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CONVERGENCE OF THE CENTERED MAXIMUM
OF LOG-CORRELATED GAUSSIAN FIELDS
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University of Chicago∗, Indian Institute of Manangement Bangalore†,
Weizmann Institute‡ and New York University§

We show that the centered maximum of a sequence of logarithmically
correlated Gaussian fields in any dimension converges in distribution, under
the assumption that the covariances of the fields converge in a suitable sense.
We identify the limit as a randomly shifted Gumbel distribution, and charac-
terize the random shift as the limit in distribution of a sequence of random
variables, reminiscent of the derivative martingale in the theory of branching
random walk and Gaussian chaos. We also discuss applications of the main
convergence theorem and discuss examples that show that for logarithmically
correlated fields; some additional structural assumptions of the type we make
are needed for convergence of the centered maximum.

1. Introduction. The convergence in law for the centered maximum of vari-
ous log-correlated Gaussian fields, including branching Brownian motion (BBM),
branching random walk (BRW), two-dimensional discrete Gaussian free field
(DGFF), etc., has recently been the focus of intensive study. Of greatest relevance
to the current paper are [3, 10, 11, 23, 25]. Historically, the first result showing the
correct centering and the tightness of the centered maximum for BBM appears in
the pioneering work [9], followed by the proof of convergence of the law of the
centered maximum [10]; the latter proof relied heavily on the F-KPP equation [19,
22] describing the evolution of the distribution of the maximum. A probabilistic
description of the limit was obtained in [23], using the notion of derivative mar-
tingale that they introduce. Convergence for the centered maximum of BRW with
Gaussian increments was obtained in [5], while the analogous result for general
BRWs under mild assumptions was only obtained quite recently in the important
work [3], using the notion of derivative martingale to describe the limit; see also
[12].

When no explicit tree structure is present, exact results concerning the conver-
gence in distribution of the maximum of logarithmically correlated Gaussian fields
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are harder to establish. It was suggested in the physics literature, using a combina-
tion of recursions, moment computations and nonrigorous replica method, that a
certain universality property should hold for a large class of log-correlated fields,
Gaussian or not, in particular concerning the form of the centering constant (in-
cluding the so-called Bramson correction) as well as the tail of the putative lim-
iting distribution; see [14, 20, 21]. Recently, much progress has been achieved
in the mathematical study of extremes of log-correlated Gaussian fields: first, the
two-dimensional DGFF was treated in [11], where convergence in distribution of
the centered maximum to a randomly shifted Gumbel random variable is estab-
lished. The same result was obtained independently in [25] for a general class of
log-correlated fields, the so-called ∗-scale invariant models, where the covariances
of the fields admit a certain kernel representation which automatically yields a de-
composition into independent components according to scale. (We note in passing
that such a decomposition allows for an application of the modified second mo-
ment method in the form introduced by Aïdékon [3] to treat non-Gaussian branch-
ing random walks.) In the current paper, we extend in a systematic way the class
of logarithmically correlated Gaussian fields for which the same results hold. Our
methods are inspired by [11], which in turn relies heavily on the modified sec-
ond moment method, the modified BRW introduced in [13], tail estimates proved
for the DGFF in [16] and Gaussian comparisons, which allow one to forgo the
assumption of the existence of an explicit hierarchical decomposition of the field.

We now introduce the class of fields considered in the paper. Fix d ∈ N and let
VN = Z

d
N be the d-dimensional box of side length N with the left bottom corner

located at the origin. For convenience, we consider a suitably normalized version
of Gaussian fields {ϕN,v : v ∈ VN } satisfying the following.

(A.0) (Logarithmically bounded fields) There exists a constant α0 > 0 such that,
for all u, v ∈ VN ,

VarϕN,v ≤ logN + α0

and

E(ϕN,v − ϕN,u)
2 ≤ 2 log+ |u − v| − |VarϕN,v − VarϕN,u| + 4α0,

where | · | denotes the Euclidean norm and log+ x = logx ∨ 0. Note that Assump-
tion (A.0) is rather mild and in particular is satisfied by the two-dimensional DGFF
and ∗-scale invariant models. It is, however, strong enough to provide an a priori
tight estimate on the right tail of the distribution of the maximum.

Set MN = maxv∈VN
ϕN,v and

(1) mN = √
2d logN − 3

2
√

2d
log logN.
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PROPOSITION 1.1. Under Assumption (A.0), there exists a constant C =
C(α0) > 0 such that, for all N ∈ N and z ≥ 1,

(2) P(MN ≥ mN + z) ≤ Cze−√
2dze−C−1z2/n.

Furthermore, for all z ≥ 1, y ≥ 0 and A ⊆ VN we have

(3) P

(
max
v∈A

ϕN,v ≥ mN + z − y
)

≤ C

( |A|
|VN |

)1/2
ze−√

2d(z−y).

Here, |A| denotes the cardinality of the set A.

The proof of Proposition 1.1 is provided in Section 2.
By Proposition 1.1, if one has a complementary lower bound showing that for

a large enough constant C, maxv∈VN
ϕN,v > mN − C with high probability, it fol-

lows that the maximizer of the Gaussian field is away from the boundary with
high probability. Therefore, in the study of convergence of the centered maxi-
mum, it suffices to consider the Gaussian field away from the boundary (more
precisely, with distance at least δN away from the boundary where δ → 0 after
N → ∞). In light of this, introduce the sets V δ

N = {z ∈ VN : d(z, ∂VN) ≥ δN}
and V δ = [δ,1 − δ]d , where d(z, ∂VN) = min{‖z − y‖∞ : y /∈ VN } at least. Then
introduce the following assumption.

(A.1) (Logarithmically correlated fields) For any δ > 0 there exists a con-
stant α(δ) > 0 such that, for all u, v ∈ V δ

N , |Cov(ϕN,v, ϕN,u) − (logN −
log+ |u − v|)| ≤ α(δ).

We do not assume Assumption (A.1) for δ = 0 since we wish to incorporate Gaus-
sian fields with Dirichlet boundary conditions, such as the two- dimensional DGFF.

Assumptions (A.0) and (A.1) are enough to ensure the tightness of the sequence
{MN − mN }N .

THEOREM 1.2. Under Assumptions (A.0) and (A.1), we have EMN = mN +
O(1) where the O(1) term depends on α0 and α(1/10). In addition, the sequence
MN −EMN is tight.

(The constant 1/10 in Theorem 1.2 could be replaced by any positive number
that is less than 1/3.) The proof of Theorem 1.2 is provided in Section 2. A similar
result (in the slightly different setup of fields indexed by a continuous parameter)
appears in [1].

As we will explain later, Assumptions (A.0) and (A.1) on their own cannot
ensure convergence in law for the centered maximum. To ensure the latter, we
introduce the following additional assumptions. First, we assume convergence of
the covariance in finite scale around the diagonal.
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(A.2) (Near diagonal behavior) There exist a continuous function f : (0,1)d �→
R and a function g : Zd × Z

d �→ R such that the following holds. For all
L,ε, δ > 0, there exists N0 = N0(ε, δ,L) such that, for all x ∈ V δ , u, v ∈
[0,L]d and N ≥ N0 we have∣∣Cov(ϕN,xN+v, ϕN,xN+u) − logN − f (x) − g(u, v)

∣∣ < ε.

Next, we introduce an assumption on convergence of the covariance off-
diagonal (in a macroscopic scale). Let Dd = {(x, y) : x, y ∈ (0,1)d, x 
= y}.
(A.3) (Off diagonal behavior) There exists a continuous function h : Dd �→

R such that the following holds. For all L,ε, δ > 0, there exists N1 =
N1(ε, δ,L) > 0 such that, for all x, y ∈ V δ with |x − y| ≥ 1

L
and N ≥ N1

we have ∣∣Cov(ϕN,xN ,ϕN,yN) − h(x, y)
∣∣ < ε.

Assumptions (A.2) and (A.3) control the convergence of the covariance on both
the microscopic and macroscopic scale, but allows for fluctuations of order 1 in
the mesoscopic scale. It is not hard to check that both the DGFF and the ∗-scale
fields satisfy Assumptions (A.0)–(A.3). A further example will be discussed in
Section 5.

We remark that Assumptions (A.2) and (A.3) are not necessary for the conver-
gence of the centered maximum. Indeed, one can violate Assumptions (A.2) and
(A.3) by perturbing the field at a single vertex, but this would not affect the con-
vergence in law of the centered maximum, since with overwhelming probability,
the maximizer is not at the perturbed vertex. However, if Assumptions (A.2) and
(A.3) are violated “systematically,” one should not expect a convergence in law for
the centered maximum. We will give two examples at the end of the Introduction
as a demonstration on how violating (A.2) or (A.3) could destroy convergence in
law for the centered maximum.

Our main result is the following theorem.

THEOREM 1.3. Under Assumptions (A.0), (A.1), (A.2) and (A.3), the se-
quence {MN −EMN }N converges in distribution.

As a byproduct of our proof, we also characterize the limiting law of
(MN − mN) as a Gumbel distribution with random shift, given by a positive ran-
dom variable Z which is the weak limit of a sequence of a sequence ZN , defined
as

(4) ZN = ∑
v∈VN

(
√

2d logN − ϕN,v)e
−√

2d(
√

2d logN−ϕN,v).

In the case of BBM, the corresponding sequence ZN is precisely the derivative
martingale, introduced in [23]. It also occurs in the case of BRW (see [3]), and
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plays a similar role in the study of critical Gaussian multiplicative chaos [17]. Even
though in our case the sequence ZN is not necessarily a martingale, in analogy with
these previous situations we keep referring to it as the derivative martingale. The
definition naturally extends to a derivative martingale measure on VN by setting,
for A ⊂ VN ,

ZN,A = ∑
v∈A

(
√

2d logN − ϕN,v)e
−√

2d(
√

2d logN−ϕN,v).

THEOREM 1.4. Suppose that Assumptions (A.0), (A.1), (A.2) and (A.3) hold.
Then the derivative martingale ZN converges in law to a positive random vari-
able Z . In addition, the limiting law μ∞ of MN − mN can be expressed by

μ∞
(
(−∞, x]) = Ee−β∗Ze−√

2dx

for all x ∈ R,

where β∗ is a positive constant.

Theorems 1.3 and 1.4 are generalizations of [11], Theorems 1.1 and 2.5, and
[25], Theorem 1.1 (see Remark 1.5 below). See also the thesis [2] for an extension
to the continuous setup. Theorems 1.3 and 1.4 also overlap with [6], that stud-
ied the conformal symmetry (in the language of [6]) of the law of the maximum
of GFF in general domains—the main results in [6] were presented in terms of
the intensity measure for the extremal process, but the spatial integral of the latter
yields also a representation for the law of the maximum. We emphasize, however,
that in terms of proof strategies, the works of [6, 11] relied heavily on the Markov
field property of the DGFF, while [25] relied crucially on the integral representa-
tion for the covariances of ∗-scale invariant fields. Comparing to [6, 11, 25], our
current work studies the maximum of log-correlated Gaussian fields under min-
imal assumptions, and describes a universal structure of the law of the centered
maximum as a randomly shifted Gumbel variable. In particular, our results shows
that the Markov property of the field is not relevant to the convergence of the law
of the centered maximum.

REMARK 1.5. Despite the fact that the results in this paper are stated for dis-
crete parameters log-correlated fields, it is worthwhile to note that they can be
adapted to imply, for example, [25], Theorem 1.1, which deals with the conver-
gence of the law of the centered supremum of ∗-scale invariant log-correlated
fields (with continuous parameter). This can be done by applying our results to
the ∗-scale invariant field over a discretized index set, and then use the smoothness
in short scales of the ∗-scale invariant field in order to pass from the discrete index
set to the continuous one.

REMARK 1.6. Our proof shows in particular that the random variable Z ap-
pearing in Theorem 1.4 depends only on the functions f (x), h(x, y) appearing in
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Assumptions (A.2) and (A.3), while the constant β∗ depends on other parameters
as well. In particular, two sequences of fields that differ only at the microscopic
level will have the same limit law for their centered maxima, up to a (deterministic)
shift. We provide more details at the end of Section 4.

REMARK 1.7. In the same spirit as the preceding remark, if the field
{ϕN,v}v∈VN

is stationary, then Assumption (A.2) can be removed, at the cost
of replacing in Theorems 1.3 and 1.4 mN by an appropriate sequence m̃N with
|mN − m̃N | = O(1). This is proved by a diagonalization procedure similar to that
used for Remark 1.6. We omit further details.

REMARK 1.8. In [6–8], the authors used the convergence of the centered
maximum, a priori information on the geometric properties of the clusters of near-
maxima of the DGFF and a beautiful invariance argument to derive the conver-
gence in law of the process of extrema of the two-dimensional DGFF and its prop-
erties. A natural extension of our work would be to study the extremal process in
the class of processes studied here, and tie it to properties of the derivative martin-
gale measure.

