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A nonbacktracking walk on a graph is a directed path such that no edge
is the inverse of its preceding edge. The nonbacktracking matrix of a graph is
indexed by its directed edges and can be used to count nonbacktracking walks
of a given length. It has been used recently in the context of community detec-
tion and has appeared previously in connection with the Ihara zeta function
and in some generalizations of Ramanujan graphs. In this work, we study the
largest eigenvalues of the nonbacktracking matrix of the Erdős–Rényi ran-
dom graph and of the stochastic block model in the regime where the number
of edges is proportional to the number of vertices. Our results confirm the
“spectral redemption conjecture” in the symmetric case and show that com-
munity detection can be made on the basis of the leading eigenvectors above
the feasibility threshold.
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1. Introduction. Given a finite (simple, nonoriented) graph G = (V ,E), sev-
eral matrices of interest can be associated to G, besides its adjacency matrix
A = (1{u,v}∈E)u,v∈V . In this work, we are interested in the so-called nonbacktrack-
ing matrix of G, denoted by B . It is indexed by the set �E = {(u, v) : {u, v} ∈ E} of
oriented edges in E and defined by

Bef = 1(e2 = f1)1(e1 �= f2) = 1(e2 = f1)1
(
e �= f −1),

where for any e = (u, v) ∈ �E, we set e1 = u, e2 = v, e−1 = (v, u). This matrix
was introduced by Hashimoto [12]. A nonbacktracking walk is a directed path of
directed edges of G such that no edge is the inverse of its preceding edge. It is
easily seen that for any k ≥ 1, Bk

ef counts the number of nonbacktracking walks of
k + 1 edges on G starting with e and ending with f .

Our focus is the spectrum of B , referred to in the sequel as the nonbacktracking
spectrum of G, when G is a sparse random graph. Specifically, we shall character-
ize the asymptotic behavior of the leading eigenvalues and associated eigenvectors
in the nonbacktracking spectrum of sparse random graphs in the limit n → ∞
where n = |V |.

The random graphs we consider are drawn according to the stochastic block
model, a generalization of Erdős–Rényi graphs due to Holland et al. [13]. In this
model, nodes v ∈ V are partitioned into r groups. An edge between two nodes u, v
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is drawn with probability Wσ(u),σ (v)/n, where σ(u) ∈ [r] denotes the group node
u belongs to. Thus when the r × r matrix W is fixed, the expected node degrees
remain of order 1 as n → ∞. We focus moreover on instances where the fraction
of nodes in group i converges to a limit π(i) as n → ∞.

An informal statement of our results for eigenvalues is as follows. Let G be
drawn according to a stochastic block model with fixed number r of node groups
such that all nodes have same fixed expected degree α > 1. Let μ1, . . . ,μr denote
the leading eigenvalues of the expected adjacency matrix Ā := E(A), ordered so
that μ1 = α ≥ |μ2| ≥ · · · ≥ |μr |. Let r0 ≤ r be such that |μr0+1| ≤ √

α < |μr0 |.
Then the r0 leading eigenvalues of B are asymptotic to μ1, . . . ,μr0 , the remaining
eigenvalues λ satisfying |λ| ≤ (1 + o(1))

√
α.

Community detection. Our primary motivation stems from the problem of
community detection, namely: how to estimate a clustering of graph nodes into
groups close to the underlying blocks, based on the observation of such a ran-
dom graph G? Decelle et al. [8] conjectured a phase transition phenomenon on
detectability, namely: the underlying block structure could be detected if and only
if |μ2| > √

α.
In the case of two communities with roughly equal sizes [π(1) = π(2) = 1/2]

and symmetric matrix W , the negative part (impossibility of detection when
|μ2| ≤ √

α) was proven by Mossel et al. [25]. As for the positive part (feasibility
of detection when |μ2| >

√
α), it was conjectured in [8] that the so-called belief

propagation algorithm would succeed. Krzakala et al. [20] then made their so-
called “spectral redemption conjecture” according to which detection based on the
second eigenvector of the nonbacktracking matrix B would succeed.

Recently, a variant of the spectral redemption conjecture was proven by Mas-
soulié [23]: the spectrum of a matrix counting self-avoiding paths in G allows us to
detect communities through thresholding of the second eigenvector. More recently
and independently of [23], an alternative proof of the positive part of the conjecture
in [8] was given by Mossel et al. [24], based on an elaborate construction involving
countings of nonbacktracking paths in G.

The two approaches of [23] and [24] to proving the positive part of the con-
jecture in [8], while both relying ultimately on properties of specific path counts,
differ however in the following respects. The method in [23] relies on a clear spec-
tral separation property but its implementation is computationally expensive, as
the counts of self-avoiding walks it relies upon take super-linear (though polyno-
mial) time. The method in [24] is computationally efficient as it runs in quasilinear
time, but the proof does not establish a spectral separation property. The other two
methods conjectured to achieve successful reconstruction, namely belief propaga-
tion and analysis of nonbacktracking spectrum, are computationally efficient and
they are motivated by a clear intuition as described in the spectral redemption con-
jecture.
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Our present work proves the spectral redemption conjecture. More generally
by characterizing all the leading eigen-elements, it determines the limits of com-
munity detection based on the nonbacktracking spectrum in the presence of an
arbitrary number of communities.

