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LÉVY PROCESSES AND LÉVY WHITE NOISE AS TEMPERED
DISTRIBUTIONS1

BY ROBERT C. DALANG AND THOMAS HUMEAU

École Polytechnique Fédérale de Lausanne

We identify a necessary and sufficient condition for a Lévy white noise
to be a tempered distribution. More precisely, we show that if the Lévy mea-
sure associated with this noise has a positive absolute moment, then the Lévy
white noise almost surely takes values in the space of tempered distributions.
If the Lévy measure does not have a positive absolute moment of any order,
then the event on which the Lévy white noise is a tempered distribution has
probability zero.

1. Introduction. It is well known that Gaussian white noise in R
d is a gener-

alized random field that can be viewed as a random element of the space S ′(Rd)

of tempered (Schwartz) distributions [13, 27]. It is natural to ask whether the same
is true of Lévy white noise.

This abstract mathematical question was posed to the authors by M. Unser and
J. Fageot, who were interested in developing sparse statistical models for signal
and image processing [11]. For this, they considered generalized random fields
with values in S ′(Rd). Lévy white noises provide interesting examples of general-
ized random fields, and together with A. Amini, they showed in [11], Theorem 3,
that a sufficient condition for Lévy white noise to take values in S ′(Rd) is that the
associated Lévy measure has a positive absolute moment. The main result of this
paper is that this condition is, in fact, necessary and sufficient.

The result of Unser and Fageot improves several other partial results that appear
in the mathematical literature. In [19], Lévy white noise is studied as a natural gen-
eralization of Gaussian white noise, and the authors showed that this process takes
values in S ′(Rd) if the associated Lévy measure has a first absolute moment. In
order to develop a white noise theory for Lévy noise, Di Nunno et al. [8] consider
Lévy white noise with a Lévy measure that has a finite second moment. In [20],
Theorem 4.1, Y.-L. Lee and H.-H. Shih give a necessary and sufficient condition
for Lévy white noise to take values in S ′(Rd); however, this condition involves
checking the continuity of a functional and does not translate directly into a condi-
tion on the Lévy measure. Finally, knowing that Lévy white noise takes values in

Received September 2015; revised October 2016.
1Supported in part by the Swiss National Foundation for Scientific Research.
MSC2010 subject classifications. Primary 60G51; secondary 60G60, 60G20, 60H40.
Key words and phrases. Lévy white noise, Lévy process, Lévy random field, tempered distribu-

tion, positive absolute moment.

4389

http://www.imstat.org/aop/
https://doi.org/10.1214/16-AOP1168
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


4390 R. C. DALANG AND T. HUMEAU

S ′(Rd) is useful in the study of stochastic partial differential equations driven by
Lévy noise, as in [21], which again considers the case where the Lévy measure is
square integrable.

In order to address the question of Unser and Fageot, we first consider in Sec-
tion 2 the case of dimension d = 1. In this case, Lévy white noise can be viewed
as the derivative of a Lévy process, for which there is a large literature (see [2,
4, 23], for instance). The question of whether or not sample paths of a Lévy pro-
cess belong to S ′(Rd) reduces essentially to whether or not this process is slowly
growing (i.e., has no more than polynomial growth: see Remark 1.1). We make
use of the Lévy–Itô decomposition Xt = γ t + σWt + XP

t + XM
t of a Lévy pro-

cess (Xt)t∈R+ , in which (Wt) is a standard Brownian motion, (XP
t ) is a compound

Poisson process (term containing the large jumps of X), and (XM
t ) is a square in-

tegrable pure-jump martingale (term containing the small jumps of X). Using the
strong law of large numbers for Lévy processes with a first moment, we show that
the Lévy process (γ t + σWt + XM

t ) is always slowly growing, so the question
reduces to the study of the process (XP

t ).
A first result (Proposition 2.2) is that a compound Poisson process can belong to

S ′(Rd) if and only if it is slowly growing. The question now reduces to determining
when a compound Poisson process is slowly growing, which is addressed in the
literature (see [23], Section 48), and we give a precise statement in Proposition 2.4.

With these results for Lévy processes in hand, we then easily deduce the cor-
responding result for Lévy white noise (see Theorem 2.7). Since [11] constructs
Lévy white noise as a measure on the cylinder σ -field of S ′(Rd) via the Bochner–
Minlos theorem [13], we relate our result to that of [11] by taking care to show
that Lévy noise actually defines a random variable with values in S ′(Rd) equipped
with its Borel σ -field (which is in fact equal to the cylinder σ -field, see the proof
of Corollary 2.9).

In Section 3, we turn to Lévy random fields and Lévy noise on R
d , with d ≥ 1.

Again, in the case of a Lévy random field, the Lévy–Itô decomposition applies
(see [1, 6]), and the three terms with moments greater than 1 always have sample
paths with values in S ′(Rd) (see Proposition 3.7). For the term containing the large
jumps, which is a compound Poisson sheet XP , we are hampered by the fact that
even if there are multiparameter analogues of the law of large numbers of Kol-
mogorov, Marcinkiewicz and Zygmund (see [18]), multiparameter random walks
cannot be easily used to represent compound Poisson sheets. Therefore, we make
use of our study in dimension 1 by considering the Lévy random field XP along
a line parallel to a coordinate axis. This defines a (one-parameter) Lévy process
L. A key technical step is to identify (in Lemma 3.12) a sequence of test func-
tions (ϕn) ⊂ S(Rd) with polynomially growing norms such that 〈XP ,ϕn〉 gives
precisely the value of L at the time of its nth jump. This leads to the character-
ization of Lévy white noises and random fields that take values in S ′(Rd) (see
Theorem 3.13).
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We now introduce the main notation that will be used throughout the paper. Let
d ∈ N \ {0}. For a multi-index α = (α1, . . . , αd) ∈N

d , a smooth function ϕ :Rd →
R, and t ∈ R

d , we write

tα =
d∏

i=1

t
αi

i and ϕ(α) = ∂ |α|ϕ
∂t

α1
1 · · · ∂t

αd

d

where |α| =
d∑

i=1

αi.

For β,γ ∈ N
d , we write

(β
γ

) = β!
γ !(β−γ )! , where β! = ∏d

i=1(βi !). When t ∈ R
d ,

we also write |t | for the Euclidean norm and the meaning should be clear from
the context. The Schwartz space is denoted S(Rd) and is the space of all smooth
functions ϕ :Rd →R such that, for all multi-indexes α, β ∈ N

d , we have

sup
t∈Rd

∣∣tαϕ(β)(t)
∣∣ < +∞.

This space is equipped with the topology defined by the family of norms Np ,
where, for all p ∈N and ϕ ∈ S(Rd),

Np(ϕ) = ∑
|α|,|β|≤p

sup
t∈Rd

∣∣tαϕ(β)(t)
∣∣.

A basis of neighborhoods of the origin for this topology is given by the family:

(1.1)
({

ϕ ∈ S
(
R

d) : Np(ϕ) < ε
})

p∈N,ε>0,

since such a basis is usually given by finite intersections of sets of this form, and
for all p ∈ N, ϕ ∈ S(Rd), Np(ϕ) ≤ Np+1(ϕ). A sequence (ϕn)n converges to zero
in S(Rd) if for all p ∈ N,Np(ϕn) → 0 as n → +∞. The space of tempered dis-
tributions is denoted S ′(Rd) and is the space of all continuous linear functionals
on S(Rd). Equivalently, u ∈ S ′(Rd) if and only if there is an integer p ≥ 0 and a
constant C such that for all ϕ ∈ S(Rd),∣∣〈u,ϕ〉∣∣ ≤ CNp(ϕ).

REMARK 1.1. We say that a Borel function f : Rd → R is slowly growing if
supt∈Rd |f (t)|(1 + |t |)−α < ∞ for some α ≥ 0. In this case, f defines a tempered
distribution by the formula 〈f,ϕ〉 = ∫

Rd f (t)ϕ(t)dt , for all ϕ ∈ S(Rd).

We will also consider the space D(Rd) of smooth compactly supported func-
tions and its topological dual D′(Rd), the space of distributions (see, e.g., [24]
or [26]).

2. Lévy processes and Lévy white noise in S ′(R). A Lévy process (Xt)t∈R+
is a real valued stochastic process such that X0 = 0 almost surely, X has station-
ary and independent increments and X is stochastically continuous (i.e., for any
s ≥ 0, |Xt − Xs | → 0 in probability as t → s). Every Lévy process has a càdlàg
(right continuous with left limits) modification by [23], Theorem 11.5, and we
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will always consider such a modification in the following. An important feature
of Lévy processes is the Lévy–Itô decomposition: for a Lévy process X there ex-
ists a unique triplet (γ, σ, ν), where σ ≥ 0, γ ∈ R, and ν is a Lévy measure [in
particular, ν is nonnegative and

∫
R\{0}(1 ∧ |x|2)ν(dx) < +∞], such that the jump

measure of X (denoted by JX) is a Poisson random measure on R+ ×R \ {0} with
intensity dtν(dx) and X has the decomposition Xt = γ t + σWt + XP

t + XM
t . In

this decomposition, W is a standard Brownian motion,

XP
t =

∫
s∈[0,t],|x|>1

xJX(ds,dx)

is a compound Poisson process (the term containing the large jumps of X), and

XM
t =

∫
s∈[0,t],|x|≤1

x
(
JX(ds,dx) − dsν(dx)

)
is a square integrable martingale (the term containing the small jumps of X).

Since a Lévy process is càdlàg, it is locally Lebesgue integrable, and defines
almost surely an element of D′(R) via the L2-inner product

〈X,ϕ〉 =
∫
R+

Xtϕ(t)dt for all ϕ ∈ D(R).