A word on proof strategy. The convergence proof in this paper is closely re-
lated to the one [11], that dealt with 2D GFF. Related ideas appear also in [25],
and both use arguments inspired by [3]. The proof in [11] consists of three main
steps:

(a) Decompose the DGFF to a sum of a coarse field and a fine field (which it-
self is a DGFF), and further approximate the fine field as a sum of modified
branching random walk (see Section 2.1 for definition) and a local DGFF. It
is crucial for the proof that the different components are independent of each
other, and that the approximation error is small enough so that the value of the
maximum is not altered significantly. These approximations were constructed
using heavily the Markov field property of DGFF, and detailed estimates for
the Green function of random walk.

(b) Use a modified second moment method in order to compute the asymptotics
of the right tail for the distribution of the maximum of the fine field, as well as
derive a limiting distribution for the location of the maximizer in the fine field.

(c) Combine the limiting right tail estimates for the maximum of the fine field and
the behavior of the coarse field to deduce the convergence in law.

(We note that the continuous parameter analogue of the MBRW, introduced in [1]
under the name MBBM, is ∗-scale invariant in the language of [25]; The MBRW
in the sketch above could be replaced by the MBBM or by other ∗-scale invariant
processes.)

In the general setup of logarithmically correlated fields, it is not a priori clear
how can one decompose the field as an (independent) sum of a coarse field, an
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MBRW and a local field, as the Markov field property (or, as in [25], the decom-
position into independent scales) is no longer available. A natural approach under
our assumptions is to employ the self-similarity of the fields, and to approximate
the coarse and local fields by an instance of {ϕK,v : v ∈ VK} for some K � N .
One difficulty in this attempt is to control the error of the approximation and its
influence on the law of the maximum. In order to address this issue, we partition
the box VN to sub-boxes congruent to VL, and borrow a key idea from [7] to show
that the law of the maximum of a log-correlated fields has the following invariance
property: if one adds i.i.d. Gaussian variables with variance O(1) to each sub-box
of the field (here the same variable will be added to each vertex in the same sub-
box), where the size L of the sub-box is either K or N/K (assuming K grows to
infinity arbitrarily slow in N ), then the law of the maximum for the perturbed field
is simply a shift of the original law where the shift can be explicitly determined
(see Lemma 3.1). In light of this, in Section 4.1 we approximate the field {ϕN,v}
by the sum of coarse field (which is given by {ϕKL,v : v ∈ VKL}), an MBRW and
a local field (which is given by independent copies of {ϕK ′L′,v : v ∈ VK ′L′ }) (here
the parameters satisfy N � K ′ � L′ � K � L). In this construction, we make
sure that the error in the covariance between two vertices is o(1) if their distance
is not in between L and N/L′, and the error is O(1) otherwise. Then we apply
Lemma 3.1 (and Lemma 3.2) to argue that our approximation indeed recovers the
law of the maximum for the original field. In Section 4.2, we present the proof for
the convergence in law for the centered maximum of the approximated field we
constructed and, as in [11], it readily also yields the convergence in distribution
for the derivative martingale constructed from the original field.

As in the case of the DGFF in two dimensions, a number of properties for the
log-correlated fields are needed, and are proved by adapting or modifying the ar-
guments used in that case. Those properties are:

(a) The tightness of MN − mN , and the bounds on the right and left tails of
MN − mN as well as certain geometric properties of maxima for the log-
correlated fields under consideration, follow from modifying arguments in [13,
15, 16]. This is explained in Section 2.

(b) Precise asymptotics for the right tail of the distribution of the maximum of the
fine field follow from arguments similar to [11] with a number of simplifica-
tions, as our fine field has a nicer structure than its analogue in [11], whereas
the coarse field employed in this paper is constant over each box; in particular,
there is no need to consider the distribution for the location of the maximizer
in the fine field as done in [11]. The adaption is explained in Section 6.

The role of Assumptions (A.2) and (A.3). We next construct two examples
that demonstrate that one cannot totally dispense of Assumptions (A.2) and (A.3).
Since the examples are only ancillary to our main result, we will give only give a
brief sketch for the verification of the claims made concerning these examples.
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EXAMPLE 1.9. Fix d = 2 and let {ϕN,v : v ∈ VN } be the DGFF on VN

[normalized so that it satisfies Assumptions (A.0), (A.1), (A.2) and (A.3)], with
ZN = maxv∈VN

ϕN,v . Let VN,1 and VN,2 be the left and right halves of the box
VN . Let {εN,v : v ∈ VN } and X be i.i.d. standard Gaussian variables. Let σ ′

N > 0
be a constant, to be chosen below. Define

ϕ̃N,v =
{
ϕN,v + σX + εN,v, v ∈ VN,1,

ϕN,v, v ∈ VN,2,

ϕ̂N,v =
{
ϕN,v + σX, v ∈ VN,1,

ϕN,v + σ ′
NεN,v, v ∈ VN,2.

Set M̃N = maxv∈VN
ϕ̃N,v and M̂N = maxv∈VN

ϕ̂N,v . We first claim that there exist
σ ′

N depending on (N,σ ) but bounded from above by an absolute constant such
that EM̃N = EM̂N . In order to see that, note that, by Theorem 1.2,

EM̃N ≤ E max
v∈VN/2

ϕN,v + σEmax(0,X) + O(1),

where O(1) is an error term independent of all parameters, while

EM̃N ≥ E max
v∈VN/2

ϕN,v + σEmax(0,X).

In addition, by considering a N/2-box in the left-hand side and dividing the right
half box into two copies of N/2-boxes, one gets that

EM̂N ≥ Emax
(
ZN/2 + σX,Z′

N/2 + σ ′
Nε′,Z′′

N/2 + σ ′
Nε′′)

≥ EZN/2 + 1

2
σ ′

NEmax
(
ε′, ε′′) + σEX1X≥0,

where ZN/2,Z
′
N/2,Z

′′
N/2 are three independent copies with law maxv∈VN/2 ϕN,v

and ε′ = εN,v∗
1
, ε′′ = ε′′

N,v∗
2

(here v∗
1 and v∗

2 are the maximizers of the DGFF in
the two N/2-boxes on the right half of VN , respectively). The claim follows from
combining the last two displays.

Now, choose σ to be a large fixed constant so that for 0 < λ < log logN ,

P(M̃N ≥ EZN + λ) ≥ P

(
max

v∈VN,1
{ϕN,v + σX + εN,v} ≥ EZN + λ

)

≥ P

(
(1 + 1/4 logN) max

v∈VN,1
{ϕN,v + σX} ≥ EZN + λ

)

≥ P

(
max

v∈VN,1
ϕN,v + σX ≥ EZN + λ − 1/10

)
.

(5)

[Here, the second inequality is due to Slepian’s lemma (Lemma 2.4) and the fact
that σ is large, while the last inequality uses that 2

(1+1/(4 logN))
≤ 2 − (logN)/10
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for N large.] Further,

P(M̂N ≥ EZN + λ) ≤ P

(
max

v∈VN,1
ϕN,v + σX ≥ EZN + λ

)

+ P

(
max

v∈VN,2
ϕN,v + ε′

N,v ≥ EZN + λ
)

≤ P

(
max

v∈VN,1
ϕN,v + σX ≥ EZN + λ

)
+ O(1)λe−2λ,

(6)

where the last inequality follows from Proposition 1.1. Combining (5) and (6) and
using the form of the limiting right tail of the two-dimensional DGFF as in [11],
Proposition 4.1, one obtains that for λ,σ sufficiently large but independent of N ,

lim sup
N→∞

P(M̃N ≥ EZN + λ) ≥ (1 + c) lim sup
N→∞

P(M̂N ≥ EZN + λ) ≥ c(σ )λe−2λ,

where c > 0 is an absolute constant and c(σ ) satisfies c(σ ) →σ→∞ ∞. This im-
plies that the laws of M̃N − EMN and M̂N − EM̂N do not coincide in the limit
N → ∞.

Finally, set ϕ̄N,v = ϕ̃N,v for all v ∈ VN and odd N , and ϕ̄N,v = ϕ̂N,v for all
v ∈ VN and even N . One then sees that the sequence of Gaussian fields {ϕ̄N,v :
v ∈ VN } satisfies Assumptions (A.0), (A.1) and (A.3) [while not satisfying (A.2)],
but the law of the centered maximum does not converge.

EXAMPLE 1.10. Let {ϕN,v : v ∈ VN } be a sequence of Gaussian fields satisfy-
ing (A.0), (A.1) and (A.2), such that the law of the centered maximum converges.
Consider the fields {ϕ̃N,v : v ∈ VN } where ϕ̃N,v = ϕN,v + 1{N is even}XN with XN

a sequence of i.i.d. standard Gaussian variables. Then the field {ϕ̃N,v : v ∈ VN }
satisfies (A.0), (A.1) and (A.2) (possibly increasing the values of α(δ) by 1 for all
0 ≤ δ ≤ 1). However, the centered law of the maximum of {ϕ̃N,v : v ∈ VN } cannot
converge.

2. Expectation and tightness for the maximum. This section is devoted to
the proofs of Proposition 1.1 and Theorem 1.2, and to an auxiliary lower bound
on the right tail of the distribution of the maximum; see Lemma 2.2. We note
that Proposition 1.1 gives the correct right tail behavior of the distribution of the
maximum. In contrast, given the proposition, in order to prove Theorem 1.2, one
needs an upper bound on the left tail of that distribution. In the generality of this
work, one cannot hope for a universal sharp estimate on the left tail, as witnessed
by the drastically different left tails exhibited in the cases of the modified branching
random walk and the two-dimensional DGFF; see [15]. We will, however, provide
the following universal upper bound for the decay of the left tail.

LEMMA 2.1. Under Assumption (A.1), there exist constants C,c > 0 (de-
pending only on α1/10, d) so that for all n ∈ N and 0 ≤ λ ≤ (logn)2/3,

P

(
max
v∈VN

ϕN,v ≤ mN − λ
)

≤ Ce−cλ.
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Theorem 1.2 follows at once from Proposition 1.1 and Lemma 2.1.
Later, we will need the following complimentary lower bound on the right tail.

LEMMA 2.2. Under Assumption (A.1), there exists a constant C > 0 depend-
ing only on (α0, α

(1/10), d) such that, for all λ ∈ [1,
√

logN ],
P(MN > mN + λ) ≥ C−1λe−√

2dλ.

We emphasize that all arguments in this section are very similar to arguments
used in the case of the DGFF in dimension two, and employ comparison with ei-
ther BRW or MBRW. These ideas can be traced back to [13] and [16]. Versions
of the same argument also appear in [1, 25]. For this reason, some of the proofs
are only sketched, with references provided to corresponding proofs in the litera-
ture.

2.1. Branching random walk and modified branching random walk. The study
of extrema for log-correlated Gaussian fields is possible because they exhibit an
approximate tree structure and can be efficiently compared with branching ran-
dom walk and the modified branching random walk introduced in [13]. In this
subsection, we briefly review the definitions of BRW and MBRW in Z

d . We re-
mark that the MBRW can be seen as a discrete analogue of the ∗-scale invariant
log-correlated fields studied in [25]; we further remark that the natural continuous
parameter extension of the MBRW is not exactly a ∗-scale invariant field since the
corresponding kernel function (in the language of [25]) is not continuous.

Suppose N = 2n for some n ∈ N. For j = 0,1, . . . , n, define Bj to be the set of
d-dimensional cubes of side length 2j with corners in Z

d . Define BDj to be those
elements of Bj which are of the form ([0,2j − 1] ∩ Z)d + (i12j , i22j , . . . , id2j ),
where i1, i2, . . . , id are integers. For x ∈ VN , define Bj (x) to be those elements of
Bj which contains x. Define BDj (x) similarly.

Let {aj,B}j≥0,B∈BDj
be a family of i.i.d. Gaussian variables of variance log 2.

Define the branching random walk (BRW) {RN,z}z∈VN
by

RN,z =
n∑

j=0

∑
B∈BDj (z)

aj,B, z ∈ VN.

Let BN
j be the subset of Bj consisting of elements of the latter with lower left

corner in VN . Let {bj,B : j ≥ 0,B ∈ BN
j } be a family of independent Gaussian

variables such that Varbj,B = log 2 · 2−dj for all B ∈ BN
j . Write B ∼N B ′ if B =

B ′ + (i1N, . . . , idN) for some integers i1, . . . , id ∈ Z. Let

bN
j,B =

{
bj,B, B ∈ BN

j ,

bj,B ′, B ∼N B ′ ∈ BN
j .
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Define the modified branching random walk (MBRW) {SN,z}z∈VN
by

(7) SN,z =
n∑

j=0

∑
B∈Bj (z)

bN
j,B, z ∈ VN.

The proof of the following lemma is a straightforward adaption of [13],
Lemma 2.2, for dimension d , which we omit.

LEMMA 2.3. There exists a constant C depending only on d such that, for
N = 2n and x, y ∈ VN ,∣∣Cov(SN,x,SN,y) − (

logN − log
(|x − y|N ∨ 1

))∣∣ ≤ C,

where |x − y|N = miny′∼Ny |x − y′|.

In the rest of the paper, we assume that the constants α0, α
(δ) in Assumptions

(A.0) and (A.1) are taken large enough so that the MBRW satisfies the assump-
tions.

