∗ = �̂′′(ᾱ)−1�̂′(α∗)
.

Finally, combining (A.16), (A.8), (A.9), (A.15) and applying Slutsky’s theorem,
we have n1/2(α̂P − α∗) = −H−1

α|γ · n1/2S(β∗) + oP(1). We complete the proof of
Theorem 4.1.
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