For any càdlàg process L, we define the following subset of 
:


L = {
ω ∈ 
 : L(ω) ∈ S ′(R)

}
,(2.1)

with the understanding that when L(ω) ∈ S ′(R), the continuous linear functional
associated with L(ω) is given by 〈L(ω),ϕ〉 = ∫

R+ Lt(ω)ϕ(t)dt , for all ϕ ∈ S(R).

2.1. The case of a Lévy process with integer moments. Three terms in the
Lévy–Itô decomposition have absolute moments of any order, and this leads to
the following proposition.

PROPOSITION 2.1. Let X be a Lévy process with characteristic triplet
(γ, σ, ν) and Lévy–Itô decomposition Xt = γ t + σWt + XP

t + XM
t . Let Yt =

γ t + σWt +XM
t . Then Y is slowly growing a.s., and the set 
Y defined as in (2.1)

(with L there replaced by Y ) has probability one.

PROOF. The process Y is a sum of a linear deterministic function, and of
two independent square integrable Lévy processes. In particular, E(|Y1|) < +∞.
By the strong law of large numbers for Lévy processes in [23], Theorem 36.5,
t−1Yt → E(Y1) = γ almost surely as t → +∞. It follows that Y is sublinear and
locally bounded (by the càdlàg property) almost surely, so it is slowly growing.
We deduce that Y is a tempered distribution almost surely by Remark 1.1. �
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2.2. Growth of a compound Poisson process. In view of Corollary 2.1, it re-
mains to determine when a compound Poisson process belongs to S ′(R). We
begin with two key results on the growth of a compound Poisson process. Let
Xt = ∑Nt

i=1 Yi be a compound Poisson process, where N is a Poisson process with
parameter λ that is independent of the sequence (Yi)i≥1 of i.i.d. random variables.
Let S0 = 0 and (Sn)n≥1 be the sequence of jump times of X and let Tn = Sn−Sn−1.
Also, let Zn = XSn = ∑n

i=1 Yi . We first show that on the set 
X , the compound
Poisson process is slowly growing.

PROPOSITION 2.2. Let X be the compound Poisson process defined above
and 
X the set defined in (2.1). There is a set A of probability one such that for
all ω ∈ 
X ∩ A, the function t 
→ Xt(ω) is slowly growing.

REMARK 2.3. We point out that this result relies on more than the piecewise
constancy of a compound Poisson process. Indeed, there exist càdlàg piecewise
constant functions in S ′(R) which are not slowly growing. For example, consider
the function f that is equal to zero except on intervals of the form [n,n + 2−n[
where it is constant equal to 2

n
2 for all n ∈ N. Then f ∈ L1(R) ⊂ S ′(R), but f is

clearly not slowly growing.

PROOF OF PROPOSITION 2.2. The main idea is the following. Since X is
constant on the interval [Sn,Sn+1[ and the jump times are rarely close together, we
can build a sequence of random test functions ϕn supported just to the right of Sn,
such that 〈X,ϕn〉 = XSn for large enough n. The control of |〈X,ϕn〉| by a norm
Np(ϕn) leads to a bound on XSn , and then on Xt since X is piecewise constant.

For n ≥ 1, the jump time Sn has Gamma distribution with parameters n and
λ. For k ≥ 1 to be chosen later, and ϕ ∈ D(R) with support in [0,1], ϕ ≥ 0 and∫
R

ϕ = 1, we consider the sequence ϕn defined by

(2.2) ϕn(t) = Sk
nϕ

(
(t − Sn)S

k
n

)
.

Then

(2.3) supp(ϕn) ⊂
[
Sn,Sn + 1

Sk
n

]
,

and
∫
R

ϕn = 1. Furthermore, for any nonnegative integers p and α,β ≤ p,

sup
x∈R

∣∣xαϕ(β)
n (x)

∣∣ = sup
x∈[Sn,Sn+ 1

Sk
n
]

∣∣xαϕ(β)
n (x)

∣∣

≤
(
Sn + 1

Sk
n

)α

Sk(β+1)
n sup

x∈R
∣∣ϕ(β)(x)

∣∣,
hence,

Np(ϕn)1Sn≥1 ≤ CNp(ϕ)S(p+1)k+p
n 1Sn≥1,(2.4)
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where C ∈ R is deterministic, nonnegative, and depends only on p. We define the
events

(2.5) An,k =
{
X does not jump in the interval

]
Sn,Sn + 1

Sk
n

[}
.

Using the fact that Tn+1 has exponential distribution with parameter λ and that
Tn+1 and Sn are independent, we have

P
(
Ac

n,k

) = P{N
Sn+ 1

Sk
n

− NSn ≥ 1}

= P

{
Tn+1 <

1

Sk
n

}
= E

(
1 − e

− λ

Sk
n
) ≤ E

(
λ

Sk
n

)
.

The Laplace transform of Sn is E(e−tSn) = λn(t + λ)−n, for t ≥ 0. For n ≥ 3,
integrating twice from t to +∞, we obtain

(2.6) E

(
1

S2
n

)
= λ2

(n − 1)(n − 2)
, n ≥ 3.

We deduce that
∑

nE(S−2
n ) < +∞. Therefore,

∑
n P(Ac

n,2) < +∞ and by the
Borel–Cantelli lemma,

P

(
lim sup
n→+∞

Ac
n,2

)
= 0,

and the set A = lim infn→+∞ An,2 has probability one. Let ω ∈ A∩
X , and N(ω)

be such that for all n ≥ N(ω),ω ∈ An,2. Then for n ≥ N(ω), because of (2.3)
and (2.5),

〈X,ϕn〉(ω) = XSn(ω)1An,2(ω) + 〈X,ϕn〉(ω)1Ac
n,2

(ω) = XSn(ω).(2.7)

Since X(ω) is a tempered distribution by definition of 
X , there is p(ω) ∈ N and
C(ω) ∈ R such that∣∣〈X,ϕn〉(ω)

∣∣1Sn(ω)≥1 ≤ C(ω)Np(ω)(ϕn)1Sn(ω)≥1
(2.8)

≤ C′(ω)S3p(ω)+2
n (ω)1Sn(ω)≥1,

by (2.4) with k = 2. Because Sn → +∞ a.s., we can choose N(ω) such that
Sn(ω) ≥ 1 for all integers n ≥ N(ω) (replacing A by another almost sure set).
From (2.7) and (2.8), we deduce that for all ω ∈ A ∩ 
X ,

|XSn(ω)|
S

3p(ω)+2
n (ω)

≤ C′(ω) < +∞ for all n ≥ N(ω).

Let n ≥ N(ω) and let t ≥ Sn(ω). There is an integer j ≥ n such that t ∈
[Sj (ω), Sj+1(ω)[. Then∣∣Xt(ω)

∣∣ = ∣∣XSj
(ω)

∣∣ ≤ C′(ω)S
3p(ω)+2
j (ω) ≤ C′(ω)t3p(ω)+2.
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We deduce that

lim sup
t→+∞

|Xt(ω)|
1 + t3p(ω)+2 ≤ C′(ω) < +∞

on the set A ∩ 
X . This completes the proof. �

The next proposition recalls properties of the long term behavior of a compound
Poisson process.

PROPOSITION 2.4. Let X be the compound Poisson process with jump heights
(Yi)i≥1 defined at the beginning of this section:

(i) Suppose that there is a real number p > 0 such that E(|Y1|p) < +∞. Then
there is α > 0 such that

lim sup
t→+∞

|Xt |
1 + tα

< +∞ a.s.

(ii) Suppose that E(|Y1|p) = +∞ for every p > 0. Then for any α > 0,

lim sup
t→+∞

|Xt |
1 + tα

= +∞ a.s.

PROOF. This result is a straightforward consequence of [23], Proposi-
tion 48.10. �

2.3. Lévy white noise: The general case. Let X be a Lévy process. We can
define the derivative of X in the sense of distributions as follows.

DEFINITION 2.5. Let X be a Lévy process with characteristic triplet (γ, σ, ν).
The Lévy white noise Ẋ is the derivative of X in D′(R): for ω ∈ 
 and ϕ ∈D(R),

〈
Ẋ(ω),ϕ

〉 := −〈
X(ω),ϕ′〉 := −

∫
R+

Xt(ω)ϕ′(t)dt.

Notice that the law of the Lévy white noise Ẋ is entirely characterized by the
triplet (γ, σ, ν) (given that we use the truncation function 1|x|≤1 in the Lévy–Itô
decomposition).

REMARK 2.6. Our definition of Lévy white noise is equivalent to other def-
initions such as the one found in [14], Definition 5.4.1, and in [11], Definition 3.
We postpone the discussion of this issue to the multiparameter case: see Proposi-
tion 3.16.
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We now turn to the question of whether or not a Lévy white noise is a tempered
distribution. Similar to (2.1), for any Lévy noise Ẋ, we define the set


Ẋ = {
ω ∈ 
 : Ẋ(ω) ∈ S ′(R)

}
,(2.9)

and we have the following characterization.

THEOREM 2.7. Let X be a Lévy process with characteristic triplet (γ, σ, ν),
and Ẋ the associated Lévy white noise. Then 
X = 
Ẋ (defined respectively in
(2.1) and (2.9)), and the following holds:

(i) If there exists η > 0 such that E(|X1|η) < +∞, then P(
X) = P(
Ẋ) = 1.
(ii) If E(|X1|η) = +∞ for all η > 0, then P(
X) = P(
Ẋ) = 0.

REMARK 2.8. If E(|X1|η) < +∞ for some η > 0, then we say that X has a
positive absolute moment (PAM). Recall that for η > 0, E(|X1|η) < +∞ if and
only if

∫
|x|>1 |x|ην(dx) < +∞ (see [23], Theorem 25.3). Hence, the condition

PAM can be equivalently expressed in terms of the Lévy measure ν.

