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ON THE OPTIMALITY OF BAYESIAN CHANGE-POINT
DETECTION
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Shanghai Jiao Tong University∗ and
Hong Kong University of Science and Technology†

By introducing suitable loss random variables of detection, we obtain op-
timal tests in terms of the stopping time or alarm time for Bayesian change-
point detection not only for a general prior distribution of change-points but
also for observations being a Markov process. Moreover, the optimal (mini-
mal) average detection delay is proved to be equal to 1 for any (possibly large)
average run length to false alarm if the number of possible change-points is
finite.

1. Introduction. Consider a series of observations X0,X1, X2, . . . , whose
distribution may change at some point in time τ ≥ 1. The objective is to raise an
alarm as soon as a change occurs, subject to a restriction on the rate of false alarms.

The need for abrupt changes to be detected quickly with a low false alarm rate
in a stochastic system arises in a variety of applications, including quality control,
segmentation of signals, biomedical signal processing, financial engineering and
fault detection and diagnosis in complex structures.

In the classical setting of the problem, it is commonly assumed that the prob-
ability distribution of observations X0,X1,X2, . . . ,Xn, . . . is known and is Pv0

for n < τ , and that after the change-point τ , the distribution of Xτ ,Xτ+1, . . . be-
comes Pv1 which is also known. Without loss of generality, we can assume that
the distributions Pvi

have density pvi
, i = 0,1. Here, v0, v1 ∈ V are two parame-

ters and V denotes the parameter space of v where pv �= pv′ if and only if v �= v′
for v, v′ ∈ V . Note that the parameter v may not be the mean, deviation, etc., and
is often used to distinguish the distributions. Let Pτ and Eτ be the probability dis-
tribution and the expectation of {Xτ ,Xτ+1, . . .}, respectively, if a change occurs at
time τ , where τ = 1,2, . . . . When τ = ∞, that is, a change never occurs, the prob-
ability distribution and the expectation are denoted by P∞ and E∞, respectively
for all observations X0,X1,X2, . . . ,Xn, . . . .

Generally speaking, any sequential test for change-point detection can be mod-
eled as a stopping time or an alarm time T ≥ 1 adapted to the filtration {Ft }t≥0,
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where Ft = σ {Xk,0 ≤ k ≤ t} denotes the smallest σ -algebra with respect to which
all of the random variables X0, . . . ,Xt are measurable. We usually assume that
X0 ≡ x0 (a constant) and F0 = {φ,�}. The optimality of the stopping time usu-
ally means that the detection delay (T − τ + 1)+ measured in some sense is the
smallest among all stopping times with a probability of false alarm P∞(T < τ)

no greater than a preset level α ∈ (0,1), or among all stopping times with a false
alarm rate no less than a given value γ > 1, that is, E∞(T ) ≥ γ .

Three major optimal performance measures exist for detecting change-points.
The first one is the Shiryaev [13, 15] procedure which can be written as

inf
T :P∞(T <τ)≤α

JS(T )

or

inf
T :E∞(T )≥γ

JS(T ),

where

(1) JS(T ) = E
(
(T − τ + 1)|T ≥ τ

) =
∑∞

k=1 ρkEk(T − k + 1)+∑∞
k=1 ρkP∞(T ≥ k)

,

and {ρk, k ≥ 1} is a known prior probability distribution of τ , that is, ρk = P(τ =
k), k ≥ 1. It is usually called Shiryaev’s Bayesian change-point detection approach
or the Bayesian formulation.

The second is Lorden’s procedure [5]:

(2) inf
T :E∞(T )≥γ

JL(T ),

where JL(T ) is the worst average delay, that is,

JL(T ) = sup
k≥1

esssup
{
Ek

(
(T − k + 1)+|Fk−1

)}
.

The third one, proposed by Pollak [7], also considers the worst average delay
JP (T ) = supt≥1 Et (T − t +1|T ≥ t), and the optimal stopping time can be written
as

(3) inf
T :E∞(T )≥γ

JP (T ).

Note that τ is deterministic and unknown in both Lorden’s measure and Pol-
lak’s measure. Hence, the two measures are often called non-Bayesian detec-
tion formulations. Moustakides [6] introduced a general framework for capturing
and better understanding the above three optimization criteria and showed that
JS(T ) ≤ JP (T ) ≤ JL(T ).

Since this paper focus is on the optimality of the Bayesian detection problem,
we will only recall the main results on the optimal or asymptotically optimal tests
in the Bayesian detection procedure. Those who are interested in the results on
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the optimality of Lorden’s measure and Pollak’s measure may refer to [9, 11, 14]
and [17].

Under the assumption that the observation process {Xk, k ≥ 0} is i.i.d. and the
prior distribution of the change-point is geometric distribution, that is, ρ1 = ρ0 +
(1 − ρ0)ρ,ρk = (1 − ρ0)ρ(1 − ρ)k−1 (k ≥ 2), where 0 ≤ ρ0 < 1 and 0 < ρ < 1,
Shiryaev [13, 15] first proved that

(4) Sρ = min
{
n : P(τ ≤ n|Fn) ≥ a(ρ,α)

}
is optimal, that is, it minimizes JS(T ) for an appropriately chosen threshold
a(ρ,α) ∈ (0,1) such that α = P∞(Sρ < τ).

It follows from the Bayes rule that [10]

P(τ ≤ n|Fn) = Rn(ρ)

Rn(ρ) + 1/ρ
,

where

(5) Rn(ρ) = ρ0

(1 − ρ0)ρ

n∏
k=1

	k

1 − ρ
+

n∑
t=1

n∏
k=t

	k

1 − ρ

for n ≥ 1 and 	k = pv1(Xk)/pv0(Xk). Hence, Sρ is equivalent to the stopping time

(6) TS(ρ) = min
{
n : Rn(ρ) ≥ c

}
,

where c is a positive constant.
For a general prior distribution of the change-point τ , Chow, Robbins and Sieg-

mund [1] have shown that the following test:

(7) TCRS = min
{
n : ψn ≥ E(ζn+1|Fn)

}
is optimal in the sense that E(ψTCRS) ≥ E(ψT ) for all tests (stopping times) T such
that E(ψT ) < ∞, where

ψn = c(1 − πn) +
n−1∑
k=0

(n − i)πn
k ,

πn = P(τ ≤ n|Fn), πn
k = P(τ = k|Fn) and ζn = ess supT ≥n{E(ψT |Fn)}. Since the

random variables ζn, n ≥ 0, in TCRS are in general impossible to compute directly
from the definition and, therefore, the test is difficult to use in practice, the above
result has rarely been mentioned in the relevant literature.

When the distribution of the change-point τ is geometric, Yakir [20] gener-
alized Shiryaev’s result for the Markov chain case. Tartakovsky and Veeravalli
[19] proved that the Shiryaev procedure is asymptotically optimal in the general
non-i.i.d. case when the false alarm probability approaches zero. Tartakovsky [16]
proposed an asymptotically optimal Bayesian change-point detection procedure
for general non-i.i.d. models when the global false alarm probability P∞(T < ∞)

approaches zero.
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Note that for ρ0 = rρ as ρ → 0, where r ≥ 0, Shiryaev’s stopping time TS(ρ)

converges to the following Shiryaev–Roberts [12, 13] test:

(8) TSR(c) = min

{
n : r

n∏
k=1

	k +
n∑

t=1

n∏
k=t

	k ≥ c

}

for a positive threshold c > 0 and

ĴS(T ) = lim
ρ→0

rρE1(T ) + (1 − rρ)
∑∞

k=1 ρ(1 − ρ)k−1Ek(T − k + 1)+

rρ + (1 − rρ)
∑∞

k=1 ρ(1 − ρ)k−1P∞(T ≥ k)
(9)

= rE1(T ) + ∑∞
k=1 Ek(T − k + 1)+

r + E∞(T )
.

TSR(c) is often called the generalized Bayesian change-point detection. Pollak
and Tartakovsky [8] proved that the Shiryaev−Roberts test is optimal in the mea-
sure (9), that is, TSR(cγ ) minimizes ĴS(T ) over all stopping times T satisfying
E∞(T ) ≥ γ , where E∞(TSR(cγ )) = γ . Furthermore, Tartakovsky, Pollak and Pol-
unchenko [18] showed that the Shiryaev–Roberts procedure that starts either from
a specially designed point r or from the random quasi-stationary point is third-
order asymptotically optimal.

So far, in addition to the above two tests, Sρ and TSR(c) have been proved to be
strictly (nonasymptotically) optimal. There is little research that deals with strictly
optimal tests in Bayesian change-point detection for a general prior distribution of
the change-point τ .