Ihara zeta function. Hashimoto introduced the matrix B in the context of the
Ihara zeta function [12]. We have the identity

det(I − zB) = 1

ζG(z)
,

where ζG is the Ihara zeta function of the graph; refer to [16, 19, 29, 30]. It follows
that the poles of the Ihara zeta function are the reciprocal of the eigenvalues of B .
Our main results have thus consequences on the localization of the poles of the
zeta function of random graphs.

Weak Ramanujan property. Our result also has an interpretation from the
standpoint of Ramanujan graphs, introduced by Lubotzky et al. [22] (see Murty
[26] for a recent survey). These are by definition k-regular graphs such that the
second largest modulus of its eigenvalues is at most 2

√
k − 1. By a result of Alon

and Boppana (see [27]) for fixed k, k-regular graphs on n nodes must have their
second largest eigenvalue at least 2

√
k − 1 − o(1) as n → ∞. Hence, Ramanujan

graphs are regular graphs with maximal spectral gap between the first and sec-
ond eigenvalue moduli. A celebrated result of Friedman [9] states that random
k-regular graphs achieve this lower bound with high probability as their number of
nodes n goes to infinity.

Lubotzky [21] has proposed an extension of the definition of Ramanujan graphs
to the nonregular case. Specifically, G is Ramanujan according to this definition if
and only if

max
{|λ| : λ ∈ spectrum(A), |λ| �= ρ

} ≤ σ,

where A is the adjacency matrix of G, ρ its spectral radius, and σ the spectral
radius of the adjacency operator on the universal covering tree of G.

Using the analogy between the Ihara zeta function and the Riemann zeta func-
tion, Stark and Terras (see [16]) have defined a graph to satisfy the graph Rie-
mann hypothesis if its nonbacktracking matrix B has no eigenvalues λ such that
|λ| ∈ (

√
ρB,ρB), where ρB is the Perron–Frobenius eigenvalue of B . Interestingly,

a regular graph G is Ramanujan if and only if it satisfies the graph Riemann hy-
pothesis (see [26] and [16]). Thus, the graph Riemann hypothesis can also be seen
as a generalization of the notion of Ramanujan graphs to the nonregular case,
phrased in terms of nonbacktracking spectra rather than on spectra of universal
covers as in the definition of Lubotzky [21].

Our results imply that for fixed α > 1, Erdős–Rényi graphs G(n,α/n) have an
associated nonbacktracking matrix B such that ρB ∼ α and all its other eigen-
values λ verify |λ| ≤ √

α + o(1) with high probability as n → ∞. In this sense,
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Erdős–Rényi graphs asymptotically satisfy the graph Riemann hypothesis, which
itself is a plausible extension of the notion of Ramanujan graphs to the nonregular
case. This may be seen as an analogue of Friedman’s theorem [9] in the context
of Erdős–Rényi graphs. Similarly, for the stochastic block model, our main result
is analogous to recent results on the eigenvalues of random n-lifts of base graphs;
see [6, 10]. Interestingly, in [6], the methods developed in the present paper are
adapted to lead to a new and simpler proof of Friedman’s theorem and its ex-
tensions to random n-lifts. The random graphs studied here will require a more
delicate analysis.

Organization. The paper is organized as follows. We start in Section 2 with
preliminaries on nonbacktracking matrices. We state our main results in Section 3,
namely Theorems 3 and 4 characterizing properties of nonbacktracking spectra
of Erdős–Rényi graphs and stochastic block models, respectively, and Theorem 5
establishing their consequence for community detection.

In Section 4, we provide the algebraic ingredients we shall need. Specifically,
we establish general bounds on the perturbation of eigenvalues and eigenvectors
of not necessarily symmetric matrices that elaborate on the Bauer–Fike theorem.

In Section 5, we give the proof architecture for Theorem 3 on the nonbacktrack-
ing spectrum of Erdős–Rényi graphs, and detail a central argument of combina-
torial nature, namely a representation of the nonbacktracking matrix B raised to
some power � as a sum of products of matrices, elaborating on a technique intro-
duced in [23].

In Section 6, we detail another combinatorial argument needed in our proof,
namely we establish bounds on the norms of the various matrices involved in the
previous matrix expansion. The latter norm bounds are established by the trace
method, adapting arguments due to Fűredi and Komlós [11].

Section 7 gives the proof strategy for Theorem 4 on nonbacktracking spectra of
stochastic block models.

In Section 8, we establish convergence results on multitype branching processes
that extend results of Kesten and Stigum [17, 18]. These are then used in Section 9
to characterize the local structure of the random graphs under study. Specifically,
we relate the local statistics of stochastic block models to branching processes via
coupling, and then establish weak laws of large numbers on these local statistics.
These probabilistic arguments together with the previous algebraic and combina-
torial arguments allow us to conclude the proofs of Theorems 3 and 4. Section 11
contains the proof of Theorem 5 on community detection.

2. Preliminaries on nonbacktracking matrices. In this section, we explain
how the singular value decomposition of B� for � large can be used to study the
eigenvalues and eigenvectors of B . We also comment on analogues of some clas-
sical inequalities known for adjacency or Laplacian matrices of regular graphs.
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We set m = | �E|. A priori, B is not a normal matrix. We are interested in its
eigenvalues λ1(B), . . . , λm(B) ordered nonincreasingly, |λ1(B)| ≥ · · · ≥ |λm(B)|.
The Perron–Frobenius theorem implies notably that λ1(B) is a nonnegative real. If
G is connected, λ1(B) is equal to the growth rate of the universal cover of G (see
Angel, Friedman and Hoory [1]).