PROOF OF THEOREM 2.7. Differentiation maps S ′(R) to itself, hence on 
X ,
the Lévy noise Ẋ is a tempered distribution: 
X ⊂ 
Ẋ . We now show that 
Ẋ ⊂

X . Let ω ∈ 
Ẋ . Two solutions in D′(R) of the equation u′ = Ẋ(ω) differ by
a constant (see [24], Théorème I, Chapter II, Section 4, page 51) and X(ω) is
obviously one of them. Therefore, if there is a solution to this equation in S ′(R),
then ω ∈ 
X . To show that such a solution u exists, recall that a distribution is an
element of S ′(R) if and only if it is the derivative of some order of a slowly growing
continuous function (see [24], Théorème VI, Chapter VII, Section 4, page 239):
Ẋ(ω) = g(n) for some continuous slowly growing function g and some integer
n. If n ≥ 1, then u = g(n−1) is a solution in S ′(R) of u′ = Ẋ(ω). If n = 0, then
u(t) = ∫ t

0 g(s)ds is a slowly growing solution, therefore, u ∈ S ′(R).
To prove (i), it suffices to show that P(
X) = 1. Let Xt = γ t + σWt +

XM
t + XP

t be the Lévy–Itô decomposition of X. Since E(|X1|η) < +∞, we have∫
|x|>1 |x|ην(dx) < +∞ (see Remark 2.8). The jump heights (Yi)i≥1 of the com-

pound Poisson part XP are i.i.d., with law λ−11|x|>1ν(dx) (where λ is a normal-
izing constant), therefore, E(|Y1|η) < +∞. Then we can use Proposition 2.1 for
the continuous and small jumps terms of the Lévy–Itô decomposition of X, and
Proposition 2.4(i) for the large jumps term, to deduce that X is slowly growing. By
the càdlàg property of X and Remark 1.1, we conclude that P(
X) = 1.

To prove (ii), it suffices to show that P(
X) = 0. By Proposition 2.1, 
X =

XP . Also, since{

ω : t 
→ XP
t (ω)is slowly growing

}
∩

{
ω : ∀α > 0, lim sup

t→+∞
(
1 + tα

)−1∣∣XP
t

∣∣ = +∞
}

=∅,
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and under (ii) the second set has probability one by Proposition 2.4(ii), we deduce
from Proposition 2.2 that P(
XP ∩ A) = 0, where A is the almost-sure set defined
in Proposition 2.2. Therefore, P(
XP ) = P(
X) = 0. �

COROLLARY 2.9. Let X be a Lévy process with characteristic triplet
(γ, σ, ν), let Ẋ be the associated Lévy noise and suppose it has a PAM. Then
there is a random tempered distribution S, that is, a measurable map from (
,F)

to (S ′(R),B), where B is the Borel σ -field for the weak-∗ topology, such that
almost surely, for all ϕ ∈ S(R),

〈S,ϕ〉 = 〈Ẋ, ϕ〉 = −
∫
R+

Xtϕ
′(t)dt.

In addition, the maps C : ω 
→ C(ω) and p : ω 
→ p(ω) such that for all ϕ ∈ S(R),∣∣〈S,ϕ〉∣∣ ≤ CNp(ϕ) a.s.

can be chosen to be F -measurable.

PROOF. We already know from Theorem 2.7 that P(
Ẋ) = 1. We define S to
be equal to Ẋ [in S ′(R)] on 
Ẋ and zero elsewhere. We want to be able to consider
S as a measurable map with values in S ′(R). More precisely, we equip S ′(R) with
the weak-∗ topology. A basis for this topology is given by cylinder sets of the form

O =
n⋂

i=1

{
u ∈ S ′(R) : 〈u,ϕi〉 ∈ Ai

}
,

where, for all i ≤ n,ϕi is an element of S(R), n is an integer and Ai is an open
set in R. The σ -field generated by all cylinder sets is called the cylinder σ -algebra
and is denoted by C. We first show that S : (
,F) −→ (S ′(R),C) is measurable.
For this, clearly, it suffices to show that for all cylinder sets O as above, the set
S−1(O) = {ω ∈ 
 : S(ω) ∈ O} belongs to F . Clearly,

S−1(O) =
n⋂

i=1

{
ω ∈ 
 : 〈

S(ω),ϕi

〉 ∈ Ai

}
.

The map (t,ω) → Xt(ω) is jointly measurable so by Fubini’s theorem, the map
〈S,ϕi〉 : 
 −→ R is F -measurable and, therefore, S−1(O) ∈ F . The Borel σ -field
B contains C since every cylinder set is an open set. The converse inclusion is not
immediate; see [9], Proposition 2.1, for a proof of the equality B = C. This fact is
also mentioned in [12], page 41.

The space S(R) is separable (see [22], 10.3.4, page 176) and we let A be a
countable dense subset. Then the measurability of the maps C and p comes from
the fact that we can choose

p(ω) = min
{
p ∈ N : sup

ϕ∈A

|〈S,ϕ〉|
Np(ϕ)

(ω) < +∞
}
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and

C(ω) = sup
ϕ∈A

|〈S,ϕ〉|
Np(ω)(ϕ)

(ω).
�

REMARK 2.10. An alternate proof of the fact that 
X ⊃ 
Ẋ is as follows. We
can restrict to the case where X is a compound Poisson process. We construct here
a solution to the equation u′(ω) = Ẋ(ω) such that u(ω) ∈ S ′(R). Let θ ∈ D(R)

be such that θ ≥ 0,
∫
R

θ = 1 and supp θ ⊂ [0,1]. Then let ϕ ∈ S(R). There exists
a function � ∈ S(R) such that ϕ = �′ if and only if

∫
R

ϕ = 0 [consider �(x) =∫ x
−∞ ϕ(t)dt for the if part, the other direction is obvious]. Then consider the linear

functional I on S(R) defined by

Iϕ(t) =
∫ t

−∞

(
ϕ(s) − θ(s)

∫
R

ϕ

)
ds.(2.10)

This functional defines an antiderivative on S(R): for any ϕ ∈ S(R), I (ϕ′) = ϕ.
Also, the reader can easily check that, for all p ∈N,

sup
t∈R

|t |p∣∣Iϕ(t)
∣∣ ≤ CpNp+2(ϕ),

for some constant Cp depending only on p and, therefore, I is a continuous linear
functional with values in S(R). This implies that for ω ∈ 
Ẋ , we can define a
tempered distribution u(ω) by〈

u(ω),ϕ
〉 = −〈

Ẋ(ω), Iϕ
〉

for all ϕ ∈ S(R).

This tempered distribution clearly satisfies u′(ω) = Ẋ(ω). By definition of Ẋ, u

and X only differ by a (random) constant, and so X(ω) ∈ S ′(R). Therefore, 
Ẋ ⊂

X .

3. Lévy fields and Lévy noise in S ′(Rd). In this section, we consider the
same questions as in Section 2, but for a generalization of the notion of Lévy
process, where the “time” parameter is in R

d+, with d ≥ 1. A general presentation
of this theory of multiparameter Lévy fields can be found in [1]; see also [6].

In the following, for any k ∈ N,1k (resp., 0k,2k) denotes the k-dimensional
vector with coordinates all equal to 1 (resp., to 0,2). We recall that (
,F,P) is
a complete probability space. Let (Xt)t∈Rd+ be a d-parameter random field. For

s, t ∈ R
d+ with s = (s1, . . . , sd), t = (t1, . . . , td), we say that s ≤ t if si ≤ ti for all

1 ≤ i ≤ d , and s < t if si < ti for all 1 ≤ i ≤ d . For a ≤ b ∈ R
d+, we define the box

]a, b] = {t ∈ R
d+ : a < t ≤ b}, and the increment �b

aX of X over the box ]a, b] by

(3.1) �b
aX = ∑

ε∈{0,1}d
(−1)|ε|Xcε(a,b),

where for any ε ∈ {0,1}d , we write |ε| = ∑d
i=1 εi and cε(a, b) ∈ R

d+ is defined by
cε(a, b)i = ai1{εi=1} + bi1{εi=0}, for all 1 ≤ i ≤ d . We can check that when d = 1,
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then �b
aX = Xb − Xa . In fact, for all d ≥ 1,

∫
[a,b] ϕ(1d )(t)dt = �b

aϕ. The next
definition is a generalization of the càdlàg property to processes indexed by R

d+.
We define the relations R = (R1, . . . ,Rd), where Ri is either ≤ or >, and aRb if
and only if aiRibi for all 1 ≤ i ≤ d .

DEFINITION 3.1. Using the terminology in [1] and [25], we say that X is lamp
(for limit along monotone paths) if we have the following: (i) For all 2d relations
R, limu→t,tRu Xu exists; (ii) If R = (≤, . . . ,≤) then Xt = limu→t,tRu Xu; and
(iii) Xt = 0 if ti = 0 for some 1 ≤ i ≤ d .

We are now ready to give the definition of a Lévy field in R
d+.

DEFINITION 3.2. X = (Xt)t∈Rd+ is a d-parameter Lévy field if it has the fol-
lowing properties:

(i) X is continuous in probability.
(ii) X is lamp almost surely.

(iii) For any sequence of disjoint boxes ]ak, bk],1 ≤ k ≤ n, the random vari-
ables �

bk
akX are independent.

(iv) Given two boxes ]a, b] and ]c, d] in R
d+ such that ]a, b] + t =]c, d] for

some t ∈ R
d , the increments �b

aX and �d
c X are identically distributed.

The jump �tX of X at time t is defined by �tX = limu→t,u<t �
t
uX.

This definition coincides with the notion of Lévy process when d = 1. In ad-
dition, for all t = (t1, . . . , td) ∈ R

d+, and for all 1 ≤ i ≤ d , the process Xi,t· =
X(t1,...,ti−1,·,ti+1,...,td ) is a Lévy process (the notation here means that it is the pro-
cess in one parameter obtained by fixing all the coordinates of t except the ith).