2.2. Comparison of right tails. The following Slepian’s comparison lemma
for Gaussian processes [28] will be useful.

LEMMA 2.4. Let A be an arbitrary finite index set and let {Xa : a ∈ A}
and {Ya : a ∈ A} be two centered Gaussian processes such that: E(Xa − Xb)

2 ≥
E(Ya − Yb)

2, for all a, b ∈ A and Var(Xa) = Var(Ya) for all a ∈ A. Then
P(maxa∈A Xa ≥ λ) ≥ P(maxa∈A Ya ≥ λ) for all λ ∈ R.

The next lemma compares the right tail for the maximum of {ϕN,v : v ∈ VN } to
that of a BRW.

LEMMA 2.5. Under Assumption (A.0), there exists a positive integer κ =
κ(α0) such that, for all N and λ ∈ R and any subset A ⊆ VN :

(8) P

(
max
v∈A

ϕN,v ≥ λ
)

≤ 2P
(

max
v∈2κA

R2κN,v ≥ λ
)
.

PROOF. For κ ∈N, consider the map:

(9) ψN = ψ
(κ)
N : V �→ 2κV such that ψN(v) = 2κv.

By Assumption (A.0), we can choose a sufficiently large κ depending on α0 such
that Var(ϕN,v) ≤ Var(R2κN,ψN(v)) for all v ∈ VN . So, we can choose a collection
of positive numbers:

a2
v = VarR2κN,ψN(v) − VarϕN,v,
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such that Var(ϕN,v + avX) = Var(R2κN,ψN(v)) for all v ∈ VN , where X is a stan-
dard Gaussian random variable, independent of everything else. Since the BRW
has constant variance over all vertices, we get that

E(ϕN,u + auX − ϕN,v − avX)2

≤ E(ϕN,u − ϕN,v)
2 + (av − au)

2

≤ E(ϕN,u − ϕN,v)
2 + |VarϕN,v − VarϕN,u|.

Combined with Assumption (A.0), it yields that

E(ϕN,u + auX − ϕN,v − avX)2 ≤ 2 log+ |u − v| + 4α0.

Since E(R2κN,ψN(u) −R2κN,ψN(v))
2 − 2 log+ |u − v| ≥ log 2κ − C0 (where C0 is

an absolute constant), we can choose sufficiently large κ depending only on α0
such that

E(ϕN,u + auX − ϕN,v − avX)2

≤ E(R2κN,ψN(u) −R2κN,ψN(v))
2 for all u, v ∈ VN.

Combined with Lemma 2.4, it follows that for all λ ∈R and A ⊆ VN :

P

(
max
v∈A

ϕN,v + avX ≥ λ
)

≤ P

(
max
v∈A

R2κN,ψN(v) ≥ λ
)
.

In addition, by independence and symmetry of X we have

P

(
max
v∈A

ϕN,v + avX ≥ λ
)

≥ P

(
max
v∈A

ϕN,v ≥ λ,X ≥ 0
)

= 1

2
P

(
max
v∈A

ϕN,v ≥ λ
)
.

This completes the proof of the desired bound. �

PROOF OF PROPOSITION 1.1. An analogous statement was proved in [11],
Lemma 3.8, for the case of 2D DGFF. In the proof of [11], Lemma 3.8, the desired
inequality was first proved for BRW on the 2D lattice and then deduced for 2D
DGFF applying [16], Lemma 2.6, which is the analogue of Lemma 2.5 above. The
argument for BRW in [11], Lemma 3.8, carries out (essentially with no change)
from dimension two to dimension d . Given that, an application of Lemma 2.5
completes the proof of the proposition. �

A complementary lower bound on the right tail is also available.

LEMMA 2.6. Under Assumption (A.1), there exists a positive integer κ =
κ(α(1/10)) such that, for all N and λ ∈ R :

(10) P

(
max
v∈VN

ϕN
v ≥ λ

)
≥ 1

2
P

(
max

v∈V2−κN

S2−κN,v ≥ λ
)
.
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PROOF. It suffices to consider M
(1/10)
N = max

v∈V
1/10
N

ϕN,v . By Assump-

tion (A.1) and an argument analogous to that used in the proof of Lemma 2.5
(which can be traced back to the proof of [16], Lemma 2.6), one deduces that for
κ = κ(α(1/10)),

P
(
M

(1/10)
N ≥ λ

) ≥ 1

2
P

(
max

v∈V2−κN

S2−κN,v ≥ λ
)

for all λ ∈ R.

This completes the proof of the lemma. �

We also need the following estimate on the right tail for MBRW in d-dimension.
The proof is a routine adaption of the proof of [16], Lemma 3.7, to arbitrary di-
mension, and is omitted.

LEMMA 2.7. There exists an absolute constant C > 0 such that, for all λ ∈
[1,

√
logn], we have

C−1λe−√
2dλ ≤ P

(
max
v∈VN

SN,v > mN + λ
)

≤ Cλe−√
2dλ.

PROOF OF LEMMA 2.2. Combine Lemma 2.6 and Lemma 2.7. �

2.3. An upper bound on the left tail. This subsection is devoted to the proof
of Lemma 2.1. The proof consists of two steps: (1) a derivation of an exponential
upper bound on the left tail for the MBRW; (2) a comparison of the left tail for
general log-correlated Gaussian field to that of the MBRW.

LEMMA 2.8. There exist constants C,c > 0 so that for all n ∈ N and 0 ≤ λ ≤
(logn)2/3:

P

(
max
v∈VN

SN,v ≤ mN − λ
)

≤ Ce−cλ.

PROOF. A trivial extension of the arguments in [13] (for the MBRW in di-
mension two) yields the tightness for the maximum of the MBRW in dimension d

around its expectation, with the latter given by (1). Therefore, there exist constants
κ,β > 0 such that, for all N ≥ 4,

P

(
max
v∈VN

SN,v ≥ mN − β
)

≥ 1/2.(11)

In addition, a simple calculation gives that for all N ≥ N ′ ≥ 4 (adjusting the value
of κ if necessary),

√
2d log

(
N/N ′) − 3

4d
log

(
logN/ logN ′) − κ ≤ mN − mN ′

≤ √
2d log

(
N/N ′) + κ.

(12)



LOG-CORRELATED GAUSSIAN FIELDS 3899

Let λ′ = λ/2 and N ′ = N exp(− 1√
2d

(λ′ − β − κ − 4)). By (12), one has mN −
mN ′ ≤ λ′ − β . Divide VN into disjoint boxes of side length N ′, and consider a
maximal collection B of N ′-boxes such that all the pairwise distances are at least

2N ′, implying that |B| ≥ exp(
√

d√
2
(λ′ − β − κ − 8 − 4

√
d)). Now consider the

modified MBRW:

S̃N,v = gN ′,v + φ ∀v ∈ B ∈ B,

where φ is a zero mean Gaussian variable with variance log(N/N ′) and {gN ′,v :
v ∈ B}B are the MBRWs defined on the boxes B , independently of each other and
of φ. It is straightforward to check that

VarSN,v = Var S̃N,v and ESN,vSN,u ≤ ES̃N,vS̃N,u for all u, v ∈ ⋃
B∈B

B.

Combined with Lemma 2.4, it follows that

P

(
max
v∈VN

SN,v ≤ t
)

≤ P

(
max

v∈⋃
B∈B B

SN,v ≤ t
)

≤ P

(
max

v∈⋃
B∈B B

S̃N,v ≤ t
)

for all t ∈ R.

(13)

By (11), one has that for each B ∈ B,

P

(
sup
v∈B

gN ′,v ≥ mN − λ′) = P

(
sup
v∈B

gN ′,v ≥ mN ′ + mN − mN ′ − λ′)

≥ P

(
sup
v∈B

gN ′,v ≥ mN ′ − β
)

≥ 1

2
,

and, therefore,

P

(
sup

v∈⋃
B∈B B

gN ′,v < mN − λ′) ≤
(

1

2

)|B|
.

Thus,

P

(
max

v∈⋃
B∈B B

S̃N,v ≤ mN − λ
)

≤ P

(
sup

v∈⋃
B∈B B

gN ′,v < mN − λ′) + P
(
φ ≤ −λ′)

≤ Ce−cλ′

for some constants C,c > 0. Combined with (13), this completes the proof of the
lemma. �

PROOF OF LEMMA 2.1. In order to prove Lemma 2.1, we will compare the
maximum of a sparsified version of the log-correlated field to that of a mod-
ified version of MBRW. By Assumption (A.1) and Lemma 2.3, there exists a
κ0 = κ0(α

(1/10)) such that, for all κ ≥ κ0,

Var(ϕ2κN,2κv) ≤ Var(S22κN,v) for all v ∈ V
1/10
N .
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Therefore, one can choose a collection of positive numbers {av : v ∈ V
1/10
N } such

that

Var(ϕ2κN,2κv + avX) = Var(S22κN,v),

where X is a standard Gaussian variable. Since the MBRW has constant vari-
ance, we have that |av − au| ≤ C1 for some constant C1 = C1(α

(1/10)) > 0. By
Lemma 2.3 again, one has

E(S22κN,v − S22κN,u)
2 ≤ 2 log+ |u − v| + O(1),

where the O(1) term is bounded by a absolute constant. On the other hand, for all
u, v ∈ V

1/10
N ,

E(ϕ2κN,2κv + avX − ϕ2κN,2κu − auX)2 ≥ log 2 · κ + 2 log+ |u − v| − Oα(1/10)(1),

where Oα(1/10) (1) is a term that is bounded by a constant depending only on α(1/10).

Therefore, there exists a κ = κ(α(1/10)) such that, for all u, v ∈ V
1/10
N ,

E(ϕ2κN,2κv + avX − ϕ2κN,2κu − auX)2 ≥ E(S22κN,v − S22κN,u)
2.

Combined with Lemma 2.4, this implies that for a suitable Cκ depending on κ ,

P

(
max
v∈VN

ϕ2κN,2κv ≤ mN − λ
)

≤ P

(
max

v∈V
1/10
N

(ϕ2κN,2κv + avX) ≤ mN − λ/2
)

+ P(X ≤ −λ/Cκ)

≤ P

(
max

v∈V
1/10
N

S22κN,v ≤ mN − λ/2
)

+ P(X ≤ −λ/Cκ).

(14)

There are number of ways to bound P(max
v∈V

1/10
N

S22κN,v ≤ mN − λ/2), and we

choose not to optimize the bound, but instead simply apply the FKG inequality
[27]. More precisely, we note that there exists a collection of boxes V with |V| ≤
24dκ where each box is a translated copy of V

1/10
N such that V22κN ⊆ ⋃

V ∈V V .
Since {maxv∈V22κN

S22κN,v ≤ mN − λ/2} = ⋂
V ∈V{maxv∈V S22κN,v ≤ mN − λ/2},

the FKG inequality gives that

P

(
max

v∈V22κN

S22κN,v ≤ mN − λ/2
)

≥
(
P

(
max

v∈V
1/10
N

S22κN,v ≤ mN − λ/2
))24dκ

.

Combined with (14) and Lemma 2.8, this completes the proof of the lemma. �

3. Robustness of the maximum under perturbations. The main goal of this
section is to establish that the law of the maximum for a log-correlated Gaussian
field is robust under certain perturbations. These invariance properties will be cru-
cial in Section 4.1 when constructing a new field that approximates our target field.
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FIG. 1. Perturbation levels of the Gaussian field.

For a positive integer r , let Br be a collection of sub-boxes of side length r

which forms a partition of V�N/r�r . Write B = ⋃
r∈[N]Br . Let {gB : B ∈ B} be a

collection of i.i.d. standard Gaussian variables. For v ∈ VN , denote by Bv,r ∈ Br

the box that contains v (see Figure 1). For σ = (σ1, σ2) with ‖σ‖2
2 = σ 2

1 + σ 2
2 and

r1, r2, define

(15) ϕ̃N,r1,r2,σ,v = ϕN,v + σ1gBv,r1
+ σ2gBv,N/r2

,

and set M̃N,r1,r2,σ = maxv∈VN
ϕ̃N,r1,r2,σ,v .

For probability measures ν1, ν2 on R, let d(ν1, ν2) denote the Lévy distance
between ν1, ν2, that is,

d(ν1, ν2) = inf
{
δ > 0 : ν1(B) ≤ ν2

(
Bδ) + δ for all open sets B

}
,

where Bδ = {y : |x − y| < δ for some x ∈ B}. In addition, define

d̃(ν1, ν2) = inf
{
δ > 0 : ν1

(
(x,∞)

) ≤ ν2
(
(x − δ,∞)

) + δ for all x ∈ R
}
.



3902 J. DING, R. ROY AND O. ZEITOUNI

If d̃(ν1, ν2) = 0, then ν1 is stochastically dominated by ν2. Thus, d̃(ν1, ν2) mea-
sures the approximate stochastic domination of ν1 by ν2; in particular, unlike
d(·, ·), the function d̃(·, ·) is not symmetric.

