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A RATE OPTIMAL PROCEDURE FOR RECOVERING SPARSE
DIFFERENCES BETWEEN HIGH-DIMENSIONAL

MEANS UNDER DEPENDENCE

BY JUN LI AND PING-SHOU ZHONG

Kent State University and Michigan State University

The paper considers the problem of recovering the sparse different com-
ponents between two high-dimensional means of column-wise dependent
random vectors. We show that dependence can be utilized to lower the iden-
tification boundary for signal recovery. Moreover, an optimal convergence
rate for the marginal false nondiscovery rate (mFNR) is established under
dependence. The convergence rate is faster than the optimal rate without de-
pendence. To recover the sparse signal bearing dimensions, we propose a
Dependence-Assisted Thresholding and Excising (DATE) procedure, which
is shown to be rate optimal for the mFNR with the marginal false discov-
ery rate (mFDR) controlled at a pre-specified level. Extensions of the DATE
to recover the differences in contrasts among multiple population means and
differences between two covariance matrices are also provided. Simulation
studies and case study are given to demonstrate the performance of the pro-
posed signal identification procedure.

1. Introduction. In genetic studies, one important task is selecting the differ-
entially expressed genes, which can be crucial in identifying novel biomarkers for
cancers. Motivated by the problem of identifying differentially expressed genes,
we consider the high-dimensional model

Xij = μi + εij , εij
i.i.d.∼ N(0,�i) for i = 1,2 and 1 ≤ j ≤ ni,(1.1)

where μi is a p-dimensional population mean vector and �i is a p ×p covariance
matrix. If we let δ = μ1 − μ2 = (δ1, . . . , δp)T , our interest is to determine which
components of δ are nonzero.

Due to high dimensionality and relatively small sample sizes in modern statis-
tical data such as microarray data, we consider p � ni . Despite the large number
of components, we assume that there are only a small number of signal bearing
dimensions, which is thought to be reasonable in many applications. For instance,
it is commonly believed that there are only a small number of genes that are signif-
icantly differentially expressed between two treatments in a study. Therefore, δ is
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sparse in the sense that most of its components are zero but only a small portion of
them are nonzero.

The magnitude of δ can be estimated by the statistic Jn = √
n(X̄1 − X̄2) with

n = (n1n2)/(n1 +n2) based on sufficient statistics X̄1 = n1
−1 ∑n1

j=1 X1j and X̄2 =
n2

−1 ∑n2
j=1 X2j . From (1.1), it immediately follows that

Jn ∼ N
(√

nδ,�−1)
, where(1.2)

� = (ωkl)
(1.3)

= �−1 = {
(1 − ς)�1 + ς�2

}−1 with ς = lim
n1,n2→∞

n1

n1 + n2
.

The model (1.2) is closely related to the Stein’s normal means model, which has
been carefully studied in Hall and Jin (2010) in the context of global testing.
Specifically, the authors showed that with nonidentity covariance matrix �−1, de-
tecting whether δ is nonzero can be improved by incorporating data dependence.
However, different from Hall and Jin (2010), the current work focuses on recover-
ing sparse nonzero components of δ.

The Stein’s normal means model has also been studied in the context of variable
selection. To this end, Ji and Jin (2012) considered the following high-dimensional
regression model:

(1.4) Y = X� + z,

where the rows of X are i.i.d. random vectors satisfying N(0, �̃/n) for some
sparse covariance �̃ and z = (z1, . . . , zn)

T with zi being i.i.d. N(0,1). They
showed that the model (1.4) can be reduced to the model (1.2) in the sense that
J ∗

n = XT Y ∼ N(�̃�, �̃). To recover the nonzero coefficients of � in (1.4), they
proposed a Univariate Penalization Screening (UPS) procedure for variable selec-
tion, which was shown to achieve the optimal rate of convergence with the risk
measured by the Hamming distance. Different from the Hamming distance, a risk
defined as a weighted sum of false negatives and false positives is more relevant for
the model (1.2) in the context of multiple testing. As argued by Sun and Cai (2007)
and Sun and Cai (2009), a procedure minimizing the weighted sum is also an opti-
mal multiple testing procedure minimizing the false nondiscovery rate (FNR) with
the false discovery rate (FDR) controlled at a pre-selected level. The connection
between the optimal variable selection and optimal multiple testing was further
elaborated in Jin (2012). Motivated by Jin (2012), Ji and Zhao (2014) recently
extended the UPS procedure for variable selection to a Univariate Penalization
Testing (UPT) procedure that was shown to be rate optimal in recovering the coef-
ficients � from (1.4).

Despite the connection between (1.4) and (1.1) through the Stein’s normal
means model (1.2), the parameter of interest δ considered in current work is dif-
ferent from � in Ji and Jin (2012) and Ji and Zhao (2014). Furthermore, in Ji and
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Jin (2012) and Ji and Zhao (2014), �̃ is approximated by the known matrix XT X

from (1.4). However, � defined by (1.3) is the inverse of a linear combination of
two unknown covariance matrices. Therefore, the effect of estimating � on the
signal recovering needs to be addressed in current work. Most importantly, similar
to Hall and Jin (2010) who demonstrated the advantageous effect of data depen-
dence on signal detection, a major contribution of the current work is to unveil a
similar advantageous effect of dependence on the recovery of nonzero components
of δ in (1.1).

A commonly used approach to recover nonzero components of δ is the multiple
testing procedure. Each dimension k ∈ {1, . . . , p} is tested by a t-statistic which
is expected to have significant value if δk 
= 0 and, conversely, to be insignificant
if δk = 0. After all the p-values associated with the t-statistics are ranked, the di-
mensions with p-values smaller than a critical p-value threshold are selected and
treated as signal bearing dimensions. In the multiple testing procedure, the thresh-
old is chosen to control the FDR, which is defined as the fraction of false posi-
tives among all the rejected hypotheses. For this purpose, Benjamini and Hochberg
(1995) introduced a novel procedure (BH procedure) which is shown to be more
desirable than other procedures controlling the familywise error rate (FWER) such
as the Bonferroni correction, since the former is less conservative than the latter.
However, the BH procedure relies on the assumption that the test statistics corre-
sponding to the true null hypotheses (δk = 0) are independent. It has been shown
that the presence of dependence among test statistics can substantially affect the
number of reported nonnull hypotheses, since the empirical null distribution of
dependent p-values can be significantly different from the theoretical null dis-
tribution under the assumption of independence [Efron (2007)]. As a result, the
outcome of genetic studies by simply ignoring the intergene correlation is implau-
sible, and a clear strategy to control the false positives in the multiple testing for
dependent data is needed [Qiu, Klebanov and Yakovlev (2005)].

Some efforts have been made to address the effect of dependence on the multiple
testing by assuming some special dependence structures. For example, Benjamini
and Yekutieli (2001) showed that when the test statistics corresponding to the true
null hypotheses (δk = 0) have the positive regression dependence, the BH proce-
dure is still able to be modified to control the FDR. Based on a hidden Markov
model for the dependence structure, Sun and Cai (2009) proposed an oracle and
an asymptotically optimal data-driven procedures which were shown to be able
to minimize the FNR while controlling the FDR at a pre-specified level. Xie, Cai
and Li (2011) established a Bayes oracle rule along with the corresponding data
adaptive rule based on independent data, which were shown to be optimal in that
it minimizes the sum of false negatives and false positives. They also argued that
the proposed methods are still valid and remain optimal under short-range depen-
dence.

The advantageous effect of dependence on signal detection boundary has been
well established by Hall and Jin (2010), who showed that the detection boundary
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can be lowered by incorporating the data dependence. Different from the signal
detection boundary that separates the plane of signal sparsity and signal strength
into the detectable region and the undetectable region, the identification boundary
separates the same plane into the other two different regions. In the region above
the boundary, signals can be recovered individually. But below the boundary, a suc-
cessful identification is impossible [Donoho and Jin (2004); Hall and Jin (2010); Ji
and Jin (2012)]. In this paper, we investigate the effect of dependence on the signal
identification boundary for the model (1.1). Note that the benefit of dependence on
signal identification has been addressed for the sparse regression model (1.4) by
Genovese et al. (2012), Jin, Zhang and Zhang (2014) and Ke, Jin and Fan (2014).
However, the setting addressed here is different from those because the parameter
δ for the model (1.1) is different from � for the model (1.4). Moreover, instead
of considering variable selection, we focus on the multiple testing for the nonzero
components of δ. Specifically, we show that the signal identification boundary for
dependent data is lower than that for independent data. An explicit expression for
the identification boundary is also established when dependence is present.