The Brownian sheet is an example of such a d-parameter Lévy field. It is the
analog in this framework of Brownian motion and further properties of this field
are detailed in [5, 7, 16] or [27].

For all t ∈ R
d+,Xt is an infinitely divisible random variable, and by the Lévy–

Khintchine formula ([23], Chapter 2, Theorem 8.1, page 37), there exist real num-
bers γt , σt and a Lévy measure νt such that E(eiuXt ) = exp[iuγt − 1

2σ 2
t u2 +∫

R
(eiux − 1 − iux1|x|≤1)νt (dx)]. The triplet (γt , σt , νt ) is called the characteristic

triplet of Xt . Since for all 1 ≤ i ≤ d and t ∈ R
d+, the process Xi,t defined above is

a Lévy process, we deduce that there exists a triplet (γ, σ, ν) where γ,σ ∈ R and ν

is a Lévy measure such that (γt , σt , νt ) = (γ, σ, ν)Lebd([0, t]), where Lebd(dx) is
d-dimensional Lebesgue measure. We call (γ, σ, ν) the characteristic triplet of the
Lévy field X. We can now state the multidimensional analog of the Lévy–Itô de-
composition, taken from [1], Theorem 4.6, particularized to the case of stationary
increments (see also [6]).
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THEOREM 3.3. Let X be a d-parameter Lévy field with characteristic triplet
(γ, σ, ν). The following hold:

(i) The jump measure JX defined by JX(B) = #{(t,�tX) ∈ B}, for B in the
Borel σ -algebra of Rd+ × (R \ {0}), is a Poisson random measure with intensity
Lebd ×ν.

(ii) For all t ∈ R
d+, we have the decomposition

Xt = γ Lebd

([0, t]) + σWt +
∫
[0,t]

∫
|x|>1

xJX(ds,dx)

+
∫
[0,t]

∫
|x|≤1

xJ̃X(ds,dx),

where W is a Brownian sheet, J̃X = JX − Lebd ×ν is the compensated jump mea-
sure, and the equality holds almost surely. In addition, the terms of the decompo-
sition are independent random fields.

If X is a d-parameter Lévy field, by the lamp property of its sample paths, it is
locally bounded and defines almost surely an element of D′(Rd) via the L2-inner
product. Similar to the one-dimensional case (see Definition 2.5), we now define
the d-dimensional Lévy white noise.

DEFINITION 3.4. Let X be a d-parameter Lévy field with characteristic triplet
(γ, σ, ν). The Lévy white noise Ẋ is the dth cross-derivative of X in the sense of
Schwartz distributions: for ω ∈ 
 and ϕ ∈D(Rd),

〈Ẋ, ϕ〉(ω) := (−1)d
〈
X,ϕ(1d )〉(ω) := (−1)d

∫
R

d+
Xt(ω)ϕ(1d )(t)dt,

where ϕ(1d ) = ∂d

∂t1···∂td
ϕ.

As in Section 2.3, note that the law of the multidimensional Lévy white noise
Ẋ is entirely characterized by the triplet (γ, σ, ν) (given that we use the truncation
function 1|x|≤1 in the Lévy–Itô decomposition). We will show in Proposition 3.16
that this definition is equivalent to other definitions of Lévy white noise.

REMARK 3.5. Given a d-parameter Lévy field X with characteristic triplet
(γ, σ, ν) and jump measure JX , for a suitable class of functions ϕ : Rd+ → R, we
can define the stochastic integral∫

R
d+

ϕ(s)dXs := γ

∫
R

d+
ϕ(s)ds + σ

∫
R

d+
ϕ(s)dWs

+
∫
R

d+

∫
|x|>1

xϕ(s)JX(ds,dx)

(3.2)



LÉVY NOISE AS A TEMPERED DISTRIBUTION 4401

+
∫
R

d+

∫
|x|≤1

xϕ(s)J̃X(ds,dx)

= γA1(ϕ) + σA2(ϕ) + A3(ϕ) + A4(ϕ),

where the first integral is a Lebesgue integral, the second integral is a Wiener
integral (see [17], Chapter 2) and the last two integrals are Poisson integrals (see
[15], Lemma 12.13) with the space S = R

d+ × (R \ {0}).

The next lemma relates the definition of Lévy white noise above with the map-
ping ϕ → ∫

R
d+ ϕ(s)dXs .

LEMMA 3.6. Let X be a d-parameter Lévy field with characteristic triplet
(γ, σ, ν) and jump measure JX . Then, for all ϕ ∈D(Rd),

(3.3) 〈Ẋ, ϕ〉 =
∫
R

d+
ϕ(s)dXs.

PROOF. Generically, if μ is a measure on R
d+ and if x(t) := μ([0, t]), then

∂d

∂t1···∂td
x = μ in D′(Rd). Indeed, by (3.1), for any ϕ ∈D(Rd),

∫
R

d+
ϕ(s)μ(ds) = (−1)d

∫
R

d+
μ(ds)

∫
R

d+
dtϕ(1d )(t)1t≥s

= (−1)d
∫
R

d+
dtϕ(1d )(t)

∫
R

d+
μ(ds)1t≥s(3.4)

= (−1)d
∫
R

d+
ϕ(1d )(t)x(t)dt,

where the second equality requires a Fubini-type theorem.
Notice that for bounded Borel sets, the set function

B 
→ X̃(B) :=
∫
R

d+
1B(s)dXs

defines an L0(
,F,P)-valued measure (see, e.g., [6], Theorem 2.6), and Xt =
X̃([0, t]) a.s. We shall apply the argument in (3.4) separately to the four integrals
in (3.2). For the first integral, the standard Fubini’s theorem applies. For the second
integral, since ϕ ∈ L2(Rd), it is well defined, and since it has compact support, we
use the stochastic Fubini’s theorem ([27], Theorem 2.6). For the third integral, let
JXP (ds,dx) = 1|x|>1JX(ds,dx) be the jump measure of the compound Poisson
part XP of the Lévy–Itô decomposition of X. Then JXP = ∑

i≥1 δτi
δYi

, where
(τi, Yi) are random elements of Rd+ × (R \ {0}), and A3(ϕ) = ∑

i≥1 Yiϕ(τi). For
a fixed ϕ with compact support, this is a finite sum, so Fubini’s theorem applies
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trivially. For the term A4(ϕ), the integral is a compensated Poisson integral, and
we know that it exists (see [15], Lemma 12.13) if and only if

(3.5)
∫
R

d+

∫
|x|≤1

(∣∣xϕ(s)
∣∣2 ∧ ∣∣xϕ(s)

∣∣) dsν(dx) < +∞.

Since ϕ ∈ L2(Rd),∫
R

d+

∫
|x|≤1

(∣∣xϕ(s)
∣∣2 ∧ ∣∣xϕ(s)

∣∣) dsν(dx) ≤ ‖ϕ‖2
L2

∫
|x|≤1

x2ν(dx) < +∞.

For n ∈N, define

A4,n(ϕ) :=
∫
R

d+

∫
1

2n+1 <|x|≤ 1
2n

xϕ(t)J̃X(dx,dt)

=
∫
R

d+

∫
1

2n+1 <|x|≤ 1
2n

xϕ(t)JX(dx,dt)

−
∫
R

d+

∫
1

2n+1 <|x|≤ 1
2n

xϕ(t)ν(dx)dt.

Then A4,n(ϕ) is a sequence of centered independent random variables (the com-
pensated Poisson integrals are over disjoint sets) in L2(
), and we know that

E
((

A2
4,n(ϕ)

)) =
∫
R

d+
ϕ(s)2 ds

∫
1

2n+1 ≤|x|< 1
2n

x2ν(dx).

Since ν is a Lévy measure, we see that
∑

nE((A2
4,n(ϕ))) < ∞ and by Kol-

mogorov’s convergence criterion (see [10], Theorem 2.5.3) we deduce that as
n → +∞,

(3.6)
∑

0≤k≤n

A4,k(ϕ) →
∫
R

d+

∫
|x|≤1

xϕ(s)J̃X(dx,ds) = A4(ϕ) a.s.

For each n ∈ N, since the Lévy measure ν is finite on compact subsets of Rd+ ×
[ 1

2n+1 , 1
2n ], Fubini’s theorem applies to the set function B 
→ A4,n(1B) in the same

way it did for A3 and A1. Therefore, letting

X
M,n
t =

∫
R

d+

∫
1

2n+1 <|x|≤ 1
2n

x1t≥s J̃X(ds,dx),

the argument in (3.4) implies that

A4,n(ϕ) = (−1)d
∫
R

d+
ϕ(1d )(t)X

M,n
t dt.

By [1], Theorem 4.6 (see also [6], Theorem 2.3),
∑

0≤k≤n X
M,k
t → XM

t , where XM

is the small jumps part of X, and the convergence is a.s., uniformly on compact
subsets of Rd+. Since ϕ has compact support, (3.6) implies that

A4(ϕ) = (−1)d
∫
R

d+
ϕ(1d )(s)XM

s ds. �
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3.1. The case of a p-integrable martingale (p > 1). We say that a random
field M is a multiparameter martingale with respect to a filtration F = (Ft )t∈Rd+
(see [16], Chapter 7, Section 2, page 233) if M is F-adapted, integrable, and for
all s ≤ t ∈ R

d+, then E(Mt |Fs) = Ms . We will also need the notion of commuting
filtration (see [16], Chapter 7, Section 2, Definition, page 233). By [16], Theo-
rem 2.1.1 in Chapter 7, to show that F is commuting, it suffices to show that
for any s, t ∈ R

d+,Fs and Ft are conditionally independent given Fs∧t , where
(s ∧ t)i = si ∧ ti . In particular, if X is a d-parameter Lévy field and Ft is the
σ -algebra generated by the family (Xs)s≤t , then F is commuting by the indepen-
dence of the increments of X.