2.1. Oriented path symmetry. An important remark is that despite B not be-
ing a normal matrix, it contains some symmetry. More precisely, we observe that
(B∗)ef = Bf e = Be−1f −1 . Introduce for all x ∈ R

�E the notation

x̌(e) = x
(
e−1), e ∈ �E.

It is then easy to check that for x, y ∈R
�E and integer k ≥ 0,

(1)
〈
y,Bkx

〉 = 〈
Bky̌, x̌

〉
.

In other words, if P denotes the involution on R
�E , Px = x̌, we have for any integer

k ≥ 0,

BkP = PB∗k.

Hence, BkP is a symmetric matrix (in mathematical physics, this type of symme-
try is called PT-invariance, PT standing for parity-time). If (σj,k), 1 ≤ j ≤ m, are
the eigenvalues of BkP and (xj,k), 1 ≤ j ≤ m, is an orthonormal basis of eigen-
vectors, we deduce that

(2) Bk =
m∑

j=1

σj,kxj,kx̌
∗
j,k.

We order the eigenvalues,

σ1,k ≥ |σ2,k| ≥ · · · ≥ |σm,k|.
From the Perron–Frobenius theorem, x1,k can be chosen to have nonnegative en-
tries. Since P is an orthogonal matrix, (x̌j,k), 1 ≤ j ≤ m, is also an orthonormal

basis of R �E . In particular, (2) gives the singular value decomposition of Bk . In-
deed, if sj,k = |σj,k| and yj,k = sign(σj,k)x̌j,k , we get

(3) Bk =
m∑

j=1

sj,kxj,ky
∗
j,k.

This is precisely the singular value decomposition of Bk .
For example, for k = 1, it is a simple exercise to compute (σj,1)1≤j≤m. We find

that the eigenvalues of BP are (deg(v) − 1), 1 ≤ v ≤ n, and −1 with multiplicity
m − n. In particular, the singular values of B contain only information on the
degree sequence of the underlying graph G as noted in [20].
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For large k however, we may expect that the decomposition (2) carries more
structural information on the graph (this will be further discussed in Section 2.2
below). This will be the underlying principle in the proof of our main results. For
the moment, we simply note the following. Assume that B is irreducible. From the
Perron–Frobenius theorem, if ξ is the Perron eigenvector of B , ‖ξ‖ = 1, then for
any n fixed,

(4) λ1(B) = lim
k→∞σ

1/k
1,k and lim

k→∞‖x1,k − ξ‖ = 0.

A quantitative version of the above limits will be given in the forthcoming Proposi-
tion 7. Another consequence of (2) is that, for i �= j , xi,k and x̌j,k should be nearly
orthogonal if these vectors converge as k → ∞. Indeed, a heuristic computation
gives

〈xi,k, x̌j,k〉 = 〈Bkx̌i,k,B
∗kxj,k〉

σi,kσj,k

= 〈B2kx̌i,k, xj,k〉
σi,kσj,k

� 〈B2kx̌i,2k, xj,2k〉
σi,kσj,k

= σi,2k〈xi,2k, xj,2k〉
σi,kσj,k

= 0.

We will exploit this general phenomenon in the proof of our main results.

2.2. Chung, Cheeger and Alon–Boppana inequalities for nonbacktracking ma-
trices. The aim of this subsection is to advocate the use of nonbacktracking ma-
trices. Here, we discuss briefly candidate counterparts for irregular graphs of in-
equalities that are classical in the context of regular graphs. This subsection will
not be used in the proof of our main results, it may be skipped.

The diameter bound of Chung [7] gives an upper bound on the diameter of
a regular graph in terms of its spectral gap. The following lemma, expressed in
terms of the decomposition (3) of Bk , is an analogue.

LEMMA 1. Let e = (u,u′), f = (v, v′) ∈ �E be such that

x1,k(e)x1,k(f ) > s2,k/s1,k.

Then the graph distance between u and v is at most k + 1.

PROOF. Observe that if Bk
ef −1 > 0 then u and v are at most at distance k + 1.

On the other hand from (3),

Bk
ef −1 − s1,kx1,k(e)x1,k(f ) =

m∑
j=2

σj,kxj,k(e)xj,k(f )

has absolute value at most s2,k from the Cauchy–Schwarz inequality and the or-
thonormality of the xj,k , 1 ≤ j ≤ m. Thus, finally, Bk

ef −1 ≥ s1,kx1,k(e)x1,k(f )−s2.
�
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Cheeger-type inequalities connect the expansion ratio (isoperimetry) of the
graph and its spectral gap; for a survey, see [14]. For a subset X ⊂ �E of edges,
we measure its volume by

Vk(X) = ∑
e∈X

x2
1,k(e).

By construction, our volume is normalized with Vk( �E) = 1. We say that X ⊂ �E
is edge-symmetric if X̌ = X where X̌ = {e−1, e ∈ X}. For example, the set of
edges adjacent to a given subset of vertices is edge-symmetric. If X, Y are edge-
symmetric, we define

Ek(X,Y ) = ∑
e∈X,f ∈Y

x1,k(e)x1,k(f )Bk
ef .