To recover the sparse nonzero components of δ, we are interested in the optimal
procedure that minimizes the FNR while the FDR is controlled at a pre-specified
level. To this purpose, we propose a dependence-assisted thresholding and excising
(DATE) procedure. The proposed procedure is implemented by first transforming
the original Xij through � in (1.3) into Zij = �Xij . It will be shown in Section 3
that under certain sparse settings of signals and �, the standardized magnitude of
the transformed signal is greater than that of the original data or the de-correlated
data obtained by transforming the original data via �1/2, which potentially in-
creases the probability of identifying signals. After the transformation, the null
components of the transformed data are removed by conducting a marginal thresh-
olding, which is followed by another step to excise the fake signals induced by the
transformation. As we will show in Section 4, the proposed procedure attains not
only the signal identification boundary under dependence but also the optimal con-
vergence rate for the marginal false nondiscovery rate (mFNR) with the marginal
false discovery rate (mFDR) controlled at a pre-selected level, and thus is superior
compared with other methods without taking data dependence into account.

The rest of the paper is organized as follows. In Section 2, we establish two
lower bounds: one for the risk function (2.2) and another for the convergence rate
of the mFNR. To show the optimality of these two bounds, we first demonstrate
the benefit of transforming data by the matrix � in (1.3) in Section 3. Then a
thresholding and excising procedure based on the transformed data is introduced
in Section 4. The proposed procedure is shown to be able to achieve two lower
bounds established in Section 2, and thus is rate optimal. Extensions of the pro-
posed procedure to recover differences in contrasts among multiple population
means and differences between two covariance matrices are provided in Section 5.
Section 6 illustrates some numerical studies and Section 7 reports an empirical
study to select differentially expressed genes for a human breast cancer data set.
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Discussion is given in Section 8. Due to limited space, all the proofs are relegated
to the Supplementary Material [Li and Zhong (2016)].

2. Lower bounds for signal identification under dependence. We start with
some notation and definitions. Denote Sβ = {k : δk 
= 0} to be a set including the
locations of the nonzero δk . The number of non-zero elements in Sβ is p1−β for
β ∈ (0,1). Define Lp to be a slowly varying logarithmic function in the form of
(a logp)b for some constants a and b. Without loss of generality, we assume both
�1 and �2 are standardized to have unit diagonal elements. With matrix � = (ωij )

defined in (1.3), let

(2.1) ¯ω = lim
p→∞

min
1≤k≤p

ωkk and ω̄ = lim
p→∞ max

1≤k≤p
ωkk.

We model δ to satisfy the following condition [see Ji and Jin (2012)]:

(C1) The components of δ follow a mixture distribution

δk
i.i.d.∼ (

1 − p−β)
h0 + p−βκp, k = 1, . . . , p,

where h0 is a point mass at 0 and κp is a distribution with the support
[−√

2r logp/n,0) ∪ (0,
√

2r logp/n] for r > 0 and n = (n1n2)/(n1 + n2).

Given δk for 1 ≤ k ≤ p, δ̂k is denoted as an estimate of δk . For any signal iden-
tification procedure, there are generally two types of error related with the signal
estimate δ̂k : the false negative meaning that δk 
= 0 but δ̂k = 0, and the false posi-
tive representing that δk = 0 but δ̂k 
= 0. When identifying the nonzero components
of δ, people are often interested in the optimal procedure that minimizes the FNR
while the FDR is controlled at a certain level. For this purpose, Sun and Cai (2007)
and Sun and Cai (2009) introduced an expected weighted sum of false negatives
and false positives:

(2.2) H(�) = E
{ ∑

k∈Sβ

I(δ̂k = 0) + p−�
∑
l∈Sc

β

I(δ̂l 
= 0)

}
,

where the weight p−� with � ∈ [0,∞) is chosen to adjust the level of false posi-
tives. The effect of � on false positives can be demonstrated by Figure 1. Assume
that the minimization of H(0) is achieved at the intersection point diamond of the
false positives line (FP) and the false negatives line (FN). By multiplying FP with
p−� (dash line), the FP becomes less important in H(�) and H(�) is minimized
at the intersection point star which is on the right-hand side of the intersection
point diamond. As a result, the expected false positives corresponding to the min-
imized H(�) is larger than that corresponding to the minimized H(0). With a
specific choice of �, Sun and Cai (2007) and Sun and Cai (2009) showed that
minimizing the above risk function leads to the optimal multiple testing procedure
for the normal means model (1.2) with the FDR controlled at a specific level.



562 J. LI AND P.-S. ZHONG

FIG. 1. The horizontal axis N
δ̂

represents the number of δ̂k 
= 0. The diamond is the intersection
point of the false positives line (FP) and the false negatives line (FN) where H(0) is minimized and
the star is the intersection point where H(�) is minimized.

By choosing the weight � = 0 such that H(0) becomes the classification error,
Ji and Jin (2012) established the optimal convergence rate for the variable selection
in the high-dimensional regression model (1.4). Moreover, Jin (2012) elaborated a
connection between the optimal variable selection and the optimal multiple testing
by showing that with a properly chosen �, an optimal variable selection procedure
that minimizes the weighted risk function H(�) is also an optimal procedure in
the multiple testing. Recently, Ji and Zhao (2014) developed the idea of Jin (2012)
and proposed the UPT procedure that was shown to attain the optimal rate of con-
vergence in mFNR with the mFDR controlled at a pre-selected level. Interested
readers may refer to Ji and Zhao (2014) for a comprehensive review of literature
evolution about the connection between optimal procedure for variable selection
and optimal procedure for multiple testing.

Inspired by Sun and Cai (2007, 2009), Ji and Jin (2012), Jin (2012) and Ji
and Zhao (2014), the current article is to seek a rate optimal procedure for re-
covering sparse nonzero components of δ based on the connection between (1.1)
and the normal means model (1.2). To begin with, we first establish a universal
lower bound of the risk function H(�). Let θ̂j = I(δ̂j 
= 0) for j = 1, . . . , p. The
Bayesian decision rule minimizing the risk function (2.2) is

(2.3) θ̂j = I
{
(1 − p−β)fj,0(X11, . . . ,X1n1;X21, . . . ,X2n2)

p−βfj,1(X11, . . . ,X1n1;X21, . . . ,X2n2)
≤ p�

}
,

where fj,0 and fj,1, defined by (A.7) in the Supplementary Material [Li and
Zhong (2016)], are the distributions of (X11, . . . ,X1n1;X21, . . . ,X2n2) conditional
on δj = 0 and δj 
= 0, respectively. Based on the Bayesian rule, the universal lower
bound of the risk function H(�) at a fixed value � is established by the following
theorem.
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THEOREM 1. Assume condition (C1) and the model (1.1) for Xij . As p → ∞,

H(�) ≥

⎧⎪⎪⎨
⎪⎪⎩

Lpp1−β−(ω̄r−β+�)2/(4ω̄r), −r < (� − β)/ ¯ω < r,

p1−β, r < (β − �)/ω̄,

p1−�, r < (� − β)/ω̄,

where ¯ω and ω̄ are defined in (2.1), and Lp is a slowly varying logarithmic func-
tion.

It is worth mentioning that the lower bounds do not depend on n since the signal
strength has been normalized by

√
n as shown in (C1). The universal lower bound

varies with different values of r , β for each fixed value of �. If we choose � = 0,
the classification error has the lower bound

H(0) ≥
{
Lpp1−β−(ω̄r−β)2/(4ω̄r), r > β/ ¯ω;
p1−β, r < β/ω̄.

Some key observations are as follows. First, if the signal strength r < β/ω̄,
the classification error is no less than p1−β , the number of nonzero δk , which
implies that there exists no successful signal identification procedure. The area
r < β/ω̄ in r − β plane is thereafter called the region of no recovery. On the
other hand, if the signal strength attains r ≥ (1 + √

1 − β)2/ ¯ω, the classification
error asymptotically converges to zero and all the signals can be successfully re-
covered. The corresponding region is called the region of full recovery. The area
sandwiched between the no recovery region and the full recovery region satisfies
β/ω̄ < r < (1 + √

1 − β)2/ ¯ω, having the classification error less than the number
of signals and greater than zero. This region is called region of partial recovery.
Most importantly, since ω̄ ≥ ¯ω > 1 under data dependency shown by Lemma 1 in
the Supplementary Material [Li and Zhong (2016)], the partial recovery boundary
r = β/ω̄ and full recovery boundary r = (1 + √

1 − β)2/ ¯ω used to separate three
regions are lower than those without existence of data dependence.

To demonstrate the observations above, we consider �1 = �2 = (ρ|i−j |) for
1 ≤ i, j ≤ p in model (1.1) such that the data dependence is exhibited by the value
of ρ. If ρ = 0, ω̄ = ¯ω = 1 since there is no data dependence. On the other hand, if
ρ = 0.6, we obtain ¯ω = 1.5625 and ω̄ = 2.125. The corresponding phase diagrams
with and without data dependence are displayed in Figure 2 in which the partial
signal identification boundary and the full recovery boundary with ρ = 0.6 are
lower than those with ρ = 0 due to the fact that ¯ω > 1 and ω̄ > 1. As a result,
even though the signals with r < β are unable to be identified by any procedure
if there exists no data dependence, some of them can be recovered as long as the
signal strength r > β/2.125 with the existence of data dependence. The benefit to
the full signal identification with the existence of dependence can be seen based
on the similar derivation.
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FIG. 2. Left: phase diagram for signal recovery without data dependence. Right: phase diagram
for signal recovery with �1 = �2 = (0.6|i−j |) for 1 ≤ i, j ≤ p.