For any lamp random field L, we consider, similar to (2.1), the event

(3.7) 
L = {
ω ∈ 
 : L(ω) ∈ S ′(

R
d)}

,

with the understanding that when L(ω) ∈ S ′(Rd), the continuous linear functional
associated with L(ω) is 〈L(ω),ϕ〉 = ∫

R
d+ Lt(ω)ϕ(t)dt , for all ϕ ∈ S(Rd).

PROPOSITION 3.7. Fix p > 1 and let (Mt)t∈Rd+ be a multiparameter martin-

gale with respect to a commuting filtration (Ft )t∈Rd+ , such that for all t ∈R
d+,

E
(|Mt |p) ≤ (

c Lebd

([0, t]))p
2

for some constant c. Then the set 
M defined as in (3.7) has probability one.

PROOF. Similar to the one-dimensional case, we control the supremum of
|t |−α|Mt | as |t | → +∞, or, equivalently, the supremum of |s|−α|Ms | for s ∈
R

d+ \ [0, t] as mini=1,...,d ti → +∞, and prove that the limit in probability of this
supremum, as all the coordinates of t go to +∞, is zero. The proof uses the mul-
tidimensional analog of Doob’s Lp inequality: Cairoli’s strong (p,p) inequality
(see [16], Chapter 7, Theorem 2.3.2). For all i ∈ N \ {0}, let xi = 2i−1 and x0 = 0.
For k = (k1, . . . , kd) ∈ N

d , let ak = (xk1, . . . , xkd
), and let bk = (2k1, . . . ,2kd ). We

fix k ∈ N
d, k �= (0, . . . ,0). By using successively Jensen’s inequality and Cairoli’s

inequality, for any α > 0, we have

E

(
sup

s∈[ak,bk]
|Ms |
|s|α

)
≤ 1

|ak|αE
(

sup
s≤bk

|Ms |p
) 1

p

≤ cp

|ak|αE
(|Mbk

|p) 1
p ≤ cp

√
c Lebd([0, bk])

|ak|α ,

for some constant cp depending only on p and the dimension d , where |ak| and
|s| denote here the Euclidean norm. Since k1 ∨ · · · ∨ kd ≥ 1, we have |ak| ≥
2k1∨···∨kd−1, hence

E

(
sup

s∈[ak,bk]
|Ms |
|s|α

)
≤ cp

√
c2

1
2

∑d
i=1 ki 2−α(k1∨···∨kd−1)

(3.8)
≤ cp

√
c2α2−( α

d
− 1

2 )
∑d

i=1 ki .
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We choose α = �d
2 � + 1. Let t ∈ R

d+ be far enough from the origin (we will con-
sider the limit as all the coordinates of t go to +∞), and for all 1 ≤ i ≤ d , let ni

be the largest integer such that 2ni ≤ ti and let n = (n1, . . . , nd). We can suppose
that ni ≥ 2 for all 1 ≤ i ≤ n. We write � for the set of all relations R of the form
(r1, . . . , rd), where for all i ∈ {1, . . . , d}, ri ∈ {≤,≥} and R �= (≤, . . . ,≤). Then
[0, tn] ⊂ [0, t], where tn = (2n1, . . . ,2nd ). The complement of the box [0, tn] in
R

d+ is covered by boxes of the form [ak, bk], where k ∈ N
d and kRn for some

R ∈ �. Therefore,

P

(
sup

s /∈[0,t]
|Ms |
|s|α > ε

)
≤ P

(
sup

s /∈[0,tn]
|Ms |
|s|α > ε

)

≤ ∑
R∈�

∑
k∈Nd

kRn

P

(
sup

s∈[ak,bk]
|Ms |
|s|α > ε

)

≤ cp

√
c2α

ε

∑
R∈�

∑
k∈Nd

kRn

2−( α
d
− 1

2 )
∑d

i=1 ki −→t�+∞ 0,

where t � +∞ means that t1 ∧ · · · ∧ td → +∞. To check that the limit is indeed
zero, one has that for any fixed R ∈ �, at least one of the inequalities in R is ≥.
By symmetry, we can suppose that it is the first inequality. Then∑

k∈Nd

kRn

2−( α
d
− 1

2 )
∑d

i=1 ki ≤ Cα,d

∑
k1≥n1

2−( α
d
− 1

2 )k1 →
n1→+∞ 0.

The result follows since � is a finite set. Then sups /∈[0,t] |s|−α|XM
s | → 0 in prob-

ability as t � +∞, therefore |t |−α|Mt | → 0 a.s as |t | → +∞. By the lamp prop-
erty of M , we deduce that M is slowly growing, and by Remark 1.1 we deduce
that P(
M) = 1. �

COROLLARY 3.8. Let X be a d-parameter Lévy field with characteristic
triplet (γ, σ, ν) and Lévy–Itô decomposition Xt = γ Lebd([0, t]) + σWt + XP

t +
XM

t where XP is the large jump part of the decomposition and XM is the com-
pensated small jumps part. Let Yt = γ Lebd([0, t])+ σWt + XM

t . Then the set 
Y

defined in (3.7) has probability one.

PROOF. The random field Ỹ = σW +XM is a sum of two independent square
integrable martingales and by a classical result on compensated Poisson integrals
and Brownian sheets,

E
(
Ỹ 2

t

) =
(
σ 2 +

∫
|x|≤1

x2ν(dx)

)
Lebd

([0, t]),
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where the multiplicative constant is finite since ν is a Lévy measure. Hence, Ỹ

verifies the hypothesis of the Proposition 3.7 with p = 2, therefore, it defines a
tempered distribution a.s. Since Ỹ and Y differ by a slowly growing function, we
deduce that Y is a tempered distribution almost surely. �

3.2. The compound Poisson sheet. By Corollary 3.8, for any d-parameter
Lévy field X, we have 
X ∩ 
Y = 
XP ∩ 
Y . We shall prove that 
XP has prob-
ability 0 or 1. In the one-dimensional setting, we used the fact that a compound
Poisson process with a PAM is slowly growing a.s. [see Proposition 2.4(i)]. As
mentioned in the Introduction, the same results in a d-dimensional setting are to
the best of our knowledge unavailable, which leads us to find another approach. In
the multiparameter case, we will use properties of stochastic integrals with respect
to a Poisson random measure to show that under a moment condition, a compound
Poisson sheet and its associated white noise define tempered distributions. While
this is in principle a special case of [11], Theorem 3, in view of Corollary 3.8, the
two statements are in fact equivalent.

LEMMA 3.9. Let ν be a Lévy measure and M be a Poisson random measure
on (R \ {0}) × R

d+ with intensity measure 1|x|>ην(dx)dt , where η > 0. Suppose
that

∫
|x|>η |x|αν(dx) < +∞ for some α > 0 (PAM) and consider the compound

Poisson sheet Pt = ∫
[0,t]

∫
|x|>η xM(dt,dx). Then:

(i) M almost surely defines a tempered distribution via the formula

(3.9) 〈M,ϕ〉 =
∫
R

d+

∫
|x|>η

M(dt,dx)ϕ(t)x, ϕ ∈ S
(
R

d)
.

(ii) P(
P ) = 1 and for all ϕ ∈ S(Rd),

(3.10) 〈P,ϕ〉 :=
∫
R

d+
Ptϕ(t)dt =

∫
R

d+

∫
|x|>η

M(dt,dx)

∫
[t,+∞[

dsϕ(s)x,

(iii) M = P (1d ) in S ′(Rd), where we recall that P (1d ) = ∂d

∂t1···∂td
P .

PROOF. Since M is a Poisson random measure on R
d+ × (R \ {0}) with jumps

of size larger than η, there are (random) points (τi, Yi)i≥1 ∈ R
d+ × (R \ [−1,1])

such that M = ∑
i≥1 δτi

δYi
. To prove (i), we first need to check that the integral in

(3.9) is well defined. Let ϕ ∈ S(Rd). The stochastic integral is a Poisson integral,
and it is well defined (as the limit in probability of Poisson integrals of elementary
functions) if and only if (see [15], Lemma 12.13)

(3.11)
∫
|x|>η

∫
R

d+

(∣∣xϕ(t)
∣∣ ∧ 1

)
dtν(dx) < +∞.
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Let r ∈ N. There is a constant C > 1 such that supt∈Rd+(1+|t |r )|ϕ(t)| ≤ C < +∞.

Then |xϕ(t)| ∧ 1 ≤ C|x|
1+|t |r ∧ 1. We write Vd for the volume of the d-dimensional

unit sphere. Then, for |x| > 1,∫
R

d+

(∣∣xϕ(t)
∣∣ ∧ 1

)
dt ≤

∫
R

d+

(
C|x|

1 + |t |r ∧ 1
)

dt

≤ dVd

∫
R+

(
C|x|

1 + ur
∧ 1

)
ud−1 du

≤ dVd

(∫ (C|x|−1)
1
r

0
ud−1 du + C|x|

∫ +∞
(C|x|−1)

1
r

ud−1

1 + ur
du

)

≤ Vd

(
C|x| − 1

) d
r + dVdC|x|

∫ +∞
(C|x|−1)

1
r

ud−1

1 + ur
du.

The last integral has to be well defined so we take r > d , and then

∫ +∞
(C|x|−1)

1
r

ud−1

1 + ur
du ≤

∫ +∞
(C|x|−1)

1
r

ud−1−r du = 1

r − d

(
C|x| − 1

) d−r
r ,

so ∫
R

d+

(∣∣xϕ(t)
∣∣ ∧ 1

)
dt ≤ Vd

(
C|x| − 1

) d
r + dVdC|x|

r − d

(
C|x| − 1

) d−r
r .

We deduce that there exists a constant C′ such that, for |x| > 1,

(3.12)
∫
R

d+

(∣∣xϕ(t)
∣∣ ∧ 1

)
dt ≤ C ′|x| d

r .