In this paper, by introducing suitable loss random variables of detection we ob-
tain strictly optimal tests for Bayesian change-point detection not only for a gen-
eral prior distribution of the change-point but also for observations X0,X1,X2, . . .

that form a Markov process. Our main contributions to the study of the Bayes
optimality of stopping times are in the following four aspects:

(i) We propose and prove that the stopping time (see Theorem 1): T ∗(c∗) =
min{n ≥ 1 : Yn ≥ cn(c

∗)ρn+1} is strictly optimal in the Bayesian formulation for
a general prior distribution {ρk} and an observation sequence {Xn,n ≥ 0} being a
Markov process.

(ii) Considering simultaneously the probability of false alarm P(T ≤ τ) and the
average run length (ARL) E∞(T ) to false alarm, where P(T ≤ τ) does not exceed,
or is not less than, a desired level α ∈ (0,1) and E∞(T ) is “no worse” than γ > 1,
we prove that the two stopping times (see Theorems 2 and 3): Tγ (c, b) = min{n ≥
1 : Yn ≥ cn(c)ρn+1 + b} and Tη(c) = min{n ≥ 1 : Yn ≥ cn(c)} are strictly optimal
over all stopping times respectively in Dγ = {T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≤
α∗} and D′

γ = {T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≥ α∗}.
(iii) By constructing a series of stopping times, we prove that

inf
T :E∞(T )≥γ

JS(T ) = 1
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for every finite (N < ∞) prior distribution {ρk,1 ≤ k ≤ N} and any (possibly
large) γ > 1. This result is somewhat unexpected.

(iv) We choose another approach (different from Shiryaev’s method) to prove
the above results of optimality of stopping times since the posterior probabilities
πn = P(τ ≤ n|Fn), n ≥ 1, is not a Markov process when the prior distribution is not
geometric and the observation sequence {Xn,n ≥ 0} is not mutually independent.

Section 2 presents three optimal tests subject to a given probability of false
alarm, or a given ARL to false alarm, for a general prior distribution of change-
point τ . In Section 3, for any finite possible change-points [ρk = P(τ = k) = 0 for
all k ≥ N + 1,N < ∞], we prove that the optimal (minimal) average detection
delay is 1, that is, infT :E∞(T )≥γ JS(T ) = 1. Section 4 illustrates simulation results
of comparing the detection performance of the three tests: T5(c), the CUSUM test
TC(c) and EWMA test TE(c) for monitoring mean shifts in the special cases of τ :
ρk = 1/5,1 ≤ k ≤ 5. We conclude the paper in Section 5.

2. Optimal tests for Bayesian change-point detection with infinite possible
change-points. In this section, we consider the case where the change-point τ

will take infinite possible nonnegative integer values, that is, P(τk = k) = ρk > 0
for all k ≥ 1.

Let the observations X0,X1, X2, . . . be a time homogeneous Markov process
taking values in some real number space E ⊆ (−∞,+∞) with a known transition
probability density pv0(·, ·) before the change-point τ ≥ 1, and with the possible
post-change transition probability density pv(·, ·) after the change-point, where
v ∈ V and V is a parameter space. We do not know the post-change transition prob-
ability density of the process until it is detected. But the possible change domain,
and its boundary (including the size and form of the boundary), of the observation
process may be determined from engineering knowledge, practical experience or
statistical data. So we may assume that the unknown post-change transition prob-
ability density pv(·, ·) lies in a closed domain �(V ), where �(V ) = {pv(·, ·) :
v ∈ V }, V is a closed set of parameters, and a probability distribution Q of V is
known. If Q is unknown, we may assume that Q is subject to the equal probabil-
ity distribution of V if V is finite, or, to the uniform distribution of V if V is a
continuous region. For example, let pv(x, y) = (

√
2πσ)−1e−(y−x−μ)2/2σ 2

, where
v = (μ,σ ), μ and σ denote the mean and standard deviation, respectively. We may
take the set V satisfying V = {(μ,σ ) : |μ| ≤ μ1,0 < σ ≤ σ1}, where μ1 and σ1
are known; that is, the domain V and the set of possible post-change distributions,
that is, �(V ) and the uniform distribution Q of V are known.

Let

pv1(·, ·) =
∫
V

pv(·, ·) dQ(v).

The function pv1(·, ·) can be considered as a special, known post-change transition
probability density of E.
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For every n ≥ 1, the joint probability P(X1 ≤ x1, . . . ,Xn ≤ xn) = F(x1, . . . , xn)

can be written as

F(x1, . . . , xn)

=
n∑

k=1

ρk

∫ x1

−∞
· · ·

∫ xk−1

−∞
· · ·

∫ xn

−∞

k−1∏
j=1

pv0(yj−1, yj )

×
n∏

j=k

pv1(yj−1, yj ) dy1 · · · dyk−1 · · · dyn

+
(

1 −
n∑

k=1

ρk

)
F∞(x1, . . . , xn),

where

F∞(x1, . . . , xn) =
∫ x1

∞
· · ·

∫ xn

∞

n∏
j=1

pv0(yj−1, yj ) dy1 · · · dyn

and y0 = x0.
When the observations X1, . . . ,Xn, . . . are independent with the probability

density pv0 before the change-point and the probability density pv1 after the
change-point, the joint probability P(X1 ≤ x1, . . . ,Xn ≤ xn) = F(x1, . . . , xn) can
be written as

F(x1, . . . , xn)

=
n∑

k=1

ρkF∞(x1, . . . , xk−1)Fv1(xk, . . . , xn)

+
(

1 −
n∑

k=1

ρk

)
F∞(x1, . . . , xn),

where F∞(x1, . . . , xk) = ∏k
j=1 F∞(xk), Fv1(x1, . . . , xk) = ∏k

j=1 Fv1(xk) and the
probability density functions of F∞(xk) and Fv1(xk) are pv0 and pv1 , respectively.

For simplicity, we assume that X0 ≡ x0 ∈ E, pv1(x, ·)/pv0(x, ·) has no atoms
with respect to P∞ for all x ∈ E, pv1(x, y)/pv0(x, y) = 1 when pv1(x, y) =
pv0(x, y) = 0 and

pv0(x, y) > 0 if and only if pv1(x, y) > 0

for all x, y ∈ E.
In order to derive the optimal detection test, we need the following lemma which

is a generalization of Theorem 1 given by Shiryaev and Zryumov in [14].
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LEMMA 1. For any finite stopping time T , that is, P∞(T < ∞) = 1,

∞∑
k=1

ρkEk(T − k + 1)+ = E∞
(

T∑
k=1

[Yk−1 + ρk]
)

=
∞∑

k=1

E∞
(
YkI (T ≥ k + 1)

)
(10)

+
∞∑

k=1

ρkP∞(T ≥ k),

where I (·) is the indicator function, the random process {Yk, k ≥ 0} satisfies the
recurrent equations:

(11) Yk = (Yk−1 + ρk)	k, Y0 = 0

and 	k = pv1(Xk−1,Xk)/pv0(Xk−1,Xk) for k ≥ 1.

PROOF. Equation (10) can be obtained by way of proving Theorem 1 in [14].
Since

(T − k + 1)+ =
∞∑

m=1

I (T − k ≥ m) =
∞∑

m=k

I (T ≥ m),

where T ≥ m ∈ Fm−1 and m ≥ k, it follows that

∞∑
m=k

Ek

(
I (T ≥ m)

)

=
∞∑

m=k

Ek

(
I (T ≥ m)

k−1∏
j=1

pv0(Xj−1,Xj )

m−1∏
j=k

pv1(Xj−1,Xj )

)

=
∞∑

m=k

E∞
(
I (T ≥ m)

∏k−1
j=1 pv0(Xj−1,Xj )

∏m−1
j=k pv1(Xj−1,Xj )∏m−1

j=1 pv0(Xj−1,Xj )

)

=
∞∑

m=k

E∞
(
I (T ≥ m)

Lm−1

Lk−1

)
,

where
∏k−1

j=k pv1(Xj−1,Xj ) = 1 and

Ln =
n∏

k=1

pv1(Xk−1,Xk)

pv0(Xk−1,Xk)
, L0 = 1.
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Thus,
∞∑

k=1

ρkEk(T − k + 1)+ = E∞
( ∞∑

k=1

ρk

∞∑
m=k

I (T ≥ m)
Lm−1

Lk−1

)

= E∞
( ∞∑

k=1

ρk

T∑
m=k

Lm−1

Lk−1

)

= E∞
(

T∑
m=1

m∑
k=1

ρk

Lm−1

Lk−1

)
= E∞

(
T∑

m=1

[Ym−1 + ρm]
)
.