Since Bk
ef is the number of nonbacktracking walks of length k + 1 starting with e

and ending with f , Ek(X,Y ) measures a kind of conductance between X and Y

with a proximity range of radius k + 1. If Xc = �E \ X, the scalar

�k(X) = �k

(
Xc) = Ek

(
X,Xc),

can be thought of as the outer surface of a set X. The kth expansion ratio of G is
then defined as

hk = min
X⊂ �E,X̌=X

�k(X)

Vk(X) ∧ Vk(Xc)
.

In (2), after reordering the eigenvalues of BkP as σ1,k ≥ σ2,k ≥ · · · ≥ σm,k ,
σ1,k − σ2,k plays the role of the spectral gap in the classical Cheeger inequality.
With this new convention, the following lemma is the analogue of the easy part of
Cheeger’s inequality for graphs.

LEMMA 2.

σ1,k − σ2,k ≤ 2hk.

PROOF. The argument is standard. For simplicity, we drop the index k. From
the Courant–Fisher min-max theorem, we have

σ2 = max〈x,x1〉=0

〈x,BkPx〉
‖x‖2 = max〈x,x1〉=0

〈x,Bkx̌〉
‖x‖2 .

Let X ⊂ �E be edge-symmetric. We set

x(e) = x1(e)

V (X)
1(e ∈ X) − x1(e)

V (Xc)
1
(
e ∈ Xc).
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By construction 〈x, x1〉 = 0 and ‖x‖2 = 1/V (X) + 1/V (Xc). Hence,(
1

V (X)
+ 1

V (Xc)

)
σ2 ≥ 〈

x,Bkx̌
〉 = ∑

e,f

Bk
ef x(e)x̌(f ).

However, using the edge-symmetry of X and Xc,

〈
x,Bkx̌

〉 = 1

V (X)2

∑
e,f ∈X

Bk
ef x1(e)x̌1(f )

+ 1

V (Xc)2

∑
e,f ∈Xc

Bk
ef x1(e)x̌1(f ) − 2�(X)

V (X)V (Xc)
.

Also, using the singular value equation Bkx̌1 = σ1x1,∑
e,f ∈X

Bk
ef x1(e)x̌1(f ) = ∑

e∈X,f ∈ �E
Bk

ef x1(e)x̌1(f ) − �(X) = σ1V (X) − �(X),

and similarly for Xc. So finally(
1

V (X)
+ 1

V (Xc)

)
σ2 ≥

(
1

V (X)
+ 1

V (Xc)

)
σ1 −

(
1

V (X)
+ 1

V (Xc)

)2
�(X).

Since, for x, x′ > 0, 1/x + 1/x′ ≤ 2/(x ∧ x ′), it concludes the proof. �

The Alon–Boppana theorem gives a lower bound on the second largest eigen-
value of the adjacency matrix of a regular graph (see [14, 27]). We conclude this
paragraph with an elementary bound of this type. We introduce for e ∈ �E,

Sk(e) = ∥∥BkPδe

∥∥
1 where δe(f ) = 1(e = f ).

In words, Sk(e) is the number of nonbacktracking walks of length k + 1 starting
with e. As already pointed, if B is irreducible, the Perron eigenvalue is the growth
rate of the universal cover of the graph: for any e ∈ �E,

λ1(B) = lim
k→∞ s

1/k
1,k = lim

k→∞Sk(e)
1/k.

We observe that

s2
1,k + (m − 1)s2

2,k ≥ tr
(
BkB∗k) ≥ ∑

e∈ �E
Sk(e)

where B∗ denotes the transpose of B . Hence, we find

(5) s2
2,k ≥ 1

m

∑
e∈ �E

Sk(e) − s2
1,k

m
.

This last crude inequality gives a lower bound on the second largest singular value
of Bk .
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3. Main results. We now state our results on the nonbacktracking spectra of
Erdős–Rényi graphs first, and stochastic block models next.

3.1. Erdős–Rényi graphs. Let the vector χ on R
�E be defined as

χ(e) = 1, e ∈ �E.

The Euclidean norm of a vector x ∈ R
d will be denoted by ‖x‖. We have the

following theorem.

THEOREM 3. Let G be an Erdős–Rényi graph with parameters (n,α/n) for
some fixed parameter α > 1. Then, with probability tending to 1 as n → ∞, the
eigenvalues λi(B) of its nonbacktracking matrix B satisfy

λ1(B) = α + o(1) and
∣∣λ2(B)

∣∣ ≤ √
α + o(1).

Moreover, the normalized Perron–Frobenius eigenvector associated to λ1(B) is
asymptotically aligned with

B�B∗�χ

‖B�B∗�χ‖ ,

where � ∼ κ logα n for any 0 < κ < 1/6.

Theorem 3 is illustrated by Figure 1. We conjecture that the lower bound
|λ2(B)| ≥ √

α − o(1) holds, it is reasonable in view of Figure 1. We shall prove
a weaker lower bound; see forthcoming Remark 12. It is also an interesting open
problem to study the convergence of the empirical distribution of the eigenvalues
of B .

