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We study the problem of learning sparse structure changes between two
Markov networks P and Q. Rather than fitting two Markov networks sepa-
rately to two sets of data and figuring out their differences, a recent work pro-
posed to learn changes directly via estimating the ratio between two Markov
network models. In this paper, we give sufficient conditions for successful
change detection with respect to the sample size np,nq , the dimension of data
m and the number of changed edges d. When using an unbounded density ra-
tio model, we prove that the true sparse changes can be consistently identified

for np = �(d2 log m2+m
2 ) and nq = �(n2

p), with an exponentially decaying
upper-bound on learning error. Such sample complexity can be improved to

min(np,nq) = �(d2 log m2+m
2 ) when the boundedness of the density ratio

model is assumed. Our theoretical guarantee can be applied to a wide range
of discrete/continuous Markov networks.

1. Introduction. Learning changes in interactions between random variables
play an important role in many real-world applications. For example, genes may
regulate each other in different ways when external conditions are changed. The
number of daily flu-like symptom reports in nearby hospitals may become cor-
related when a major epidemic disease breaks out. EEG signals from different
regions of the brain may be synchronized/desynchronized when the patient is per-
forming different activities. Identifying such changes in interactions helps us ex-
pand our knowledge on these real-world phenomena.

In this paper, we consider the problem of learning changes between two undi-
rected graphical models. Such a model, also known as a Markov network (MN)
[7], expresses interactions via the conditional independence between random vari-
ables. The Hammersley–Clifford theorem [5] states that the joint distribution of
an MN can be factorized over subsets of interacted random variables and general
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MNs may have factors over arbitrary numbers of random variables. For simplicity,
we focus on a special case, namely pairwise MNs, whose joint distribution can be
factorized over only single or pairwise random variables.

The problem of learning structure of MN itself has been thoroughly investigated
in the last decade. The graphical lasso method [1, 4] learns a sparse precision (in-
verse covariance) matrix from data by using the �1-norm, while the neighborhood
regression methods [8, 11, 15] solve a nodewise lasso program to identify the
neighborhood of each single node.

One naive approach to learning changes in MNs is to apply these methods to
two MNs separately and compare the learned models. However, such a two-step
approach does not work well when the MNs themselves are dense (this can happen
even when the change in MNs is sparse). A recent study [28] adopts a neighbor-
hood selection procedure to learn sparse changes between Gaussian MNs via a
fused-lasso type regularizer [20]. However, no theoretical guarantee was given on
identifying changes. Furthermore, extension of the above mentioned methods to
general non-Gaussian MNs is hard due to the computational intractability of the
normalization term.

To cope with these problems, an novel algorithm has been proposed recently [9].
Its basic idea is to model the changes between two MNs P and Q as the ratio
between two MN density functions p(x) and q(x), and the ratio p(x)/q(x) is di-
rectly estimated in one-shot without estimating p(x) and q(x) themselves [19].
Since parameters in the density ratio model represent the parametric difference
between P and Q, sparsity constraints can be directly imposed for sparse change
learning. Thus, the density-ratio approach can work well even when each MN
is dense as long as the change is sparse. Furthermore, the normalization term
in the density-ratio approach can be approximately computed by the straightfor-
ward sample average, and thus there is no computational bottleneck in using non-
Gaussian MNs. Experimentally, the density-ratio approach was demonstrated to
perform well. However, its theoretical properties have not been explored yet.

The ability of recovering a sparsity pattern via a sparse learning algorithm has
been studied under the name of support consistency or sparsistency [23], that is,
the support of the estimated parameter converges to the true support. Previous
works for successful structure recovery are available for �1-regularized maximum
(pseudo-)likelihood estimators [15, 26]. However, density ratio estimator in [9]
brought us a new question: What is the sparsistency of identifying correct sparse
changes without learning individual MNs? Such a concern is very practical since
in applications such as learning changes in gene expression between stimuli condi-
tions, we only care about changes rather than individual structures before or after
changes. We illustrate such an example in the problem of gene regulatory networks
in Section 7.

In this paper, we theoretically investigate the success of the density-ratio ap-
proach and provide sufficient conditions for successful change detection with re-
spect to the number of samples np , nq , data dimension m and the number of
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changed edges d . More specifically, we prove that if np = �(d2 log m2+m
2 ) and

nq = �(n2
p), changes between two MNs can be consistently learned under mild

assumptions, regardless the sparsity of individual MNs. Such sample complexity

can be further improved to min(np,nq) = �(d2 log m2+m
2 ) when the boundedness

of the density ratio model is assumed. Technically, our contribution can be re-
garded as an extension of support consistency of lasso-type programs [23] to the
ratio of MNs. The convergence rate does not rely on the individual sparsity of
each MN, thus structures like hub-nodes can exist. Such hub structure is common
in many applications, such as gene expression data where one gene regulates many
other genes. Our theorem holds for the most general log-linear MN models, and
does not assume any special type of individual MNs (such as Gaussian or Ising).

Note that the theoretical results presented in this paper are fundamentally dif-
ferent from previous works on learning a “jumping MN” [6], where the focuses
are learning the partition boundaries between jumps, and the successful recovery
of graphical structure within each partition, rather than learning sparse changes
between partitions.

In previous works [15, 26], the (upper/lower) boundedness of the Fisher infor-
mation matrix, or log-partition function derivatives of a density model, are often
assumed. In this work, similar assumptions are imposed on the true density ratio
model. Moreover, we show that such assumptions have profound links with the
smoothness of our model, which implies the magnitude of change should not be
too drastic for keeping the density ratio model well behaved. These assumptions
are also automatically satisfied under some special cases.

The target of [9] coincides with another recently proposed method where a
differential network is learned directly using a different technique [29]. Without
learning a precision matrix for each MN, this approach estimates a differential
network utilizing a special equality obtained for Gaussian MNs. However, such an
objective function does not generalize to ordinary pairwise MNs. The theorems ob-
tained in this paper and the ones in [29] both rely on one similar assumption: The
changes are sparse. However, theorems in this paper manage to achieve the same
sample complexity of recovering the correct structure changes without explicitly
assuming Gaussianity over datasets.

This paper is organized as follows: First, we introduce the problem formulation
of learning changes between two MNs in Section 2. Second, we review the density
ratio estimation method proposed in [9]. Then, as the main focus of this paper, we
analyze the sufficient conditions for successful change detection, that is, the sup-
port consistency of such algorithm in Sections 3 and 4. Moreover, in Section 5, we
study the key assumptions in this paper, and discuss their consequences. Through
experiments in Section 6, we demonstrate the validity of our theorems and com-
pare the performance of the density ratio approach with a state of the art method.
Finally, in Section 7, we show the density ratio method successfully identifies key
changes in a gene network between two stimuli conditions.
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2. Direct change learning between Markov networks. In this section, we
review a direct structural change detection method [9].

2.1. Problem formulation. Consider two sets of independent samples drawn
separately from two probability distributions P and Q on R

m:{
x(i)

p

}np

i=1
i.i.d.∼ P and

{
x(i)

q

}nq

i=1
i.i.d.∼ Q.

We assume that P and Q belong to the family of Markov networks (MNs) consist-
ing of univariate and bivariate factors, that is, their respective probability densities
p and q are expressed as

p
(
x; θ (p)) = 1

Z(θ (p))
exp

(
m∑

u,v=1,u≥v

θ (p)
u,v

�ψu,v(xu, xv)

)
,(1)

where x = (x1, . . . , xm)� is the m-dimensional random variable, � denotes the
transpose, θ (p)

u,v is the b-dimensional parameter vector for the elements xu and xv ,
and

θ (p) = (
θ

(p)�
1,1 , . . . , θ

(p)�
m,1 , θ

(p)�
2,2 , . . . , θ

(p)�
m,2 , . . . , θ (p)�

m,m

)�
is the entire parameter vector. ψu,v(xu, xv) is a bivariate vector-valued basis func-
tion, and Z(θ (p)) is the normalization factor defined as

Z
(
θ (p)) =

∫
exp

(
m∑

u,v=1,u≥v

θ (p)
u,v

�ψu,v(xu, xv)

)
dx.

q(x; θ (q)) is defined in the same way. Using this notation, we can define two well-
known MNs as examples:

Ising-model (see, e.g., [7]). One of the earliest and widely known graphical
models is the Ising model, where ψu,v(xu, xv) = xuxv , and xu, xv ∈ {−1,1}. For
all pairs (u, v) ∈ E, where E is the edge set of the graphical model, θu,v is a scalar
and has a nonzero value.