With a slight abuse of notation, if X,Y are random variables with laws μX,μY

respectively, we also write d(X,Y ) for d(μX,μY ) and d̃(X,Y ) for d̃(μX,μY ).
A notation convention: By Proposition 1.1, one has that

lim sup
δ→0

lim sup
N

d
(

max
v∈V δ

N

ϕN,v, max
v∈VN

ϕN,v

)
= 0.

Therefore, in order to prove Theorem 1.3, it suffices to show that for each fixed
δ > 0, the law of maxv∈V δ

N
ϕN,v − mN converges. To this end, one only needs to

consider the Gaussian field restricted to V δ
N . For convenience of notation, we will

treat V δ
N as the whole box that is under consideration. Equivalently, throughout

the rest of the paper when assuming (A.1), (A.2) or (A.3) holds, we assume these
assumptions hold with δ = 0, and we set α := max(α0, α

(0)).
The following lemma, which is one of the main results of this section, relates

the laws of MN and M̃N,r1,r2,σ .

LEMMA 3.1. The following holds uniformly for all Gaussian fields {ϕN,v :
v ∈ VN } satisfying Assumption (A.1):

(16) lim sup
r1,r2→∞

lim sup
N→∞

d
(
MN − mN,M̃N,r1,r2,σ − mN − ‖σ‖2

2

√
d/2

) = 0.

The next lemma states that under Assumption (A.1), the law of the maximum
is robust under small perturbations (in the sense of �∞ norm) of the covariance
matrix.

LEMMA 3.2. Let {ϕN,v : v ∈ VN } be a sequence of Gaussian fields satisfying
Assumption (A.1), and let σ be fixed. Let {ϕ̄N,v : v ∈ VN } be Gaussian fields such
that, for all u, v ∈ VN

|VarϕN,v − Var ϕ̄N,v| ≤ ε and Eϕ̄N,vϕ̄N,u ≤ EϕN,vϕN,u + ε.

Then there exists ι = ι(ε) with ι →ε→0 0 such that

lim sup
N→∞

d̃
(
MN − mN, max

v∈VN

ϕ̄N,v − mN

)
≤ ι.

A key step in the proof of Lemma 3.1 is the following characterization of the
geometry of vertices achieving large values in the fields, an extension of [16],
Theorem 1.1; it states that near maxima are either at microscopic or macroscopic
distance from each other. This may be of independent interest.
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LEMMA 3.3. There exists a constant c > 0 such that, uniformly for all Gaus-
sian fields satisfying Assumption (A.1), we have

lim
r→∞ lim

N→∞P

(
∃u, v : |u − v| ∈

(
r,

N

r

)
, ϕN,v, ϕN,u ≥ mN − c log log r

)
= 0.

3.1. Maximal sum over restricted pairs. As in the case of 2D DGFF discussed
in [16], in order to prove Lemma 3.3, we will study the maximum of the sum over
restricted pairs. For any Gaussian field {ηN,v : v ∈ VN } and r > 1, define

η�
N,r = max{ηN,u + ηN,v : u, v ∈ VN, r ≤ |u − v| ≤ N/r}.

LEMMA 3.4. There exist constants c1, c2 depending only on d and C > 0
depending only on (α, d) such that, for all r, n with N = 2n and all Gaussian
fields satisfying Assumption (A.1), we have

(17) 2mN − c2 log log r − C ≤ Eϕ�
N,r ≤ 2mN − c1 log log r + C.

PROOF. In order to prove Lemma 3.4, we will show that

(18) ES�
2−κN,r ≤ Eϕ�

N,r ≤ ES�
2κN,r .

To this end, we recall the following Sudakov–Fernique inequality [18] which com-
pares the first moments for maxima of two Gaussian processes.

LEMMA 3.5. Let A be an arbitrary finite index set and let {Xa : a ∈ A} and
{Ya : a ∈ A} be two centered Gaussian processes such that

E(Xa − Xb)
2 ≥ E(Ya − Yb)

2 for all a, b ∈A.

Then E(maxa∈A Xa) ≤ E(maxa∈A Ya).

We will give a proof for the upper bound in (17). The proof of the lower bound
follows using similar arguments. For κ ∈ N, recall the definition of the restriction
map ψN as in (9). By Lemma 2.3, there exists a κ > 0 [depending only on (α, d)]
such that, for all u, v,u′, v′ ∈ VN ,

E(ϕN,u + ϕN,v − ϕN,u′ − ϕN,v′)2 ≤ E
(
S2κN

ψN(u) + S2κN
ψN(v) − S2κN

ψN(u′) − S2κN
ψN(v′)

)2
.

(To see this, note that the variance of S2κN
ψN(u) increases with κ but the covariance

between S2κN
ψN(u) and S2κN

ψN(v) does not.) In addition, note that for r ≤ |u − v| ≤ N/r

one has r ≤ |ψN(u) − ψN(v)| ≤ 2κN/r . Combined with Lemma 3.5, this yields
Eϕ�

N,r ≤ ES�
2κN,r , completing the proof of the upper bound in (18).

To complete the proof of Lemma 3.5, note that [16], Lemma 3.1, readily extends
to MBRW in d-dimension, and thus

2mN − c2 log log r − C ≤ ES�
N,r ≤ 2mN − c1 log log r + C,
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where c1, c2 are constants depending only on d and C is a constant depending on
(α, d). Combined with (18), this completes the proof of the lemma. �

We will also need the following tightness result.

LEMMA 3.6. Under Assumption (A.1), the sequence { (ϕ�
N,r−Eϕ�

N,r )

log log r
: N ∈ N,

r ≥ 100} is tight. Further, there exists a constant C > 0 depending only on d such
that, for all r ≥ 100 and N ∈ N,∣∣(ϕ�

N,r −Eϕ�
N,r

)∣∣ ≤ C log log r.

PROOF. Take N ′ = 2N and partition VN ′ into 2d copies of VN , denoted by

V
(1)
N , . . . , V

(2d )
N . For each i ∈ [2d ], let {ϕ(i)

N,v : v ∈ V
(i)
N } be an independent copy of

{ϕN,v : v ∈ Vn} where we identify VN and V
(i)
N by the suitable translation such that

the two boxes coincide. Denote by

(19) ϕ̂N ′,v = ϕ
(i)
N,v for v ∈ V

(i)
N and i ∈ [

2d]
.

Clearly, {ϕN ′,v} is a Gaussian field that satisfies Assumption (A.1) (with α in-
creased by an absolute constant). Therefore, by Lemma 3.4, we have

(20) 2mN − c2 log log r − C ≤ Eϕ̂�
N,r ≤ 2mN − c1 log log r + C,

where c1, c2,C > 0 are constants depending only on (d,α). In addition, we have

E
(
ϕ̂�

N ′,r
) ≥ Emax

{
ϕ

(1),�
N,r , ϕ

(2),�
N,r

}
.

Combined with Lemma 3.4 and (20), and the simple algebraic fact that |a − b| =
2(a ∨ b) − a − b, it yields that

E
∣∣ϕ(1),�

N,r − ϕ
(2),�
N,r

∣∣ ≤ 2
(
Eϕ̂�

N ′,r −Eϕ�
N,r

) ≤ C′ log log r for all r ≥ 100,

where C′ > 0 is a constant depending only on d . This completes the proof of the
lemma. �

3.2. Proof of Lemma 3.3. In this subsection, we will prove Lemma 3.3, by
contradiction. Suppose otherwise that Lemma 3.3 does not hold. Then for any
constant c > 0, there exists ε > 0 and a subsequence {rk} such that, for all k ∈ N:

(21) lim
N→∞P

(
∃u, v : |u − v| ∈

(
rk,

N

rk

)
, ϕN,v, ϕN,u ≥ mN − c log log rk

)
> ε.

Now fix δ > 0 and consider N ′ = 2κN where κ is an integer to be selected. Parti-

tion VN ′ into 2κd disjoint boxes of side length N , denoted by V
(1)
N , . . . , V

(2κd )
N .

Define {ϕ̂N ′,v : v ∈ VN ′ } in the same manner as in (19) except that now we
take 2κd copies of {ϕN,v : v ∈ VN } (one for each V

(i)
N with i ∈ [2κd ]). Clearly,
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{ϕ̂N ′,v : v ∈ VN ′ } is a Gaussian field satisfies Assumption (A.1) with α replaced by
a constant α′ depending only on (α, d, κ). Therefore, by Lemma 3.4,

(22) 2mN − c2 log log r − C ≤ Eϕ̂�
N ′,r ≤ 2mN − c1 log log r + C,

where c1, c2 > 0 are two constants depending only on d and C > 0 is a constant
depending only on (α, d, κ).

Next, we derive a contradiction to (22). Set zN,r = 2mN − c log log r , ZN,r =
(ϕ̂�

N ′,r − zN,r )− and Y
(i)
N,r = (ϕ

(i),�
N,rk

− zN,r )−. Then (21) implies that

(23) lim
N→∞P

(
Y

(1)
N,rk

> 0
) ≤ 1 − ε for all k ∈ N.

In addition, by Lemmas 3.4 and 3.6, there exists a constant C′ > 0 depending only
on d such that, for all r ≥ 100 and N ∈ N, we have

(24) EY
(1)
N,r ≤ C′ log log r.

Clearly, ZN,r ≤ mini∈[2κd ] Y
(i)
N,r . Combined with the fact that Y

(i)
N,r are i.i.d. random

variables, one obtains

EZN,rk ≤
∫ ∞

0

(
P

(
Y

(1)
N,rk

> y
))2κd

dy ≤ (1 − ε)2κd−1
∫ ∞

0

(
P

(
Y

(1)
N,rk

> y
))

dy

≤ (1 − ε)2κd−1
EY

(1)
N,rk

,

where (23) was used in the second inequality. Combined with (24), one concludes
that for all r ≥ 100 and N

EZN,rk ≤ (1 − ε)2κd−1C′ log log rk.

Now set c = c1/4 and choose κ depending on (ε, d,C ′, c1) such that
(1 − ε)2κd−1C′ ≤ c1/4. Then

Eϕ̂�
N ′,rk ≥ 2mN − c1 log log rk/2

for all k ∈ N and sufficiently large N ≥ Nk where Nk is a number depending only
on k. Sending N → ∞ first and then k → ∞ contradicts (22), thereby completing
the proof of the lemma. �

3.3. Proof of Lemmas 3.1 and 3.2. The next lemma, which extends [11],
Lemma 3.9, to the current setup, will be useful for the proof of Lemma 3.1 and
later in the paper.

LEMMA 3.7. Let Assumptions (A.0) and (A.1) hold. Let {φN
u : u ∈ VN } be a

collection of random variables independent of {ϕN,u : u ∈ VN } such that

(25) P
(
φN

u ≥ 1 + y
) ≤ e−y2

for all u ∈ VN.
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Then there exists C = C(α,d) > 0 such that, for any ε > 0,N ∈ N and
x ≥ −ε−1/2,

P

(
max
u∈VN

(
ϕN,u + εφN

u

) ≥ mN + x
)

≤ P

(
max
u∈VN

ϕN,u ≥ mN + x − √
ε
)(

1 + C
(
e−C−1ε−1))

.

(26)

PROOF. We first give the proof for ε ≤ 1. Define �y = {u ∈ VN : y/2 ≤
εφN

u ≤ y}. Then

P

(
max
u∈VN

(
ϕN,u + εφN

u

) ≥ mN + x
)

≤ P(MN ≥ mN + x − √
ε)

+
∞∑
i=0

E

(
P

(
max

u∈�2i√ε

ϕN,u ≥ mN + x − 2i
√

ε
∣∣�2i

√
ε

))
.

By Proposition 1.1, one can bound the second term on the right-hand side above
by

∞∑
i=0

E

(
P

(
max
u∈VN

ϕN,u ≥ mN + x − 2i
√

ε
∣∣�2i

√
ε

))

� x ∨ 1

e
√

2dx

∞∑
i=0

E
(|�2i

√
ε|/Nd)1/2

e
√

2d2i√ε.

By (25), one has E(|�2i
√

ε|/Nd)1/2 ≤ e−4i (Cε)−1
. Altogether, one gets

∞∑
i=0

E

(
P

(
max
u∈VN

ϕN,u ≥ mN + x − 2i
√

ε
∣∣�2i

√
ε

))
� x ∨ 1

e
√

2dx
e−(Cε)−1

,

completing the proof of the lemma when ε ≤ 1. The case ε > 1 is simpler and
follows by repeating the same argument with �2i ε replacing �2i

√
ε . We omit further

details. �

We next consider a combination of two independent copies of {ϕN,v}. For σ > 0,
define

ϕ∗
N,σ,v = ϕN,v +

√√√√ ‖σ‖2
2

logN
ϕ′

N,v for v ∈ VN, and

M∗
N,σ = max

v∈VN

ϕ∗
N,σ,v,

(27)

where {ϕ′
N,v : v ∈ VN } is an independent copy of {ϕN,v : v ∈ VN }. Note that the

field {ϕ∗
N,σ,v} is distributed like the field {aNϕN,v} where aN =

√
1 + ‖σ‖2

2/ logN .
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REMARK 3.8. The idea of writing a Gaussian field as a sum of two inde-
pendent Gaussian fields has been extensively employed in the study of Gaussian
processes. In the context of the study of extrema of the 2D DGFF, this idea was
first used in [7], where (combined with an invariance result from [24] as well as
the geometry of the maxima of DGFF [16], see Lemma 3.4) it led to a complete
description of the extremal process of 2D DGFF. The definition (27) is inspired
by [7].