FIG. 1. Left: eigenvalues of B for a realization of an Erdős–Rényi graph with parameters (n,α/n)

with n = 500, α = 4. Right: eigenvalues of B for Example 2 with n = 500, r = 2, a = 7, b = 1.
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3.2. Stochastic block model. For integer k ≥ 1, we set [k] = {1, . . . , k}. We
consider a random graph G = (V ,E) on the vertex set V = [n] defined as follows.
Each vertex v ∈ [n] is given a type σn(v) from the set [r] where the number of
types r is assumed fixed and the map σn : [n] → [r] is such that, for all i ∈ [r],

(6) πn(i) := 1

n

n∑
v=1

1
(
σn(v) = i

) = π(i) + o(1),

for some probability vector π = (π(1), . . . , π(r)). For ease of notation, we often
write σ in place of σn.

Given a symmetric matrix W ∈ Mr(R+) we assume that there is an edge be-
tween vertices u and v independently with probability

Wσ(u),σ (v)

n
∧ 1.

We set � = diag(π(1), . . . , π(r)) and introduce the mean progeny matrix M =
�W (the branching process terminology will be clear in Section 8). Note that
the eigenvalues of M are the same as the ones of the symmetric matrix S =
�1/2W�1/2 and in particular are real-valued. They are also the same as the
nonzero eigenvalues of the expected adjacency matrix Ā := E(A) conditioned on
the vertex types. We denote them by μk and order them by their absolute value,

|μr | ≤ · · · ≤ |μ2| ≤ μ1.

We shall make the following assumptions:

(7) μ1 > 1 and M is positively regular,

that is, for some integer k ≥ 1, Mk has positive coefficients. In particular, μ1 is the
Perron–Frobenius eigenvalue. It implies notably that for all i ∈ [r], π(i) > 0. We
define r0 by

μ2
r0

> μ1 and μ2
r0+1 ≤ μ1

(with μr+1 = 0). Since M = �1/2S�−1/2, the matrix M is diagonalizable. Let
{ui}i∈[r] be an orthonormal basis of eigenvectors of S such that Sui = μiui . Then
φi := �−1/2ui and ψi = �1/2ui are the left- and right-eigenvectors associated to
eigenvalue μi , φ∗

i M = μiφ
∗
i , Mψi = μiψi . We get

(8) 〈φi,ψj 〉 = δij and 〈φi,φj 〉π = δij ,

where 〈x, y〉π = ∑
k π(k)xkyk denotes the usual inner product in �2(π). The fol-

lowing spectral decompositions will also be useful:

(9) M =
r∑

k=1

μkψkφ
∗
k and W =

r∑
k=1

μkφkφ
∗
k ,

where the second identity comes from ψk = �φk and W = �−1M .
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We will make the further assumption that each vertex type has the same asymp-
totic average degree α > 1, that is,

(10) α =
r∑

i=1

π(i)Wij =
r∑

i=1

Mij for all j ∈ [r].

This implies that M∗/α is a stochastic matrix and we then have

(11) μ1 = α > 1, φ1 = 1 and ψ1 = π∗.
We will also assume that a quantitative version of (6) holds, namely that for some
γ ∈ (0,1],
(12) ‖π − πn‖∞ = max

i∈[r]
∣∣π(i) − πn(i)

∣∣ = O
(
n−γ ).

The random graph G is usually called the stochastic block model (SBM) or
inhomogeneous random graph; see Bollobás, Janson and Riordan [5] and Holland,
Laskey and Leinhardt [13]. A popular case is when the map σ is itself random
and σ(v) are i.i.d. with distribution (π(1), . . . , π(r)). In this case, with probability
one, condition (12) is met for any γ < 1/2.

EXAMPLE 1. If r = 2, then we have π(1) = 1 − π(2). Under condition
(10), we have W22 = (π(1)W11 + (1 − 2π(1))W12)/(1 − π(1)) so that μ1 = α =
π(1)W11 + (1 − π(1))W12 and μ2 = π(1)(W11 − W12).

EXAMPLE 2. If r ≥ 2, π(i) = 1/r and Wii = a �= b = Wij for all i �= j so
that condition (10) is satisfied. We have μ1 = α = (a + (r − 1)b)/r and μ2 =
· · · = μr = (a − b)/r .

For k ∈ [r], we introduce the vector on R
�E ,

(13) χk(e) = φk

(
σ(e2)

)
for all e ∈ �E.

In particular, χ1 = χ . Our main result is the following generalization of Theorem 3.

THEOREM 4. Let G be an SBM as above such that hypotheses (7), (10), (12)
hold. Then with probability tending to 1 as n → ∞,

λk(B) = μk +o(1) for k ∈ [r0] and for k > r0,
∣∣λk(B)

∣∣ ≤ √
α +o(1).

Moreover, if μk is a simple eigenvalue of M for some k ∈ [r0], then a normalized
eigenvector, say ξk , of λk(B) is asymptotically aligned with

(14)
B�B∗�χ̌k

‖B�B∗�χ̌k‖ ,

where � ∼ κ logα n for any 0 < κ < γ/6. Finally, the vectors ξk of these simple
eigenvalues are asymptotically orthogonal.
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It follows from this result that a nontrivial estimation of the node types σ(v)

is feasible on the basis of the eigenvectors {ξk}2≤k≤r0 provided r0 > 1. More pre-
cisely, for vertex type estimators σ̂ (v) : [n] → [r] based on the observed random
graph G, following Decelle et al. [8], define the overlap ov(σ̂ , σ ) as the minimum
over permutations p : [r] → [r] of the quantity

(15)
1

n

n∑
v=1

1σ̂ (v)=p◦σ(v) − max
k∈[r]π(k).