We then choose r large enough so that d
r

≤ α ∧ 1
2 , in which case the moment

condition on ν gives us (3.11) and, therefore, the Poisson integral is well defined
and a.s. finite. Set gr(t) = 1

1+|t |r , t ∈ R
d+. Then for r sufficiently large,

∫
R

d+

∫
|x|>η

M(dt,dx)gr(t)|x|

is well defined since, by (3.12) and PAM,∫
|x|>η

∫
R

d+

(∣∣xgr(t)
∣∣ ∧ 1

)
dtν(dx) < +∞.

Since M = ∑
i δτi

δYi
,

〈M,ϕ〉 = ∑
i

Yiϕ(τi).
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Now suppose ϕn → 0 in S(Rd). Then for large n, |ϕn| ≤ gr , and

∣∣〈M,ϕn〉
∣∣ =

∣∣∣∣∑
i

ϕn(τi)Yi

∣∣∣∣
≤ ∑

i

|Yi |gr(τi) =
∫
R

d+

∫
|x|>η

M(dt,dx)gr(t)|x| < +∞ a.s.

For a.a. fixed ω ∈ 
, ϕn(τi(ω)) → 0 as n → +∞, |ϕn(τi(ω))| ≤ gr(τi(ω)) and∑
i gr(τi(ω))|Yi(ω)| < +∞. By the dominated convergence theorem,〈

M(ω),ϕn

〉 = ∑
i

ϕn

(
τi(ω)

)
Yi(ω) → 0 as n → +∞.

Therefore, the linear functional ϕn 
→ 〈M(ω),ϕn〉 is continuous on S(Rd), and so
M(ω) ∈ S ′(Rd) for a.a. ω ∈ 
.

To prove (ii), we first prove that the Poisson integral on the right-hand side of
(3.10) is well defined, and we will need the PAM condition. Let ϕ ∈ S(Rd) and let
�(t) = ∫

[t,+∞[ ϕ(s)ds. Then (3.10) is well defined if

(3.13)
∫
|x|>η

∫
R

d+

(∣∣x�(t)
∣∣ ∧ 1

)
dtν(dx) < +∞.

Using (3.15) in Lemma 3.10 below, property (3.13) is established in the same
way as (3.11) and, as above, the right-hand side of (3.10) defines almost surely a
tempered distribution. Let ϕ ∈ S(Rd). Then∫

R
d+

∫
|x|>η

M(dt,dx)

∫
[t,+∞[

dsϕ(s)x = ∑
i≥1

∫
R

d+
Yi1τi∈[0,s]ϕ(s)ds.(3.14)

Following the argument in (3.4), we want to be able to use Fubini’s theorem to
exchange the sum and the integral in the last expression. For any α ∈ N, by the
same argument as in the proof of Lemma 3.10 below with β = 0,

sup
t∈Rd+

(
1 + |t |α) ∫

[t,+∞[
∣∣ϕ(s)

∣∣ ds ≤ CN|α|+2d(ϕ).

As in the proof of (3.11), we deduce that∫
|x|>η

∫
R

d+

(∣∣∣∣x
∫
[t,+∞[

∣∣ϕ(s)
∣∣ ds

∣∣∣∣ ∧ 1
)

dtν(dx) < +∞.

Then
∑

i≥1
∫
R

d+ |Yi |1τi∈[0,s]|ϕ(s)|ds < +∞, and by (3.14) and Fubini’s theorem,∫
R

d+

∫
|x|>η

M(dt,dx)

∫
[t,+∞[

dsϕ(s)x =
∫
R

d+

∑
i≥1

Yi1τi∈[0,s]ϕ(s)ds

=
∫
R

d+
Psϕ(s)ds.
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This establishes (3.10). Property (iii) now follows by replacing ϕ by ϕ(1d ) in (3.10).
�

LEMMA 3.10. For ϕ ∈ S(Rd), let � be the function defined by �(t) =∫
[t,+∞) ϕ(s)ds. Let p ∈ N, α,β ∈ N

d , such that |α|, |β| ≤ p. Then for all a ∈ R
d ,

there is C = C(p,d, a) < +∞, such that, for all ϕ ∈ S(Rd),

(3.15) sup
t≥a

∣∣(1 + ∣∣tα∣∣)�(β)(t)
∣∣ ≤ C′Np+2d(ϕ).

PROOF. Let t ∈ R
d . Then �(t) = ∫

R
d+ ϕ(s + t)ds, so

�(β)(t) =
∫
R

d+
ϕ(β)(s + t)ds.

Therefore,

∣∣(1 + ∣∣tα∣∣)�(β)(t)
∣∣ ≤ (

1 + ∣∣tα∣∣) ∫
R

d+

∣∣ϕ(β)(s + t)
∣∣ ds

= (
1 + ∣∣tα∣∣) ∫

R
d+

|ϕ(β)(s + t)|(1 + |(t + s)α+2d |)
1 + |(t + s)α+2d | ds

≤ Np+2d(ϕ)
(
1 + ∣∣tα∣∣) ∫

R
d+

1

1 + |(t + s)α+2d | ds

≤ CNp+2d(ϕ)

for t ≥ a, where C is a constant depending only on p, d and a. �

3.3. Multidimensional Lévy white noise: The general case. The following
lemma extends to d-parameter Lévy fields the property recalled in Remark 2.8.

LEMMA 3.11. Let X be a d-parameter Lévy field with characteristic triplet
(γ, σ, ν) and let α > 0. The following are equivalent: (i) ∀t ∈ R

d+,E(|Xt |α) <

+∞; (ii) ∃t ∈ (R+ \ {0})d : E(|Xt |α) < +∞; (iii)
∫
|x|>1 |x|αν(dx) < +∞.

PROOF. Clearly, (i) implies (ii). Suppose that (ii) is true for some t in (R+ \
{0})d . As discussed just after Definition 3.2, the process Xi,t obtained by fixing
all coordinates of the parameter t except the ith is again a Lévy process with
characteristic triplet (γ, σ, ν)

∏
j �=i tj . By an application of [23], Theorem 25.3,

we deduce that (
∏

j �=i ti)
∫
|x|>1 |x|αν(dx) < +∞ and then (iii) is verified. Suppose

now that (iii) is true. Let t ∈R
d+, and 1 ≤ i ≤ d . Since (

∏
j �=i ti)

∫
|x|>1 |x|αν(dx) <

+∞, another application [23], Theorem 25.3, gives us E(|Xi,t
s |α) < +∞ for all

s ∈ R+. Since i and t are taken arbitrarily, we deduce (i). �
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We need a technical lemma that essentially states that for a compound Poisson
sheet XP , there is a well chosen sequence (ϕn)n≥1 of test-functions with suit-
ably decreasing compact support such that XP is constant on supp(ϕn) for n large
enough (this was established in dimension one during the proof of Proposition 2.2).

LEMMA 3.12. Let XP be a d-parameter Lévy field with jump measure JX

and characteristic triplet (0,0,1|x|≥1ν), where λ := ∫
|x|≥1 ν(dx) < +∞. Let L be

the compound Poisson process defined by Lt = XP
(1d−1,t)

, and let (Sn)n≥1 denote
its sequence of jump times. Then for all p ∈ N, there exists a finite non random
constant Cp with the following property: for all ω ∈ 
, there exists a sequence
(ϕn)n≥1 of functions (depending on ω) in D(Rd) such that

(3.16) Np(ϕn)1Sn≥1 ≤ CpS3d+4p
n 1Sn≥1,

and there exists an event 
′ such that P(
′) = 1 and for all ω ∈ 
′, there exists an
integer N(ω) such that, for all n ≥ N(ω), XP is constant on the support of ϕn and

(3.17)
〈
XP ,ϕn

〉
(ω) = LSn(ω).

PROOF. As in the proof of Proposition 2.2, we will construct a sequence
(ϕn)n≥1 of functions with suitably decreasing compact support, and then use
a Borel–Cantelli argument to show that XP is constant on this support. Let
ϕ ∈ D(Rd) with suppϕ ⊂ [0,1d ] and

∫
Rd ϕ = 1. Similar to (2.2), the sequence

(ϕn)n≥1 is defined by

ϕn(t) = S3d
n ϕ

(
(t1 − 1)S3

n, . . . , (td−1 − 1)S3
n, (td − Sn)S

3
n

)
, t ∈R

d,

so that suppϕn ⊂ [(1d−1, Sn), (1 + 1
S3

n
, . . . ,1 + 1

S3
n
, Sn + 1

S3
n
)] and

∫
Rd ϕn = 1. Let

p ∈ N. Then

Np(ϕn)1Sn≥1 = ∑
|α|,|β|≤p

sup
t∈Rd

∣∣tαϕ(β)
n (t)

∣∣1Sn≥1

= ∑
|α|,|β|≤p

sup
t∈[0,(2,...,2,Sn+1)]

tα
∣∣ϕ(β)

n (t)
∣∣1Sn≥1

≤ ∑
|α|,|β|≤p

2
∑d−1

i=1 αi (Sn + 1)αd sup
t∈Rd

∣∣ϕ(β)
n (t)

∣∣1Sn≥1

≤ ∑
|α|,|β|≤p

2
∑d−1

i=1 αi (Sn + 1)αd S
3(d+∑d

i=1 βi)
n Np(ϕ)1Sn≥1

≤ C′
pNp(ϕ)S3d+4p

n 1Sn≥1,

for some finite nonrandom constant C′
p . Therefore, (3.16) holds and Cp :=

C′
pNp(ϕ) depends only on ϕ and p. Let

In,k =
]
(1d−1, Sn),

(
1 + 1

Sk
n

, . . . ,1 + 1

Sk
n

, Sn + 1

Sk
n

)[
,
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and let An,k be the event “XP is constant in the box In,k”. Clearly, (3.17) holds on
An,k .