Gaussian MN. Gaussian MN is a representative of continuous MN. ψu,v(xu,

xv) = xuxv and xu, xv ∈ R. For all pairs (u, v) ∈ E or u = v, θu,v is a scalar and
has a nonzero value.

The research problem now becomes clear: Given two parametric models
p(x; θ (p)) and q(x; θ (q)), we hope to discover changes in parameters from P

to Q, that is, θ (p) − θ (q).

2.2. Density ratio formulation for structural change detection. The key idea
in [9] is to consider the ratio of p and q:

p(x; θ (p))

q(x; θ (q))
∝ exp

(
m∑

u,v=1,u≥v

(
θ (p)

u,v − θ (q)
u,v

)�
ψu,v(xu, xv)

)
,



ON LEARNING SPARSE CHANGES OF MARKOV NETWORKS 963

where θ (p)
u,v −θ (q)

u,v encodes the difference between P and Q for factor ψu,v(xu, xv),
that is, θ (p)

u,v − θ (q)
u,v is zero if there is no change in the factor ψu,v(xu, xv).

Once the ratio of p and q is considered, each parameter θ (p)
u,v and θ (q)

u,v does not
have to be estimated, but only their difference θu,v = θ (p)

u,v − θ (q)
u,v is sufficient to

be estimated for change detection. Thus, in this density-ratio formulation, p and q

are no longer modeled separately, but it models the changes from p to q directly
as

r(x; θ) = 1

N(θ)
exp

(
m∑

u,v=1,u≥v

θ�
u,vψu,v(xu, xv)

)
,(2)

where N(θ) is the normalization term. This direct formulation also halves the num-
ber of parameters from both θ (p) and θ (q) to only θ .

The normalization term N(θ) is chosen to fulfill
∫

q(x)r(x; θ)dx = 1:

N(θ) =
∫

q(x) exp

(
m∑

u,v=1,u≥v

θ�
u,vψu,v(xu, xv)

)
dx,

which is the expectation over q(x). This expectation form of the normalization
term is another notable advantage of the density-ratio formulation because it can

be easily approximated by the sample average over {x(i)
q }nq

i=1
i.i.d.∼ q(x):

N̂
(
θ;x(1)

q , . . . ,x
(nq)
q

) := 1

nq

nq∑
i=1

exp

(
m∑

u,v=1,u≥v

θ�
u,vψu,v

(
x(i)
q,u, x

(i)
q,v

))
.

Thus, one can always use this empirical normalization term for any (non-Gaussian)
models p(x; θ (p)) and q(x; θ (q)).

An important observation can be made from this formulation: Although two
MNs may have sophisticated models individually, their changes might be “simple”
since many terms may be canceled while taking the ratio, that is, θ (p)

u,v − θ (q)
u,v might

be zero. Thus, if we use ψu,v(xuxv) = xuxv in our ratio model, it does not mean
we assume two individual MNs are Gaussian or Ising. It simply means we assume
the changes of interactions are linear while other nonlinear interactions remain
unchanged. This formulation allows us to consider highly complicated MNs as
long as their changes are “simple.” We will give a concrete example later.

Throughout the rest of the paper, we simplify the notation from ψu,v to ψ by
assuming the feature functions are the same for all pairs of random variables. How-
ever, our analysis still holds if this assumption is violated. Next, we study the den-
sity ratio formulation in the case of Gaussian MNs.

Gaussian MN. Given two m-dimensional zero-mean Gaussian MNs p(x;�(p))

and q(x;�(q)) parameterized by the precision matrix �(p) and �(q), respectively,
it is reasonable to parametrize a density ratio model

r(x;�) = 1

N(�)
exp

(
−1

2
x��x

)
,(3)
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where � is a symmetric real-valued matrix and

N(�) =
∫

q
(
x;�(q)) exp

(
−1

2
x��x

)
dx

= det(�(q))1/2

det(� + �(q))1/2
.

However, this formulation brings a problem: It still contains an unknown param-
eter �(q), meaning that we will have to learn �(q) first before we can model the
difference between two MNs. To solve this problem, one may use the empirical
version of the normalization term instead:

N̂(�) = 1

nq

nq∑
i=1

exp
(
−1

2
x(i)

q

�
�x(i)

q

)
.(4)

Interestingly, by using this model, the Gaussianity assumption has been loosened:
the normalization term is obtained by an empirical average and did not use the
analytical form offered by the Gaussianity of q(x;�(q)). Thus, it can actually
model the density ratio for any p and q as long as their changes are limited to the
quadratic components.

2.3. Direct density-ratio estimation. Density ratio estimation has been re-
cently introduced to the machine learning community and is proven to be useful
in a wide range of applications [19]. In [9], a density ratio estimator called the
Kullback–Leibler importance estimation procedure (KLIEP) for log-linear models
[18, 22] was employed in learning structural changes.

For a density ratio model r(x; θ), the KLIEP method minimizes the Kullback–
Leibler divergence from p(x) to p̂(x; θ) = q(x)r(x; θ):

KL[p‖p̂θ ] =
∫

p(x) log
p(x)

q(x)r(x; θ)
dx

(5)
= Const. −

∫
p(x) log r(x; θ)dx.

Note that the density-ratio model (2) automatically satisfies the nonnegativity and
normalization constraints:

r(x; θ) ≥ 0 and
∫

q(x)r(x; θ)dx = 1.

Here, we define

r̂(x; θ) = exp(
∑m

u,v=1,u≥v θ�
u,vψ(xq,u, xq,v))

N̂(θ;x(1)
q , . . . ,x

(nq)
q )
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as the empirical density ratio model. In practice, one minimizes the negative em-
pirical approximation of the rightmost term in equation (5):

�KLIEP(θ) = − 1

np

np∑
i=1

log r̂
(
x(i)

p ; θ)

= − 1

np

np∑
i=1

m∑
u,v=1,u≥v

θ�
u,vψ

(
x(i)
p,u, x

(i)
p,v

)

+ log

(
1

nq

nq∑
i=1

exp

(
m∑

u,v=1,u≥v

θ�
u,vψ

(
x(i)
q,u, x

(i)
q,v

)))
.

Because �KLIEP(θ) is convex with respect to θ , its global minimizer can be
numerically found by standard optimization techniques such as gradient descent
or quasi-Newton methods. The gradient of �KLIEP with respect to θu,v is given by

∇θu,v
�KLIEP(θ) = − 1

np

np∑
i=1

ψ
(
x(i)
p,u, x

(i)
p,v

)
(6)

+ 1

nq

nq∑
i=1

r̂
(
x(i); θ)

ψ
(
x

(i)
q,u′, x

(i)
q,v′

)
,

that can be computed in a straightforward manner for any feature vector ψ(xu, xv).
Importance sampling. From the gradient of KLIEP (6), we can observe a clear

link between KLIEP and Importance Sampling (see, e.g., [16]). The second term
on the right-hand side is an “importance sampled” approximation of Ep[ψ(xu, xv)]
using our density ratio model while the first term is a straightforward sample aver-
age. The population version of (6) equals zero if and only if p(x) = r̂(x; θ)q(x).
Therefore, one should aware that the assignment of p and q may affect the per-
formance of such an approximation as importance sampling can be easily affected
by the choice of the instrumental distribution (in this case, q). To reduce the es-
timation variance, q is usually picked as the one with a thicker tail [24]. This
observation reveals a fundamental asymmetry of KLIEP which will be discussed
in Section 8.

Gaussian MN. By using the density ratio model of (3) and the normalization
term (4), we can write the objective function and its gradient as

�KLIEP(�) = 1

2np

np∑
i=1

x(i)
p

�
�x(i)

p

(7)

+ log
1

nq

nq∑
i=1

exp
(
−1

2
x(i)

q

�
�x(i)

q

)
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and

∇�u,v�KLIEP(�)

= 1

2np

nq∑
i=1

x(i)
p,u�u,vx

(i)
p,v

−
1
nq

∑nq

i=1 exp(−1
2x

(i)
q

�
�x

(i)
q )x

(i)
q,u�u,vx

(i)
q,v

2
nq

∑nq

j=1 exp(−1
2x

(j)
q

�
�x

(j)
q )

.

2.4. Sparsity-inducing norm. To find a sparse change between P and Q, one
may regularize the KLIEP solution with a sparsity-inducing norm

∑
u≥v ‖θu,v‖,

that is, the group-lasso penalty [27] where we use ‖ · ‖ to denote the �2 norm.
Note that the separate density estimation approaches sparsify both θp and θq so
that the difference θp − θq is also sparsified. On the other hand, the density-ratio
approach [9] directly sparsifies the difference θp − θq , and thus intuitively this
method can still work well even if θp and θq are dense as long as θp − θq is
sparse.