We shall say that σ̂ has asymptotic overlap δ if ov(σ̂ , σ ) converges in probability
to δ as n grows. It has asymptotic positive overlap if for some δ > 0, ov(σ̂ , σ ) > δ

with probability tending to 1 as n grows. Note that an asymptotic overlap of zero is
always achievable by assigning to each vertex the type k∗ that maximizes π(k). In
the case where all communities have asymptotically the same size, that is, π(i) ≡
1/r , zero overlap is also achieved by assigning types at random.

As conjectured in [8] and proven in [24], in the setup of Example 2 with r = 2,
the best possible overlap is o(1) with high probability when r0 = 1, that is, when
μ2 ≤ √

μ1. Conversely, adapting the argument in [23], when r0 > 1, we have the
following.

THEOREM 5. Let G be an SBM as above such that hypotheses (7), (10), (12)
hold. Assume further that π(i) ≡ 1/r , that r0 > 1 and that for some k ∈ {2, . . . , r0},
μk is a simple eigenvalue of M . Let ξk ∈ R

�E be a normalized eigenvector of B

associated with λk(B).
Then there exists a deterministic threshold τ ∈ R, a partition (I+, I−) of [r] and

a random signing ω ∈ {−1,1}V dependent of ξk such that the following estimation
procedure yields asymptotically positive overlap: assign to each vertex v a label
σ̂ (v) picked uniformly at random from I+ if ω(v)

∑
e:e2=v ξk(e) > τ/

√
n and from

I− otherwise.

The reason for the existence of the signing ω ∈ {−1,1}V in the above statement
is that we do not know a priori whether the vector ξk or −ξk is asymptotically close
to (14). In the simplest case, we will be able to estimate this sign and the vector ω

will be equal to −1 or 1 and I+ = {i ∈ [r] : φk(i) > 0}, I− = [r] \ I+.
We now explain the main differences with [23]. While [23] constructs a sym-

metric matrix counting self-avoiding paths of length � of order logn and stud-
ies its spectral decomposition, we analyze the nonbacktracking matrix raised to
the power �. The fact that the nonbacktracking matrix is nonnormal complicates
significantly the analysis and requires new algebraic ingredients provided in Sec-
tion 4. We establish general bounds on the perturbation of eigenvalues and eigen-
vectors of not necessarily symmetric matrices that elaborate on the Bauer–Fike
theorem. The proof then requires path counting combinatorial arguments similar
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to [23], except that we are dealing here with nonbacktracking paths instead of self-
avoiding paths (see Section 6). As in [23], we provide a local analysis of the graph
and we make it in a systematic way. In particular, the law of large numbers for
local functional given in Section 9.3 might be of independent interest. Moreover,
due to the nonnormality of the nonbacktracking matrix, we need to get estimates
of cross-generational functionals which were not required in [23].

3.3. Notation. We say that a sequence of events En holds with high proba-
bility, abbreviated w.h.p., if limn→∞P(En) = 1. The operator norm of a square
matrix C is denoted by

‖C‖ = sup
x �=0

‖Cx‖
‖x‖ .

We denote by C∗ the transpose of C.
Given a (nonoriented) graph G = (V ,E), we denote by γ = (γ0, . . . , γk) a walk

of length k where each γi ∈ V and {γi, γi+1} ∈ E for all i ∈ {0, . . . , k−1}. We also
denote the concatenation of two walks γ and γ ′ by (γ, γ ′). A walk is nonback-
tracking if for all i ∈ {0, . . . , k − 2}, γi �= γi+2. A walk contains a cycle if there
exists i �= j with γi = γj .

For convenience, we will extend matrices and vectors from R
�E with �E =

{(u, v) : {u, v} ∈ E} to R
�E(V ) where �E(V ) = {(u, v) : u �= v ∈ V } is the set of

directed edges of the complete graph. The vector χ is defined by χ(e) = 1 for all
e ∈ �E(V ). Recall that for x ∈ R

�E(V ), we defined

x̌(e) = x
(
e−1), e ∈ �E(V ).

4. Algebraic tools: Perturbation of eigenvalues and eigenvectors. One
main tool in our analysis is the Bauer–Fike theorem on the perturbation of eigen-
values of matrices. The form given below elaborates on the usual statement of the
theorem which in general omits the second half.

THEOREM 6 (Bauer–Fike theorem; see [4], Theorem VI.5.1). Let D be a di-
agonalizable matrix such that for some invertible matrix V and diagonal matrix �

one has D = V −1�V . Let E be a perturbation matrix.
Then any eigenvalue μ of D + E verifies

(16) min
i

|μ − λi | ≤ ‖E‖ · ‖V ‖ · ∥∥V −1∥∥,
where λi is the ith diagonal entry of �.

Denote by R the right-hand side of (16) and Ci := B(λi,R) the ball centered at
λi with radius R. Let I be a set of indices such that

(17)
(⋃

i∈I
Ci

)
∩

(⋃
i /∈I

Ci

)
= ∅.