As pointed out by Sun and Cai (2007, 2009), Jin (2012) and Ji and Zhao (2014),
with a properly chosen �, the decision rule that minimizes the weighted risk func-
tion H(�) is also the optimal procedure that controls the mFDR at level α and
minimizes the mFNR in the multiple testing. Let FP = false positives, TP = true
positives, FN = false negatives and TN = true negatives. The mFDR and mFNR
are defined as

mFDR =
{

E(FP)

E(FP) + E(TP)

}
and mFNR =

{
E(FN)

E(FN) + E(TN)

}
.

Genovese and Wasserman (2002) showed that mFDR and mFNR are asymptoti-
cally equivalent to FDR and FNR under weak conditions. In general, the connec-
tion between � and α is complicated. The following theorem provides a solution
for choosing a proper �(α) such that the mFDR is controlled at the level of α < 1.
Moreover, it establishes a lower bound for the mFNR subject to the constraint that
mFDR ≤ α.

THEOREM 2. Assume condition (C1) and (1.1) for Xij . If we choose

�(α) = ¯ωr + β − 2
√

¯ωrβ
{
1 − g(α,p)/β

}
,

where g(α,p) = log{ α
(1−α)

√
4πβ logp}/logp, then as p → ∞,

mFNR ≥ Lpp−β−{√ω̄r−√
β−g(α,p)}2

and mFDR ≤ α < 1.

Note that with ω̄ = ¯ω = 1, the lower bound of the mFNR above was also es-
tablished in Ji and Zhao (2014) for the high-dimensional regression model (1.4).
Since the model (1.1) considered in current work and the model (1.4) both are
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related with the Stein’s normal means model (1.2), it is not surprising to see the
similar results established for two models. However, as discussed in Section 1,
the current work is to investigate the advantageous effect of data dependence on
signal recovering. More specifically, our Theorem 2 demonstrates that similar to
the weighted risk function, the lower bound for the mFNR is accelerated by exis-
tence of dependence since ω̄ > 1. To show that the lower bounds in Theorems 1
and 2 are tight, we need to search for a signal identification procedure that is able
to attain the universal lower bounds. As we will see in next section, the key for
this procedure is to take the data dependence into account, which can be done by
transforming data via the matrix � defined in (1.3).

3. Data transformation. Data transformation by � to enhance signal strength
was originally discovered by Hall and Jin (2010) for global testing of � in the
Stein’s normal means model (1.2). To extend the same result to identification of
the nonzero components of δ from the model (1.1), we need some additional as-
sumptions.

(C2) Eigenvalues of �i for i = 1,2 satisfy C−1
0 ≤ λmin(�i) ≤ λmax(�i) ≤ C0

for some constant C0 > 0.
(C3) The matrix � in (1.3) is presumably sparse and belongs to the class

V(cp,Mp) =
{
� : ‖�‖L1 ≤ Mp, max

1≤j≤p

p∑
i=1

|ωij |q ≤ cp for 0 < q < 1

}
,

where Mp = O(logb1 p) and cp = O(logb2 p) for some constants b1 ≥ 0 and
b2 ≥ 0.

(C4) As n → ∞, p → ∞ and logp = o(nθ ) where θ = (1 − q)/{(2b1 + 1) ×
(1 − q) + 2b2}, and q , b1 and b2 are defined in (C3).

Conditions (C2) and (C3) define a class of matrices with the sparse structure
similar to Cai, Liu and Luo (2011), where both Mp and cp are allowed to grow with
p logarithmically. Condition (C4) specifies the exponential growth of dimension
p with n.

For signal identification, we need to construct a statistic to estimate the mag-
nitude of the signal. Generally, if we let Q be a p × p invertible matrix and
Z̄

(k)
Q,i = (QX̄i)

(k) for i = 1,2 where Z̄
(k)
Q,i is the kth component of Z̄Q,i , then a

measure of the signal at kth dimension is

T k
Q = n{Z̄(k)

Q,1 − Z̄
(k)
Q,2}2

akk

, k = 1, . . . , p,

where A = (aij ) is the covariance matrix of
√

n(Z̄Q,1 − Z̄Q,2). In the above statis-
tics, Q needs to be specified. The most common choice of Q is the identity matrix
I and the corresponding statistic T k

I depends on the standardized signal strength
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√
nδk/

√
σkk where σkk , the kth diagonal element of � defined in (1.3), becomes 1

if both �1 and �2 are standardized to have unit diagonal elements. Another choice
of Q is � = (ωkl) for 1 ≤ k, l ≤ p defined in (1.3), which has been considered
in Hall and Jin (2010) for their innovated higher criticism test, and Cai, Liu and
Xia (2014) for testing the equality of two sample mean vectors. The corresponding
statistic T k

� depends on the standardized signal strength
√

nδ�,k/
√

ωkk , where δ�

is defined as the difference in two population mean vectors after the transforma-
tion.

Similar to a very important result established in Hall and Jin (2010), Lemmas 1
and 2 in the Supplementary Material [Li and Zhong (2016)] show that for sparse
signals β ∈ (1/2,1), sparse � assumed in (C3) and k ∈ Sβ ,

(3.1)

√
nδ�,k√
ωkk

≥
√

nδk√
σkk

.

This implies that the standardized signal strength can be boosted by the transfor-
mation of �. The signal gain in practice is also explored by the simulation studies
in Section 6 to confirm the above theoretical finding.

In addition to the transformation induced by I and �, another natural choice
of Q is �1/2 that was considered by Allen and Tibshirani (2012) to de-correlate
the original data so that they are independent. The corresponding statistic T k

�1/2

depends on the standardized signal strength
√

nδ�1/2,k which can be approximated
by

√
n�kkδk , where δ�1/2 is the difference in two population mean vectors after

the transformation induced by �1/2, and �kk is the kth diagonal element of �1/2.
Due to the fact that ωkk = ∑

l �
2
kl ,

√
n
√

ωkkδk ≥ √
n�kkδk , or equivalently,

(3.2)

√
nδ�,k√
ωkk

≥ √
nδ�1/2,k.

Both (3.1) and (3.2) suggest that the statistics T k
� based on the data transformed by

� obtain more gain in standardized signal strength, and thus are selected for the
signal identification. For notation simplicity, we suppress the subscript � in the
transformed data Z�,ij = �Xij and corresponding statistics T k

�.
In real applications, � is unknown and needs to be estimated by �̂. Observ-

ing that � = (1 − ς)−1�−1
w with �w ≡ �1 + {ς/(1 − ς)}�2, we only need to

estimate �−1
w . There are many methods available in the literature for estimating

the precision matrix. When the precision matrix is bandable, it can be estimated
through the Cholesky decomposition proposed by Bickel and Levina (2008). When
the precision matrix is sparse, Cai, Liu and Luo (2011) introduced the CLIME
estimator based on the constrained L1 minimization approach for precision ma-
trix estimate. More can be found in Friedman, Hastie and Tibshirani (2008). Al-
though all the above methods are designed for estimating the precision matrix
for one sample case, the estimator �̂−1

w can be obtained from those methods
[Friedman, Hastie and Tibshirani (2008); Cai, Liu and Luo (2011)] by replacing
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the regular sample covariance with the following estimator based on two-sample
U-statistics:

(3.3) S∗
n = 1

n1n2

n1∑
k=1

n2∑
l=1

Yn,klY
T
n,kl,

where Yn,kl = X1k − X̄1 −√
n1/n2(X2l − X̄2) for k = 1, . . . , n1 and l = 1, . . . , n2.

Then �̂ can be obtained by �̂ = (1+n1/n2)�̂
−1
w . The consistency of the estimator

�̂ can be established under conditions (C2)–(C4) by changing the exponential in-
equality for the one-sample covariance to the exponential inequality for the above
two-sample U-statistics [see Cai, Liu and Luo (2011)].

With estimated �̂ obtained from one of the above methods, the transformed
signal for k ∈ Sβ is δ̂�,k = ∑

l∈Sβ
ω̂klδl . Similar to (3.1) by assuming that both �1

and �2 have diagonal elements equal 1, Lemmas 1 and 2 show that under some
mild conditions, with probability approaching 1,

(3.4)

√
nδ̂�,k√
ω̂kk

≥ √
nδk.

Therefore, we consider the following test statistics based on the transformed data
Ẑij = �̂Xij as the starting point of the proposed signal identification procedure:

(3.5) T̂k = n{ ¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 }2

ω̂kk

, k = 1, . . . , p.