The following is the key to the proof of Lemma 3.1.

PROPOSITION 3.9. Let Assumption (A.1) hold. Let {ϕ̃N,r,σ,v : v ∈ VN } and
{ϕ∗

N,σ,v : v ∈ VN } be defined as in (15) and (27), respectively. Then for any fixed σ ,

(28) lim
r1,r2→∞ lim sup

N→∞
d
(
M̃N,r1,r2,σ − mN,M∗

N,σ − mN

) = 0.

PROOF. Partition VN into boxes of side length N/r2 and denote by B the
collection of boxes. Fix an arbitrary small δ > 0, and let Bδ denote the box in the
center of B with side length (1 − δ)N/r2 for each B ∈ B. Write VN,δ = ⋃

B∈B Bδ .
Set M̃N,r1,r2,σ,δ = maxv∈VN,δ

ϕ̃N,r1,r2,σ,v and M∗
N,σ,δ = maxv∈VN,δ

ϕ∗
N,σ,v . By (3),

one has

lim
δ→0

lim
N→∞P(M̃N,r1,r2,σ,δ 
= M̃N,r1,r2,σ ) = lim

δ→0
lim

N→∞P
(
M∗

N,σ,δ 
= M∗
N,σ

) = 0.

Therefore, it suffices to prove (28) with M̃N,r1,r2,σ,δ and M∗
N,σ,δ replacing

M̃N,r1,r2,σ and M∗
N,σ . To this end, let zB be such that

max
v∈Bδ

ϕN,v = ϕN,zB
for every B ∈ B.

We will show below that

lim
r1,r2→∞ lim sup

N→∞
P

(∣∣∣M̃N,r1,r2,σ,δ − max
B∈B ϕ̃N,r1,r2,σ,zB

∣∣∣ ≥ 1/ log logN
)

= lim sup
N→∞

P

(∣∣∣M∗
N,σ,δ − max

B∈B ϕ∗
N,σ,zB

∣∣∣ ≥ 1/ log logN
)

= 0.

(29)

Note that the fields {ϕN,v : v ∈ VN } and {
√

‖σ‖2
2/logNϕ′

N,v : v ∈ VN } are inde-
pendent of each other. Thus, conditioning on the field {ϕN,v : v ∈ VN }, the field

{
√

‖σ‖2
2/logNϕ′

N,zB
: B ∈ B} is a centered Gaussian field with pairwise corre-

lation bounded by O(1/ logN). Therefore, the conditional covariance matrix of

{
√

‖σ‖2
2

logN
ϕ′

N,zB
: B ∈ B} and that of {σ1gBzB,r1

+ σ2gBzB,N/r2
: B ∈ B} are within ad-

ditive O(1/ logN) of each other entrywise. In addition, |B| ≤ (2r2)
d . Therefore, it
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is clear that there exists a coupling between the two fields such that

lim
N→∞P

(
max
B∈B

∣∣√‖σ‖2
2/logNϕ′

N,zB
− (σ1gBzB,r1

+ σ2gBzB,N/r2
)
∣∣

≥ 1/ log logN
∣∣{ϕN,v : v ∈ VN }

)
= 0

[here the term 1/ log logN is somewhat arbitrary, any negative power larger than
1/2 of (logN) would work]. Note that the preceding equality holds for almost all
realizations of {ϕN,v : v ∈ VN }. Combined with (29), it then yields the proposition.

It remains to prove (29). Write r = r1 ∧ r2 and let C be a constant which we
will send to infinity after sending first N → ∞ and then r → ∞, and let c be the
constant from Lemma 3.3. Suppose that either of the events that are considered in
(29) occurs. In this case, one of the following events has to occur:

• The event E1 = {M̃N,r1,r2,σ,δ /∈ (mN − C,mN + C)} ∪ {M∗
N,σ,δ /∈ (mN − C,

mN + C)}.
• The event E2 that there exists u, v ∈ (r,N/r) such that ϕN,u ∧ ϕN,v > mN −

c log log r .
• The event E3 = Ẽ3 ∪ E∗

3 where Ẽ3 (E∗
3 ) is the event that M̃N,r1,r2,σ (M∗

N,σ,δ) is
achieved at a vertex v such that ϕN,v ≤ mN − c log log r .

• The event E4 that there exists v ∈ B ∈ B with ϕN,v ≥ mN − c log log r and√√√√ ‖σ‖2
2

logN
ϕ′

N,v −
√√√√ ‖σ‖2

2

logN
ϕ′

N,zB
≥ 1

log logN
.

By Theorem 1.2, limC→∞ lim supN→∞ P(E1) = 0.
By Lemma 3.3, limr→∞ lim supN→∞ P(E2) = 0. In addition, writing �x =

{v ∈ VN : ϕ̃N,r1,r2,σ,v − ϕN,v ∈ (x, x + 1)}, one has

P
(
Ec

1 ∩ Ẽ3
) ≤ P

(
max

x≥c log log r−C
max
v∈�x

ϕ̃N,r1,r2,σ,v ≥ mN − C
)

≤ ∑
x≥c log log r−C

P

(
max
v∈�x

ϕ̃N,r1,r2,σ,v ≥ mN − C
)

≤ ∑
x≥c log log r−C

E

(
P

(
max
v∈�x

ϕN,v ≥ mN − x − C
∣∣�x

))

�C

∑
x≥c log log r−C

E
(|�x |/Nd)1/2

xe
√

2dx,

where the last inequality follows from (3). From simple estimates using the Gaus-
sian distribution, one has E(|�x |/Nd)1/2 ≤ e−c′x2

/c′ where c′ = c′(σ ) > 0. There-
fore, one concludes that

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P
(
Ec

1 ∩ Ẽ3
) = 0.
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A similar argument leads to the same estimate with E∗
3 replacing E3. Thus,

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P
(
Ec

1 ∩ E3
) = 0.

Finally, let �′
r = {v : ϕN,v ≥ mN − c log log r}. On the event Ec

2, one has
|�′

r | ≤ r4. Further, for each v ∈ B ∩ �′
r , on Ec

2 one has |v − zB | ≤ r , and thus
(by the independence between {ϕN,v} and {ϕ′

N,v}),

P

(√√√√ ‖σ‖2
2

logN
ϕ′

N,v −
√√√√ ‖σ‖2

2

logN
ϕ′

N,zB
≥ 1/ log logN

)
= oN(1).

Therefore, a union bound gives that

lim sup
r→∞

lim sup
N→∞

P
(
E4 ∩ Ec

2
) ≤ lim sup

r→∞
lim sup
N→∞

r4oN(1) = 0.

Altogether, this completes the proof of (29), and hence of the proposition. �

PROOF OF LEMMA 3.1. Define

ϕ̄N,σ,v =
(

1 + ‖σ‖2
2

2 logN

)
ϕN,v for v ∈ VN, and M̄N,σ = max

v∈VN

ϕ̄N,v.

Clearly, we have M̄N,σ = (1 + ‖σ‖2
2

2 logN
)MN . Combined with (1), it follows that

EM̄N,σ = EMN +σ 2√d/2 + o(1) and that d(MN −EMN,M̄N,σ −EM̄N,σ ) → 0
as N → ∞. Further, define {ϕ∗

N,σ,v : v ∈ VN } as in (27). By the fact that the field
{ϕ̄N,σ,v} can be seen as a sum of {ϕ∗

N,σ,v} and an independent field whose variances
are O((1/ logN)3) across the field, we see that EM̄N,σ = EM∗

N,σ + o(1) and that

(30) d
(
M̄N,σ −EM̄N,M∗

N,σ −EM∗
N

) → 0.

Combined with Proposition 3.9, this completes the proof of the lemma. �

PROOF OF LEMMA 3.2. Let φ and φN,v be i.i.d. standard Gaussian variables,
and for ε∗ > 0 let

ϕlw,N,ε∗,v = (
1 − ε∗/ logN

)
ϕN,v + ε′

N,vφ and

ϕ̄up,N,ε∗,v = (
1 − ε∗/ logN

)
ϕ̄N,v + ε′′

N,vφN,v,

where ε′
N,v, ε

′′
N,v are chosen so that Varϕlw,N,ε∗,v = Var ϕ̄up,N,ε∗,v = VarϕN,v + ε.

We can choose ε∗ = ε∗(ε) with ε∗ →ε→0 0 so that Eϕlw,N,ε∗,vϕlw,N,ε∗,u ≥
Eϕ̄up,N,ε∗,vϕ̄up,N,ε∗,u for all u, v ∈ VN . By Lemma 2.4, one has

d̃
(

max
v∈VN

ϕlw,N,ε∗,v − mN, max
v∈VN

ϕ̄up,N,ε∗,v − mN

)
= 0.

Combined with Lemma 3.7, this completes the proof of the lemma. �
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4. Proofs of Theorems 1.3 and 1.4. In this section, we assume (A.0)–(A.3)
and prove Theorem 1.3. Toward this end, in Section 4.1 we will approximate the
field {ϕN,v : v ∈ VN } by a simpler to analyze field, in such a way that the results
of Section 3 apply and yield the asymptotic equivalence of their respective laws
of the centered maximum. In Section 4.2, we prove the convergence in law for the
centered maximum of the new field. Our method of proof yields Theorem 1.4 as a
byproduct.

4.1. An approximation of the log-correlated Gaussian field. In this subsection,
we approximate the log-correlated Gaussian field. Let RN(u, v) = E(ϕN,uϕN,v).
We consider three scales for the approximation of the field {ϕN,v}:
(a) The top (macroscopic) scale, dealing with RN(u, v) for |u − v| � N .
(b) The bottom (microscopic) scale, dealing with RN(u, v) for |u − v| � 1.
(c) The middle (mesoscopic) scale, dealing with RN(u, v) for 1 � |u − v| � N .

By Assumptions (A.2) and (A.3), RN(u, v), properly centered, converges in the
top and bottom scale. So in those scales, we approximate {ϕN,u} by the corre-
sponding “limiting” fields. In the middle scale, we simply approximate {ϕN,u} by
the MBRW. One then expects that this approximation gives an additive o(1) error
for RN(u, v) in the top and bottom scale, and an additive O(1) error in the middle
scale. It turns out that this guarantees that the limiting laws of the centered maxima
coincide.

In what follows, for any integer t we refer to a box of side length t as an t-box.
Take two large integers L = 2� and K = 2k . Consider first {ϕKL,u : u ∈ VKL} in a
KL-box whose left-bottom corner is identified as the origin, and let � denote its
covariance matrix.

Recall that by Proposition 1.1, with probability tending to 1 as N → ∞,
the maximum of ϕN,v over VN occurs in a sub-box of VN with side length
�N/KL� · KL. Therefore, one may neglect the maximization over the indices
in VN \ V�N/KL�·KL. For notational convenience, we will assume throughout that
KL divides N in what follows.

We use � to approximate the macroscopic scale of RN(u, v), as follows. Parti-
tion VN into a disjoint union of boxes of side length N/KL, denoted BN/KL =
{BN/KL,i : i = 1, . . . , (KL)d}. Let vN/KL,i be the left bottom corner of box
BN/KL,i and write wi = vN/KL,i

N/KL
. Let �c be a matrix of dimension Nd × Nd such

that �c
u,v = �wi,wj

for u ∈ BN/KL,i and v ∈ BN/KL,j . Note that �c is a positive
definite matrix with diagonal terms log(KL) + OKL(1).

Next, take two other integers K ′ = 2k′
and L′ = 2�′

. As above, we assume
that K ′L′ divides N . Consider {ϕK ′L′,u : u ∈ VK ′L′ } in a K ′L′-box whose left-
bottom corner is identified as the origin, and denote by �′ the covariance matrix
for {ϕK ′L′,u : u ∈ VK ′L′ }. As above, assume for notational convenience that K ′L′
divides N . Partition VN into a disjoint union of boxes of side length K ′L′, denoted
BK ′L′ = {BK ′L′,i : i = 1, . . . , (N/K ′L′)d}. Let vK ′L′,i be the left bottom corner of
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BK ′L′,i . Let �b be a matrix of dimension Nd × Nd so that

�b
u,v =

{
�′

u−vK′L′,i ,v−vK′L′,i , u, v ∈ BK ′L′,i ,

0, u ∈ BK ′L′,i , v ∈ BK ′L′,j , i 
= j.

Note that �b is a positive definite matrix with diagonal terms log(K ′L′) +
OK ′L′(1).

Let {ξc
N,v : v ∈ VN } be a Gaussian field with covariance matrix �c, which we

occasionally refer to as the coarse field, and let {ξb
N,v : v ∈ VN } be a Gaussian field

with covariance matrix �b, which we occasionally refer to as the bottom field.
Note that the coarse field is constant in each box BN/KL,i , and the bottom fields in
different boxes BK ′L′,i are independent of each other.