Observe that

P
(
Ac

n,k

) = P
{
XP has at least one jump time in the set Jn,k

}
= P

{
JXP

((
R \ [−1,1]) × Jn,k

) ≥ 1
}
,

where Jn,k is defined as the following set:

Jn,k =
[
0d,

(
1 + 1

Sk
n

, . . . ,1 + 1

Sk
n

, Sn + 1

Sk
n

)[∖[
0d, (1d−1, Sn)

] = J 1
n,k ∪ J 2

n,k,

where J 1
n,k and J 2

n,k are disjoint sets defined by

J 1
n,k =

{
x ∈ R

d+ : ∀1 ≤ i ≤ d − 1, xi < 1 + 1

Sk
n

, xd ≤ Sn,

and ∃i0 ∈ {1, . . . , d − 1} s.t. xi0 > 1
}
,

J 2
n,k = ](0d−1, Sn),

(
1 + 1

Sk
n

, . . . ,1 + 1

Sk
n

, Sn + 1

Sk
n

)
[.

Therefore, we can write

P
(
Ac

n,k

) = P
{
JXP

((
R \ [−1,1]) × J 1

n,k

)
+ JXP

((
R \ [−1,1]) × J 2

n,k

) ≥ 1
}

(3.18)
≤ P

{
JXP

((
R \ [−1,1]) × J 1

n,k

) ≥ 1
}

+ P
{
JXP

((
R \ [−1,1]) × J 2

n,k

) ≥ 1
}
.

Let F(1d−1,t) = σ(Xs, s ∈ [0d, (1d−1, t)]) and F(1d−1,∞) = ∨
t∈R+ F(1d−1,t). We

also write H1 = {x ∈ R
d+ : x1 ≤ 1, . . . , xd−1 ≤ 1}. Then, due to the independence

of the increments of XP , the collection of random variables (JXP ((R \ [−1,1]) ×
A))A⊂R

d+\H1
is independent of F(1d−1,∞). Since Sn is F(1d−1,∞)-measurable, we

deduce that conditionally on Sn, the random variable JXP ((R \ [−1,1]) × J 1
n,k)

has a Poisson law with parameter λLebd(J 1
n,k), where λ := ∫

|x|>1 ν(dx). Further,
on the event {Sn ≥ 1},

Lebd

(
J 1

n,k

) =
d−1∑
j=1

(
d − 1

j

)
Sn

(
1

Sk
n

)j(
1 + 1

Sk
n

)d−1−j

≤ 3d−1S−(k−1)
n .

Indeed, the Lebesgue measure of a subset of J 1
n,k of vectors with exactly j compo-

nents strictly greater than one is Sn(
1
Sk

n
)j (1 + 1

Sk
n
)d−1−j , and there are

(d−1
j

)
such
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subsets. We deduce that

P
{
JXP

((
R \ [−1,1]) × J 1

n,k

) ≥ 1
}

≤ P{Sn ≤ 1} +E
(
1Sn>1

(
1 − e

−λLebd (J 1
n,k)

))
(3.19)

≤ P{Sn ≤ 1} + λ3d−1
E

(
S−(k−1)

n

)
.

We also define a process L̃t = XP
(2d−1,t)

. It is a Lévy process with Lévy mea-

sure μ(dx) = 2d−11|x|>1ν(dx). Since XP is piecewise constant, L̃ is a piecewise
constant Lévy process, therefore, a compound Poisson process (see [23], Theo-
rem 21.2). On the event {Sn > 1}, we have

J 2
n,k ⊂ [

(0d−1, Sn),
(
2d−1, Sn + S−k

n

)]
.

Therefore, if XP has a jump point in J 2
n,k , then L̃ has a jump in ]Sn,Sn + S−k

n [.
Let Gt = σ(Xu : u ∈ [0, (2d−1, t)]). Then Sn is a G-stopping time and L̃ is a Lévy
process adapted to the filtration G, so by the strong Markov property, the number
of jumps of the process L̂· = L̃·+Sn − L̃Sn is independent of Sn and has Poisson
distribution of parameter 2d−1λt . Therefore, we can write

P
{
JXP

((
R \ [−1,1]) × J 2

n,k

) ≥ 1
}

≤ P{Sn ≤ 1} + P
({

JXP

((
R \ [−1,1]) × J 2

n,k

) ≥ 1
} ∩ {Sn > 1})

≤ P{Sn ≤ 1} + P

{
L̃ has a jump in

(
Sn,Sn + 1

Sk
n

)}
(3.20)

= P{Sn ≤ 1} + P

{
L̂ has a jump in

(
0,

1

Sk
n

)}

= P{Sn ≤ 1} +E

(
1 − exp

[
−2d−1λ

Sk
n

])

≤ P{Sn ≤ 1} +E

(
2d−1λ

Sk
n

)
.

Using the density of the Gamma distribution, we see that

(3.21) P{Sn ≤ 1} =
∫ 1

0

λn

(n − 1)!e
−λxxn−1 dx ≤ λn

(n − 1)! .

Integrating the Laplace transform of Sn as in (2.6), for n ≥ 4, we see that

(3.22) E
(
S−3

n

) = λ3

(n − 1)(n − 2)(n − 3)
and E

(
S−2

n

) = λ2

(n − 1)(n − 2)
.
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Then we get from (3.18), (3.19), (3.20) with k = 3, (3.21) and (3.22), that for
n ≥ 4,

P
(
Ac

n,3
) ≤ 2λn

(n − 1)! + λ3d−1
E

(
1

S2
n

)
+ λ2d−1

E

(
1

S3
n

)

= 2λn

(n − 1)! + λ23d−1

(n − 1)(n − 2)
+ λ32d−1

(n − 1)(n − 2)(n − 3)
,

and we deduce that
∑

n≥1 P(Ac
n,3) < ∞. By the Borel–Cantelli lemma,

(3.23) P

(
lim sup
n→+∞

Ac
n,3

)
= 0,

and the set 
′ = lim infn→+∞ An,3 has probability one. This completes the proof.
�

We now return to the question of whether or not a Lévy white noise is a tem-
pered distribution. Similar to (2.9), for any d-dimensional Lévy noise Ẋ, we define
the set 
Ẋ by


Ẋ = {
ω ∈ 
 : Ẋ(ω) ∈ S ′(

R
d)}

,(3.24)

and we have the following characterization.

THEOREM 3.13. Let X be a d-parameter Lévy field with jump measure JX

and characteristic triplet (γ, σ, ν) and Ẋ the associated Lévy white noise. Then
the following holds for the set 
Ẋ defined in (3.24) and the set 
X defined as in
(3.7):

(i) If there exists η > 0 such that E(|X1d
|η) < +∞, then P(
X) = P(
Ẋ) = 1.

(ii) If for all η > 0,E(|X1d
|η) = +∞, then P(
X) = P(
Ẋ) = 0.

REMARK 3.14. By Lemma 3.11, the equivalent condition mentioned in Re-
mark 2.8 remains valid in the d-parameter case.

As mentioned in the Introduction, the first assertion of Theorem 3.13 was es-
tablished in [11], Theorem 3, using a different definition of Lévy white noise. In
Proposition 3.16 below, we show that the two definitions are equivalent.

PROOF OF THEOREM 3.13. To prove (i), by the Lévy–Itô decomposition
(Theorem 3.3), Corollary 3.8 and Lemma 3.9(ii), we have P(
X) = 1. Since
derivation maps S ′(Rd) to itself, we deduce that P(
Ẋ) = 1.

To prove (ii), suppose that Ẋ does not have a PAM. We can use Theorem 3.3 to
decompose X into the sum of a continuous part C, a small jumps part XM and a
compound Poisson part XP . By Corollary 3.8, P(
C+XM ) = 1. Then we deduce
that, for all ω ∈ 
Ẋ ∩ 
C+XM ,

ẊP (ω) = Ẋ(ω) − Ċ(ω) − ẊM(ω) = Ẋ(ω) − (
C(ω) + XM(ω)

)(1d )
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belongs to S ′(Rd). The general strategy of the proof is to construct, from the com-
pound Poisson sheet XP , a compound Poisson process that has the same moment
properties, and show that when ẊP ∈ S ′(Rd), this process has polynomial growth
at infinity, and this occurs with probability zero by Proposition 2.4(ii).

We first examine the noise ẊP associated with the compound Poisson part.
The jump measure JXP (ds,dx) = 1|x|>1JX(ds,dx) of XP is a Poisson random
measure on R

d+ × (R \ {0}) and JXP = ∑
i≥1 δτi

δYi
, where τi ∈ R

d+ and |Yi | ≥ 1.
By Lemma 3.6, for all ϕ ∈ D(Rd),

〈
ẊP ,ϕ

〉 = ∫
R

d+

∫
|x|>1

xϕ(t)JX(dt,dx) = ∑
i≥1

Yiϕ(τi).(3.25)

By Lemma 3.12, for all ω ∈ 
, there exists a sequence (ϕn)n≥1(ω) of smooth com-
pactly supported functions such that (3.16) holds. Furthermore, there is an event

′ ⊂ 
 with probability one such that there is an integer N(ω) with the property
that for all n ≥ N(ω), XP is constant on the support of ϕn(ω), and (3.17) holds.
Let L be the compound Poisson process defined in Lemma 3.12 by Lt = XP

(1d−1,t)
.