The advantage of the statistics in (3.5) is that the standardized signal strength has
been enhanced by incorporating dependence, which potentially increases the prob-
ability of weak signals being identified by the signal recovery procedure. However,
since δ�,k = ∑

l∈Sβ
ωklδl , a side effect of the transformation is that it generates

some fake signals, that is, δk = 0 but δ�,k 
= 0 if ωkl 
= 0 for some l ∈ Sβ . There-
fore, a successful signal recovery procedure benefited by data transformation re-
quires to remove these fake signals. As we will discuss in next section, fake signals
can be successfully excised by a penalized method with L0 penalty. As revealed by
Ji and Jin (2012), this approach is very effective in cleaning fake signals but suffers
the computational intensity if dimension p is large. To reduce the complexity of the
original signal selection problem, we first need a dimension reduction procedure,
which is fulfilled by a thresholding step as we will discuss in the next section.

4. DATE procedure to recover signals. To introduce our signal identifica-
tion procedure, we first focus on the most interesting case where ¯ωr < (

√
1 − �+√

1 − β)2. According to Theorem 1, this case indicates that the weighted risk
H(�) does not converge to zero but is less than p1−β . The corresponding re-
gion on r − β plane is the partial recovery under a fixed value �. The case



568 J. LI AND P.-S. ZHONG

¯ωr ≥ (
√

1 − � + √
1 − β)2 corresponding to the full recovery region is an eas-

ier problem due to the relatively larger signal strength. We will discuss it at the
end of this section.

As we have discussed in the previous section, after data transformation, p co-
ordinates consist of the signals, fake signals and noise. As the first step of the
proposed method for signal recovery, a thresholding is conducted to remove the
noise. After all the p dimensions are checked by a threshold function 2s logp, we
set δ̂k = 0 for k ∈ {1, . . . , p} if and only if

(4.1) T̂k < 2s logp,

where s > 0 is chosen to control the level of the threshold, and the decision on
other coordinates with T̂k ≥ 2s logp will be made in another step following the
thresholding step. Although imposing the threshold is to prevent noise, it can po-
tentially screen out signals, and thus produce the false negatives. Similar to Ji and
Jin (2012) and Ji and Zhao (2014), the following lemma establishes the upper
bound of the expected false negatives generated in the thresholding step (4.1).

LEMMA 3. Assume (C1), (C3) and (C4). Let s ∈ (0, ( ¯ωr + β − �)2/(4 ¯ωr)),
β ∈ (1/2,1) and β − � < ¯ωr < (

√
1 − � + √

1 − β)2. As p → ∞,

E

{ p∑
k=1

I(δ̂k = 0, δk 
= 0)

}
≤ Lpp1−β−( ¯ωr−β+�)2/(4 ¯ωr).

Since the error above is no more than the error rate established in Theorem 1
provided that ¯ω = ω̄, it does not affect the rate optimality of the whole identifica-
tion procedure as long as the error made in the following excising step is under
control.

The fake signals generated by the transformation are able to survive from the
thresholding if

T̂k ≥ 2s logp, k /∈ Sβ.

To excise fake signals, we implement the L0 penalization approach. For the pur-
pose of variable selection, this approach directly penalizes the number of nonzero
parameters but is hampered by high dimensionality since it requires an exclusive
search of all 2p sub-models. However, as pointed out by Ji and Jin (2012), this NP
hard problem can be circumvented thanks to an important consequence of con-
ducting the thresholding. To see it, we let U(s) be a set including all components
survived from the thresholding

(4.2) U(s) = {k : T̂k ≥ 2s logp,1 ≤ k ≤ p}.
We define V0 = {1, . . . , p} to be a set of notes and

(4.3) �∗(i, j) = �̂(i, j)I{|�̂(i,j)|≥logp/n}
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to be regularized �̂. The reason for regularizing �̂ is that although it is in general a
sparse estimate of �, it could contain some noisy elements. Therefore, logp/n is
simply chosen to further remove those noisy elements if there exists any. Accord-
ing to the Gaussian graph theory, given the precision matrix �∗, any i 
= j ∈ V0
are connected if and only if �∗(i, j) 
= 0. Similar to Ji and Jin (2012), Lemma 4
summarizes the consequence of conducting the thresholding.

LEMMA 4. Assume conditions (C1)–(C4). Let s ∈ (0, ( ¯ωr + β − �)2/(4 ¯ωr)),
β ∈ (1/2,1) and β − � < ¯ωr < (

√
1 − � + √

1 − β)2. With probability 1 −
Lpp−β−( ¯ωr−β+�)2/(4 ¯ωr), U(s) are split into disconnected clusters of size no more
than a positive integer K with respect to (V0,�

∗).

According to Lemma 4, the L0 penalization approach can be effectively applied
to each self-connected subset with relatively small size. Let I0 = {i1, . . . , im} be
one of the self-connected subsets with size m ≤ K , and Â = �̂I0,I0 be an m × m

matrix with �̂I0,I0(k, l) = �̂(ik, il). To excise the fake signals in I0, we find an
m-dimensional vector δ̂(I0), each component of which is equal to either 0 or δdate

or −δdate, to minimize the following function:

(4.4) n
{
(
¯̂
Z1 − ¯̂

Z2)
I0 − Âδ

}T
Â−1{

(
¯̂
Z1 − ¯̂

Z2)
I0 − Âδ

} + (
λdate)2‖δ‖0,

where λdate and δdate are two tuning parameters.
After we apply the L0 penalization approach to all the self-connected subsets,

each δk for k = 1, . . . , p is eventually determined by the proposed DATE procedure
which can be summarized by the following algorithm:

(1) transform data Xij to obtain Ẑij = �̂Xij where �̂ is estimated �;
(2) conduct the thresholding described by (4.1) such that the coordinates k =

1, . . . , p are assigned to either U(s) or its complement Uc(s) where U(s) is defined
in (4.2). For all k ∈ Uc(s), we set δ̂k = 0;

(3) allocate l ∈ U(s) into h ≥ 1 self-connected subsets {I (1)
0 , . . . , I

(h)
0 } with

respect to (V0,�
∗). For I

(1)
0 , δ(I (1)

0 ) is equal to δ̂(I
(1)
0 ) each component of which is

chosen to be either 0 or δdate or −δdate in order to minimize the penalized function
(4.4). Repeat the same procedure to other I

(j)
0 where j ∈ {2, . . . , h} to determine

δl for l ∈ U(s).

To easily measure the performance of the proposed DATE procedure, we further
assume the following condition which is analogous to (C1) but requires a slightly
stronger signal strength than (C1). A similar strategy was also taken by Ji and Jin
(2012) for variable selection and Ji and Zhao (2014) for multiple testing in the
high-dimensional regression problem.

(C1)′ Similar to (C1), the components of δ follow the mixture distribution with
κp being a distribution on the support [−(1 + η)

√
2r logp/n,−√

2r logp/n] ∪
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[√2r logp/n, (1 + η)
√

2r logp/n] where η ≤ β−�√
C0r

√
βr√

( ¯ωr−β+�)2+4 ¯ωrβ
, β ∈

(1/2,1) and the constant C0 is defined in (C2).

Note that although the signal strength in (C1)′ can be stronger than that in
(C1), the support in (C1) overlaps the support in (C1)′ at −√

2r logp/n and√
2r logp/n. As we will discuss later, the overlapping of two supports is crucial

to show the tightness of the lower bound established in Theorem 1. The follow-
ing theorem establishes the upper bound of the risk (2.2) for the proposed DATE
procedure.

THEOREM 3. Assume (C2)–(C4) and (C1)′. Let s ∈ (0, ( ¯ωr + β − �)2/

(4 ¯ωr)) and β − � < ¯ωr < (
√

1 − � + √
1 − β)2, and set the tuning parameters

in (4.4) to be

λdate =
√

2(β − �) logp, δdate =
√

2r logp/n.

As p → ∞, the weighted risk (2.2) for the DATE satisfies

H(�) ≤ Lpp1−β−( ¯ωr−β+�)2/(4 ¯ωr).

Since ( ¯ωr − β + �)2/(4 ¯ωr) ≤ (ω̄r − β + �)2/(4ω̄r), the lower bound in The-
orem 1 is no greater than the upper bound in Theorem 3. Especially, these two
bounds match each other if ω̄ = ¯ω. However, as noted by a reviewer, the two
bounds are established under different supports for signals. To show the rate opti-
mality of the proposed procedure, we let � represent any mixture distribution of
δk satisfying condition (C1), and let ψ̂ be any decision rule. Theorem 1 shows that

min
ψ̂

min
�

H(�) ≥ Lpp1−β−(ω̄r−β+�)2/(4ω̄r)

(4.5)
for − r < (� − β)/ ¯ω < r.