Then the number of eigenvalues of D + E in
⋃

i∈I Ci is exactly |I|.
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The following proposition on perturbation of rank one matrices will be a basic
ingredient to deduce from expressions like (2) quantitative versions of (4). It relies
on the stability of eigenvalues and eigenvectors of matrices with a well separated
spectrum and which are not too far from being normal (A is normal if and only if
A∗A = AA∗; see [15]). In this setting, high powers of the matrix can be used to
give good estimates on the largest eigenvalues and their eigenvectors.

PROPOSITION 7. Let A ∈ Mn(R), �′, � ≥ 1 be mutually prime integers, θ ∈
R \ {0}, and c0, c1 > 0 such that for any k ∈ {�, �′}, for some xk, yk ∈ R

n, Rk ∈
Mn(R),

Ak = θkxky
∗
k + Rk,

with 〈yk, xk〉 ≥ c0, ‖xk‖‖yk‖ ≤ c1 and

‖Rk‖ <
c2

0

2(� ∨ �′)c1
|θ |k.

Let (λi), 1 ≤ i ≤ n be the eigenvalues of A, with |λn| ≤ · · · ≤ |λ1|. Then:

(i) λ1 has multiplicity one and we have

|λ1 − θ | ≤ C|θ |/� and for i ≥ 2, |λi | ≤
(

2c1

c0

)1/�

‖R�‖1/�,

with C = π/2 + 2
√

c1 ∨ 1 log(2(c1 ∨ c−1
0 )).

(ii) There exists a unit eigenvector ψ of A with eigenvalue λ1 such that∥∥∥∥ψ − x�

‖x�‖
∥∥∥∥ ≤ 8c−1

0 ‖R�‖|θ |−�.

The condition on the scalar product 〈xk, yk〉 implies that the left and right eigen-
vectors of θkxky

∗
k associated with the eigenvalue θk are not orthogonal. The two

mutually prime numbers � and �′ will be used to lift some possible ambiguities on
the phase of the eigenvalue λ1 (to the best of our knowledge, this idea is new). The
Bauer–Fike theorem and its variants are commonly used in polynomial eigenvalues
problems; see, for example, [28] and references therein.

PROOF OF PROPOSITION 7. We can assume without loss of generality that
θ = 1. We fix k ∈ {�, �′} and let x̃ = xk/‖xk‖, ỹ = yk/‖yk‖, σ = ‖xk‖‖yk‖, ν =
〈yk, xk〉. We have

Ak = σ x̃ỹ∗ + Rk = S + Rk.

The first step of the proof is to apply the Bauer–Fike theorem to Ak to obtain an
estimate of λk

1. To this end, we write S = UDU−1, where D = diag(ν,0, . . . ,0),
U = (x̃, f2, . . . , fn) with f1 = ỹ and (fi)i≥2 is an orthogonal basis of ỹ⊥ (we will
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soon check that U is indeed invertible). We can also assume that x̃ ∈ span(f1, f2).
Obviously, the eigenvalues of Ak coincide with the eigenvalues of D + U−1RkU .
We have to compute the condition number of U :

κ(U) = ‖U‖∥∥U−1∥∥.
We consider the unitary matrix V = (f1, . . . , fn). Let a, b ∈ C be such that x̃ =
af1 + bf2. We find

V ∗U =
(
W 0
0 In−2

)
with W =

(
a 0
b 1

)
.

In particular,

κ(U) = κ
(
V ∗U

) = κ(W).

As |a|2 + |b|2 = 1 we have

W ∗W =
(

1 b̄

b 1

)
.

The eigenvalues of WW ∗ are 1 ± |b|. We deduce that

κ(U) =
√

1 + |b|
1 − |b| .

Now, by assumption, |b| =
√

1 − |a|2 =
√

1 − |〈x̃, ỹ〉|2 ≤
√

1 − c2
0c

−2
1 ≤ 1 −

c2
0c

−2
1 /2. We obtain that

κ(U) ≤ κ = 2c1c
−1
0 .

Notice that by assumption � ∨ �′ ≥ 2 and 2κ‖Rk‖ < c0 ≤ |ν|. An application of
Theorem 6 to D + U−1RkU then implies that there is a unique eigenvalue of Ak

in the ball {z ∈ C : |ν − z| ≤ κ‖Rk‖} and all the other eigenvalues lie in the disjoint
domain {z ∈ C : |z| ≤ κ‖Rk‖}. Consequently,

(18)
∣∣λk

1 − ν
∣∣ ≤ κ‖Rk‖ and for i ≥ 2, |λi |k ≤ κ‖Rk‖.

In particular, the eigenvalue λk
1 has multiplicity one in Ak , and thus λ1 has multi-

plicity one in A.
In the second step of the proof, we deduce from what precedes an estimate on

λ1: we now bound the difference between λ1 and θ = 1. First, by assumption,

(19) c0 ≤ ν ≤ c1.