Now we have reached our final objective:

θ̂ = argmin
θ

�KLIEP(θ) + λnp

m∑
u,v=1,u≥v

‖θu,v‖.(8)

3. Support consistency of direct sparse-change detection. The above
density-ratio approach to change detection was demonstrated to be promising in
empirical studies [9]. However, its theoretical properties have not yet been investi-
gated. In this section, we give theoretical guarantees of the convex program (8) on
sparse structural change learning. More specifically, we give sufficient conditions
for detecting correct changes in terms of the sample size np and nq , data dimen-
sions m and the number of changed edges d , followed by the discussion of the
insights we can gain from such theoretical analysis.

3.1. Notation. In the previous section, a sub-vector of θ indexed by (u, v)

corresponds to a specific edge of an MN. From now on, we use new indices with
respect to the “oracle” sparsity pattern of the true parameter for notational simplic-
ity. We introduce the “true parameter” notation θ∗,p(x) = q(x)r(x; θ∗), and the
pairwise index set E = {(u, v)|u ≥ v}. Two sets of sub-vector indices regarding
to θ∗ and E are defined as S = {t ′ ∈ E|‖θ∗

t ′‖ �= 0}, Sc = {t ′′ ∈ E|‖θ∗
t ′′‖ = 0}. We

rewrite the objective (8) as

θ̂ = argmin
θ

�KLIEP(θ) + λnp

∑
t ′∈S

‖θ t ′‖ + λnp

∑
t ′′∈Sc

‖θ t ′′‖.(9)
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Similarly, we can define Ŝ = {t ′ ∈ E|‖θ̂ t ′‖ �= 0} and Ŝc accordingly. Sample

Fisher information matrix I ∈ R
b(m2+m)

2 × b(m2+m)
2 denotes the Hessian of the log-

likelihood: I = ∇2�KLIEP(θ∗) = ∇2 log N̂(θ∗) where we simplify N̂(θ;x(1)
q , . . . ,

x
(nq)
q ) as N̂(θ). IAB is a sub-matrix of I indexed by two sets of indices A,B ⊆ E

on rows and columns.
We also concatenate ψ ∈ R

2 
→ R
b to get a “linearized” version of the feature

function f : Rm 
→R
b(m2+m)

2 as

f (x) = (
ψ�(x1, x1), . . . ,ψ

�(xm, x1),ψ
�(x2, x2), . . . ,

ψ�(xm, x2), . . . ,ψ
�(xm, xm)

)�
and f A(x) is the partial output of f (x) indexed by a set of indices A,A ⊆ E.

Gaussian MN. Here, we derive the Fisher information matrix for the Gaussian
MN ratio model. Define an auxiliary matrix H (�) ∈ R

nq×nq :

H (�) := 1

N̂2(�)

(
N̂(�)Inq − e�(�)e(�)

)
,

where e(�) := [exp(−1
2x

(1)
q

�
�x

(1)
q ), . . . , exp(−1

2x
(nq)
q

�
�x

(nq)
q )]. The Fisher in-

formation matrix I = ∇2
��KLIEP(�∗) of the likelihood function using the Gaussian

density ratio model described in (7) has the form

I(u,v),(u′,v′) :=
nq∑
i=1

nq∑
j=1

x(i)
q,ux

(i)
q,vx

(j)

q,u′x
(j)

q,v′Hi,j

(
�∗)

, I ∈ R
m2×m2

.

3.2. Assumptions. There is an important guideline for imposing assumptions
in this paper: We try not to put any explicit constraints on the types of individual
MN P or Q nor their structures, but only on the changes between them. This is
crucial since KLIEP is a direct and flexible change learning method and have no
restrictions on the types of individual MNs on which it works. Therefore, we hope
to obtain the most generic theorem for this method.

Similarly to previous researches on sparsity recovery analysis [15, 23], the first
two assumptions are made on the Fisher information matrix.

ASSUMPTION 1 (Dependency assumption). The sample Fisher information
submatrix ISS has bounded eigenvalues:

�min(ISS) ≥ λmin > 0,

with probability 1, where �min is the minimum-eigenvalue operator of a symmetric
matrix.
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This assumption on the submatrix of I is to ensure that the model is identifiable
(see B.1 in the supplementary article [10] for details). Note “λ” denotes either
eigenvalue or regularization parameter depending on its subscript.

ASSUMPTION 2 (Incoherence assumption).

max
t ′′∈Sc

∥∥It ′′SI−1
SS

∥∥
1 ≤ 1 − α, 0 < α ≤ 1

with probability 1, where ‖Y‖1 = ∑
i,j ‖Yi,j‖1.

This assumption says the unchanged edges cannot exert overly strong effects on
changed edges and is a common assumption can be found in previous literatures
on support consistency analysis such as [15, 23].

ASSUMPTION 3 (Smoothness assumption on likelihood ratio). The log-
likelihood ratio �KLIEP(θ) is smooth around its optimal value, that is, it has
bounded derivatives

max
δ,‖δ‖≤‖θ∗‖

∥∥∇2�KLIEP
(
θ∗ + δ

)∥∥
(10)

= max
δ,‖δ‖≤‖θ∗‖

∥∥∇2 log N̂
(
θ∗ + δ

)∥∥ ≤ λmax < ∞,

max
t∈S∪Sc

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∇θ t
∇2�KLIEP

(
θ∗ + δ

)∣∣∣∣∣∣
(11)

= max
t∈S∪Sc

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∇θ t
∇2 log N̂

(
θ∗ + δ

)∣∣∣∣∣∣ ≤ λ3,max < ∞,

with probability 1.

‖ · ‖, ||| · ||| are the spectral norms of a matrix and a tensor, respectively (see e.g.,
[21] for the definition of spectral norm of a tensor). Note that (10) also implies
the bounded largest eigenvalue of I . Assumption 3 can be regarded as an analogy
of assumptions on the log-normalization function in [26]. As we set no explicit
restrictions on the type of distribution P and Q, this assumption guarantees the
log-likelihood function is well behaved.

Now, we make the following assumptions on the density ratio.

ASSUMPTION 4 (The correct model assumption). The density ratio model is
correct, that is, there exists θ∗ such that

p(x) = r
(
x; θ∗)

q(x).

Assumptions 1, 2 and 3 are in fact related to distribution Q. However, the den-
sity ratio estimation objective is an M-estimator summed up over samples from P .
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Assumption 4 provides a transform between P and Q and allows us to perform
analysis on such an M-estimator in an “importance sampling” fashion.

Next, we impose assumptions on the “smoothness” of the density ratio model.
Generally speaking, if we expect good performance from the density ratio estima-
tor, the density ratio model should be “well behaved.” The following assumption
quantifies such an intuition.

ASSUMPTION 5 (Smooth density ratio model assumption). For any vector δ ∈
R

dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖ and every a ∈ R, the following inequality holds:

Eq

[
exp

(
a
(
r
(
x, θ∗ + δ

) − 1
))] ≤ exp

(
10a2)

.

We list a few consequences of the Assumption 5.

PROPOSITION 1. For all ε > 0 and for any vector δ ∈ R
dim(θ∗) such that

‖δ‖ ≤ ‖θ∗‖, P(r(x, θ∗ + δ) − 1 ≥ ε) ≤ 2 exp(− ε2

40).

Using Assumption 5, we get Proposition 1 that provides a tail probability bound
of the density ratio model on Q, which is further used to obtain an exponentially
decaying upper-bound of empirical approximation error of the log-normalization
term (see Proposition 1 in the supplementary article [10] for details).

PROPOSITION 2. For any vector δ ∈ R
dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖, Varq[r(x;

θ∗ + δ) − 1] ≤ 20.

PROOF. Noting Eq[r(x; θ∗ + δ) − 1] = 0, the above inequalities is the conse-
quence of sub-Gaussianity. �

Since the density ratio can be thought as the magnitude of change between two
MNs, Proposition 2 tells the fact that the change should not be too drastic in order
to keep our ratio-model well behaved.

We are now ready to state the main theorem.

3.3. Sufficient conditions for successful change detection. The following the-
orem establishes sufficient conditions of change detection in terms of parameter

sparsity. Its proof is provided in Section 4.1. First, let us define g(m) = log(m2+m)

(log m2+m
2 )2

(see Figure 3 in the supplementary article [10] for its plot) which is smaller than 1
when m > 4.