Note that the minimum in (4.5) is taken over with respect to all the decision rules
ψ̂ and signal distributions specified in condition (C1). The universal lowest rate
in (4.5) can be attained [the equality in (4.5) holds] by setting ψ̂ as the Bayesian
rule θ̂j in (2.3) and the mixture distribution to be �∗, a special distribution in
(C1) where κp has support only on

√
2r logp/n or −√

2r logp/n. According to
Theorem 3, the proposed DATE procedure is able to achieve the lowest rate in
Theorem 1 when the signal distribution is �∗, which shows that (4.5) is tight and
the proposed procedure is rate optimal. A similar argument can be given for the
rate optimality of the proposed procedure in the mFNR, which will be discussed
as follows.

Our ultimate goal is to apply the DATE procedure to signal identification. So
we need to ensure that it can successfully control the FDR at any desired level
α < 1. By carefully reviewing the whole procedure, we see that the thresholding
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step (4.1) is designated to control the false negatives and the success of the FDR
control is determined only by the excising step (4.4) where the role is played by
the tuning parameter λdate. Due to the adoption of L0 penalty, smaller value of
λdate allows more toleration for the false positives, and thus leads to greater FDR.
It turns out that if we subtract an additional term from the λdate in Theorem 3,
the mFDR can be successfully controlled at α < 1 and the rate of the mFNR is
accordingly established by Theorem 4.

THEOREM 4. Assume conditions (C2)–(C4) and (C1)′. Choose s ∈ (0, β),
β − � < ¯ωr < (

√
1 − � + √

1 − β)2 and � = (
√

¯ωr − √
β)2. As p → ∞, by

setting the tuning parameters of the DATE as

λdate =
√

2(β − �) logp − ϒ, δdate =
√

2r logp/n,

where

ϒ = 4 ¯ωr

¯ωr + β − �

(
1

2
log logp + log

{
α
√

π( ¯ωr + β − �)

2
√

¯ωr(1 − α)

})
.

Then

mFDR ≤ α and mFNR ≤ Lpp−β−(
√

¯ωr−√
β)2

.

Although the upper bound of the mFNR above with ω̄ = ¯ω = 1, was also estab-
lished in Ji and Zhao (2014), they were derived under different models and con-
ditions. A more detailed discussion on the connection and difference between the
current sample means problem and the linear regression problem will be provided
in Section 8. Since ω̄r ≥ ¯ωr > β , the optimal rate of the mFNR in Theorem 2 is
not faster than the rate in Theorem 4 and two rates are equal to each other asymp-
totically if ω̄ = ¯ω. This, combining with the fact that mFDR ≤ α < 1, shows that
the proposed DATE procedure is optimal in that it minimizes the mFNR subject to
the constraint that mFDR is controlled at the desired level α < 1.

There are three tuning parameters needed to estimated in the proposed signal
identification procedure: the level of threshold s in (4.1), two tuning parameters
δdate and λdate in (4.4). To select tuning parameters λdate and δdate, we estimate the
sparsity β , the signal magnitude r and ¯ω by the following estimators:

β̂ = −log

{
1

p

p∑
k=1

I(T̂k > 2q logp)

}/
logp,

(4.6)

r̂ = 1

2p1−β̂ logp

p∑
k=1

T̂k − 1

ω̂kk

I(T̂k > 2q logp), ˆ̄ω = min
1≤k≤p

ω̂kk,

where q is another threshold level controlling the accuracy of estimate in β and r .
The question of how to properly choose both s and q is addressed in Theorem 5.
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With two tuning parameters λdate and δdate estimated by plugging the β̂, r̂, ˆ̄ω into
the expressions defined in Theorem 4, the following theorem shows that the perfor-
mance of the DATE procedure with estimated parameters (4.6) is asymptotically
equivalent to the DATE in Theorem 4.

THEOREM 5. Assume conditions (C2)–(C4) and (C1)′. As p → ∞, by setting
s ∈ (0, β) in (4.1), q ∈ (β, ¯ωr) in (4.6) and estimating the tuning parameters as

λ̂ = 2ŝ logp, λ̂date =
√

2(β̂ − �̂) logp − ϒ̂, δ̂date =
√

2r̂ logp/n,

where

�̂ = (

√
¯̂ωr̂ −

√
β̂)2,

ϒ̂ = 4 ¯̂ωr̂

¯̂ωr̂ + β̂ − �̂

(
1

2
log logp + log

{
α
√

π( ¯̂ωr̂ + β̂ − �̂)

2
√

¯̂ωr̂(1 − α)

})
,

and β̂ , r̂ and ˆ̄ω are given by (4.6), then

mFDR ≤ α and mFNR ≤ Lpp−β−(
√

¯ωr−√
β)2

.

Although two threshold levels s and q are not explicitly specified, simulation
studies in Table 1 demonstrate that the proposed procedure is insensitive to (s, q)

as long as s ∈ (0, β) and q ∈ (β, ¯ωr), where β is assumed to be known in or-
der to separate the two intervals. In practice, β is unknown and can be estimated
by β̂ in (4.6), which, however, relies on the properly chosen q . If ¯ωr > 1, q = 1
will fall into (β, ¯ωr), the proposed procedure can be implemented by choosing
q = 1 and s ∈ (0, β̂) where β̂ is obtained by (4.6) with q = 1. If ¯ωr ≤ 1, choos-
ing q = 1 in (4.6) can screen out too many signals and thus leads to an overes-
timated β . This obstacle can be overcome by utilizing other existing methods to
estimate the sparsity β or equivalently, the number of (false) null hypotheses. For
instance, Schweder and Spjøtvoll (1982) propose a method to estimate the num-
ber of true null hypotheses based on a linear fit of the empirical distribution of
p-values. Storey (2002) considers estimating the number of true null hypotheses
by the number of p-values greater than some threshold λ and then scaled by 1−λ.
And Meinshausen and Bühlmann (2005) provide an estimator that is a lower bound
for the number of false null hypotheses under general dependence structures be-
tween test statistics.

The optimality of the proposed DATE is established for the signal in the partial
recovery region with ¯ωr < (

√
1 − � + √

1 − β)2. If ¯ωr ≥ (
√

1 − � + √
1 − β)2,

the region is the full recovery region. The lower bounds of the weighted risk H(�)

and the mFNR corresponding to this region converge to zero as r tends to infinity
at each fixed large value of p as shown in Theorems 1 and 2. However, even when

¯ωr ≥ (
√

1 − � + √
1 − β)2, the upper bounds for these two rates corresponding
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to the full recovery region will not vanish, since the proposed DATE procedure
involves data transformation, precision matrix and tuning parameters estimation
each of which contributes non-negligible error at the order of o(p−1). Although
this error is very small, it becomes prominent and dominant as r is big enough
to make two upper bounds established in Theorems 3, 4 and 5 smaller order of
o(p−1), and consequently the upper bounds of the weighted risk H(�) and the
mFNR will be at the rate of o(p−1).

5. Some extensions. The proposed procedure can be extended to other signal
recovery problems. One natural extension is to recover differences in the contrasts
among multiple population mean vectors. Consider that i = 1, . . . , g in (1.1) where
the number of populations g > 2, and suppose that the total g mean vectors are
partitioned into two sub-groups: one has g1 mean vectors μ1, . . . ,μg1 and the other
consists of the remainder of g2 = g − g1 mean vectors μg1+1, . . . ,μg . Letting

(5.1) ι = μ1 + · · · + μg1

g1
− μg1+1 + · · · + μg

g2
= (ι1, . . . , ιp)T ,

we want to determine all nonzero components of ι, which, in genetic studies, cor-
responds to identify all the differentially expressed genes subject to the contrasts
among different treatments.

Let

ng =
(
g2

1g2
2

g∏
i=1

ni

)

/(
g2

1

( g1∏
i=1

ni

)( g∑
i=g1+1

∏
j∈{g1+1,...,g}

j 
=i

nj

)

+ g2
2

( g∏
i=g1+1

ni

)( g1∑
i=1

∏
j∈{1,...,g1}

j 
=i

nj

))
,

and define

�g =
{

ng

g2
1

g1∑
i=1

�i

ni

+ ng

g2
2

g∑
i=g1+1

�i

ni

}−1

.

By assuming that all the conditions (C1)–(C4) are imposed to the recovery of
sparse components of ι subject to some proper notation replacement, the proposed
DATE procedure can be extended to the problem of multiple population means
contrasts.