Furthermore, we have

E∞
(

T∑
m=1

[Ym−1 + ρm]
)

= E∞
( ∞∑

k=1

I (T = k)

(
k∑

m=1

[Ym−1 + ρm]
))

=
∞∑

k=1

E∞
(
YkI (T ≥ k + 1)

) +
∞∑

k=1

ρkP∞(T ≥ k).
�

It follows from (1) and (10) that

(12) JS(T ) = 1 + J̃S(T )

for any test (stopping time) T , where

(13) J̃S(T ) =
∑∞

k=1 E∞(YkI (T ≥ k + 1))∑∞
k=1 ρkP∞(T ≥ k)

.

By (11), we know that Yn − Yn−1 − ρn = (	n − 1)(Yn−1 + ρn). Moreover,

E∞(	n|Fn−1) = E∞
(

pv1(Xn−1,Xn)

pv0(Xn−1,Xn)

∣∣∣Xn−1

)
= 1.

It follows that

E∞
(
Yn −

n∑
k=1

ρk

∣∣∣Fn−1

)
= Yn−1 −

n−1∑
k=1

ρk,

that is, {Yn − ∑n
k=1 ρk, n ≥ 0} is a martingales with E∞(Yn) = ∑n

k=1 ρk . By the
optional sampling theorem of martingale (see [4], page 333) we can obtain the
following lemma.

LEMMA 2. For any finite stopping time T , if

(14) E∞
(∣∣∣∣∣YT −

T∑
k=1

ρk

∣∣∣∣∣
)

< ∞, lim
n→∞ E∞

(∣∣∣∣∣Yn −
n∑

k=1

ρk

∣∣∣∣∣;T > n

)
= 0,
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then

(15) E∞(YT ) = E∞
(

T∑
k=1

ρk

)
=

∞∑
k=1

ρkP∞(T ≥ k) = P(T ≥ τ).

We present a nonnegative loss random variable of detection, ξn, at time n in the
following:

ξn =
n∑

k=1

Yk−1 + 1 + c

(
1 −

n∑
k=1

ρk

)
for n ≥ 1, where c > 0 is a constant. By Lemma 1, we have

E∞(ξT ) = E∞
(

T∑
k=1

[Yk−1 + ρk]
)

+ (c + 1)

[
1 − E∞

(
T∑

k=1

ρk

)]

=
∞∑

k=1

ρkEk(T − k + 1)+ + (c + 1)

[
1 −

∞∑
k=1

ρkP∞(T ≥ k)

]
(16)

= E(T − τ + 1|T ≥ τ)P(T ≥ τ) + (c + 1)P(T < τ).

The last equality follows from (1) and (15). If c ≤ 0, the value of ξn will be smallest
when n = 1, that is, E∞(ξT ) will be smallest when T ≡ 1. So, we assume that
c > 0.

Now we present a test T ∗(c):
T ∗(c) = min

{
n ≥ 1 : Yn ≥ cn(c)ρn+1

}
,

where {cn = cn(c), n ≥ 1} is a series of positive random variable, measurable with
respect to Fn, and depends on c > 0 for every n ≥ 1.

In the following theorem, we not only give the expression of cn but also prove
that the test T ∗(c∗) is optimal in the Bayesian formulation.

THEOREM 1. Let 0 < α < 1 − ρ1 and ρk > 0 for all k ≥ 1. Then there exists
a positive number c∗ and a series of positive random variables cn(c

∗) such that
Pτ (T

∗(c∗) < τ) = α,

(17) cn

(
c∗) = c∗ + E∞

( ∞∑
m=n+1

ρm+1

ρn+1
I (Bm,n+1)

[
c∗ − Ỹm

]∣∣∣Fn

)

for n ≥ 1 and the test T ∗(c∗) is optimal in the Bayesian sense

(18) inf
T ∈Dα

JS(T ) = JS

(
T ∗(

c∗))
,

where Dα = {T ≥ 1 : Pτ (T < τ) ≤ α}, Ỹm = Ym/ρm+1 and Bm,n = {Ỹk ≤
ck(c

∗), n ≤ k ≤ m}. Moreover,

(19) JS

(
T ∗(

c∗)) ≤ 1 + c∗(1 − ρ1).
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In particular, if cn = c1 is a constant for all n ≥ 1, then

(20)
1 − α

E∞(ρT ∗)
− 1 < c1 ≤ 1 − α

E∞(ρT ∗+1)
,

where T ∗ = T ∗(c∗),

PROOF. Let ξ̃n = −ξn and define a subset D̂α of Dα as

D̂α = {
T ≥ 1 : Pτ (T < τ) ≤ α,

∣∣E∞(ξ̃T )
∣∣ < ∞}

.

We first prove that (18) holds for D̂α . To this end, it needs to prove the following
inequality:

E∞(ξT ) ≥ E∞(ξT ∗) or E∞(ξ̃T ∗) ≥ E∞(ξ̃T )

for any finite test T with E∞(ξT ) < ∞.
By Lemma 3.2 in [1] (page 52), we only need to prove that for each n ≥ 1

(21) E∞(ξ̃T ∗ |Fn) ≥ ξ̃n on
{
T ∗ > n

}
and

(22) E∞(ξ̃T |Fn) ≤ ξ̃n on
{
T ∗ = n,T > n

}
.

In fact, by (21) and (22) we have

E∞(ξ̃T ∗) =
∫
{T ∗≤T }

ξ̃T ∗ +
∫
{T ∗>T }

ξ̃T ∗

=
∞∑

n=1

∫
{T ∗=n≤T }

ξ̃T ∗ +
∞∑

n=1

∫
{T =n<T ∗}

E∞(ξ̃T ∗ |Fn)

≥
∞∑

n=1

∫
{T ∗=n≤T }

E∞(ξ̃T |Fn) +
∞∑

n=1

∫
{T =n<T ∗}

ξ̃n = E∞(ξ̃T ).

For every N ≥ 2, we define N positive random variables, cN,N , cN−1,N , . . . ,

c1,N in the following:

cN,N = c,

cn,N = c + ρn+2

ρn+1
E∞

(
I
(
Bn+1,n+1(N)

)[cn+1,N − Ỹn+1]|Fn

)
,(23)

cn,N = c + E∞
(

N∑
m=n+1

ρm+1

ρn+1
I
(
Bm,n+1(N)

)[c − Ỹm]
∣∣∣Fn

)

for 1 ≤ n ≤ N , where Ỹm = Yn/ρm+1 and Bm,n+1(N) = {Ỹk ≤ ck,N , n + 1 ≤ k ≤
m ≤ N}.
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Next, we show that cn,N ≥ c for all 1 ≤ n ≤ N . Obviously, cN,N = c ≥ c. As-
sume that cn,N ≥ c for n ≤ N . Since

cn−1,N = c + ρn+1

ρn

E∞
(
I
(
Bn,n(N)

)
E∞

([
c − Ỹn

+
N∑

m=n+1

ρm+1

ρn+1
I
(
Bm,n+1(N)

)
(c − Ỹm)

]∣∣∣Fn

)∣∣∣Fn−1

)

= c + ρn+1

ρn

E∞
(
I
(
Bn,n(N)

)[cn,N − Ỹn]|Fn−1
)

and I (Bn,n(N))[cn,N − Ỹn] ≥ 0, it follows that cn−1,N ≥ c. By the mathematical
induction, we know that cn,N ≥ c for all 1 ≤ n ≤ N .

On the other hand, cn,N ≤ c(1+ρ−1
n+1

∑∞
m=n+1 ρm+1) for all N ≥ 2. This means

that there exists a sub-sequence {Nk} such that cn,Nk
→ cn as k → ∞ for every

n ≥ 1 and, therefore, Bm,n(Nk) → Bm,n = {Ỹj ≤ cj , n ≤ j ≤ m} as k → ∞, and

cn = c + ρn+2

ρn+1
E∞

(
I
(
Bn+1,n+1[cn+1 − Ỹn+1]|Fn

))
= c + E∞

( ∞∑
m=n+1

ρm+1

ρn+1
I (Bm,n+1)[c − Ỹm]

∣∣∣Fn

)
.

This is (17).
Hence,

I
(
T ∗ > n

)
E∞

(
(ξ̃T ∗ − ξ̃n)|Fn

)
= I

(
T ∗ > n

) ∞∑
m=n

E∞
((

I
(
T ∗ > m

)[ξ̃m+1 − ξ̃m])|Fn

)
= −ρn+1I

(
T ∗ > n

)
×

[
Ỹn − c +

∞∑
m=n+1

E∞
ρm+1

ρn+1

(
I (Bm,n+1)(Ỹm − c)|Fn

)]

= −ρn+1I
(
T ∗ > n

)
(Ỹn − cn) > 0.