THEOREM 1. Suppose that Assumptions 1, 2, 3, 4 and 5 as well as
mint∈S ‖θ∗

t ‖ ≥ 10
λmin

√
dλnp are satisfied, where d is the number of changed edges
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defined as d = |S|, that is, the cardinality of the set of nonzero parameter groups.
Suppose also that the regularization parameter is chosen so that

8(2 − α)

α

√√√√M1 log m2+m
2

np

≤ λnp ≤ 4(2 − α)M1

α
min

(‖θ∗‖√
b

,1
)
,(12)

where M1 = λmaxb + 2, nq ≥ M2n
2
pg(m) and M2 is a positive constant. Then

there exist some constants L1, K1 and K2 such that if np ≥ L1d
2 log m2+m

2 , with
the probability at least

1 − exp
(−K1λ

2
np

np

) − 4 exp
(−K2dnqλ

4
np

)
,(13)

the following properties hold:

• Unique solution: The solution of (9) is unique.
• Successful change detection: Ŝ = S and Ŝc = Sc, where Ŝ and Ŝc are estimated

sparse/nonsparse indices.

First, it is interesting to analyze the sample complexity of nq , which is a novel
element in this research. Intuitively, one should obtain a sufficient number of sam-
ples from Q to accurately approximate the normalization term. Theorem 1 states
nq should grow at least quadratically with respect to np , which is undesirable if np

is large. In the next corollary, we discuss a relaxed coupling between np and nq

with some extra but mild cost.
Second, Assumption 5 together with Proposition 2 shows the variation allowed

for the density ratio model is irrelevant to the number of changed edges d . This
implies that, if d is large, we are only able to detect weak changes that do not
cause huge fluctuations in the density ratio model, which is rather restrictive and
unrealistic in some occasions, since the magnitude of change usually increases
when the number of changed edges d increases. Below, we consider another more
relaxed scenario, where the assumption on the smoothness of the density ratio
model is allowed to grow with d .

ASSUMPTION 6. For any vector δ ∈ R
dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖ and every

a ∈ R, the following inequality holds:

Eq

[
exp

(
a
(
r
(
x, θ∗ + δ

) − 1
))] ≤ exp

(
10da2)

,

where d is the number of changed edges.

PROPOSITION 3. For some small constants ε and any vector δ ∈R
dim(θ∗) such

that ‖δ‖ ≤ ‖θ∗‖, then P(r(x, θ∗ + δ) − 1 ≥ ε) ≤ 2 exp(− ε2

40d
).

PROPOSITION 4. For any vector δ ∈ R
dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖, Varq[r(x;

θ∗ + δ) − 1] ≤ 20d .
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From Proposition 4, we can see the magnitude of changes between MNs are
allowed to grow at most linearly with d . Now we see how much this will bring
changes to our sufficient conditions:

COROLLARY 1. Suppose that Assumptions 1, 2, 3, 4 and 6 are satisfied,
mint∈S ‖θ∗

t ‖ satisfies the condition in Theorem 1, and the regularization param-
eter is chosen so that

2 − α

α

√√√√√M1log m2+m
2

n
3
4
p

≤ λnp ≤ 4(2 − α)M1

α
min

(‖θ∗‖√
b

,
1

n
1/8
p

)
,

where M1 = λmaxb+2, nq ≥ M2dnpg(m), and M2 is some positive constant. Then

there exist some constant L1 such that if np ≥ L1d
8
3 (log m2+m

2 )
4
3 , KLIEP has the

same properties as those stated in Theorem 1.

See Section B.6 in the supplementary article [10] for the proof. Corollary 1
states that it is possible to drop the growth rate of nq on np from 2 to 1 with the

cost that np has to grow with d
8
3 (rather than just d2 in the previous case). This is

an encouraging result, since with slight changes on growth rate with respect to d

and log(m2+m
2 ), we are able to consider a milder coupling between np and nq .

Moreover, under the weaker Assumption 6, nq now grows linearly with d . It
shows the prices we need to pay when consider the magnitude of changes increas-
ing with d .

So far, we have only considered the scaling quadruple (np,nq, d,m). However,
it is also interesting to consider that the scalability of our theorem relative to b,
the dimension of the pairwise feature vector. This is a realistic scenario: It may be
difficult to know the true underlying model of MN in practice, and thus we may
adopt a model that contains many features to be “flexible enough” to describe the
interactions among data. In the following corollary, we restate Theorem 1 with
b and a new scalar s, which is the maximum number of nonzero elements in a
pairwise feature vector ψ . We assume that the positions of nonzero elements are
independent of each sample x.

COROLLARY 2. Suppose that Assumptions 1, 2, 3, 4 and 5 are satisfied,
mint∈S ‖θ∗

t ‖ satisfies the condition in Theorem 1, and the regularization param-
eter is chosen so that

8(2 − α)

α

√√√√M1s log m2+m
2

np

≤ λnp ≤ 4(2 − α)M1

α
min

(‖θ∗‖√
b

,1
)
,
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where M1 = λmaxb + 2, nq ≥ M2sn
2
pg′(m) and M2 is some positive constant,

and g′(m) = log((m2+m)(b
s))

(log m2+m
2 )2

. Then there exists some constant L1 such that if

np ≥ L1sd
2 log m2+m

2 , KLIEP has the same properties as those stated in Theo-
rem 1.

See Section B.6 in the supplementary article [10] for the proof. From Corol-
lary 2, we can see that required np and nq for change detection grows only linearly
with respect to s, and nq grows mildly with respect to

(b
s

)
. Therefore, it is possible

for one to consider a highly flexible model in practice.

3.4. Discussions. From the above theorem, one may gather some interesting
insights into change detection based on density ratio estimation.

First, the required number of samples depends solely on d and m and is irrele-
vant to the number of edges of each MN. In contrast, separate graphical structural
learning methods require more samples when each MN gets denser in terms of
the number of edges or neighborhood [11, 14, 15]. This establishes the superiority
of the density-ratio approach in sparse change detection between dense MNs. In
other words, in order to detect sparse changes, the density-ratio approach does not
require the individual MN to be sparse.

Second, the growth of nq is also lower-bounded and grows quadratically with
respect to np . This result illustrates the consequence of introducing a sample ap-
proximated normalization term N̂(θ). An insufficient number of samples from Q

would lead to poor approximation of the normalization term, and makes change
detection more difficult. Fortunately, such growth rate can be further relaxed, and
with slightly increased sample complexity of np .

Finally, our theorem also points out the limits of the density-ratio approach.
Our analysis shows that the density ratio model may not deviate too much from its
mean 1 over distribution Q. A previous study on another density ratio estimator
also has a similar observation [25]. Since the density ratio indicates how much
P differs from Q, this analysis generally implies that to make KLIEP work, the
discrepancy between P and Q should be mild. This is a reasonable assumption
since we have already assumed that the changes in the MN structure are sparse.
In a high-dimensional setting, it implies P and Q are similar. Similar assumption
can be found in [29] where the �-1 norm of the differences between two precision
matrices is bounded.

4. Proof of support consistency.

4.1. The proof outline of the main theorem. The procedure of the main proof
partially follows the steps of previous support consistency proofs using the primal-
dual witness method [23]; however, the problem settings are quite different: First,
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�KLIEP is a likelihood ratio between two densities which means that two sets of
samples are involved in this proof and we have to consider the sparsity recovery
conditions not only on one dataset, but with respect to two different MNs. Second,
we did not explicitly limit the types of distribution for P and Q, and the parameter
of each factor θ t , t ∈ S ∪ Sc is a vector rather than a scalar, which gives enough
freedom for modeling highly complicated distributions. To the best of our knowl-
edge, this is the first sparsity recovery analysis on learning changes between two
type-free MNs. From now on, �KLIEP is shortened as �.

First, define a dual variable ẑ associated with θ̂ using the following equality:

∇�(θ̂) + λnp ẑ = 0(14)

and if ẑt is the subgradient of ‖θ̂ t‖, that is, ẑt ∈ ∇θ t
‖θ̂ t‖, t ∈ S ∪ Sc, (14) is the

optimality condition of (9) and θ̂ is an optimal solution to (9). Moreover, the next
lemma tells the relationship between dual variable ẑ and sparsity patterns of any
other optimal solution of (9).

LEMMA 1. If there exists an optimal θ̂ of (9) with associated ẑ in (14) such
that ‖ẑt ′′‖ < 1, for all t ′′ ∈ Sc. Then any optimal θ̃ of (9) should have θ̃ t ′′ = 0 for
all t ′′ ∈ Sc.