Specially, the proposed DATE procedure is implemented for the contrasts by
first transforming the original Xij into Ẑij = �̂gXij where �̂g is the estimated �g
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based on the method proposed in Section 3. The reason for the data transforma-
tion is to enhance the magnitude of the components of ι, which is similar to the
problem of two-sample sparse differences recovery. With the transformed data,
a similar thresholding step is conducted to remove nonsignal bearing dimensions
by replacing T̂k in (4.1) with

T̂k = ng(
1
g1

∑g1
i=1

¯̂Z(k)
i − 1

g2

∑g
i=g1+1

¯̂Z(k)
i )2

ω̂g,kk

,

where ¯̂Z(k)
i = ∑ni

j=1 Ẑ
(k)
ij /ni for k = 1, . . . , p. The survival are then cleaned by

choosing an m-dimensional vector ι̂(I0) each component of which is equal to either
0 or ιdate or −ιdate to minimize the following L0 penalization similar to (4.4):

ng

{(
1

g1

g1∑
i=1

¯̂Zi − 1

g2

g∑
i=g1+1

¯̂Zi

)I0

− Âgι

}T

Â−1
g

×
{(

1

g1

g1∑
i=1

¯̂Zi − 1

g2

g∑
i=g1+1

¯̂Zi

)I0

− Âgι

}
+ (

λdate)2‖ι‖0,

where I0 = {i1, . . . , im} is one of the self-connected subsets with size m ≤ K , and
Âg = �̂

I0,I0
g is an m×m matrix with �̂

I0,I0
g (k, l) = �̂g(ik, il). When all the tuning

parameters are given in Theorem 5 with n replaced by ng , it can be shown by
similar derivations that the procedure for contrasts is rate optimal for the mFNR
with the mFDR controlled at a pre-selected level, and the optimal rate of mFNR is
specified in Theorem 5.

Another extension of the DATE procedure is to recover the sparse differences
between two covariance matrices (δkl)p×p = �1 −�2, where δkl = σ

(1)
kl −σ

(2)
kl and

�1 = (σ
(1)
kl )p×p and �2 = (σ

(2)
kl )p×p . Testing the equality of two covariance matri-

ces has been an important research topic [see Schott (2007), Srivastava and Yanag-
ihara (2010), Li and Chen (2012), Cai, Liu and Xia (2013)], which has the practical
application of comparing the difference in dependence among the measurements
of the genes subject to different treatments. In addition to testing the equality of
two covariance matrices, it is very often interesting to recover the differences be-
tween two covariance matrices. To generalize our procedure for recovering sparse
nonzero components δkl for 1 ≤ k, l ≤ p, we first define a p̃ = p(p + 1)/2 di-
mensional vector δ�1−�2 = (δ11, δ12, . . . , δ1p, δ22, . . . , δ2p, . . . , δpp)T , which con-
sists of the diagonal and upper triangular elements of �1 − �2. By letting X̃ij =
(X̃

(11)
ij , . . . , X̃

(1p)
ij , . . . , X̃

(pp)
ij )T where X̃

(kl)
ij = X

(k)
ij X

(l)
ij − X̄

(k)
i X̄

(l)
i for i = 1,2,

δ̂�1−�2 is an unbiased estimate of δ�1−�2 with elements

δ̂kl = 1

n1

n1∑
j=1

X̃
(kl)
1j − 1

n2

n2∑
j=1

X̃
(kl)
2j .
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It can be shown that the leading order covariance matrix of
√

nδ̂�1−�2 is

Ṽ = (vkl,k′l′)p̃×p̃

= (
(1 − ς)

{
σ

(1)
kk′ σ

(1)
ll′ + σ

(1)
kl′ σ

(1)
lk′

} + ς
{
σ

(2)
kk′ σ

(2)
ll′ + σ

(2)
kl′ σ

(2)
lk′

})
p̃×p̃.

By letting �̃ = Ṽ −1 and ˆ̃
� be a consistent estimator of the sparse �̃ specified

in (C3), the transformed random vectors ˆ̃
Zij = ˆ̃

�X̃ij . With the transformed data,
a thresholding step similar to (4.1) is conducted based on the statistics

ˆ̃
Tk = n{ ¯̃̂

Z
(k)
1 − ¯̃̂

Z
(k)
2 }2

ˆ̃ωkk

, k = 1, . . . , p̃,

where ˆ̃ωkk is the kth diagonal element of ˆ̃
�. All the survivals are then cleaned by

applying the L0-penalty method similar to (4.4). Specifically, let I0 = {i1, . . . , im}
be one of the self-connected subsets with size m ≤ K , and ˆ̃

A = ˆ̃
�I0,I0 be an m×m

matrix with ˆ̃
�I0,I0(k, l) = ˆ̃

�(ik, il). Then we minimize the following function with
respect to δ̂�1−�2(I0) by setting each component of δ�1−�2(I0) to be either 0 or
δdate
�1−�2

or −δdate
�1−�2

:

n
{
(
¯̃̂
Z1 − ¯̃̂

Z2)
I0 − ˆ̃

Aδ�1−�2

}T ˆ̃
A−1{

(
¯̃̂
Z1 − ¯̃̂

Z2)
I0 − ˆ̃

Aδ�1−�2

} + (
λ̃date)2‖δ�1−�2‖0,

where two tuning parameters λ̃date and δdate
�1−�2

can be chosen in Theorem 5 with
p replaced by p̃. The asymptotic properties of the above procedure for recovering
sparse differences between two covariance matrices are expected to be similar to
those established in Theorems 1–5. Due to the limited space, we will not pursue
them in this paper and leave explorations to future study.

6. Simulation study. Simulation studies were conducted to demonstrate the
performance of the proposed procedure for signals recovery under different com-
binations of signal sparsity controlled by β , signal strength r and data dependence.
The proposed procedure is denoted by DATE� if � is known and DATE

�̂
if � is

unknown. For comparison, other three signal recovery procedures were also con-
sidered. The first competitor is the BH procedure that was implemented as follows:
each of p coordinates is tested by the two-sample t-test to obtain the ordered p-
values P(1) < · · · < P(p). Based on the cutoff value m = max{1 ≤ k ≤ p : P(k) ≤
kα/p}, the coordinates with Pi ≤ P(m) are treated as signal bearing dimensions.

The second competitor is the PFA procedure based on principle factor approx-
imation proposed by Fan, Han and Gu (2012). Suppose that (J1, . . . , Jp)T ∼
N((

√
nδ1, . . . ,

√
nδ1)

T , (1 − ς)�1 + ς�2) where Ji = √
n{X̄(i)

1 − X̄
(i)
2 }. The

eigenvalues of (1−ς)�1 +ς�2 are λ1 > · · · > λp whose corresponding orthonor-
mal eigenvectors are γ1, . . . , γp . Then Ji can be written as

Ji = √
nδi + bT

i W + Vi,
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where bi = (bi1, . . . , bik)
T , (b1j , . . . , bpj )

T = √
λjγj , the factors W = (W1, . . . ,

Wk)
T ∼ N(0, Ik) and the random errors (V1, . . . , Vp) are weakly dependent by

properly choosing k such that
√

λ2
k+1 + · · · + λ2

p/(λ1 + · · · + λp) < ε with a
small ε. According to the authors, a dependence-adjusted procedure for signal re-
covery is conducted based on the test statistics ai(Ji − bT

i Ŵ ) for i = 1, . . . , p

where ai = (1 − ∑k
h=1 b2

ih)
−1/2 and Ŵ is obtained by first choosing an integer m

that corresponds to the smallest 95% of |Ji |’s, and then applying the L1-regression
to the equation

Jl = bT
l W + Vl, l = 1, . . . ,m.

The BH procedure was then implemented to the dependence-adjusted p-values
given by 2�(−|ai(Ji − bT

i Ŵ )|) for i = 1, . . . , p.
The third competitor is the Sphering procedure by Allen and Tibshirani (2012).

The original procedure is proposed to utilize row and column covariances to decor-
relate the noise in the transposable data matrix meaning that neither the row nor the
column variables are considered to be independent. We modify it for our column
dependent data as follows. Two population mean vectors μ1 and μ2 are estimated
by the sample mean vectors X̄1 and X̄2, respectively. Define the p ×1 noise vector
N̂ij = Xij − X̄i for i = 1,2 and j = 1, . . . , ni . After the noise vector is sphered
by �̂1/2N̂ij , the sphered data X̂ij = X̄i + �̂1/2N̂ij . Then the BH procedure was
implemented to the p-values obtained from the two-sample t-test based on the test

statistics
√

n{ ¯̂
X

(k)
1 − ¯̂

X
(k)
2 } for k = 1, . . . , p.

The random samples {Xij } were generated from N(μi,�) for i = 1,2. Without
loss of generality, μ1 = 0 and μ2 had [p1−β] nonzero coordinates which were
uniformly and randomly drawn from {1, . . . , p}. The magnitude of each nonzero
entry of μ2 was randomly drawn from the interval [√r logp/n,

√
3r logp/n] and

then multiplied by a random sign. Four models were considered for the covariance
matrix � = (σij ):

(a) AR(1) model: σij = ρ|i−j | for 1 ≤ i, j ≤ p.
(b) Block diagonal model: σii = 1 for i = 1, . . . , p, and σij = 0.6 for

2(k − 1) + 1 ≤ i 
= j ≤ 2k where k = 1, . . . , [p/2].
(c) Penta-diagonal model: σii = 1 for i = 1, . . . , p, σij = 0.5 for |i − j | = 1

and σij = 0.2 for |i − j | = 2.
(d) Random sparse matrix model: first generate a p × p matrix � each row

of which has only one nonzero element that is randomly chosen from {1, . . . , p}
with magnitude generated from Unif(1, 2) multiplied by a random sign. � is then
obtained by standardizing ��T + I to have unit diagonal elements.