We restrict ourselves to ω ∈ 
Ẋ ∩
C+XM ∩
′, but we drop the dependence on ω

in the following for simplicity of notation. We write �n(t) = ∫
[t,+∞) ϕn(s)ds. Let

θ ∈ C∞(Rd) be such that θ = 0 on the set {t ∈ R
d : t1 ∧ · · · ∧ td ≤ −1} and θ = 1

on the set {t ∈ R
d : t1 ∧· · ·∧ td ≥ −1

2} and such that all its derivatives are bounded.
Then for all n ≥ 1, θ�n ∈ D(Rd) ⊂ S(Rd). So, in particular, for all n ≥ 1, since θ

is constant on R
d+,

〈
ẊP , θ�n

〉 = (−1)d
〈
XP , (θ�n)

(1d )〉
= (−1)d

〈
XP , (�n)

(1d )〉 = 〈
XP ,ϕn

〉 = LSn,

by (3.17), and since 
Ẋ ∩ 
C+XM ⊂ 
ẊP , we deduce that

|LSn | ≤ CNp(θ�n),(3.26)

for some real number C and integer p (both depending on ω). For α,β ∈ N
d , with

|α|, |β| ≤ p, we estimate supt∈Rd |tα(θ�n)
(β)|. Since all the derivatives of θ are

bounded,

sup
t∈Rd

∣∣tα(θ�n)
(β)(t)

∣∣ = sup
t≥−1d

∣∣tα(θ�n)
(β)(t)

∣∣

= sup
t≥−1d

∣∣∣∣∣∣tα
∑
γ≤β

(
β

γ

)
�(γ )

n (t)θ(β−γ )(t)

∣∣∣∣∣∣
≤ C1

∑
γ≤β

sup
t≥−1d

∣∣tα�(γ )
n (t)

∣∣,
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for some constant C1 depending only on p and θ . By (3.15), for some constant C2,

sup
t≥−1d

∣∣tα�(γ )
n (t)

∣∣1Sn≥1 ≤ C2Np+2d(ϕn)1Sn≥1 ≤ C3S
p̃
n 1Sn≥1,

by (3.16), for some constant C3 and p̃ independent of n. Therefore, for any integer
p, there is an integer p̃ and a constant C depending only p and d , such that

Np(θ�n)1Sn≥1 ≤ CSp̃
n 1Sn≥1.(3.27)

We deduce from (3.26) and (3.27) that∣∣∣∣LSn

S
p̃
n

∣∣∣∣1Sn≥1 ≤ C1Sn≥1 < +∞.

As in the proof of Proposition 2.2, we deduce that for all ω ∈ 
Ẋ ∩ 
C+XM ∩ 
′,
there exists p(ω) ∈ N and C(ω) ∈ R+ such that

lim sup
t→+∞

|Lt |(ω)

1 + t p̃(ω)
≤ C(ω) < +∞.(3.28)

Since L is a compound Poisson process with no absolute moment of any positive
order (it has the same Lévy measure as XP ), we can now conclude by Proposi-
tion 2.4(ii) that 
Ẋ ∩ 
C+XM ∩ 
′ is contained in a set of probability zero. Since
P(
C+XM ∩ 
′) = 1, we deduce that P(
Ẋ) = 0.

By the fact that the derivative of a tempered distribution is a tempered distribu-
tion, 
X ⊂ 
Ẋ . Therefore, P(
X) = 0. �

REMARK 3.15. The statement of Corollary 2.9 extends directly to d-
dimensional Lévy white noise, with the same proof.

We now relate our definition of Lévy white noise (Definition 3.4) to stochastic
integrals, and to [11], Theorem 3.

PROPOSITION 3.16. Let Ẋ be a Lévy white noise with jump measure JX and
characteristic triplet (γ, σ, ν) that has a PAM:

(i) For all functions ϕ ∈ S(Rd), we have the following equality:

〈Ẋ, ϕ〉 =
∫
R

d+
ϕ(t)dXt

:= γ

∫
R

d+
ϕ(t)dt + σ

∫
R

d+
ϕ(t)dWt

+
∫
R

d+

∫
|x|≥1

xϕ(t)JX(dx,dt)(3.29)

+
∫
R

d+

∫
|x|<1

xϕ(t)
(
JX(dx,dt) − ν(dx)dt

)
= γA1(ϕ) + σA2(ϕ) + A3(ϕ) + A4(ϕ),
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where the second integral is a Wiener integral (cf. Remark 3.5), and the last two
are Poisson integrals as defined in [15], Lemma 12.13.

(ii) The characteristic functional of the Lévy white noise is given, for all ϕ ∈
S(Rd), by

E
(
ei〈Ẋ,ϕ〉) = exp

[∫
R

d+
ψ

(
ϕ(t)

)
dt

]
,

where ψ is the Lévy symbol of X:

ψ(z) = iγ z − 1

2
σ 2z2 +

∫
R

(
eixz − 1 − izx1|x|≤1

)
ν(dx).

PROOF. Even without PAM, equality (3.29) has already been proven in
Lemma 3.6 when ϕ ∈ D(Rd). We now assume that X has a PAM and check
first that for ϕ ∈ S(Rd), the right-hand side of (3.29) is well defined. Since
S(Rd) ⊂ L1(Rd) ∩ L2(Rd), this is clearly the case for A1(ϕ) and A2(ϕ). For
A3(ϕ), using PAM, one checks condition (3.11) as in the proof of Lemma 3.9.
For A4(ϕ), one checks condition (3.5) using the same proof as when ϕ ∈ D(Rd).

We now deduce (3.29) for ϕ ∈ S(Rd) (assuming PAM). By definition,

〈Ẋ, ϕ〉 = (−1)d

[
γ

∫
R

d+

(
d∏

i=1

ti

)
ϕ(1d )(t)dt + σ

∫
R

d+
Wtϕ

(1d )(t)dt

+
∫
R

d+
XP

t ϕ(1d )(t)dt +
∫
R

d+
XM

t ϕ(1d )(t)dt

]

= γ Ã1(ϕ) + σÃ2(ϕ) + Ã3(ϕ) + Ã4(ϕ).

The equality A3(ϕ) = Ã3(ϕ) comes from Lemma 3.9. For the other three terms,
since D(Rd) is dense in S(Rd), it suffices to check that ϕ 
→ γ Ã1(ϕ)+ σÃ2(ϕ)+
Ã4(ϕ) and ϕ 
→ γA1(ϕ)+σA2(ϕ)+A4(ϕ) define continuous (in probability) lin-
ear functionals of ϕ ∈ S(Rd). For the first, this is obvious because Ẋ ∈ S ′(Rd) by
Theorem 3.13. For the second, consider (ϕn) ⊂ S(Rd) such that ϕn → 0 in S(Rd),
hence in L1(Rd) and L2(Rd). Then A1(ϕn) → 0 and A2(ϕn) → 0 in probability.
According to Cohen and Istas ([3], (2.34), page 27),

E
(
exp

(
iA4(ϕ)

)) = exp
[∫

R
d+

∫
|x|<1

(
eixϕ(t) − 1 − ixϕ(t)

)
dtν(dx)

]
,

for all ϕ ∈ S(Rd). By the inequality in [15], Lemma 5.14,∣∣∣∣
∫
R

d+

∫
|x|<1

(
eixϕn(t) − 1 − ixϕn(t)

)
dtν(dx)

∣∣∣∣
≤ 1

2

∫
R

d+
ϕn(t)

2 dt

∫
|x|<1

x2ν(dx) → 0.
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So A4 defines a linear functional on S(Rd) that is continuous in law at 0, hence
continuous in probability. This completes the proof of (i).

To prove (ii), we use (i) and standard results on the characteristic function of
Poisson and Wiener integrals. See [15], Lemma 12.2, and [3], (2.34), page 27, for
the Poisson integrals and [16], Theorem 1.4.1, for the Wiener integral. �

REMARK 3.17. In dimension one, we used the map I in Remark 2.10 to
give an alternate proof of the inclusion 
Ẋ ⊂ 
X . The analog of this map I in
higher dimensions also exists. Let θ ∈ D(R) such that θ ≥ 0, supp θ ⊂ [0,1] and∫
R

θ = 1. We write θ̃ = θ ⊗ · · · ⊗ θ the dth-order tensor product of θ with itself:
θ̃ (s1, . . . , sd) = θ(s1) · · · θ(sd). Let ϕ ∈ S(Rd). Define

Idϕ(t) =
∫
(−∞,t]

ds

∫
Rd

dr�̃s
r (ϕ, θ̃),(3.30)

where

�̃s
r (ϕ, θ) = ∑

ε∈{0,1}d
(−1)|ε|ϕ

(
cε(r, s)

)
θ̃
(
c1−ε(r, s)

)
,

and cε(r, s) was defined just after (3.1). It is easy to see that if ϕ = ϕ1 ⊗ · · · ⊗ ϕd ,
where ϕ1, . . . , ϕd ∈ S(R), then Idϕ = (I1ϕ1) ⊗ · · · ⊗ (I1ϕd), where I1 coincides
with the map I of Remark 2.10. Then, since I was built as an antiderivative, for
such ϕ,

(3.31) Id

(
∂dϕ

∂t1 · · · ∂td

)
= ϕ.

We have already shown that I1 maps continuously S(R) to itself. We equip
S(R) ⊗ · · · ⊗ S(R) with the topology π generated by the family of semi-norms
Np1,...,pd

(ϕ1 ⊗· · ·⊗ϕd) = ∏d
i=1 Npi

(ϕi). Then Id : S(R)⊗· · ·⊗S(R) → S(R)⊗
· · · ⊗ S(R) is continuous (and then uniformly continuous by linearity). We de-
note S(R) ⊗̂π · · · ⊗̂π S(R) the completion of S(R) ⊗ · · · ⊗ S(R). By [26], Theo-
rem 51.6, S(R) ⊗̂π · · · ⊗̂π S(R) � S(Rd), therefore Id extends (by uniform con-
tinuity) to a continuous linear map from S(Rd) to itself. Formula (3.31) is true by
linearity for ϕ ∈ S(R) ⊗ · · · ⊗ S(R). Let ϕ ∈ S(Rd). There is a sequence (ϕn)n≥1
of elements of S(R) ⊗ · · · ⊗ S(R) such that ϕn → ϕ in S(Rd). Since derivation
is a continuous map from S(Rd) to itself, we deduce that (3.31) holds for any
ϕ ∈ S(Rd).
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