See Section B.1 in the supplementary article [10] for the proof.
Now we illustrate the proof procedure of Theorem 1:

• Solve the constrained optimization problem

θ̂S = argmin
θS

�

([
θS

0

])
+ λnp

∑
t ′∈S

‖θ t ′‖;(15)

• For all t ′ ∈ S, set ẑt ′ = ∇‖θ̂ t ′‖, and let θ̂ = [θ̂S,0];
• Obtain ẑt ′′ for all t ′′ ∈ Sc using equality (14);
• Show maxt ′′∈Sc ‖zt ′′‖ < 1 with high probability under certain conditions. Ac-

cording to Lemma 1, we conclude that for any optimal θ̃ from (9), the correct
sparsity pattern is recovered.

Bounding maxt ′′∈Sc ‖zt ′′‖ requires obtaining zt ′′ from (14). More specifically,
from (14) we have

∇�(θ̂) + λnp ẑ = 0 ⇒ ∇�(θ̂) + λnp ẑ − ∇�
(
θ∗) = −∇�

(
θ∗)

.

Applying the mean-value theorem,

(16) ∇2�
(
θ∗)︸ ︷︷ ︸

I

[
θ̂ − θ∗]� + λnp ẑ = −∇�

(
θ∗)︸ ︷︷ ︸

w

+ [∇2�
(
θ∗) − ∇2�(θ̄)

][
θ̂ − θ∗]�︸ ︷︷ ︸

g

,
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where θ̄ is between θ∗ and θ̂ in a coordinate fashion. We can then rewrite (16) in
blockwise fashion:

IS,S

[
θ̂S − θ∗

S

] + λnp ẑS = wS + gS,
(17)

It ′′,S
[
θ̂S − θ∗

S

] + λnp ẑt ′′ = wt ′′ + gt ′′, t ′′ ∈ Sc.

Substitute θ̂S − θ∗
S = I−1

SS [wS + gS − λnp ẑS] into (17), we have

It ′′SI−1
SS [wS + gS − λnp ẑS] + λnp ẑt ′′ = wt ′′ + gt ′′ .

Rearranging terms, we have

λnp ẑt ′′ = wt ′′ + gt ′′ − It ′′SI−1
SS [wS + gS − λnp ẑS].

According to the triangle inequality,

λnp max
t ′′∈Sc

‖ẑt ′′‖ ≤ max
t ′′∈Sc

‖wt ′′‖ + max
t ′′∈Sc

‖gt ′′‖

+ max
t ′′∈Sc

∥∥It ′′SI−1
SS

∥∥
1

(
max
t ′∈S

‖wt ′‖ + max
t ′∈S

‖gt ′‖ + λnp

)
.

By assumption, maxt ′′∈Sc ‖It ′′SI−1
SS ‖1 ≤ (1 − α), and we obtain

max
t ′′∈Sc

‖ẑt ′′‖ ≤ (2 − α)

λnp

(
max

t∈S∪Sc
‖wt‖ + max

t∈S∪Sc
‖gt‖

)
+ (1 − α).

Now we need to show the boundedness of w and g.
The boundedness of w, which is the gradient of log-likelihood function on θ∗,

is guaranteed by the following lemma.

LEMMA 2. There exist constants c = λmaxb + 2, c′ and c′′ and if the regular-
ization parameter λnp satisfies

8(2 − α)

α

√√√√c log m2+m
2

np

≤ λnp ≤ 4(2 − α)c

α
min

(‖θ∗‖√
b

,1
)
,

then

P

(
max

t∈Sc∪S
‖wt‖ ≥ α

4(2 − α)
λnp

)
(18)

≤ exp
(−c′np

) + 4 exp
(
−c′′nq

( log m2+m
2

np

)2
+ b log

(
m2 + m

))
.

Quite different from similar lemmas in previous works (such as Lemma 2
in [15]), Lemma 2 is not a simple concentration of sample mean converging to
its population mean, since the gradient of the likelihood contains two sets of data
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from different distributions P and Q. Moreover, the sub-Gaussianity or the bound-
edness of the ψ of P or Q were not assumed, so the concentration inequality can-
not be applied here. Instead, via the smoothness behavior of the likelihood ratio
function (Assumption 3), we are able to derive such a boundedness of w without
using any explicit properties of two distributions.

The consequence of such differences is important: this analysis allows us to
consider a very wide range of distributions which may not be well behaved (e.g.,
heavy-tailed), as long as the change between two distributions are minor. After
all, all assumptions are imposed on the density ratio model r only, rather than P

or Q. This analysis preserves the flexibility of the density ratio estimation method-
ology. The proof of Lemma 2 can be found in Section B.2 of the supplementary
article [10].

The next lemma bounds the difference between the estimated parameter and the
true parameter over the nonsparse indices, which is further used to bound g and
derive the sample complexity.

LEMMA 3. If dλnp ≤ λ2
min

20λ3,max
and maxt∈Sc∪S ‖wt‖ ≤ λnp

4 , then ‖θ∗
S − θ̂S‖ ≤

10
λmin

√
dλnp .

The boundedness of g is finally given by the following.

LEMMA 4. If λnpd ≤ λ2
min

100λ3,max

α
4(2−α)

, and maxt∈S∪Sc ‖wt‖ ≤ λnp

4 , then

maxt∈S∪Sc ‖gt‖ ≤ αλnp

4(2−α)
.

See Sections B.3 and B.4 in the supplementary article [10] for proofs. Using
Lemmas 2, 3 and 4, we have maxt ′′∈Sc ‖ẑt ′′‖ ≤ 1 − α

2 < 1.
To show the correct nonzero pattern recovery, it suffices to show

max
t∈Sc∪S

∥∥θ̂ t − θ∗
t

∥∥ <
1

2
min
t∈S

∥∥θ∗
t

∥∥.
Since Lemma 3 shows maxt∈S∪Sc ‖θ̂ t − θ∗

t ‖ ≤ ‖θ̂ − θ∗‖ < 10
λmin

√
dλnp , we just

need mint∈S ‖θ∗
t ‖ > 20

λmin

√
dλnp to ensure such recovery.

4.2. Sample complexity. The sample complexity for np and nq are derived
from the conditions of the lemmas. To make Lemma 2 hold, we may set λnp =
C

√
log m2+m

2
np

, where C is chosen so that the lower bound of λnp in Lemma 2 is
satisfied. Since the upper bound is a constant while such setting of λnp is always
decaying as np grows, it is automatically satisfied at some point.
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Moreover, λnp should also satisfy the upper-bound condition in Lemma 4:

λnpd ≤ λ2
min

100λ3,max

α
4(2−α)

, and this inequality can be satisfied when np =
�(d2 log m2+m

2 ).
The upper bound of λnp is in Lemma 4 is tighter than it is in Lemma 3, so the

condition of Lemma 3 is automatically satisfied. However, one still needs to make
sure that the tail probability term that involves nq in Lemma 2 decays, that is,

4 exp
(
−c′′nq

( log m2+m
2

np

)2
+ b log

(
m2 + m

)) → 0, np → ∞.

This can be guaranteed by setting nq = �(n2
pg(m)).

5. Analysis of assumptions. In this section, we investigate the conditions un-
der which the maximum (minimum) eigenvalues of likelihood ratio derivatives are
bounded. We show that under mild regularity conditions of sample statistics of
distribution Q and tightened smoothness conditions of the density ratio model,
Assumptions 1 and 3 holds automatically.

5.1. Bounded density ratio model. Since the derivatives of the log-likelihood
ratio expresses the curvature of our objective function, we expect the smoothness
of the density ratio model r(x; θ) may play an important role in such analysis. To
begin with, consider a simple bounded-ratio model by replacing the smoothness
Assumption 5 (or 6) with a tightened Assumption 7.

ASSUMPTION 7 (Smooth density ratio model assumption). For any vector δ ∈
R

dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖, the following inequality holds:

0 < Cmin ≤ r
(
x, θ∗ + δ

) ≤ Cmax < ∞.

As consequences, 1
Cratio

≤ r̂(x; θ∗ + δ) ≤ Cratio and ‖f t (x)‖ ≤ Cf t ,max, where
Cf t ,max and Cratio are all constants.

Since Assumption 7 is stronger than Assumption 5 or 6 (for appropriately cho-
sen Cmax and Cmin), the proof of Theorem 1 still holds if one uses the above as-
sumptions to substitute Assumptions 5 or 6. However, as we will demonstrate later,
an improved sample complexity for min(np,nq) can be derived.