To apply the DATE
�̂

, we need to estimate �. For models (a)–(c), the Cholesky
decomposition approach [Bickel and Levina (2008)] was implemented. Recall that
the precision matrix � can be decomposed as � = (I − A)T D−1(I − A) where A

is a lower triangular matrix with zero diagonals and D is a diagonal matrix. The
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elements below the diagonal element on the kth row of A can be thought as the
regression coefficients of the kth component on its predecessors, and the kth diag-
onal element of D is the corresponding residual variance. Let Aτ be the τ -banded
lower triangular matrix of A and Dτ be the corresponding residual variances on the
diagonals. The τ -banded precision matrix �τ = (I − Aτ )

T D−1
τ (I − Aτ ). Given a

sample, Aτ and Dτ can be estimated by the least square estimation, which leads to

�̂τ = (I − Âτ )
T D̂−1

τ (I − Âτ ),

where the banding width parameter τ in the estimation of � was chosen according
to the data-driven procedure proposed by Bickel and Levina (2008). For a given
data set, we divided it into two subsamples by repeated (N = 50 times) random
data split. For the lth split, l ∈ {1, . . . ,N}, we let �̂

(l)
τ = {(I − Â

(l)
τ )T }−1D̂

(l)
τ ×

(I − Â
(l)
τ )−1 be the Cholesky decomposition of � obtained from the first sub-

sample by taking the same approach described in previous section for Â
(l)
τ and

D̂
(l)
τ . Also we let S

(l)
n be the sample covariance matrix obtained from the second

sub-sample. Then the banding parameter τ is selected as

(6.1) τ̂ = min
τ

1

N

N∑
l=1

∥∥�̂(l)
τ − S(l)

n

∥∥
F ,

where ‖ · ‖F denotes the Frobenius norm.
The sparse � in model (d) can be estimated by some available packages such

as glasso, Covpath and CLIME that are coded based on different estimation ap-
proaches discussed in Section 3. To implement a fast algorithm, we adopted the
glasso which chooses the nonnegative definite matrix �̂Glasso to maximize the L1-
regularized log-likelihood:

(6.2) log det
(
�−1) − tr

(
S∗

n�−1) − ρg

∥∥�−1∥∥
1,

where S∗
n is given by (3.3) and ρg is a tuning parameter controlling the L1 shrink-

age. To select the regularization parameter ρg , we considered the package huge
developed by Zhao et al. (2012) where three methods are provided: the stability ap-
proach for regularization selection, rotation information criterion and a likelihood-
based extended Bayesian information criterion.

The theoretical signal enhancement demonstrated by (3.1) and (3.4) can be
explored in practice based on N simulations via AR(1) model (a) by choosing
p = 500, n1 = n2 = 30 and β = 0.6. The gain in lth simulation, denoted by B(l),
is defined to be

(6.3) B(l) = 1

p1−β

∑
k∈S

(l)
β

δ
(l)
�,k√

ωkkδ
(l)
k

for l = 1, . . . ,N.

The signal gain with known � was evaluated by averaging B(1), . . . ,B(N). The
signal gain subject to estimated �̂ was conducted similarly by replacing � with
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�̂ in (6.3). With ρ = 0.6 in AR(1) model, ¯ω = 1.56 and ω̄ = 2.13. The average
signal gain based on N = 100 simulations with known � was 1.46. With estimated
�̂, the average gain was 1.28, which was close to

√
ω̄ = 1.46. So our simulation

results demonstrate that the standardized signal strength can be boosted by the
transformation � or �̂, confirming the theoretical findings in (3.1) and (3.4).

The performance of each signal recovery procedure was evaluated by mFDR,
mFNR and the average number of true positives mean(TP) based on 100 replica-
tions. The sparsity parameter β was chosen to be 0.6. Therefore, the true positives
that need to be recovered were [5000.4] = 12 when p = 500, and [10000.4] = 16
when p = 1000. The nominal FDR level was set at α = 0.05. Figure 3 displays the
performance of two proposed procedures DATE� and DATE

�̂
, the BH procedure

integrated with two-sample t-test, the PFA procedure and the Sphering procedure
with different values of signal strength r and data dependence ρ under the AR(1)

model (a) when p = 500. In the first column of the figure, data were weakly de-
pendent and all five procedures had the mFDR controlled around the nominal level
0.05 except r = 0.4. The distortion of the mFDR at r = 0.4 is due to the fact
that the signals fall into the region of no recovery since r < β/ω̄ with ω̄ = 1.08
when ρ = 0.2. With the dependence increased from ρ = 0.2 to 0.6, the inflation of
mFDR for DATE� and DATE

�̂
was mitigated since r > β/ ¯ω with ¯ω = 1.56 when

ρ = 0.6. Although all five procedures performed similarly in terms of the mFNR
and mean(TP) under weak dependence ρ = 0.2, both DATE� and DATE

�̂
identi-

fied more mean(TP) close to the number of true signals [5000.4] = 12 for stronger
signal strength r , and suffered less mFNR than the other three procedures with
stronger dependence ρ = 0.6, which confirms that the data dependence can be uti-
lized by the proposed procedures for signal identification. When dimension p was
increased from 500 to 1000, Figure 4 demonstrates the results similar to Figure 3.
Especially with stronger signal strength r , the recovery of signals by both DATE�

and DATE
�̂

was closer to the number of true signals [10000.4] = 16.
The performance of five procedures subject to various dependent structures de-

fined in models (b)–(d) were displayed in Figures 5–7. Both DATE� and DATE
�̂

performed better than the other three in terms of mFNR and mean(TP) with the
mFDR reasonably controlled at the nominal level 0.05. Figure 8 demonstrates the
effect of small sample sizes on the five procedures based on the AR(1) model (a).
Again DATE� and DATE

�̂
that employed data dependence were the top two pro-

cedures in terms of the mFNR and mean(TP) compared with the other three pro-
cedures. As the sample sizes were increased, DATE� and DATE

�̂
were separated

from the other three and the performance of the data-driven DATE
�̂

was closer to
that of the best performer DATE�.

DATE� depends on the level of threshold s and DATE
�̂

depends on both s and
q , which are required to be chosen from intervals (0, β) and (β, ¯ωr), respectively.
Table 1 displays the performance of both DATE� and DATE

�̂
in terms of mFDR

and mFNR with β = 0.6 subject to different values of s and q under model (a)
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FIG. 3. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure
integrated with t-test, PFA and Sphering subject to different dependence under the AR(1) model (a).
The dimension p = 500, sample sizes n1 = 60 and n2 = 60, the sparsity parameter β = 0.6 and the
nominal FDR level α = 0.05.
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FIG. 4. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure
integrated with t-test, PFA and Sphering subject to different dependence under the AR(1) model (a).
The dimension p = 1000, sample sizes n1 = 60 and n2 = 60, the sparsity parameter β = 0.6 and the
nominal FDR level α = 0.05.
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FIG. 5. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure inte-
grated with t-test, PFA and Sphering under the block diagonal model (b). The sample sizes n1 = 60
and n2 = 60, the sparsity parameter β = 0.6 and the nominal FDR level α = 0.05.
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FIG. 6. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure inte-
grated with t-test, PFA and Sphering under the penta-diagonal model (c). The sample sizes n1 = 60
and n2 = 60, the sparsity parameter β = 0.6 and the nominal FDR level α = 0.05.
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FIG. 7. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure inte-
grated with t-test, PFA and Sphering under the random sparse model (d). The sample sizes n1 = 60
and n2 = 60, the sparsity parameter β = 0.6 and the nominal FDR level α = 0.05.