We will consider the limits when L,K,L′,K ′ are sent to infinity in that order.
In what follows, we denote by (L,K,L′,K ′) ⇒ ∞ sending these parameters to
infinity in the order of K ′,L′,K,L (so K ′ � L′ � K � L).

Finally, we give the MBRW approximation for the mesoscopic scales. Re-
call the definitions of BN

j and Bj (v) in Section 2.1, and recall that {bi,k,B :
k ≥ 0,1 ≤ i ≤ (KL)d,B ∈ BN

k } is a family of independent Gaussian variables
such that Varbi,j,B = log 2 · 2−dj for all B ∈ BN

j and 1 ≤ i ≤ (KL)d . For v ∈
BN/KL,i ∩ BK ′L′,i′ [where i = 1, . . . , (KL)d and i ′ = 1, . . . , (N/K ′L′)d ], define

(31) ξN,v,MBRW =
n−k−�∑
j=�′+k′

∑
B∈Bj (vK′L′,i′ )

bN
i,j,B.

Note that by our construction {ξN,v,MBRW : v ∈ BN/KL,i} are independent of each
other for i = 1, . . . , (KL)d , and in addition ξN,·,MBRW is constant over each K ′L′-
box. Further, let {ξc

N,v : v ∈ VN }, {ξb
N,v : v ∈ VN } and {ξN,v,MBRW : v ∈ VN } be

independent of each other, see Figure 2 for an illustration. One has by Assumption
(A.1) that ∣∣Var

(
ξc
N,v + ξb

N,v + ξN,v,MBRW
) − VarϕN,v

∣∣ ≤ 4α.

Let aN,v be a sequence of numbers such that, for all v ∈ BN/KL,i and all 1 ≤ i ≤
(KL)d ,
(32) Var

(
ξc
N,v + ξb

N,v + ξN,v,MBRW
) + a2

N,v = VarϕN,v + 4α.

[Here, the sequence aN,v implicitly depends on (KL).] It is clear that

(33) max
v∈VN

aN,v ≤ √
8α.

For v ∈ BN/KL,i and v ≡ v̄ mod K ′L′, one has

a2
N,v = VarϕN,v + 4α − VarϕKL,wi

− VarϕK ′L′,v̄ − log
(

N

KLK ′L′
)

= logN − log(KL) + εN,KL,K ′L′ + 4α − VarϕK ′L′,v̄ − log
(

N

KLK ′L′
)

≥ 0,



3912 J. DING, R. ROY AND O. ZEITOUNI

FIG. 2. Hierarchy of construction of the approximating Gaussian field.

where, by Assumptions (A.2),

(34) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

εN,KL,K ′L′ = 0.

Therefore, one can write

(35) a2
N,v = a2

K ′,L′,v̄ + εN,KL,K ′L′,

where aK ′L′,v̄ depends on (K ′L′, v̄). By Assumption (A.2) and the continuity of
f , one has

lim sup
(L,K,L′,K ′)⇒∞

sup
u,v:‖u−v‖∞≤L′

lim sup
N→∞

∣∣Var ξb
N,v − Var ξb

N,u

∣∣ = 0.

Therefore, we can further require that

(36) |aK ′L′,v̄ − aK ′L′,ū| ≤ εN,KL,K ′L′ for all ‖v̄ − ū‖∞ ≤ L′.
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Let φj be i.i.d. standard Gaussian variables. For v ∈ BK ′L′,j and v ≡ v̄ mod K ′L′,
define

(37) ξN,v = ξc
N,v + ξb

N,v + ξN,v,MBRW + aK ′L′,v̄φj .

It follows from (32) and (35) that

(38) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

|Var ξN,v − VarϕN,v − 4α| = 0.

Finally, we partition VN into a disjoint union of boxes of side length N/L which
we denote by BN/L = {BN/L,i : 1 ≤ i ≤ Ld}, as well as a disjoint union of boxes
of side length L which we denote by BL = {BL,i : 1 ≤ i ≤ (N/L)d}. Again, we
denote by vN/L,i and vL,i the left bottom corner of the boxes BN/L,i and BL,i ,
respectively.

For δ > 0 and any box B , denote by Bδ ⊆ B the collection of all vertices in B

that are δ�B away from its boundary ∂B (here �B is the side length of B). Let

V ∗
N,δ =

(⋃
i

Bδ
N/L,i

)
∩

(⋃
i

Bδ
N/KL,i

)
∩

(⋃
i

Bδ
L,i

)
∩

(⋃
i

BKL,i

)
.

One has |V ∗
N,δ| ≥ (1 − 100dδ)|VN |.

The following lemma suggests that {ξN,v : v ∈ VN } is a good approximation of
{ϕN,v : v ∈ VN }.

LEMMA 4.1. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there exist
ε′
N,K,L,K ′,L′ > 0 with lim sup(L,K,L′,K ′)⇒∞ lim supN→∞ ε′

N,K,L,K ′,L′ = 0, such
that the following hold for all u, v ∈ V ∗

N,δ :

(a) If u, v ∈ BL′,i for some 1 ≤ i ≤ (N/L′)d , then |E(ξN,u − ξN,v)
2 −

E(ϕN,u − ϕN,v)
2| ≤ ε′

N,K,L,K ′,L′ .
(b) If u ∈ BN/L,i , v ∈ BN/L,j with i 
= j , then |EξN,uξN,v − EϕN,vϕN,u| ≤

ε′
N,K,L,K ′,L′ .

(c) Otherwise, |EξN,uξN,v −EϕN,vϕN,u| ≤ 4 log(1/δ) + 40α.

PROOF. (a) Let i ′ be such that BL′,i ⊆ BK ′L′,i′ . By (36) and (37), one has∣∣E(ξN,u − ξN,v)
2 −E(ϕKL,u−vKL,i′ − ϕKL,v−vKL,i′ )

2∣∣ ≤ 4εN,KL,K ′L′,

where εN,KL,K ′L′ satisfies (34) (and was defined therein). By Assumption (A.2),
one has

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

∣∣E(ϕKL,u−vKL,i′ − ϕKL,v−vKL,i′ )
2 −E(ϕN,u − ϕN,v)

2∣∣ = 0.

Altogether, this completes the proof for (a).
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(b) Let i′, j ′ be such that u ∈ BN/KL,i′ and v ∈ BN/KL,j ′ , and assume w.l.o.g.
that K ′ � L′ � K � L � 1/δ. The definition of {ξN,v} gives

EξN,vξN,u = EϕKL,wi′ ϕKL,wj ′ ,

where wi′ = vN/KL,i′
N/KL

and wj ′ = vN/KL,j ′
N/KL

. In this case, we have |wi′ − wj ′ | ≥ δK .
Writing xu = u/N,xv = v/N and yu = wi′/KL,yv = wj ′/KL, one obtains

|yu − yv| ≥ δ/L, |xu − xv| ≥ δ/L,

|xu − yu| ≤ 1/K, |xv − yv| ≤ 1/K.

Therefore, Assumption (A.3) yields lim(L,K,L′,K ′)⇒∞limN→∞|EξN,uξN,v −
EϕN,vϕN,u| = 0, completing the proof of (b).

(c) In this case, one has

EξN,vξN,u = Eξc
N,vξ

c
N,u +Eξb

N,vξ
b
N,u +EξN,u,MBRWξN,v,MBRW + err1

= logKL − log+
( |u − v|

N/KL

)

+ 1|u−v|≤N/KL

(
log

N

(KLK ′L′)
− log+

|u − v|
K ′L′

)
+ err2

= logN − log+ |u − v| + err2,

where |err1| ≤ 8α and |err2| ≤ 2 log 1/δ +20α. Combined with Assumption (A.1),
this completes the proof of (c), and hence of the lemma. �

LEMMA 4.2. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d
(
MN − mN, max

v∈VN

ξN,v − mN − 2α
√

2d
)

= 0.

PROOF. By Proposition 1.1, it suffices to show that for all δ > 0:

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

lim sup
N→∞

d
(

max
v∈V ∗

N,δ

ϕN,v − mN, max
v∈V ∗

N,δ

ξN,v − mN − 2α
√

2d
)

= 0.

Consider a fixed δ > 0. Let σ 2∗ = 4 log(1/δ) + 60α. Let σlw = (0,
√

σ 2∗ + 4α) and
σup = (σ ∗,0). Define {ϕ̃N,L′,L,σlw,v : v ∈ VN } as in (15) with r1 = L′, r2 = L and
σ = σlw. Analogously, define {ξ̃N,L′,L,σup,v : v ∈ VN }. By (37) and Lemma 4.1, one
has for all u, v ∈ V ∗

N,δ ,

|Var ϕ̃N,L′,L,σlw,v − Var ξ̃N,L′,L,σup,v| ≤ ε̄N,K,L,K ′,L′,

Eξ̃N,L,σup,vξ̃N,L,σup,u ≤ Eϕ̃N,L,σlw,vϕ̃N,L,σlw,u + ε̄N,K,L,K ′,L′,
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where lim sup(L,K,L′,K ′)⇒∞ lim supN→∞ ε̄N,K,L,K ′,L′ = 0. Since {ϕ̃N,L′,L,σlw,v :
v ∈ V ∗

N,δ} satisfies Assumption (A.1) with α being replaced by 10α +σ 2∗ , one may
apply Lemma 3.2 and obtain that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d̃
(

max
v∈V ∗

N,δ

ϕ̃N,L′,L,σlw,v −mN, max
v∈V ∗

N,δ

ξ̃N,L′,L,σup,v −mN

)
= 0.

By Lemma 3.1 (it is clear that the same statement holds for maximum over V ∗
N,δ),

one gets

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d
(

max
v∈V ∗

N,δ

ϕ̃N,L′,L,σlw,v − mN − (
σ 2∗ + 4α

)√
d/2,

max
v∈VN,δ∗

ϕN,v − mN

)

= 0,

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d
(

max
v∈V ∗

N,δ

ξ̃N,L′,L,σup,v − mN − (
σ 2∗

)√
d/2,

max
v∈VN,δ∗

ξN,v − mN

)

= 0.

Altogether, this gives that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d̃
(

max
v∈V ∗

N,δ

ϕN,v − mN, max
v∈V ∗

N,δ

ξN,v − mN − 2α
√

2d
)

= 0.

The other direction of stochastic domination follows in the same manner. Alto-
gether, this completes the proof of the lemma. �

4.2. Convergence in law for the centered maximum. In light of Lemma 4.2,
in order to prove Theorem 1.3 it remains to show the convergence in law for the
centered maximum of {ξN,v : v ∈ VN }. To this end, we will follow the proof of the
convergence in law in the case of the 2D DGFF given in [11]. Let the fine field
be defined as ξ

f
N,v = ξN,v − ξc

N,v , and note that it implicitly depends on K ′L′. As
in [11], a key step in the proof of convergence of the centered maximum is the
following sharp tail estimate on the right tail of the distribution of maxv∈B ξ

f
N,v for

B ∈ BN/KL. The proof of this estimate is postponed to Section 6.

PROPOSITION 4.3. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there
exist constants Cα, cα > 0 depending only on α and constants cα ≤ β∗

K ′,L′ ≤ Cα

such that as z → ∞ we have

(39) lim sup
L′→∞

lim sup
K ′→∞

lim sup
N→∞

∣∣∣∣e
√

2dz

z
P

(
max

v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z

)
−β∗

K ′,L′

∣∣∣∣ → 0.
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REMARK 4.4. Proposition 4.3 is analogous to [11], Proposition 4.1, but there
are two important differences:

(a) In Proposition 4.3, the convergence is to a constant β∗
K ′,L′ which depends on

K ′,L′, while in [11], Proposition 4.1, the convergence is to an absolute con-
stant α∗. This is because the fine field ξN,v here implicitly depends on K ′,L′,
and thus a priori one is not able to eliminate the dependence on (K ′,L′) from
the limit. However, in the same spirit as in [11], the dependence on (K ′,L′) is
not an issue for deducing a convergence in law—the crucial requirement is the
independence of N . Eventually, we will deduce the convergence of β∗

K ′,L′ as
K ′,L′ → ∞ in that order from the convergence in law of the centered maxi-
mum.

(b) In [11], Proposition 4.1, one also controls the limiting distribution of the loca-
tion of the maximizer while in Proposition 4.3 this is not mentioned. This is
because in the current situation and unlike the construction in [11], the coarse
field {ξc

N,v} is constant over each box BN/KL,i , and thus the location of the
maximizer of the fine field in each of the boxes BN/KL,i is irrelevant to the
value of the maximum for {ξN,v}.

Next, we construct the limiting law of the centered maximum of {ξN,v : v ∈ VN }.
We partition [0,1]d into R = (KL)d disjoint boxes of equal sizes. Let β∗

K ′,L′ be
as defined in the statement of Proposition 4.3. By that proposition, there exists a
function γ : R �→ R that grows to infinity arbitrarily slowly [in particular, we may
assume that γ (x) ≤ log log logx] such that

lim
z′→∞ lim sup

L′→∞
lim sup
K ′→∞

lim sup
N→∞

sup
z′≤z≤γ (K ′L′)

∣∣∣z−1e
√

2dz

× P

(
max

v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z

)
− β∗

K ′,L′
∣∣∣ = 0.