As Assumptions 1 and 3 are constructed using samples from distribution Q,
it is also natural to assume some basic regularity conditions on sample statis-
tics.

ASSUMPTION 8 (Bounded moments). The feature transform f (x) ∈
R

b(m2+m)/2, where x is drawn from Q, has upper-bounded moments with proba-
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bility one, that is,

max
t∈S∪Sc

Êq

[∥∥f t (x)
∥∥] ≤ Dmax,1 < ∞,∥∥Êq

[
f (x)f (x)�

]∥∥ and
∥∥Ĉovq

[
f (x)

]∥∥ ≤ Dmax,2 < ∞
and

�min
{
Ĉovq

[
f S(x)

]} ≥ Dmin,2 > 0,(19)

is bounded with probability 1 − δnq .

Ĉov is the sample covariance estimator and Êq[g(x)] = 1
nq

∑nq

i=1 g(x(i)) is the
empirical expectation over samples drawn from Q. From now on, we remove sub-
script p or q from a random sample x when summing up, as long as the indices
give enough context for telling in which distribution the sample is drawn. For ex-
ample,

∑nq

i=1 x(i) is a summation over samples drawn from distribution Q.
Of course, one may impose similar bounded moments constraints on the cor-

responding population quantities, then the above assumption automatically holds
with high probability under certain regularity conditions. To avoid lengthy proofs,
we stick to assumptions using sample quantities in this paper.

The following propositions show Assumptions 7 and 8 guarantee the bounded-
ness of the derivatives of the likelihood ratio function.

PROPOSITION 5 (Bounded Hessian). For any vector δ ∈ R
dim(θ∗) such that

‖δ‖ ≤ ‖θ∗‖, if Assumptions 7 and 8 hold then ‖∇2
θ �(θ∗ + δ)‖ ≤ 2CratioDmax,2

with probability 1 − δnq .

PROPOSITION 6 (Bounded third-order derivative). For any vector δ ∈ R
dim(θ∗)

such that ‖δ‖ ≤ ‖θ∗‖, if Assumptions 7 and 8 hold, then

max
t∈S∪Sc

∣∣∣∣∣∣∇θ t
∇2�

(
θ∗ + δ

)∣∣∣∣∣∣ ≤ 6C2
ratioDmax,1Dmax,2

with probability 1 − δnq .

PROPOSITION 7 (Eigenvalue lower bound of invertible Hessian submatrix).
For any vector δ ∈ R

dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖, if Assumptions 7 and 8 hold,
then

�min
[∇2

θS
�
(
θ∗ + δ

)] ≥ Dmin,2

C2
ratio

with probability 1 − δnq .

Proofs of the above propositions are listed in Sections B.7, B.8 and B.9 in the
supplementary article [10].
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5.2. Sufficient conditions under bounded density ratio. Now, we give a varia-
tion of Theorem 1 based on the totally bounded density ratio model. Consider the
objective

θ̂ = argmin
θ

�(θ) + λnp,nq

∑
t ′∈S

‖θ t ′‖ + λnp,nq

∑
t ′′∈Sc

‖θ t ′′‖,

which is identical to (9) but the regularization parameter is now determined with
respect to both nq and nq .

COROLLARY 3. Suppose that Assumptions 2, 4, 7 and 8 as well as
mint∈S ‖θ∗

t ‖ ≥ 10
λmin

√
dλnp,nq are satisfied. Suppose also that the regularization

parameter is chosen so that

24(2 − α)

α

√√√√M log m2+m
2

min(np,nq)
≤ λnp,nq ,

where M is a positive constant. Then there exist some constants L and K

such that if min(np,nq) ≥ Ld2 log m2+m
2 , with the probability at least 1 −

4 exp(−Kλ2
np,nq

min(np,nq)) − δnq , KLIEP has the same properties as those
stated in Theorem 1.

The proof of this corollary is done by replacing Lemma 2 with Lemma 5.

LEMMA 5. If λnp,nq ≥ 24(2−α)
α

·
√

c log (m2+m)
2

min(np,nq)
, then

P

(
max

t∈S∪Sc
‖wt‖ ≥ αλnp,nq

4(2 − α)

)
≤ 4 exp

(−c′′ min(np,nq)
)
,

where c and c′′ are some constants.

See Section B.5 in the supplementary article [10] for the proof. Note that we
have ditched Assumptions 1 and 3 since we have already shown that they are au-
tomatically satisfied with probability 1-δnq given Assumptions 7 and 8.

5.3. Smoothness assumption relaxed. In the previous derivation, the assump-
tion of boundedness of density ratio model guarantees its empirical counterpart
r̂(x; θ) is always upper-bounded by Cratio and is lower bounded by 1

Cratio
, but this

was somewhat restrictive. In this section, we discuss a relaxation of Assumption 7
as follows.
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ASSUMPTION 9 (Smooth density ratio model assumption). For any vector δ ∈
R

dim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖, the following inequality holds:

0 < r
(
x, θ∗ + δ

) ≤ Cmax,
(20)

Eq

[
inf

δ∈Rdim(θ∗):‖δ‖≤‖θ∗‖
r
(
x, θ∗ + δ

)] ≥ 1 − c, 0 < c < 1,

where c is a constant.

Now the strictly positive lower bound of the density ratio model is removed,
and we add a new uniform lower bound on the expectation of density ratio model
around the true model. Such condition allows us to control the tail of the empirical
density ratio model so that the ratio model of a specific sample x from Q, that is,
infδ∈Rdim(θ∗):‖δ‖≤‖θ∗‖ r̂(x; θ + δ), would not deviate “too much” from 1.

Note that since smoothness Assumption 9 is still stronger than 5 or 6, the proof
of Theorem 1 can be used without modification to show the support consistency
when this assumption is substituted. However, the proof of Corollary 3 cannot be
used when Assumption 9 is imposed, since the proof requires the boundedness of
‖f t‖ which is not implied by this assumption. From now on, we show that such
relaxed regime together with moment-bounding Assumption 8 also allows us to
bound eigenvalues of derivatives of the likelihood function.

First, we give an example showing that if the expectation of the density ratio
derivative is bounded over Q, the above assumption holds.

PROPOSITION 8. If ‖θ∗‖Eq[supδ∈Rdim(θ∗):‖δ‖≤‖θ∗‖ ‖∇r(x, θ∗ + δ)‖] ≤ c,0 <

c < 1 then (20) holds.

The proof is listed in Section B.10 in the supplementary article [10]. This propo-
sition intuitively shows that as long as the density ratio model is smooth in the first
order, and the changes in parameter is not too drastic, our new assumption holds.

Bounding ‖∇2
θ �(θ)‖ and |||∇θ t

∇2�(θ)|||. It can be seen from Propositions 5 and
6 that upper-bounding the second or the third-order derivative relies on the upper-
bound of the empirical density ratio model r̂ ≤ Cratio. However, under this new
assumption, the empirical density ratio model is no longer explicitly bounded. Now
we derive the upper-boundedness of r̂ using the new assumption.

PROPOSITION 9 (Uniformly upper-bounded r̂). If Assumption 9 holds,

sup
δ∈Rdim(θ∗):‖δ‖≤‖θ∗‖

r̂
(
x; θ∗ + δ

) ≤ C′
ratio < ∞,

holds with probability at least 1 − exp(−2nqε2

C2
max

).
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The proof is in Section B.11 in the supplementary article [10]. Therefore, re-
place Cratio in (20), (21) and (23) with C′

ratio, and we have that the Assumption 3
holds with high probability.

Bounding minimum eigenvalue of ∇2
θS

�(θ∗). Under Assumption 9, the lower

bound of empirical density ratio model minj r̂(x(j); θ∗) is no longer valid since
the density ratio can approach to 0. Here, we illustrate another proof showing the
boundedness of the minimum eigenvalue using concentration inequalities.

PROPOSITION 10. If Assumption 9 holds, then

1 − ε ≤ 1

nq

nq∑
i=1

r
(
x(i); θ∗) = N̂(θ∗)

N(θ∗)
≤ 1 + ε(21)

holds with probability at least 1 − 2 exp(−2nqε2

C2
max

).

PROPOSITION 11. If Assumption 9 holds and the importance-sampled covari-
ance using true density ratio model r(x; θ∗) satisfies

�min
(
Ĉovqrθ∗

[
f S(x)

]) ≥ D′
min,2,

with probability δnq , then �min(∇2
θS

�(θ∗)) ≥ D′
min,2/(1 + ε)2,∀ε < ∞ holds with

probability at least 1 − 2 exp(−2nqε2

C2
max

) − δnq .