That is, (21) holds.
Let TN = min{T ,N + 1} for each finite stopping time T . We first show that

E∞
(

N∑
m=n+1

ρm+1

ρn+1
I (TN > m)[c − Ỹm]

∣∣∣Fn

)
(24)

≤ (cn,N − c)I (TN > n)
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for 1 ≤ n ≤ N . Obviously, (24) holds for n = N . Let n = N − 1. We have
ρN+1

ρN

E∞
(
I (TN > N)[c − ỸN ]|FN−1

)
≤ ρN+1

ρN

E∞
(
I (TN > N)I

(
BN,N(N)

)[c − ỸN ]|FN−1
)

≤ I (TN > N − 1)
ρN+1

ρN

E∞
(
I
(
BN,N(N)

)[c − ỸN ]|FN−1
)

= (cN−1,N − c)I (TN > N − 1).

Assume that (24) holds for n ≤ N − 1. It follows that

E∞
(

N∑
m=n

ρm+1

ρn

I (TN > m)[c − Ỹm]
∣∣∣Fn−1

)

= ρn+1

ρn

E∞
(
I (TN > n)[c − Ỹn]|Fn−1

)
+ ρn+1

ρn

E∞
(

E∞
[

N∑
m=n+1

ρm+1

ρn+1
I (TN > m)(c − Ỹm)

∣∣∣Fn

]∣∣∣Fn−1

)

≤ ρn+1

ρn

E∞
(
I (TN > n)[c − Ỹn]|Fn−1

)
+ ρn+1

ρn

E∞
(
(cn,N − c)I (TN > n)|Fn−1

)
= ρn+1

ρn

E∞
([cn,N − Ỹn]I (TN > n)|Fn−1

)
≤ ρn+1

ρn

E∞
(
I
(
Bn,n(N)

)[cn,N − Ỹn]I (TN > n)|Fn−1
)

≤ I (TN > n − 1)(cn−1,N − c).

By the mathematical induction, we know that (24) holds for all 1 ≤ n ≤ N . Taking
N = Nk and let k → ∞ in (24), we have

(25) E∞
( ∞∑

m=n+1

ρm+1

ρn+1
I (T > m)[c − Ỹm]

∣∣∣Fn

)
≤ (cn − c)I (T > n)

for all n ≥ 1. Thus,

I
(
T ∗ = n

)
I (T > n)E∞

(
(ξ̃T − ξ̃n)|Fn

)
= I

(
T ∗ = n

) ∞∑
m=n

E∞
((

I (T > m)[ξ̃m+1 − ξ̃m])|Fn

)
= −ρn+1I

(
T ∗ = n

)[
I (T > n)(Ỹn − c)
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+
∞∑

m=n+1

E∞
(

ρm+1

ρn+1
I (T > m)(Ỹm − c)

∣∣∣Fn

)]

= ρn+1I
(
T ∗ = n

)[−I (T > n)Ỹn + I (T > n)c

+
∞∑

m=n+1

E∞
(

ρm+1

ρn+1
I (T > m)(c − Ỹm)

∣∣∣Fn

)]

≤ ρn+1I
(
T ∗ = n

)[−I (T > n)Ỹn + I (T > n)cn

]
= ρn+1I

(
T ∗ = n

)
I (T > n)[cn − Ỹn] ≤ 0

since cn ≤ Ỹn when T ∗ = n. That is, (22) holds for all n ≥ 1.
From (21) and (22), it follows that E∞(ξT ) ≥ E∞(ξT ∗) for any finite test T with

E∞(ξT ) < ∞.
Since the probability

P
(
T ∗(c) ≥ τ

) = ρ1 +
∞∑

k=2

ρkP∞
(
T ∗(c) ≥ 2

)
is continuous and strictly increasing in c, P(T ∗(0) ≥ τ) = ρ1 < 1−α for c = 0 and
P(T ∗(c) ≥ τ) > 1 − α for a large c, it follows that there exists a positive number
c∗ such that P(T ∗(c∗) ≥ τ) = 1 − α or P(T ∗(c∗) < τ) = α.

It follows from (16) and E∞(ξT ) ≥ E∞(ξT ∗(c∗)) that

E
(
(T − τ + 1)|T ≥ τ

)
P(T ≥ τ) + (

1 + c∗)
P(T < τ)

≥ (1 − α)E
((

T ∗(
c∗) − τ + 1

)|T ∗(
c∗) ≥ τ

) + (
1 + c∗)

α.

Furthermore, by (12), (13) and (21) we have

JS

(
T ∗(

c∗)) = E
((

T ∗(
c∗) − τ + 1

)|T ∗(
c∗) ≥ τ

)
= 1 +

∑∞
k=1 E∞(YkI (T ∗(c∗) ≥ k + 1))∑∞

k=1 ρkP∞(T ∗(c∗) ≥ k)

= 1 +
∑∞

k=1 E∞((Yk − c∗ρk+1 + c∗ρk+1)I (T ∗(c∗) ≥ k + 1))∑∞
k=1 ρkP∞(T ∗(c∗) ≥ k)

≤ 1 +
∑∞

k=1 c∗ρk+1P∞(T ∗(c∗) ≥ k + 1)∑∞
k=1 ρkP∞(T ∗(c∗) ≥ k)

= 1 + c∗
(

1 − ρ1∑∞
k=1 ρkP∞(T ∗(c∗) ≥ k)

)
≤ 1 + c∗(1 − ρ1).

This is (19). Thus, if E((T − τ + 1)|T ≥ τ) > 1 + c∗, then

E
(
(T − τ + 1)|T ≥ τ

)
> 1 + c∗ ≥ E

((
T ∗(

c∗) − τ + 1
)|T ∗(

c∗) ≥ τ
)
.
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If E((T − τ + 1)|T ≥ τ) < 1 + c∗, then E((T − τ + 1)|T ≥ τ)(1 − x)+ (1 + c∗)x
is increasing in x = P(T < τ) and, therefore,

(1 − α)E
(
(T − τ + 1)|T ≥ τ

) + (
1 + c∗)

α

≥ E
(
(T − τ + 1)|T ≥ τ

)(
1 − P(T < τ)

) + (
1 + c∗)

P(T < τ)

≥ (1 − α)E
((

T ∗(
c∗) − τ + 1

)|T ∗(
c∗) ≥ τ

) + (
1 + c∗)

α

since x = P(T < τ) ≤ α. This means that

E
(
(T − τ + 1)|T ≥ τ

) ≥ E
((

T ∗(
c∗) − τ + 1

)|T ∗(
c∗) ≥ τ

)
.

Thus, (18) holds for D̂α .
In order to prove that (18) also holds for Dα , we define a set of stopping times

as

Dα(M) = {
TM = T ∧ M : Pτ (T < τ) ≤ α

}
for every positive integer M > 0. Obviously, Dα(M) ⊂ D̂α ⊂ Dα and
limM→∞ Dα(M) = Dα . This means that (18) holds for Dα .

Let cn = c1 is a positive constant for all n ≥ 1. In order to estimate c1 we will
check that T ∗ = T ∗(c∗) satisfies the condition of Lemma 2.

Note that |Yn − Yn−1 − ρn| ≤ (	n + 1)(Yn−1 + ρn), I (T ∗ ≥ n) ∈ Fn−1 and
E∞(	n|Fn−1) = 1. We have

E∞
(∣∣∣∣∣YT ∗ −

T ∗∑
k=1

ρk

∣∣∣∣∣
)

≤ E∞
(

T ∗∑
n=1

|Yn − Yn−1 − ρn|
)

≤ E∞
(

T ∗∑
n=1

(	n + 1)(Yn−1 + ρn)

)

=
∞∑

n=1

E∞
(
(	n + 1)(Yn−1 + ρn)I

(
T ∗ ≥ n

))

= E∞
( ∞∑

n=1

I
(
T ∗ ≥ n

)
E∞

(
(	n + 1)(Yn−1 + ρn)|Fn−1

))

= 2E∞
( ∞∑

n=1

(Yn−1 + ρn)I
(
T ∗ ≥ n

))

≤ 2(c1 + 1)

∞∑
n=1

ρnP∞
(
T ∗ ≥ n

)
< ∞,
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where the last inequality comes from Yn−1I (T ∗ ≥ n) ≤ c1ρnI (T ∗ ≥ n). On the
other hand,

lim
n→∞ E∞

(∣∣∣∣∣Yn −
n∑

k=1

ρk

∣∣∣∣∣, T ∗ > n

)

≤ lim
n→∞ E∞

(
T ∗∑
k=1

(	k + 1)(Yk−1 + ρk), T
∗ > n

)
= 0.