Let {�R,i}Ri=1 be independent Bernoulli random variables with

P(�R,i = 1) = β∗
K ′,L′γ (KL)e−√

2dγ (KL).

In addition, consider independent random variables {YR,i}Ri=1 such that

(40) P(YR,i ≥ x) = γ (KL) + x

γ (KL)
e−√

2dxx ≥ 0.

Let {ZR,i : 1 ≤ i ≤ R} be an independent Gaussian field with covariance ma-
trix � (recall that � is of dimension R × R). We then define G∗

K,L,K ′,L′ =
max1≤i≤R,�R,i=1 GR,i , where GR,i = �R,i(YR,i +γ (KL))+ZR,i −

√
2d log(KL)

(here we use the convention that max∅ = 0). Let μ̄K,L,K ′,L′ be the distribution of
G∗

K,L,K ′,L′ . We note that μ̄K,L,K ′,L′ does not depend on N .
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THEOREM 4.5. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then

(41) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d(μN, μ̄K,L,K ′,L′) = 0,

where μN is the law of maxv∈VN
ξN,v − mN .

(Note that μN does depend on KL,K ′L′.)

PROOF OF THEOREM 1.3. Theorem 1.3 follows from Lemma 4.2 and Theo-
rem 4.5. �

Next, we give the proof of Theorem 4.5. Our proof is conceptually simpler than
that of its analogue [11], Theorem 2.4, since our coarse field is constant over a box
of size N/KL (and thus no consideration of the location for the maximizer in the
fine field is needed).

PROOF OF THEOREM 4.5. Denote by τ = arg maxv∈VN
ξN,v . Applying The-

orem 1.2 to the Gaussian fields {ξN,v : v ∈ VN } and {ξc
N,v : v ∈ VN } (where the

maximum of {ξc
N,v : v ∈ VN } is equivalent to the maximum of a log-correlated

Gaussian field in a KL-box), we deduce that

(42) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P
(
ξ

f
N,τ ≥ mN/KL + γ (KL) + 1

) = 1.

Therefore, in what follows, we assume w.l.o.g. the occurrence of the event{
ξ

f
N,τ ≥ √

2d log
N

KL
− 3

2
√

2d
log log

N

KL
+ γ (KL) + 1

}
.

Let E = ⋃
1≤i≤R{maxv∈BN/KL,i

ξ
f
N,v ≥ mN/KL + KL + 1}. A simple union bound

over i gives that

(43) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(E) = 0.

Thus, in what follows we assume without loss that E does not occur. Analogously,
we let E ′ = ⋃

1≤i≤R{YR,i ≥ KL+ 1 − γ (KL)}. We see from the union bound that

(44) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P
(
E ′) = 0.

In what follows, we assume without loss that E ′ does not occur.
For convenience of notation, we denote by

M
f
N,i = max

v∈BN/KL,i

ξ
f
N,v − (

mN/KL + γ (KL)
)
.

By Proposition 4.3, there exists ε∗ = ε∗(N,K,L,K ′,L′) with

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

ε∗(
N,K,L,K ′,L′) = 0,
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such that, for some |ε�| ≤ ε∗/4

P
(
ε� ≤ M

f
N,i ≤ KL − γ (KL) + 1

) = P
(
�R,i = 1, YR,i ≤ KL − γ (KL) + 1

)
,

and that for all −1 ≤ t ≤ KL − γ (KL) + 1

P
(
�R,i=1, YR,i ≤ t − ε∗/2

) ≤ P
(
ε� ≤ M

f
N,i ≤ t

) ≤ P
(
�R,i=1, YR,i ≤ t + ε∗/2

)
.

Therefore, there exists a coupling between {Mf
N,i : 1 ≤ i ≤ R} and {�i, YR,i :

1 ≤ i ≤ R} such that on the event (E ∪ E ′)c,

�R,i = 1,
∣∣YR,i − M

f
N,i

∣∣ ≤ ε∗ if M
f
N,i ≥ ε∗, and∣∣YR,i − M

f
N,i

∣∣ ≤ ε∗ if �R,i = 1.
(45)

In addition, it is trivial to couple such that ξc
N,v = ZR,i for all v ∈ BN/KL,i and

1 ≤ i ≤ R. Also, notice the following simple fact:

lim sup
L→∞

lim sup
K→∞

lim sup
N→∞

(
mN − mN/KL − √

2d log(KL)
) = 0.

Altogether, we conclude that there exists a coupling such that outside an event of
probability tending to 0 as N → ∞ and then (L,K,L′,K ′) ⇒ ∞ [cf. (42), (43),
(44)] we have

max
v∈VN

(ξN,v − mN) − G∗
K,L,K ′,L′ ≤ 2ε∗.

Now, let τ ′ = arg max1≤i≤R GR,i . Applying Theorem 1.2 to the Gaussian field
{ZR,i} and using the preceding inequality, we see that

(46) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(�R,τ ′ = 1) = 1.

Combined with (45), this yields that there exists a coupling such that except with
probability tending to 0 as N → ∞ and then (L,K,L′,K ′) ⇒ ∞ we have∣∣∣max

v∈VN

(ξN,v − mN) − G∗
K,L,K ′,L′

∣∣∣ ≤ 2ε∗,

thereby completing the proof of Theorem 4.5. �

PROOF OF THEOREM 1.4. Recall that G∗
K,L,K ′,L′ is a random variable with

law μ̄K,L,K ′,L′ . We will construct random variables ZK,L, measurable with respect
to Fc := σ({ZR,i}), so that for all x

lim sup
(L,K,L′,K ′)⇒∞

μ̄K,L,K ′,L′((−∞, x])
E(e

−β∗
K′,L′ZK,Le−√

2dx

)

= lim inf
(L,K,L′,K ′)⇒∞

μ̄K,L,K ′,L′((−∞, x])
E(e

−β∗
K′,L′ZK,Le−√

2dx

)

= 1.

(47)
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To demonstrate (47), due to (46), we may and will assume without loss that
�R,τ ′ = 1. Define SR,i := √

2d log(KL) − ZR,i . Then, for any real x,

(48) P
(
G∗

K,L,K ′,L′ ≤ x
) = E

(
R∏

i=1

(
1 − P

(
�R,iYR,i > SR,i + x − γ (KL)|Fc))).

In addition, the union bound gives that

lim sup
KL→∞

P(D) = 1, where D =
{

min
1≤i≤R

SR,i ≥ 2γ (KL)
}
.

So in the sequel we assume that D occurs. By the definition of �R,i and YR,i , we
get that

P
(
�R,iYR,i > SR,i + x − γ (KL)|Fc) = β∗

K ′,L′(SR,i + x)e−√
2d(SR,i+x),

which converges to 0 as KL → ∞. Therefore,

exp
(−(1 + εK,L)β∗

K ′,L′SR,ie
−√

2d(x+SR,i )
)

≤ P
(
�R,iYR,i ≤ SR,i + x − γ (KL)|Fc)

≤ exp
(−(1 − εK,L)β∗

K ′,L′SR,ie
−√

2d(x+SR,i )
)(49)

for εK,L > 0 with

lim sup
KL→∞

εK,L = 0.

Define ZK,L = ∑R
i=1 SR,ie

−√
2dSR,i [this is the analogue of a derivative martingale,

see (4)]. Substituting (49) into (48) completes the proof of (47). Now, combining
(47) and Theorem 4.5, we see that we necessarily have

lim sup
K ′→∞

lim sup
L′→∞

∣∣β∗
K ′,L′ − β∗∣∣ = 0

for a number β∗ that does not depend on (K ′,L′). Plugging the preceding inequal-
ity into (47), we deduce that

lim sup
(L,K,L′,K ′)⇒∞

μ̄K,L,K ′,L′((−∞, x])
E(e−β∗ZK,Le−√

2dx
)

= lim inf
(L,K,L′,K ′)⇒∞

μ̄K,L,K ′,L′((−∞, x])
E(e−β∗ZK,Le−√

2dx
)

= 1.

(50)

Combining (50) with Theorem 4.5 again, we see that ZK,L converges weakly to
a random variable Z as K → ∞ and then L → ∞. Also note that ZK,L depends
only on the product KL. Therefore, this implies that ZN converges weakly to
a random variable Z . From the tightness of the laws μ̄K,L,K ′,L′ , it follows that
Z > 0 a.s. This completes the proof of Theorem 1.4. �
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PROOF OF REMARK 1.6. Consider two sequences {ϕN,v} and {ϕ̃N,v} that sat-
isfy assumptions (A.0)–(A.3) with the same functions h(x, y) and f (x) but pos-
sibly different functions g(u, v), g̃(u, v) and different constants α(δ), α(δ),′ and
α0, α

′
0. Define the corresponding (see Section 4.1) fields:

ξN,KL,K ′L′ = ξc
N,KL,K ′L′ + ξ

f

N,KL,K ′L′,

ξ̃N,KL,K ′L′ = ξ̃ c
N,KL,K ′L′ + ξ̃

f

N,KL,K ′L′ .

Set also

ξ̂N,KL,K ′L′ = ξ̃ c
N,KL,K ′L′ + ξ

f

N,KL,K ′L′ .

Let νN, ν̃N denote the laws of the centered maxima maxv∈VN
ϕN,v − mN ,

maxv∈VN
ϕ̃N,v − m̃N , and let μN, μ̃N, μ̂N denote the laws of the centered maxima

of the ξN, ξ̃N , ξ̂N fields. (Recall that the latter depend also on KL,K ′L′ but we
drop that fact from the notation.) By Lemma 4.2, we have

(51) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

(
d(μN, νN) + d(μ̃N , ν̃N)

) = 0.

For s ∈ R, let θsμ denote the shift of a probability measure μ on R, that
is, θsμ(A) = μ(A + s) for any measurable set A. Recall the construction of
μ̄K,L,K ′,L′ (see Theorem 4.5), and construct similarly μ̃K,L,K ′,L′ and μ̂K,L,K ′,L′ .
Note that, by construction, there exists s = s(KL), bounded uniformly in KL, so
that θsμ̂K,L,K ′,L′ = μ̃K,L,K ′,L′ . In particular, from Theorem 4.5 we get that

(52) lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

(
d(μN, μ̄K,L,K ′,L′) + d(μ̃N, θsμ̂K,L,K ′,L′)

) = 0.

From (51) and (52), one can find a sequence L(N),K(N),K ′(N),L′(N) along
which the convergence still holds (as N → ∞). Let {ηv,N } and {η̂v,N } denote the
fields {ξv,N } and {ξ̂v,N } with this choice of parameters, and let μ̄N and μ̂N de-
note the corresponding laws of the maximum. Let μ∞, μ̃∞ denote the limits of
μN and μ̃N , which exist by Theorem 1.3. From the above considerations, we have
that μ̄N → μ∞ and θs(N)μ̂N → μ̃∞. On the other hand, the fields ηN,· and η̂N,·
both satisfy assumptions (A.0)–(A.3) with the same functions f,g,h, and thus,
interleaving between then one deduces that the laws of their centered maxima con-
verge to the same limit, denoted �∞. It follows that necessarily, s(N) converges
and μ∞ = θsμ̃∞ = �∞. Using the characterization in Theorem 1.4, this yields the
claim in the remark. �

5. An example: The circular logarithmic REM. In the important paper
[20], the authors introduce a one dimensional log-correlated Gaussian field, which
they call the circular logarithmic REM (CLREM). Fyodorov and Bouchaud
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consider the CLREM as a prototype for Gaussian fields exhibiting Carpentier–
LeDoussal freezing. (We do not discuss in this paper the notion of freezing, re-
ferring instead to [20] and to [4, 26, 29] and [8].) Explicitly, fix an integer N , set
θk = 2πk/N , and introduce the matrix:

Rk,� = −1

2
log

(
4 sin2

(
θk − θ�

2

))
1k 
=� + (logN + W)1k=�,

where W is a constant independent on N . It is not hard to verify (and this is done
explicitly in [20]) that one can choose W so that the matrix R is positive definite for
all N ; the resulting Gaussian field ϕN,v with correlation matrix R is the CLERM.
One may think of the CLREM as indexed by VN in dimension d = 1, or (as the
name indicates) by an equally spaced collection of N points on the unit circle in
the complex plane.

Let MN = maxv∈VN
ϕN,v . The following is a corollary of Theorems 1.2 and 1.4.

COROLLARY 5.1. EMN = √
2 logN − (3/2

√
2) log logN + O(1) and there

exist a constant β∗ and a random variable Z so that

(53) lim
N→∞P(MN −EMN ≤ x) = E

(
e−β∗Ze−√

2x )
.

PROOF. Assumptions (A.0) and (A.1) are immediate to check. An explicit
computation reveals that Assumption (A.2) holds with f (x) = 0 and

g(u, v) =
{−W, u = v,

log(4π) + |u − v|, u 
= v.