Proofs are listed in Sections B.12 and B.13 in the supplementary article [10]. In
fact, following the derivations used in above proofs, we can rewrite derivatives of
�(θ) as higher-order sample statistics importance-sampled by samples from Q with
the empirical density ratio model r̂(x; θ∗). See Proposition 2 in the supplementary
article [10] for a precise statement.

5.4. Bounded density ratio assumption: How strong is it? In this section, we
have considered a few stronger alternative assumptions to Assumptions 5 and 6 in
order to derive the boundedness of derivatives of the likelihood function, which
are crucial to the proof of Theorem 1. However, it is natural to ask, how strong are
these assumptions?

The main advantage of the density ratio based change detection described in [9]
is that such a method does not limit itself to certain distributions. Therefore, lim-
iting the differences between two distributions help us avoid making assumptions
on individual MNs.

In fact, the totally bounded density ratio assumption (Assumption 7) is very
well justified through our “interest”: learning the changes between patterns (MNs).
The power of density ratio is the magnitude of the changes between two density
functions. If the change itself is “insanely” big, such a change detection task would
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not make any sense in the first place. Unfortunately, such a restriction will rule out
some common distributions for change detection, such as Gaussian distribution
whose density ratio value is not necessarily upper bounded. Nonetheless, it does
not forbid us to consider truncated Gaussian distributions where we focus on a
“confined area” as our interested region of learning changes.

To loosen this restriction, we utilize another fact that density ratio, like density
functions, are naturally lower bounded by 0. Therefore, Section 5.3 is dedicated to
the case where the density ratio can decay unbounded toward 0, and thus it allows
us to consider the sufficient statistics f t with unbounded �2 norm. Illustrative fig-
ures of the applicability of our smoothness assumptions are given in Section A.1
in the supplementary article [10].

6. Synthetic experiments. In this section, we validate our theorem and com-
pare KLIEP with a state of the art method on synthetic datasets. For a prac-
tical usage of KLIEP, see Section 7 for details. The MATLAB code skeleton
that is used for our experiments can be found at https://github.com/lamfeeling/
LearningSparseMNChange.

If all the sufficient conditions in Theorem 1 are satisfied, the solution of our
optimization problem in (9) should successfully recover the sparsity pattern in θ∗
with high probability. Therefore, we can validate our theorem by examining the
probability of successful detection of changed edges, that is, the proportion of the
simulation where the method exactly recovers the support of the changed edges.

We set the regularization parameter as a scaling variable: λnp = C

√
logm
np

, where

C is a chosen constant, so the right-hand side inequality of (12) may be satisfied
at some point as np grows. As log m2+m

2 is upper bounded by 2 logm if m > 1, the
left-hand side of (12) is also satisfied if C is appropriately chosen. Note that this is
not how the hyper-parameter is chosen in practice.

Now using the same reasoning illustrated in Section 4.2, we can deduce that
when fixing d , the number of samples np required for detecting the correct sparse
changes grows linearly with logm, so the success rate versus np/ logm plot should
align well for MNs with different number of nodes (dimensions) m.

Moreover, our theorem does not have “a preference” on any specific graph struc-
ture (such as trees or stars), nor the connectivity of each individual MN. Therefore,
as long as the number of changed edges d is the same, the success rate plot should
have similar behaviors for MNs with different structures. This is a unique feature
of direct change detection comparing to methods involving learning two separate
MNs. See Section E in the supplementary article [10] for detailed experimental
settings.

6.1. np versus logm. We now illustrate above effects via experiments. Since
the density ratio estimator involves two sets of data with size np and nq , to avoid
complication, we first set nq to a sufficiently large value (nq = 1000), and examine

https://github.com/lamfeeling/LearningSparseMNChange
https://github.com/lamfeeling/LearningSparseMNChange
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(a) 4-neighbor Lattice, Gaussian, (b) Lattice, Gaussian, rescaled by logm

without scaling with logm

(c) Random structure (∼ 5% connectivity), (d) Random structure, Gaussian, rescaled by logm

Gaussian, without scaling with logm

FIG. 1. The relationship between np and logm, while nq = 1000 is kept fixed. Success rates are
computed over 300 runs, same below.

the relationship between m and np with d = 4 fixed. The results in Figure 1 show
all success rate curves align well over MNs of different sizes for both “lattice” or
randomly shaped structures.

6.2. Changing nq . Our theorem also states that nq should also satisfy a cer-
tain relationship with np . In this experiment, we vary nq to observe the change
of success rate pattern using the “random” and “lattice” dataset in the previous
experiment. As we can see from Figure 2(a), if we set nq = 1000, all successful
rate curves reach 100% but are not aligned. Figure 2(b) shows, when nq = 500,
we cannot reach 100% success rate even for an ever growing np and the proba-
bility of success even decays in the final stage. This can be explained by (13) in
Theorem 1. If nq is large enough, the second term in (13) can be safely ignored.
However, as λnp decays when np grows, a small nq may not be able to suppress the
second term and the overall probability of success starts to decay eventually. By
setting nq = 0.01n2

p , we obtain a perfectly aligned result [Figure 2(c)], as our the-
orem indicated. It also shows that though nq is required to grow quadratically with
np , it can be rescaled by a small constant (in this case, 0.01). Moreover, Corol-
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(a) Random structure, nq = 1000 (b) Random structure nq = 500

(c) Lattice, nq = 0.01n2
p (d) Lattice, truncated Gaussian, np = nq

FIG. 2. The relationship between np and logm, when varying nq . (d) Gaussian is truncated within
a ball centred at the origin with the radius of 15.

lary 3 points out if the density ratio model is bounded, we may relax the coupling
condition between np and nq . To verify this, we truncate a Gaussian distribution
by rejecting samples fall out of a ball centered at origin with radius 15, then let
nq = np . From Figure 2(d), we can see a similar patter of success rates alignment.

6.3. Changing d . As Theorem 1 indicates, np should grow at least quadrati-
cally with d , the number of changed edges. However, in our experiments, it shows
such condition is overly conservative. Figure 3(a) shows the success rate depends
on d only very mildly (see np/ logm needed for success rates passing 80%),
which is a good news. This indicates that the bound can be tightened under certain
regimes.

6.4. Non-Gaussian distribution. We next perform experiments on the trun-
cated “8”-shaped distribution (see Figure 2 in the supplementary article [10]
for details). The MNs are constructed as lattices, and the samples are gener-
ated via slice sampling [13]. Figure 3(c) shows, for the lattice grids with dimen-
sions m = 60 ∼ 256, the curves of success rates are well aligned with the setting
nq = 5np .
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(a) d = 2,4,6,8,16, and 32, nq = 0.01n2
p (b) “8-shaped Distribution”, nq = 5np

without rescaling with logm

(c) “8-shaped”, nq = 5np (d) ROC comparison

FIG. 3. The relationship between np and logm, when varying d (a) or under a non-Gaussian
distribution [(b) and (c)]. (d) is the ROC comparison between (K)LIEP and (D)ifferential learning.

6.5. Comparison with differential network leanring. In this section, we con-
duct experimental comparison between KLIEP and the differential network learn-
ing proposed in [29]. where the following constrained objective is minimized:

�̂ = argmin
�

‖�‖1 subject to
∥∥�̂(p)

��̂
(q) + �̂

(p) − �̂
(q)∥∥∞ < ε,

where �̂
(p)

and �̂
(q)

are the sample covariance matrices, ε is a small constant and
�̂ is the estimated differential network. To obtain a sparse solution, Zhao et al.
[29] thresholds the solution at a certain level τ , that is, for all u, v that 
u,v < τ is
thresholded to 0.

We compare the performance between KLIEP and differential network learning
by Receiver Operating Characteristic (ROC) plot of True Positive and True Nega-
tive rate described in [29]. See Section F in the supplementary article [10] for more
detailed settings. Experimental data are constructed using the synthetic Gaussian
4-neighbor lattice MN grid described in Section 6.1. However, instead of fixing
some key variables, we adopt a more practical setting: np = nq = 50 and d = √

m

(i.e., the number of changed edges increases with m). The ROC curves of KLIEP
(solid) and the differential method (dashed) are reported in Figure 3(d).
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FIG. 4. Gene expression change graph highlighting a hub node.

As it can be seen from Figure 3(d), KLIEP performs consistently better than
the differential network learning method. Particularly, when m and d increases,
the performance almost remains the same for KLIEP while for the differential
method, it decays significantly.