This means that condition (14) of Lemma 2 holds. By the definition of T ∗, we have
c1ρ

∗
T > YT ∗−1 and YT ∗ ≥ c1ρT ∗+1. From Lemma 2, it follows that

1 − α

E∞(ρT ∗)
− 1 = E∞(YT ∗−1)

E∞(ρT ∗)
< c1 ≤ E∞(YT ∗)

E∞(ρT ∗+1)
= 1 − α

E∞(ρT ∗+1)
. �

REMARK 1. When the observation processes {Xn,n ≥ 0} are mutually inde-
pendent, we know that {Ỹm,m ≥ 0} is a Markov process. In this case, the positive
random variables {cn} become a series of positive numbers which can be written
by

cn = c + ρn+2

ρn+1
E∞

(
I (Bn+1,n+1)[cn+1 − Ỹn+1]|Ỹn = cn

)
= c + E∞

( ∞∑
m=n+1

ρm+1

ρn+1
I (Bm,n+1)[c − Ỹm]

∣∣∣Ỹn = cn

)
.

In fact, Ỹn ≥ c+ ρn+2
ρn+1

E∞(I (Bn+1,n+1)[cn+1 − Ỹn+1]|Ỹn) if and only if Ỹn ≥ cn for
n ≥ 1.

Though it is very difficult to find the exact value of c∗ and cn(c
∗) in Theorem 1,

as it depends on α, pv0(·, ·), pv1(·, ·) and {ρk}, one may estimate its upper and
lower bounds by calculating the two numbers E∞(ρT ∗) and E∞(ρT ∗+1). In fact,
we can obtain an approximate value c̃∗ of c∗ by numerically calculating the expec-
tation E∞(

∑T ∗(c̃∗)
k=1 ρk) such that 1 − α = P(T ∗(c̃∗) ≥ τ) = E∞(

∑T ∗(c̃∗)
k=1 ρk) for a

given α = P(T ∗(c̃∗) < τ). Especially, when the observation processes {Xn,n ≥ 0}
are mutually independent and ρk = (1 − ρ)ρk−1, k ≥ 1, we know that {Ỹn, n ≥ 1}
is a time homogeneous Markov process. Hence, cn = c1 is a constant and

c1 = cn = c + ρE∞
(
I (Bn+1,n+1)[cn+1 − Ỹn+1]|Ỹn = cn

)
= c + E∞

( ∞∑
m=1

ρmI (Bm+1,2)[c − Ỹm+1]
∣∣∣Ỹ1 = c1

)

for all n ≥ 1. Note that 1 − α = 1 − E∞((1 − ρ)T
∗
) and

E∞(ρT ∗+1) =
∞∑

k=1

ρ(1 − ρ)kP∞
(
T ∗ = k

) = ρα, E∞(ρT ∗) = ρα

1 − ρ
.
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It follows from Theorem 1 that

1 − α

E∞(ρT ∗)
− 1 = 1 − α − ρ

ρα
< c1 ≤ 1 − α

ρα
.

For example, let α = 0.05, ρ = 0.7, α = 0.1, ρ = 0.6 and α = 0.2, ρ = 0.5, we can
obtain the estimations c′

1, c
′′
1 and c′′′

1 , respectively, in the following:

1 − 0.05 − 0.7

0.05 × 0.7
≈ 7.14 < c′

1 < 27.14 ≈ 1 − 0.05

0.05 × 0.7
,

1 − 0.1 − 0.6

0.1 × 0.6
= 5 < c′′

1 < 15 = 1 − 0.1

0.1 × 0.6
,

1 − 0.2 − 0.5

0.2 × 0.5
= 3 < c′′′

1 < 8 = 1 − 0.2

0.2 × 0.5
.

On the other hand, let pv0(·) and pv1(x) be two densities of normal distributions
N(0,1) and N(1,1), respectively. We can obtain the numerical simulation values
c′

1 ≈ 10.885, c′′
1 ≈ 6.301 and c′′′

1 ≈ 3.352 by running 106 repetitions.

Now we consider the optimal test with the restrictive condition E∞(T ) ≥ γ > 1.
Consider the loss random variable of detection, �n, at time n in the following:

(26) �n =
n∑

k=1

Yk−1 + 1 + c

(
1 −

n∑
k=1

ρk

)
− bn,

where c, b are two nonnegative constants satisfying c + b > 0. Note that �n may
be negative. By Lemma 1, we have

E∞(�T )

= E∞
(

T∑
k=1

[Yk−1 + ρk]
)

+ (c + 1)

[
1 − E∞

(
T∑

k=1

ρk

)]
− bE∞(T )

(27)

=
∞∑

k=1

ρkEk(T − k + 1)+ + (c + 1)

[
1 −

∞∑
k=1

ρkP∞(T ≥ k)

]
− bE∞(T )

= E(T − τ + 1|T ≥ τ)P(T ≥ τ) + (c + 1)P(T < τ) − bE∞(T ).

We present a test:

(28) Tγ (c, b) = min
{
n ≥ 1 : Yn ≥ cn(c, b)ρn+1 + b

}
,

where {cn(c, b), n ≥ 1} is a series of positive random variables satisfying cn(c, b) ∈
Fn. Obviously, Tγ (c,0) = T ∗(c) when b = 0.

THEOREM 2. Let ρk > 0 for all k ≥ 1 and E∞(Tγ (c, b0)) < ∞ for c > 0 and
some number b0 ≥ 0. Then there exist two numbers b∗, c∗ and a series of positive
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random variables cn(c
∗, b∗) such that E∞(Tγ (c∗, b∗)) = γ , b∗ ≤ ρ1 min{c∗/(γ −

1), b0,1},
cn

(
c∗, b∗) = c∗ + b∗/ρn+1

+ E∞
( ∞∑

m=n+1

ρm+1

ρn+1
I (Bm,n+1)

[
c∗ + b∗/ρm+1 − Ỹm

]∣∣∣Fn

)

for n ≥ 1, and Tγ (c∗, b∗) is optimal in the following sense:

(29) inf
T ∈Dγ

JS(T ) = JS

(
Tγ

(
c∗, b∗))

,

where

Dγ = {
T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≤ α∗}

,

Bm,n+1 = {Ỹk ≤ ck(c
∗, b∗) + b∗/ρn+1, n + 1 ≤ k ≤ m} and α∗ = P(Tγ (c∗, b∗) <

τ). Moreover,

(30) JS

(
Tγ

(
c∗, b∗)) ≤ 1 + c∗(1 − ρ1) + b∗(γ − 1).

PROOF. It needs only to be proved that (29) holds for the following subset D̂γ

of Dγ :

D̂γ = {
T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≤ α∗;E∞

(|�T |) < ∞}
.

By the same way of proving Theorem 1, we can show that

(31) E∞(�T ) ≥ E∞(�Tγ (c,b))

for any finite test T and E∞(|�T |) < ∞.
On the other hand, we know that E∞(Tγ (c, b)) is continuous and strictly in-

creasing in c and b with E∞(Tγ (0,0)) = 1 and

E∞
(
Tγ (c, b)

) ↗ ∞
as c ↗ ∞ for every fixed b ≥ 0. This means that for every small b∗ ≤ b0, there
exists a unique positive number c∗ > 0 such that

E∞
(
Tγ

(
c∗, b∗)) = γ.

Obviously, the number c∗ = c∗(b∗) is monotonically decreasing in b∗. Hence, we
can take a small b∗ such that b∗ ≤ ρ1 min{c∗/(γ − 1), b0,1} and, therefore, b∗ ≤
ρ1 ≤ 1 − α∗.

Let T ∗ = Tγ (c∗, b∗). It follows from (26), (27) and (31) that

E(T − τ + 1|T ≥ τ)P(T ≥ τ) + (
1 + c∗)

P(T < τ) − bE∞(T )

≥ E
(
T ∗ − τ + 1|T ∗ ≥ τ

)
P

(
T ∗ ≥ τ

) + (
c∗ + 1

)
P

(
T ∗ < τ

) − bγ
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and, therefore,

E(T − τ + 1|T ≥ τ)P(T ≥ τ) + (
1 + c∗)

P(T < τ)
(32)

≥ E
(
T ∗ − τ + 1|T ∗ ≥ τ

)
P

(
T ∗ ≥ τ

) + (
c∗ + 1

)
P

(
T ∗ < τ

)
since E∞(T ) ≥ γ .