Finally, note that Assumption (A.3) holds with h(x, y) = log(4 sin2(2π |x − y|)).
Thus, Theorems 1.3 and 1.4 apply and yields (53). �

REMARK 5.2. Remarkably, in [20] the authors compute explicitly, albeit non-
rigorously, the law of the maximum of the CLREM, up to a deterministic shift that
they do not compute. It was observed in [29] that the law computed in [20] is in
fact the law of a convolutions of two Gumbel random variables. In the notation
of Corollary 5.1, this means that one expects that 2−1/2 log(β∗Z) is Gumbel dis-
tributed. We do not have a rigorous proof for this claim.

6. Proof of Proposition 4.3. Our proof of Proposition 4.3 is highly similar
to the proof in [11], Proposition 4.1, but simpler in a number of places. We will
sketch the outline of the arguments, and refer to [11] extensively (it is helpful to
recall Remark 4.4). To start, we note that by Lemmas 2.2 and 2.4, there exists
cα > 0 depending only on α such that

P

(
max

v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z

)
≥ cαze−√

2dz(54)
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for all 1 ≤ z ≤ √
logN/KL,1 ≤ i ≤ (KL)d . In addition, adapting the proof of (2),

we deduce that there exists Cα > 0 depending only on α such that

(55) P

(
max

v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z

)
≤ Cαze−√

2dz

for all z ≥ 1,1 ≤ i ≤ (KL)d .
Recall the definition of {ξN,v} as in (37). In what follows, we consider a fixed

i and a box BN/KL,i . We note that the law of the fine field {ξf
N,v : v ∈ BN/KL,i}

does not depend on K,L, i, and hence β∗
K ′,L′ does not depend on K,L, i. Write

N̄ = N/KL = 2n̄ and L̄ = K ′L′ = 2�̄. For convenience of notation, we will refer
to the box BN/KL,i as VN̄ and let �N̄ be the collection of all left bottom corners of

L̄-boxes of form BL̄,j in BN/KL,i . In addition, write n∗ = VarXv,N

log 2 = n̄ − �̄, where
we denote Xv,N = ξN,v,MBRW.

For convenience, we now view each Xv,N as the value at time n∗ of a Brownian
motion with variance rate log 2. More precisely, we assign to each Gaussian vari-
able bN

j,B in (31) an independent Brownian motion, with variance rate log 2, that

runs for 2−2j time units and ends at the value bN
j,B . We now define a Brownian

motion {Xv,N(t) : 0 ≤ t ≤ n∗} by concatenating each of the previous Brownian
motions associated with v ∈ �N̄ , with earlier times corresponding to larger boxes.
From our construction, we see that Xv,N(n∗) = Xv,N . We partition VN̄ into dis-
joint L̄-boxes, for which we denote BL̄. Further, denote by Bv the L̄-box in BL̄

that contains v. Define

Ev,N(z) =
{
Xv,N(t) ≤ z + mN̄

n̄
t

for all 0 ≤ t ≤ n∗, and max
u∈Bv

ξ
f
u,N ≥ mN̄ + z

}
,

Fv,N(z) =
{
Xv,N(t) ≤ z + mN̄

n̄
t + 10

(
log

(
t ∧ (

n∗ − t
)))

+ + z1/20

for all 0 ≤ t ≤ n∗, and max
u∈Bv

ξ
f
u,N ≥ mN̄ + z

}
,

GN(z) = ⋃
v∈�N̄

⋃
0≤t≤n∗

{
Xv,N(t) > z + mN̄

n̄
t

+ 10
(
log

(
t ∧ (

n∗ − t
)))

+ + z1/20
}
.

(56)

Also define

�N̄,z = ∑
v∈�N̄

1Ev,N (z) and �N̄,z = ∑
v∈�N̄

1Fv,N (z).
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In words, the random variable �N,z counts the number of boxes in BL̄ whose
“backbone” path Xv,N(·) stays below a linear path connecting z to roughly mN̄ +z,
so that one of its “neighbors” achieves a terminal value that is at least mN̄ + z; the
random variable �N,z similarly counts boxes in BL̄ whose backbone is constrained
to stay below a slightly “upward bent” curve. Clearly, Ev,N(z) ⊆ Fv,N(z) always
holds, as does �N̄,z ≤ �N̄,z.

By (37), for each v ∈ �N̄ we can write that

(57) max
u∈Bv

ξ
f
N,v = Xv,N + Yv,N ,

where {Yv,N } are i.i.d. random variables with the same law as maxu∈VL̄
ϕL̄,u +

aK,L,K ′,L′,uφ where φ is a standard Gaussian variable. Crucially, the law of Yv,N

does not depend on N . In addition, by Proposition 1.1 and Lemma 2.2, there exist
Cα depending only on α such that

(58) P(Yv,N ≥ mL̄ + λ) ≤ Cαλe−√
2dλe−C−1

α λ2/�̄ for all λ ≥ 1.

When estimating the ratio
�N̄,z

�N̄,z
, it is clear that

�N̄,z

�N̄,z
= P(Ev,N (z))

P(Fv,N (z))
for any fixed

v ∈ �N̄ , where the latter concerns only the associated Brownian motion to Xv,N

and the random variable Yv,N . As such, the arguments in [11], Lemma 4.10, carry
out with merely notation change and give that

(59) lim
z→∞ lim sup

L̄→∞
lim sup
N→∞

�N̄,z

�N̄,z

= 1.

Analogous to the proof of [11], Equation (100), we can compare the field {Xv,N }
to a BRW and apply [11], Lemma 3.7, to obtain that

(60) P
(
GN(z)

) ≤ Cαe−√
2dz.

Note that the dimension does not play a significant role in these estimates, as [11],
Lemma 3.7, follows from a union bound calculation. The dimension changes the
volume of the box, but the probability

P

(
Xv,N(t) > z + mN̄

n̄
t + 10

(
log

(
t ∧ (

n∗ − t
)))

+ + z1/20
)

scales in the dimension (recall that mN depends on d) which exactly cancels the
growth of the volume in d .

The next desired ingredient is the second moment computation for �N̄,z. Note
that (i) our field {Xv,N : v ∈ �N̄ } is simply an MBRW (so {Xv,N } is nicer than its
analog in [11], which is a sum of an MBRW and a field with uniformly bounded
variance); (ii) our {Yv,N } are i.i.d. random variable with desired tail bounds as in
(57) (so also nicer than its analog in [11], which has weak correlation for two
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neighboring local boxes). Therefore, the second moment computation in [11],
Lemma 4.11, carries out with minimal notation change and gives

(61) lim
z→∞ lim sup

L̄→∞
lim sup
N→∞

E(�N̄,z)
2

E�N̄,z

= 1.

Note that in [11], Equation (90), there is no analog of lim supL̄→∞ as in the pre-

ceding inequality. That is because we have assumed in [11] that L ≥ 22z4

. Our
statement as in (61) is weaker as it does not give a quantitative dependance on how
L̄ should grow in z. But this detailed quantitative dependence is not needed for the
proof of convergence in law.

Combining (54), (59), (60) and (61), we deduce that

(62) lim
z→∞ lim sup

L̄→∞
lim sup
N→∞

∣∣∣∣P(maxv∈VN̄
ξ

f
N,v ≥ mN̄ + z)

E�N̄,z

− 1
∣∣∣∣ = 0.

Therefore, it remains to estimate E�N̄,z. To this end, we will follow [11], Sec-
tion 4.3. We first note that by (54) and (62), we have

(63) lim
z→∞ lim sup

L̄→∞
lim sup
N→∞

E�N̄,z

ze−√
2dz

≥ cα,

where cα > 0 is a constant depending on α.
The main goal is to derive the asymptotics for E�N̄,z. For v ∈ �N̄ , let νv,N̄ (·)

be the density function (of a subprobability measure on R) such that, for all I ⊆ R,
the integral

∫
I νv,N̄ (y) dy is equal to

P

(
Xv,N(t) ≤ z + mN̄

n̄
t for all 0 ≤ t ≤ n∗;Xv,N

(
n∗) − (n̄ − �̄)mN̄/n̄ ∈ I

)
.

Clearly, by (57),

P
(
Ev,N(z)

) =
∫ z

−∞
νv,N̄ (y)P(Yv,N ≥ �̄mN̄/n̄ + z − y)dy.

For a given interval J , define

(64) λv,N,z,J =
∫
J

νv,N̄ (y)P(Yv,N ≥ �̄mN̄/n̄ + z − y)dy.

Set J�̄ = [−�̄,−�̄2/5]. For convenience of notation, we denote by A � B that
there exists a constant Cα > 0 that depends only on α such that A ≤ CαB for two
functions/sequences A and B . As in [11], Lemma 4.13, we claim that for any any
sequences xv,N such that |xv,N | � �̄1/5,

(65) lim
z→∞ lim inf

�̄→∞
lim inf
N→∞

∑
v∈�N

λv,N,z,xv,N+J�̄

E�N,z

= 1.
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Note that, by containment, the above ratio is always at most 1. We prove (65) for
the case when xv,N = 0; the general case follows in the same manner. Applica-
tion of the reflection principle (cf. [11], Equation (28)) to the Brownian motion
with drift, X̄v,N (·) = Xv,N(·) − mN̄ t/n̄, together with the change of measure that
removes the drift mN̄ t/n̄, implies that

νv,N̄ (y) � e−√
2dy2−dn∗

z|y|
for y ≤ −�̄, over the given range z ∈ (0, �̄) (which implies z − y � |y|). Together
with (58) and independence among Yv,N for v ∈ �N̄ , this implies the crude bound:∫ −�

−∞
νv,N̄ (y)P(Yv,N ≥ �̄mN̄/n̄ + z − y)dy � 2−dn∗

e−C−1
α �̄

for a constant Cα > 0 depending on α. Similarly, for y ≤ z (and, therefore, for
z − y ≥ 0), application of the reflection principle and (58) again implies that∫ z

−�̄2/5
νv,N̄ (y)P(Yv,N ≥ �̄mN̄/n̄ + z − y)dy � 2−dn∗

�̄−3/10ze−√
2dz.

Together with (63), this completes the verification of (65).
Next, we claim that there exists �∗

K ′,L′,z > 0 that does not depend on N such
that

(66) lim
z→∞ lim sup

L̄→∞
lim sup
N→∞

E�N,z

�∗
K ′,L′,z

= lim
z→∞ lim inf

L̄→∞
lim inf
N→∞

E�N,z

�∗
K ′,L′,z

= 1.

By the reflection principle and change of measure, we get that for all y ∈ [−�̄, z]
(see the derivation of [11], Equation (107))

(67) νv,N̄ (y) = 2−dn∗
e−√

2dy z(z − y)√
2π log 2

(
1 + O

(
�̄3/n̄

))
.

Therefore,

∑
v∈�N̄

λv,N,z,J�̄
=

(
N̄

L̄

)d ∫
J�̄

νv0,N̄

(
y + O

(
�̄√
n̄

))

× P(Yv0,N ≥ √
2d�̄ log 2 + z − y)dy

= (
1 + O

(
�̄3/

√
n̄
)) ∫

J�̄

z(z − y)√
2π log 2e

√
2dy

× P
(
Yv0,N ≥ (log 2)

√
2d�̄ + z − y

)
dy,

where v0 is any fixed vertex in �N̄ and in the last step we have used the fact that
n∗ = n̄ − �̄. Recall that the law of Yv0,N is the same as maxu∈VL̄

ϕL̄,u + aK ′,L′,uφ,
which does not depend on N . Combined with (65), this completes the proof of (66).
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Finally, we analyze how E�N,z scales with z. To this end, consider z1 < z2. For
v ∈ �N and j = 1,2, recall that

λv,N,zj ,zj+J�̄
=

∫
J�̄+zj

νv,N̄ (y)P(Yv,N ≥ �mN̄/n̄ + zi − y)dy.

By (67), for any y ∈ J�̄ and z1, z2 � log �̄,

νv,N̄ (y + z1)P(Yv,N ≥ �̄mN̄/n̄ − y)

νv,N̄ (y + z2)P(Yv,N ≥ �̄mN̄/n̄ − y)
= νv,N̄ (y + z1)

νv,N̄ (y + z2)

=
(

1 + O

(
�̄3

n̄

))
z1(z1 − y)

z2(z2 − y)
e−√

2d(z1−z2)

=
(

1 + O

(
�̄3

n̄

))
z1

z2
e−√

2d(z1−z2)
(
1 + z

−3/5
2

)
.

This implies that

λv,N,z1,z1+J�̄

λv,N,z2,z2+J�̄

= (
1 + O

(
�̄3/n̄

))z1

z2
e−√

2d(z1−z2)
(
1 + z

−3/5
2

)
.

Together with (65), the above display implies that

lim
z1,z2→∞ lim sup

L̄→∞
lim sup
N→∞

z2e
−√

2dz2E�N,z1

z1e−√
2dz1E�N,z2

= lim
z1,z2→∞ lim inf

L̄→∞
lim inf
N→∞

z2e
−√

2dz2E�N,z1

z1e−√
2dz1E�N,z2

= 1.

Along with (66), this completes the proof of (39) for some β∗
K ′,L′ . From (54) and

(55), we see that cα ≤ β∗
K ′,L′ ≤ Cα for all K ′,L′. This completes the proof of the

proposition. �
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