Figure 3(d) is plotted up to m = 100, due to the fact that the differential method
fails to return an output within a reasonable amount of time (10 hours) when m is
scaled up to 121, using either the authors’ or our implementation. This is consistent
with the authors’ claim in [29], where the differential method requires more than
14 hours to obtain the result for a MN sized 120. As for KLIEP, we can compute a
full ROC curve within 3 hours even for m = 625 when np = nq = 50.

7. Gene expression analysis. We applied KLIEP to gene expression profiles
for estimating changes in gene networks activated by two different stimuli: epider-
mal growth factor (EGF) and heregulin (HRG). EGF is known to induce prolifer-
ation in MCF7 human breast cancer cells, while HRG induces differentiation. We
used the gene expression data from [12]. The expression profiles were from cells
stimulated with two controls, resulting in 29 EGF and 28 HRG sample conditions
(np = 29, nq = 28). We extracted 1835 genes (m = 1835) from the gene set in [12]
by selecting genes with high expression variance (at least three times the mean of
all variances). The values were log2-transformed and normalized using the 2%
trimmed mean before finally getting the respective ratios with the controls. The
change graph is obtained by reducing the regularization parameter until |Ŝ| > 10.

Figure 4 shows a learned change network. Each node represents a gene, and
each edge indicates that the regulation between them is different from EGF stimuli
to HRG stimuli. The leftmost large component includes 10 genes and 10 interac-
tions, and a hub node of the component is the FOSB gene, which is a member of
the Fos family of transcription factors, regulating expressions of other genes. This
indicates that KLIEP successfully found that FOSB regulates other genes without
any prior knowledge, and suggests that the regulation has been changed between
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stimuli. Moreover, FOSB is known as a regulator of cell proliferation and differ-
entiation [12], showing that the detected change network agrees with biological
knowledge. The result confirms that KLIEP can detect known biologically signifi-
cant changes from the expression data. We also swapped P and Q, and confirmed
that detected changes are similar.

To evaluate the reliability of this experiment, we also conducted bootstrap ex-
periments which are detailed in Section G in the supplementary article [10].

8. Discussion. Let us further discuss some properties of KLIEP.

8.1. Asymmetry of KLIEP. It can be noticed that KLIEP is asymmetric, that is,
the structural change learning performance may differ when swapping P and Q.
This is caused by directly parametrizing the density ratio which is naturally asym-
metric. Such asymmetry is also reflected in Theorem 1, where the sample com-
plexity is not the same as np = �(d logm(m + 1)/2) and nq = �(n2

p), though
they are “symmetrized” in Corollary 3 as min(np,nq) = �(d log(m(m + 1)/2))

under the stronger bounded ratio assumption (Assumption 7). These analyses shed
some light on choosing P and Q in practice when two datasets are given: Q should
be “wide” and more “spread-out” compared to P , so that the boundedness of the
density ratio can be guaranteed, since a “sharp” Q would lead to very sharp and
unbounded density ratio. This insight implies that KLIEP is in fact a directional
method, and achieves better performance when the change itself shows a tendency
of evolving from one “general” state to another more “specialized” state.

Symmetric measures of differences between densities are also available without
using the density ratio, such as �-2 distance [17]. In general, such difference can-
not be parameterized using the difference between parameters of individual MNs,
thus cannot serve as a difference measure for direct structure change learning. An
alternative is the differential network learning [29] where the objective function is
symmetric for both P and Q. However, such an objective is only sensible when
both P and Q are Gaussian and it cannot be easily generalized to non-Gaussian
cases.

Moreover, inspired by Corollary 3, we may consider a “symmetrized” version
of KLIEP by learning p/q and q/p independently, after which we mark changing
edges by taking the union of two sparsity patterns in both models. For the sup-
port recovery probability, we simply need a union bound applied on the current
results. Such a union-support algorithm is similar to the nodewise regression that
is discussed in [15].

8.2. Comparison with differential network learning [29]. Other than the
asymmetry issues mentioned above, the theoretical analysis in this work and the
one in [29] share some key similarities and both have good guarantees in a high-
dimensional setting. First, they both set assumptions on the true difference/changes



ON LEARNING SPARSE CHANGES OF MARKOV NETWORKS 987

between two MNs. In [29], such a constrain is explicitly expressed: The true dif-
ferential network ‖�∗‖1 is bounded by a constant that does not grow with m

(Condition 1, [29]). In our analysis, the assumption is implicitly made via limiting
the “smoothness” of the density ratio (Assumptions 5, 6, 7, 9). Second, differential
network learning prohibits strong “connections” among covariates. It assumes the
magnitude of off-diagonal values in the covariance matrices decays as the number
of changed edges increases (Condition 2, [29]), while in our work, we assume
feature vectors on unchanged edges should not have strong correlations with those
on changed edges (Assumption 2). Both assumptions are imposed to satisfy the in-
coherence condition [3] needed for Lasso-type model selection. The convergence
results are also similar: The required sample size scales with log m for differential
network learning (Theorem 2, [29]) and KLIEP [log(m2 + m) ≈ 2 logm]; the dif-
ference between the true parameter and the estimated one vanishes at the speed of√

logm
min(np,nq)

in the �-2 norm. However, we manage to achieve this rate without any

assumptions of Gaussianity, while differential network learning described in [29]
cannot be directly applied on non-Gaussian MNs.

8.3. Joint structural change learning. Another emerging trend in graphical
model structural learning is to learn multiple similar MNs simultaneously [2]. For
example, one may use the following fused-lasso penalized objective function to
learn K-Gaussian MNs at the same time:

min
�(1),...,�(K)

K∑
a=1

�MLE
(
�(a)) + λ1

∑
a<b

a,b∈{1,...,K}

∥∥�(a) − �(b)
∥∥

1

(22)
+ λ2

∑
a∈{1,...,K}

∥∥�(a)
∥∥

1,

where �MLE(�) is the negative Gaussian MN log-likelihood parametrized by pre-
cision matrix � and the assumption is that all �(a) share a similar structure.
Though the final outputs are estimated sparse precision matrices, one may still
obtain a differential graph by taking the differences. We refer readers to [9] for
more empirical comparisons between KLIEP and Fused-lasso differential network
learning.

Following the same spirit, the KLIEP based change detection can also be uti-
lized to learn changes from K-MNs at the same time by assuming all MNs sharing
a similar structure, and one of the options is

min
θa,b,a,b∈{1,...,K},a �=b

K∑
a,b∈{1,...,K}

a �=b

�
a,b
KLIEP

(
θa,b)

(23)

+ λ
∑

a,b,c∈{1,...,K}

m∑
u,v=1,u≤v

∥∥θa,b
u,v + θb,c

u,v

∥∥
2,
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where �
a,b
KLIEP(θa,b) is the KLIEP log-likelihood of density ratio pa/pb, a, b, c are

the triples from 1, . . . ,K and by definition we have

θa,b
u,v + θb,c

u,v ≡ θa
u,v − θb

u,v + θb
u,v − θc

u,v ≡ θa
u,v − θc

u,v,

and let θa,a
u,v ≡ 0.

The objective described in (22) still requires a tractable likelihood and cannot
be easily generalized to non-Gaussian models. It also assumes each individual MN
is sparse. However, the variation of KLIEP given in (23) does not impose any as-
sumptions on each individual MNs and can be computed even in non-Gaussian
cases. We will explore this algorithm and other possible alternatives in future
works.

8.4. Uncertainty of estimation. In this work, we have only focused on the suc-
cessful change detection (Theorem 1) which states P(S = Ŝ and Sc = Ŝc) con-
verges to one eventually. However, under very a low sample regime, the learned
change structure may have high uncertainty, that is, the results may be sensitive
to some minor modifications or the randomness of the dataset. This would de-
grade the reliability of the obtained results. To evaluate such an uncertainty, we
performed bootstrap experiments on the gene dataset used in Section 7, and the re-
sults are presented in Section G in the supplementary article [10]. Such a method
is useful for practitioners to measure the reliability of an estimated network. How-
ever, the rigours quantification of such an uncertainty is still an open question and
would be an important future direction to pursue.

Acknowledgements. The authors thank two anonymous reviewers who pro-
vided valuable suggestions on this paper.

SUPPLEMENTARY MATERIAL

Supplement to “Support consistency of direct sparse-change learning in
Markov networks” (DOI: 10.1214/16-AOS1470SUPP; .pdf). Due to the page
limit, we present the proofs of Lemmas 1–5, corollaries and propositions in this
supplementary article. We also use this supplementary material to show some de-
tailed experimental settings, extended simulation results and illustrations of a few
concepts in the paper.
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