584 J. LI AND P.-S. ZHONG

FIG. 8. The mFDR, mFNR and mean(TP) yielded by DATE�, DATE
�̂

and the BH procedure
integrated with t-test, PFA and Sphering subject to small sample sizes under the AR(1) model (a).
The sparsity parameter β = 0.6 and the nominal FDR level α = 0.05.
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TABLE 1
The performance of DATE� and DATE

�̂
in mFDR and mFNR under model (a), where ρ = 0.6,

r = 0.8, p = 500 and n1 = n2 = 60. Different values of tuning parameters s and q are chosen from
two intervals separated by β = 0.6. The computation is based on 100 simulations. The standard

deviations of the false discovery proportion and the false nondiscovery
proportion are listed in parentheses

q

0.75 0.80 0.85 0.90

s DATE� DATE
�̂

DATE� DATE
�̂

DATE� DATE
�̂

DATE� DATE
�̂

mFDR
0.35 0.039 0.035 0.042 0.036 0.045 0.035 0.039 0.032

(0.062) (0.060) (0.067) (0.062) (0.064) (0.057) (0.062) (0.061)

0.40 0.039 0.046 0.040 0.037 0.039 0.031 0.047 0.039
(0.060) (0.075) (0.070) (0.067) (0.058) (0.049) (0.067) (0.064)

0.45 0.043 0.035 0.039 0.033 0.035 0.025 0.043 0.027
(0.070) (0.064) (0.054) (0.050) (0.048) (0.045) (0.055) (0.051)

0.50 0.044 0.041 0.046 0.037 0.031 0.025 0.038 0.031
(0.065) (0.057) (0.067) (0.057) (0.055) (0.051) (0.057) (0.053)

mFNR
0.35 0.005 0.007 0.005 0.006 0.005 0.007 0.006 0.007

(0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.004)

0.40 0.006 0.007 0.005 0.006 0.005 0.006 0.005 0.007
(0.003) (0.004) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003)

0.45 0.006 0.007 0.005 0.006 0.005 0.007 0.006 0.007
(0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.004)

0.50 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007
(0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.004)

where ρ = 0.6, r = 0.8, p = 500 and n1 = n2 = 60. As we can see, the proposed
procedure is insensitive to the choice of s and q as long as they are chosen properly
from the intervals.

7. Empirical study. We applied the proposed procedure to a human breast
cancer dataset (GDS2250) available at http://www.ncbi.nlm.nih.gov/sites/
GDSbrowser?acc=GDS2250. The data were analyzed by Richardson et al. (2006)
to provide insight into the molecular pathogenesis of Sporadic basal-like cancers
(BLC) that is a distinct class of human breast cancers. As discussed by Richard-
son et al. (2006), BLC specimens display X chromosome abnormalities in the
sense that most of the BLC cases lack markers of a normal inactive X chromo-
some, which are rare in non-BLC specimens. Our interest on this data set is to
display these X chromosome abnormalities by identifying the differentially ex-

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2250
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2250
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TABLE 2
The number of differentially expressed genes identified by the BH, the DATE and both on

chromosome X with the FDR controlled at the level of α = 0.01,0.005 and 0.001

FDR-controlled level BH DATE Both

0.01 52 56 38
0.005 43 50 33
0.001 27 39 22

pressed genes between the BLC and non-BLC. For this purpose, we formed two
samples by taking 18 sporadic BLC specimens and 20 non-BLC specimens from
the original data, and each sample contains 1438 genes obtained from chromo-
some X.

To apply the DATE procedure, we first estimated � in (1.3) where �1 
= �2
in general. We applied the method proposed in Section 3 to estimate � where
the regular sample covariance matrix is replaced by the two-sample version of
sample covariance matrix S∗

n defined by (3.3). By replacing the regular sample
covariance matrix S with S∗

n in (6.2), �−1
w = (�1 +n1/n2�2)

−1 was first estimated
by the glasso method described in Section 6. Then � was estimated accordingly
based on the relationship � = (1 + n1/n2)�

−1
w . Except the DATE procedure, we

also considered the classical BH procedure integrated with two-sample t-test as a
comparison.

In order to identify the differentially expressed genes, the FDR was chosen to
be controlled at α = 0.001,0.005 and 0.01. Table 2 summarizes the number of dif-
ferentially expressed genes identified by the BH only and the DATE only, and both
procedures. By carefully investigating the genes identified by both procedures,
we found that the XIST (X inactive specific transcript) gene was discovered. This
gene is in charge of an early developmental process in females and provides dosage
equivalence between males and females. The XIST difference is thought as one of
the characteristics for the BLC according to Richardson et al. (2006). Moreover,
the authors argue that there exists the over-expression of a small subset of genes
on chromosome X for BLC. In Table 3, we list additional 17 genes that are iden-
tified by the DATE but missed by the BH with the FDR controlled at α = 0.001.
The association of these genes with the BLC may deserve some further biological
investigation.

8. Discussion. Signal identification is different from its closely related prob-
lem of signal detection. Whereas the detection focuses purely on the presence of
signals, the signal identification is designated for locating the signals. The advan-
tage of dependence for signal detection was explored by Hall and Jin (2010) who
showed that the detection boundary can be lowered by incorporating the data cor-
relation. Moreover, the benefit of dependence on signal identification in the context
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TABLE 3
The differentially expressed genes identified by the DATE not by the BH on chromosome X with the

FDR controlled at level 0.001

Gene symbol Location Description

PTCHD1 Xp22.11 Patched domain containing 1
DMD Xp21.2 Dystrophin
SLC9A6 Xq26.3 Solute carrier family 9 (sodium/hydrogen exchanger), member 6
KAL1 Xp22.32 Kallmann syndrome 1 sequence
TMSB15B Xq22.2 Thymosin-like 8
GPR64 Xp22.13 G Protein-coupled receptor 64
ATP6AP1 Xq28 Atpase, H+ transporting, lysosomal accessory protein 1
NXT2 Xq23 Nuclear transport factor 2-like export factor 2
CLCN4 Xp22.3 Chloride channel 4
VGLL1 Xq26.3 Vestigial like 1 (Drosophila)
BEX1 Xq22 Brain expressed, X-linked 1
SLC6A14 Xq23 Solute carrier family 6 (amino acid transporter), member 14
BCOR Xp21.2-p11.4 Bcl6 corepressor
BCORL1 Xq25-q26.1 Bcl6 corepressor-like 1
MUM1L1 Xq22.3 Melanoma associated antigen (mutated) 1-like 1
SYTL5 Xp21.1 Synaptotagmin-like 5
RLIM Xq13-q21 Ring finger protein, LIM domain interacting

of variable selection has been addressed for the sparse regression model (1.4) by
Genovese et al. (2012), Jin, Zhang and Zhang (2014) and Ke, Jin and Fan (2014).
The current paper attempts to address the advantageous effect of dependence on
recovering δ for the model (1.1) based on the multiple testing procedure. Our anal-
ysis shows that both full and partial signal identification boundaries for dependent
data are lower than those without dependence. Our result, combined with the find-
ings in Hall and Jin (2010), shows that data dependence is advantageous in both
signal detection and signal identification. Furthermore, when both signals and pre-
cision matrix are sparse, the proposed DATE procedure takes advantage of depen-
dence through the transformation to enhance the signal strength and is shown to
have the faster convergence rate in mFNR than other procedures without taking
data dependence into account.

At last, we would like to point out the connection and difference between the
current work and that of Ji and Zhao (2014) in more detail. With ω̄ = ¯ω = 1,
the lower and upper bounds of the mFNR in our Theorems 2 and 4, respectively,
were also established in Ji and Zhao (2014) for the high-dimensional regression
model (1.4). It is not surprising to see this because, as we have pointed out in Sec-
tion 1, the model (1.1) considered in current work and the model (1.4) for Ji and
Zhao (2014) are both related to the Stein’s normal means model (1.2). However,
the results established in both papers are developed for different parameters along
different directions: the current article extends Hall and Jin (2010) from signal de-
tection to signal identification, and Ji and Zhao (2014) extends Ji and Jin (2012)
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from variable selection to multiple testing. Due to the different interests, the set-
tings considered in both papers are different. In addition, some of our technical
conditions are weaker than those in Ji and Zhao (2014). For example, Conditions
(C2) and (C3) in our paper define a class of matrices with the sparse structure,
where both Mp and cp are allowed to grow with p logarithmically. However, in Ji
and Zhao (2014), the corresponding parameters are fixed. Furthermore, Condition
(C4) in our paper specifies the exponential growth of dimension p with n, but Ji
and Zhao (2014) assumes the polynomial growth of dimension p with n.

Another significant difference is that in our two-sample testing problem (1.1),
both �1 and �2 are assumed to be unknown. However, in Ji and Zhao (2014), the
covariance of XT Y is XT X, which is known. The effect of estimating the pre-
cision matrix � on the identification boundary is thereafter addressed in the cur-
rent paper. An important contribution of the current work is utilizing dependence
in recovering differences between two high-dimensional mean vectors. We have
demonstrated the advantageous effect of dependence on recovering δ in (1.1), and
unveiled the key roles of ω̄ and ¯ω by explicitly incorporating them in the expres-
sions of the signal identification boundary and the rate of the mFNR. However, the
UPT procedure in Ji and Zhao (2014) does not consider the advantageous effect of
data dependence on signal enhancement.
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SUPPLEMENTARY MATERIAL

Supplementary material for “A rate optimal procedure for recovering
sparse differences between high-dimensional means under dependence”
(DOI: 10.1214/16-AOS1459SUPP; .pdf). The supplementary material provides
the proofs of Lemmas 1–4 and Theorems 1–5.
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