Furthermore,

E
(
T ∗ − τ + 1|T ∗ ≥ τ

) = 1 +
∑∞

k=1 E∞(YkI (T ∗ ≥ k + 1))∑∞
k=1 ρkP∞(T ∗ ≥ k)

≤ 1 +
∑∞

k=1(c
∗ρk+1 + b∗)P∞(T ∗ ≥ k + 1)∑∞

k=1 ρkP∞(T ∗ ≥ k)

= 1 + c∗ − c∗ρ1 − b∗(γ − 1)∑∞
k=1 ρkP∞(T ∗ ≥ k)

≤ 1 + c∗ − (
c∗ρ1 − b∗(γ − 1)

)
.

This is (30). If E(T − τ + 1|T ≥ τ) > 1 + c∗, then

E(T − τ + 1|T ≥ τ) > 1 + c∗ ≥ E
(
T ∗ − τ + 1|T ∗ ≥ τ

)
.

Let E(T − τ + 1|T ≥ τ) ≤ 1 + c∗. Since

E(T − τ + 1|T ≥ τ)(1 − x) + (
1 + c∗)

x

is monotonically increasing in x and P(T < τ) ≤ P(T ∗ < τ), it follows from (32)
that

E(T − τ + 1|T ≥ τ)P
(
T ∗ ≥ τ

) + (
1 + c∗)

P(T ∗ < τ)

≥ E(T − τ + 1|T ≥ τ)P(T ≥ τ) + (
1 + c∗)

P(T < τ)

≥ E
(
T ∗ − τ + 1|T ∗ ≥ τ

)
P

(
T ∗ ≥ τ

) + (
c∗ + 1

)
P

(
T ∗ < τ

)
and, therefore,

E(T − τ + 1|T ≥ τ) ≥ E
(
T ∗ − τ + 1|T ∗ ≥ τ

)
.

Thus, (29) is true. �

By using Theorem 2, we can obtain the following corollary.

COROLLARY 1. Let β = {βk, k ≥ 1} satisfying 0 < βk+1 ≤ βk, k
√

βk+1 ≥
(k − 1)

√
βk for k ≥ 1 and

∑∞
k=1 βk = ∞. Then the following stopping time:

Tγ (β) = min

{
n ≥ 1 :

n∑
k=1

βk

βn+1

n∏
i=k

pv1(Xi−1,Xi)

pv0(Xi−1,Xi)
≥ cβ(γ )

}
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is optimal in the sense that∑∞
k=1 βkEk(Tγ (β) − k + 1)+∑∞

k=1 βkPk(Tγ (β) ≥ k)
= inf

T ∈�γ

∑∞
k=1 βkEk(T − k + 1)+∑∞

k=1 βkPk(T ≥ k)

or equivalently,∑∞
k=1 βkEk(Tγ (β) − k)+∑∞
k=1 βkPk(Tγ (β) ≥ k)

= inf
T ∈�γ

∑∞
k=1 βkEk(T − k)+∑∞
k=1 βkPk(T ≥ k)

,

where cβ(γ ) is such that E∞(Tγ (β)) = γ and �γ = {T : E∞(T ) ≥ γ }.

PROOF. Let ρk = ρ(a)(a(k − 1) + β
−1/2
k )−2 for k ≥ 1, where ρ(a) =

[∑∞
k=1(a(k − 1) + β

−1/2
k )−2]−1 and a > 0. Note that βk ≥ βk+1 > 0 for k ≥ 1

and
∑∞

k=1 βk = ∞. It follows that ρk ≥ ρk+1 > 0 for k ≥ 1, lima→0 ρ(a) = 0 and,
therefore, lima→0 ρk = 0 for every k ≥ 1.

Taking b∗ = 0 in Theorem 2, we have

inf
T ∈Dγ

JS(T ) = JS

(
Tγ

(
c∗,0

))
,

where E∞(Tγ (c∗,0)) = γ and c∗ = ca depends on a. Note that

Yn/ρn+1 =
n∑

t=1

ρt

ρn+1

n∏
k=t

	k

for every n ≥ 1, where 	k = pv1(Xk−1,Xk)/pv0(Xk−1,Xk), and ρt/ρn+1 →
βt/βn+1 as a → 0. It follows that

lim
α→0

Yn/ρn+1 =
n∑

t=1

βt

βn+1

n∏
k=t

	k.

Moreover,

ρt

ρn+1
= (an + β

−1/2
n+1 )2

(a(t − 1) + β
−1/2
t )2

is monotonically increasing in a for t < n + 1 since k
√

βk+1 ≥ (k − 1)
√

βk

for k ≥ 1 and, therefore, c∗ = ca is also monotonically increasing in a for
E∞(Tγ (c∗,0)) = γ . Thus, lima→0 Tγ (c∗,0) = Tγ (β) and lima→0 ca = cβ(γ ).

On the other hand, from P(T < τ) ≤ α∗ it follows that

P(T ≥ τ) =
∞∑

k=1

ρkP∞(T ≥ k)

≥ 1 − α∗ =
∞∑

k=1

ρkP∞
(
Tγ

(
c∗,0

) ≥ k
)
.
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Note that ρk → 0 and ρk/ρ(a) → βk as a → 0. Hence, α∗ → 1 as a → 0,

lim
a→0

Dγ = lim
a→0

{
T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≤ α∗} = �γ

and

lim
a→0

JS(T ) = lim
a→0

∑∞
k=1 ρkEk(T − k + 1)+∑∞

k=1 ρkP∞(T ≥ k)

=
∑∞

k=1 βkEk(T − k + 1)+∑∞
k=1 βkPk(T ≥ k)

.

Thus, we have ∑∞
k=1 βkEk(Tγ (β) − k + 1)+∑∞

k=1 βkPk(Tγ (β) ≥ k)

= lim
a→0

JS

(
Tγ

(
c∗,0

)) = lim
a→0

inf
T ∈Dγ

JS(T )

= inf
T ∈�γ

∑∞
k=1 βkEk(T − k + 1)+∑∞

k=1 βkPk(T ≥ k)
.

Furthermore, by
∑∞

k=1 βkEk(T − k + 1)+ − ∑∞
k=1 βkEk(T − k)+ =∑∞

k=1 βkPk(T ≥ k), we have also∑∞
k=1 βkEk(Tγ (β) − k)+∑∞
k=1 βkPk(Tγ (β) ≥ k)

= inf
T ∈�γ

∑∞
k=1 βkEk(T − k)+∑∞
k=1 βkPk(T ≥ k)

. �

REMARK 2. Note that
∑∞

k=1 Pk(T ≥ k) = E∞(T ). When the observations
Xi, i ≥ 0, are mutually independent and βk ≡ 1 for k ≥ 1, we have Tγ (β) = Tγ

and ∑∞
k=1 Ek(Tγ (β) − k)+

γ
= inf

T ∈�γ

∑∞
k=1 Ek(T − k)+

E∞(T )

≤ inf
T ∈�γ

∑∞
k=1 Ek(T − k)+

γ

≤
∑∞

k=1 Ek(Tγ (β) − k)+

γ

and, therefore,
∞∑

k=1

Ek

(
Tγ (β) − k

)+ = inf
T ∈�γ

∞∑
k=1

Ek(T − k)+.

Thus, the result in [10] is only a special case of the corollary. If β1 = 1 + r , βk ≡ 1
for k ≥ 2 and the observations Xi, i ≥ 0, are mutually independent, then, by the
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corollary, Tγ (β) = TSR(cγ ) and

rE∞(Tγ (β)) + ∑∞
k=1 Ek(Tγ (β) − k + 1)+

r + E∞(Tγ (β))

= inf
T ∈�γ

rE∞(T ) + ∑∞
k=1 Ek(T − k + 1)+

r + E∞(T )
,

where TSR(cγ ) is the Shiryaev–Roberts test defined in (8) and r ≥ 0. This is just
the result of Lemma 1 proved by Polunchenko and Tartakovsky [9].

Next, we will consider the optimal test for the case “P(T < τ) ≥ α∗” which is
just the opposite of “P(T < τ) ≤ α∗” in Dγ .

Consider the following loss random variables of detection:

(33) ηn =
n∑

k=1

Yk−1 + 1 − cn,

where c > 0 is a constant. Note that ηn may be negative.
By Lemma 1, we have

E∞(ηT ) = E∞
(

T∑
k=1

(Yk−1 + ρk) + 1

)
− E∞

(
T∑

k=1

ρk

)
− cE∞(T )

(34)
= E(T − τ + 1|T ≥ τ)P(T ≥ τ) + P(T < τ) − cE∞(T ).

Let

(35) Tη(c) = min
{
n ≥ 1 : Yn ≥ cn(c)

}
for c > 0, where {cn(c), n ≥ 1} is a series of positive random variables satisfying
cn(c) ∈ Fn.

THEOREM 3. Let γ > 1 and E∞(Tη(c0) < ∞ for some number c0 > 0. There
exists a positive number c∗ and a series of positive random variables cn(c

∗) such
that E∞(Tη(c

∗)) = γ and

cn

(
c∗) = c∗/ρn+1

+ E∞
( ∞∑

m=n+1

ρm+1

ρn+1
I (Bm,n+1)

[
c∗/ρm+1 − Ỹm

]∣∣∣Fn

)
,

inf
T ∈D′

γ

JS(T ) = JS

(
Tη

(
c∗))

,(36)

where

D′
γ = {

T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≥ α∗}
and α∗ = P(Tη(c

∗) < τ).
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PROOF. It needs only to be proved that (36) holds for the following subset of
D′

α :

D̂′′
γ = {

T ≥ 1 : E∞(T ) ≥ γ ;P(T < τ) ≥ α∗;E∞
(|ηT |) < ∞}

.

Let η̃n = −η̃n for n ≥ 1. By the same way of proving Theorem 1, we can prove
E∞(ηT ) ≥ E∞(ηTη) for all T satisfying E∞(|ηT |) < ∞.

On the other hand, we know that E∞(Tη(c)) is continuous and strictly increas-
ing in c with E∞(Tη(0)) = 1 and E∞(Tη(c)) ↗ ∞ as c ↗ ∞ since E∞(Tη(c0) <

∞ for some number c0 > 0. This means that there exists a unique positive number
c∗ such that E∞(Tη(c

∗)) = γ . Note that E∞(ηT ) ≥ E∞(ηTη(c)). It follows from
(34) that

E(T − τ + 1|T ≥ τ)P(T ≥ τ) + P(T < τ) − c∗E∞(T )

≥ E
(
Tη

(
c∗) − τ + 1|Tη

(
c∗) ≥ τ

)
P

(
Tη

(
c∗) ≥ τ

) + P
(
Tη

(
c∗)

< τ
) − c∗γ.

Moreover, E(T − τ + 1|T ≥ τ) ≥ 1 and, therefore,(
E(T − τ + 1|T ≥ τ) − 1

)
P

(
Tη

(
c∗) ≥ τ

) + 1 − c∗E∞(T )

≥ (
E(T − τ + 1|T ≥ τ) − 1

)
P(T ≥ τ) + 1 − c∗E∞(T )

= E(T − τ + 1|T ≥ τ)P(T ≥ τ) + P(T < τ) − c∗E∞(T )

≥ E
(
Tη

(
c∗) − τ + 1|Tη

(
c∗) ≥ τ

)
P

(
Tη

(
c∗) ≥ τ

) + P
(
Tη

(
c∗)

< τ
) − c∗γ

= (
E

(
Tη

(
c∗) − τ + 1|Tη

(
c∗) ≥ τ

) − 1
)
P

(
Tη

(
c∗) ≥ τ

) + 1 − c∗γ

for P(Tη(c
∗) ≥ τ) ≥ P(T ≥ τ). Thus,

E(T − τ + 1|T ≥ τ) ≥ E
(
Tη

(
c∗) − τ + 1|Tη

(
c∗) ≥ τ

)
for all T ∈ D′′

γ . �

3. Optimal tests for Bayesian change-point detection with finite possible
change-points. In this section, we assume that the change-point τ is at most
finite, that is, τ ≤ N < ∞. Its distribution {ρk, k ≥ 1} satisfies

∑N
k=1 ρk = 1 and

ρk = 0 for k ≥ N + 1. We can think of the distribution of the change-point τ as
being finite. Here, the integer N can be sufficiently large. For example, N = 108

is large enough in practical application.
Consider a test T which is unbounded, that is, P(T > M) > 0 for any large

M > 0.
Since pv1(x, ·)/pv0(x, ·) has no atoms with respect to P∞ for all x ∈ E, it fol-

lows that

E∞
(
I (	1 < 1)|X0 = x

)
< 1, E∞

(
I (	1 < 1)|X0 = x

)
< 1

for all x ∈ E.
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For example, let pv1(x, y) = (
√

2πσ)−1e−(y−x−μ1)
2/2σ 2

and pv0(x, y) =
(
√

2πσ)−1e−(y−x)2/2σ 2
. Then 	1 = eμ1(X1−X0−μ1/2)/σ 2

, where μ1 > 0. Then

E∞
(
I (	1 < 1)|X0 = x

) = E∞
(
I (X1 − x − μ1/2 < 0)|X0 = x

)
=

∫ μ1/2σ

−∞
(
√

2π)−1e−u2/2 du < 1,

E∞
(
I (	1 ≥ 1)|X0 = x

) =
∫ +∞
μ1/2σ

(
√

2π)−1e−u2/2 du < 1

for all x. Let

A = sup
x∈E

E∞
(
I (	1 < 1)|X0 = x

)
, B = sup

x∈E

E∞
(
I (	1 ≥ 1)|X0 = x

)
< 1

C = sup
x∈E

E∞
([ln	1]2|X0 = x

)
.

Under the conditions that A,B < 1 and C < ∞. Theorem 4 below shows that if
only the restrictive condition E∞(T ) ≥ γ exists, then

inf
T :E∞(T )≥γ

JS(T ) = 1

for every finite prior distribution {ρk,1 ≤ k ≤ N} of the change-point τ , where the
number γ > 1 and N < ∞.

THEOREM 4. Let ρ1 > 0,
∑N

k=1 ρk = 1, A,B < 1 and C < ∞. Then there is
a series of tests (stopping times) {TN(c), c > 0} such that E∞(TN(c)) ≥ γ ,

(37) lim
c→0

JS

(
TN(c)

) = 1, lim
c→0

E∞
(
T 2

N(c)
) = ∞,

and, therefore, infT :E∞(T )≥γ JS(T ) = 1 for every finite prior distribution {ρk,1 ≤
k ≤ N} of change-point τ .

PROOF. The proof of Theorem 4 is shown in supplementary materials [3]. �

Now we consider the probability of false alarm P∞(T < τ). Since

P∞(T < τ) =
N∑

k=1

ρkP∞(T < k) = 1 − ρ1 −
N∑

k=2

ρkP∞(T ≥ k) ≤ 1 − ρ1,

it follows that P∞(T < τ) < 1 − ρ1 if and only if E∞(T ) = 1 + ∑N
k=2 P∞(T ≥

k) > 1 for ρk > 0,2 ≤ k ≤ N . Thus, we have the following corollary.

COROLLARY 2. Assume that the conditions of Theorem 4 hold. Then

inf{T :P∞(T <τ)<1−ρ1}
JS(T ) = 1

for every finite positive prior distribution {ρk,1 ≤ k ≤ N} of the change-point τ .
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TABLE 1
JS(T ) with ARL0 ≈ 1000

Shift in μ 0.0 0.1 0.25 0.5 0.75 1.0 1.25 1.5 2.00 3.00

r = 0.000166 1006.95 4.46 2.72 1.95 1.63 1.44 1.31 1.22 1.09 1.01
c′ = −0.6 (164,713.92) (21.40) (5.69) (2.59) (1.83) (1.49) (1.32) (1.20) (0.97) (0.83)
r = 0.000344 1002.15 6.47 3.48 2.39 1.92 1.64 1.45 1.34 1.18 1.03
c′ = −0.2 (82,057.39) (26.64) (6.89) (2.82) (1.84) (1.50) (1.30) (1.12) (0.90) (0.74)
r = 0.000463 995.04 7.65 3.91 2.63 2.09 1.77 1.55 1.40 1.22 1.06
c′ = 0.0 (62,621.72) (28.80) (7.38) (3.06) (1.93) (1.49) (1.25) (1.10) (0.88) (0.65)
r = 0.000744 1003.42 10.37 4.94 3.06 2.44 2.04 1.77 1.58 1.33 1.11
c′ = 0.4 (40,856.77) (32.86) (8.42) (3.23) (2.06) (1.52) (1.25) (1.08) (0.85) (0.58)
r = 0.001078 1002.66 13.34 6.09 3.60 2.74 2.32 2.01 1.78 1.47 1.17
c′ = 0.8 (28,285.51) (36.53) (9.47) (3.58) (2.17) (1.60) (1.25) (1.09) (0.83) (0.56)
r = 0.001813 1003.58 19.82 8.72 4.87 3.55 2.87 2.46 2.20 1.81 1.36
c′ = 1.6 (17,225.21) (43.10) (11.39) (4.20) (2.43) (1.67) (1.33) (1.09) (0.83) (0.57)
r = 0.003347 1004.85 33.96 14.74 7.80 5.50 4.34 3.60 3.10 2.51 1.90
c′ = 3.2 (9312.11) (54.93) (14.56) (5.32) (2.98) (2.06) (1.54) (1.25) (0.87) (0.60)
r = 0.0065 996.64 63.01 27.12 14.13 9.74 7.36 6.04 5.21 4.08 2.89
c′ = 6.4 (4786.32) (73.22) (19.71) (7.19) (4.02) (2.68) (1.99) (1.57) (1.09) (0.68)
r = 0.012773 998.26 117.17 51.03 26.45 18.16 13.56 11.03 9.44 6.97 4.99
c′ = 12.80000 (2406.36) (94.81) (26.64) (9.85) (5.48) (3.61) (2.65) (2.07) (1.43) (0.84)
r = 0.025781 1000.47 208.35 95.08 49.54 34.82 25.54 20.77 18.14 13.03 9.34
c′ = 25.60000 (1201.08) (113.21) (34.89) (13.29) (7.51) (4.98) (3.61) (2.83) (1.90) (1.08)
r = 0.032120 999.09 242.32 113.01 60.29 41.22 32.16 24.80 20.92 16.99 10.72
c′ = 31.50000 (980.29) (116.60) (37.35) (14.48) (8.17) (5.42) (4.06) (3.09) (2.14) (1.19)

CUSUM 1001.83 437.25 147.34 38.21 16.93 10.14 7.21 5.60 3.90 2.51
c = 5.075, δ = 1.0 (988.56) (434.01) (141.95) (31.89) (11.28) (5.49) (3.34) (2.27) (1.32) (0.68)
EWMA 998.35 349.33 104.92 30.94 15.61 10.22 7.58 6.04 4.35 2.86
c = 0.644, λ = 0.1 (984.87) (339.44) (95.54) (22.50) (8.96) (4.87) (3.13) (2.24) (1.39) (0.78)

4. Numerical simulations. As an application of Theorem 4, we consider the
test T5(c) with ρk = 1/5,1 ≤ k ≤ 5. It follows from Theorem 4 that

JS

(
T5(c)

) = 1 + o(1)

and E∞(T 2
5 (c)) is sufficiently large for a small number c.

In the following example, we compare the detection performance of the three
tests: T5(c), the CUSUM test TC(c) and EWMA test TE(c). Table 1 corresponding
to the example shows the simulation results of JS(·) of the tests T5(c), TC(c) and
TE(c) with ARL0 ≈ 1000 for mean shifts from μ = 0 to μ = 0.1, 0.25, 0.5, 0.75,
1, 1.25, 1.5, 2 and 3, where ARL0(T ) = E∞(T ),

JS(T ) =
∑5

k=1 Ek,μ(T − k + 1)+∑5
k=1 P∞(T ≥ k)
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and Ek,μ(T − k + 1)+ denotes the out-control average run length (ARL) from 0
to μ at the change-point k. The numerical simulation results of ARL0 and JS(·)
in the table were obtained based on 107 repetitions. The paper [2] compares the
ARLs of the four tests: CUSUM, EWMA, GEWMA and GLR in detecting mean
shifts when τ = 1 or equally, ρ1 = 1.

EXAMPLE 1. Let the observation processes {Xn,n ≥ 0} be mutually indepen-
dent. Let X0 ∼ N(0,1) and after the change point τ , Xk ∼ N(μ,1) for k ≥ τ .
Hence, Zk = μ(Xk − μ/2). In order to compare the detection performance of
T5(c), TC(c) and TE(c), we write their definitions in the following:

T5(c) =

⎧⎪⎪⎨⎪⎪⎩
min

{
1 ≤ n ≤ 5 : Z′

n ≥ c′ + ln 5
}
,

min

{
n ≥ 6 : Z′

5 +
n∑

k=6

(Zk − μ0) ≥ c′ + ln 5 − (n − 5)r(c)

}
,

where c = ec′
and

Z′
1 = Z1 − μ0, Z′

2 = Z2 − μ0 + ln
(
1 + eZ1

)
,

Z′
3 = Z3 − μ0 + ln

(
1 + eZ2 + eZ2+Z1

)
,

Z′
4 = Z4 − μ0 + ln

(
1 + eZ3 + eZ3+Z2 + eZ3+Z2+Z1

)
,

Z′
5 = Z5 − μ0 + ln

(
1 + eZ4 + eZ4+Z3 + eZ4+Z3+Z2 + eZ4+Z3+Z2+Z1

)
.

The popular upward-sided CUSUM test, TC , is defined as

TC(c) = inf

{
n : max

1≤k≤n

[
n∑

i=n−k+1

δ(Xi − δ/2)

]
≥ c

}
,

where c > 0 is a control limit and δ/2 > 0 is the reference value. Here, we take
δ = 1.

The EWMA is also a popularly used test which can be written by

TE(c) = inf
{
n ≥ 1 : En(λ) ≥ c

}
,

where λ is a weighting parameter (0 < λ ≤ 1), c > 0 is the control limit and
En(λ) = λXn + (1 − λ)En−1(λ) with E0(λ) = 0. Here, we take λ = 0.1.

The simulation results of JS(T5(c)), JS(TC(c)) and JS(TE(c)) are shown in
rows 1–11, the twelfth row and the last row, respectively. The values in parentheses
are the standard deviations of the simulation results of detection delay. We can see
from Table 1 that: (1) The larger the standard deviations of the in-control run length
(false alarm), the smaller the average detection delay JS(T5(c)) before detecting
the mean shifts. For example, the standard deviation in the first row is 164713.92
with ARL0 = 1006.95, but the average detection delay is only 4.46 for a small
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mean shift μ = 0.1. When the standard deviation is 980.55 with ARL0 = 999.09
(see thirteenth row), the average detection delay becomes 242.32 for μ = 0.1.
(2) T5(c) performs better than TC and TE for a small mean shift μ = 0.1 even if
they have the same standard deviations for μ = 0 (see the last three rows ). (3)
T5(c) performs better than TC and TE for all mean shifts μ when the standard
deviations of T5 for μ = 0 is greater than 9312.11 (see rows 1–7).

5. Conclusions. By introducing suitable loss random variables of detection,
we have derived four strictly optimal tests T ∗(c), T ′(c), Tγ (c, b) and Tη(c) for
Bayesian change-point detection not only for a general prior distribution of the
change-point but also for observations X0,X1,X2, . . . that form a Markov process
under the restrictive conditions that {P∞(T < τ) ≤ α}, {E∞(T ) ≥ γ,P(T < τ) ≤
α∗} and {E∞(T ) ≥ γ,P(T < τ) ≥ α∗}.

When the number of change-points τ is finite (N < ∞), that is, the prior distri-
bution {ρk,1 ≤ k ≤ N} of τ satisfies ρk = 0 for all k > N , we have constructed a
series of tests {TN(c) : c > 0} in Theorem 4 and proved that limc→0 JS(TN(c)) = 1
and limc→0 E∞(T 2

N(c)) = ∞ with E∞(TN(c)) ≥ γ > 1. Since JS(T ) ≥ 1 for ev-
ery test T , TN(c) can be considered as an asymptotically optimal test when c → 0.
This implies that

inf
T :E∞(T )≥γ

JS(T ) = 1

for a finite number of change-points τ .
It follows from Theorem 4 and the numerical simulations in Section 4 that the

smaller the value of JS(TN(c)), the larger the variance Var∞(TN(c)) for a given
finite false alarm rate E∞(TN(c)) ≥ γ . This also means that the larger the variance,
the greater the risk of false alarm. In order to reduce the risk or the variance, we
must consider a stronger restrictive condition {E∞(T ) ≥ γ,Var∞(T ) ≤ σ 2}. An
interesting problem would be to find a test TN(c∗) that is optimal in the sense that

inf
{T :E∞(T )≥γ,Var∞(T )≤σ 2}

JS(T ) = JS

(
TN

(
c∗))

with E∞(TN(c∗)) = γ and Var∞(TN(c∗)) = σ 2 when the number of change-
points τ is finite. Other problems such as how to calculate JS(TN(c∗)) and how to
estimate c∗ are also worth studying in the future.

Acknowledgments. The authors would like to thank the editor and anony-
mous referees for their many valuable comments that have resulted in signicant
improvements in the article.

SUPPLEMENTARY MATERIAL

Supplement A: Proofs of Theorem 4 of the paper “On the optimality of
Bayesian change-point detection” (DOI: 10.1214/16-AOS1479SUPP; .pdf). We

http://dx.doi.org/10.1214/16-AOS1479SUPP
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prove in the supplementary material that the optimal (minimal) average detection
delay is equal to 1 for any (possibly large) average run length to false alarm if
the number of possible change-points is finite for observations being a Markov
process.
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