From (18), we deduce that ||λk
1| − ν| ≤ c0/2 and hence c0/2 ≤ |λk

1| ≤ 2c1. Since
for all x ∈ R, |ex − 1| ≤ |x|ex+ , we get∣∣|λ1| − 1

∣∣ ≤ ∣∣(2c1)
1/k − 1

∣∣ ∨ ∣∣(c0/2)1/k − 1
∣∣ ≤ c2/k,

with c2 = √
(2c1) ∨ 1 log(2(c1 ∨ c−1

0 )).
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We now control the argument ω ∈ (−π,π ] of λ1 = |λ1| exp(iω). By assump-
tion, ν > c0 ≥ 0, hence by (18) the real part of λk

1 is positive. There thus exist an
integer q ∈ Z and some ε ∈ (−1/2,1/2) such that

kω = 2qπ + επ.

Since |x| ≤ (π/2)| sin(x)| for x ∈ [−π/2, π/2], we obtain from (18) that

κ‖Rk‖ ≥ |λ1|k
∣∣sin(επ)

∣∣ ≥ |λ1|k2|ε| ≥ c0|ε|,
so that |ε| ≤ (κ/c0)‖Rk‖ = c1c

−1
0 ‖Rk‖. The above holds for k ∈ {�, �′}. Hence,

with the notation ε = ε(�), ε′ = ε(�′), q = q(�), q ′ = q(�′) we have

ω = 2qπ

�
+ επ

�
= 2q ′π

�′ + ε′π
�′ ,

so that

q�′ − q ′� = ε′� − ε�′

2
.

Using the assumption ‖Rk‖ < c2
0/(2c1(� ∨ �′)), we find that both ε′� and ε�′ have

modulus strictly less than 1, and hence so does the right-hand side of the last
display. It follows that q�′ = q ′�. Since � and �′ are mutually prime, we deduce
that � divides q and �′ divides q ′, so that modulo 2π , ω = επ/� = ε′π/�′. Thus
for k ∈ {�, �′},

|λ1 − 1| ≤ |λ1|
∣∣eiπε/k − 1

∣∣ + ∣∣|λ1| − 1
∣∣ ≤ (

1 + c2

k

)
π |ε|
k

+ c2

k
.

As ε < 1/k, the right-hand side of the above is no larger than k−1(2c2 + π/2) if
k ≥ 2, which must hold for some k ∈ {�, �′}. This completes the proof of the claim
of Proposition 7 on eigenvalues.

The final step of the proof gives an estimate on the leading eigenvector using the
eigenvector equation of Ak . Consider now a normed eigenvector z of A associated
with λ1, which for fixed k ∈ {�, �′} admits the orthogonal decomposition z = z0 +
z⊥, where z0 ∈ span(ỹk, x̃k). Applying Ak , we obtain

λk
1z = σ x̃kỹ

∗
k z0 + Rkz.

Projecting onto {ỹk, x̃k}⊥ yields |λ1|k‖z⊥‖ ≤ ‖Rk‖. Using the bound |λ1|k ≥ c0/2
gives

∥∥z⊥∥∥ ≤ 2

c0
‖Rk‖.

Projecting onto span(ỹk, x̃k) yields∥∥λk
1z0 − σ x̃kỹ

∗
k z0

∥∥ ≤ ‖Rk‖.
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This implies ∥∥∥∥ z0

‖z0‖ − cx̃k

∥∥∥∥ ≤ 1

|λ1|k‖z0‖‖Rk‖ ≤ 2‖Rk‖
c0‖z0‖ ,

where c is some scalar and we have used |λ1|k ≥ c0/2. We now use the following
general inequality:

(20) if ‖u‖ = ‖v‖ = 1 and for some t ≥ 0,‖u − tv‖ ≤ ε then ‖u − v‖ ≤ 2ε.

We deduce that ∥∥∥∥ z0

‖z0‖ − x̃k

∥∥∥∥ ≤ 4‖Rk‖
c0‖z0‖ .

From the triangle inequality, ‖z0‖ ≥ 1 − ‖z⊥‖. We then have

‖z − x̃k‖ ≤ ∥∥z⊥∥∥ + ∥∥z0 − ‖z0‖x̃k

∥∥ + 1 − ‖z0‖ ≤ 8‖Rk‖
c0

.

Finally, since λ = λk
1 has multiplicity one in Ak , the eigenspace of λ1 for A coin-

cides with the eigenspace of λk
1 for Ak . This completes the proof of Proposition 7.

�

We now provide an extension of Proposition 7 to arbitrary rank tailored to our
future needs. For x = (x1, . . . , xn) ∈ C

n, the multiplicity of z ∈ C in x is defined
as

∑
i 1(xi = z), the number of coordinates of x equal to z.

PROPOSITION 8. Let A ∈ Mn(R), �′ < � < 2�′ be mutually prime odd inte-
gers, θ = (θ1, . . . , θr) ∈ (R \ {0})r such that for any k ∈ {�, �′}, for some vectors
xk,1, yk,1, . . . , xk,r , yk,r ∈ R

n and some matrix Rk ∈ Mn(R),

Ak =
r∑

j=1

θk
j xk,j y

∗
k,j + Rk.

Assume there exist c0, c1 > 0 such that for all i �= j ∈ [r], 〈yk,j , xk,j 〉 ≥ c0,
‖xk,j‖‖yk,j‖ ≤ c1, 〈xk,j , yk,i〉 = 〈xk,j , xk,i〉 = 〈yk,j , yk,i〉 = 0 and

‖Rk‖ <

(
c0(c0γ

k − c1)+
4c1

∧ c2
0

2(� ∨ �′)c1

)
ϑk,

where ϑ = mini |θi |, γ = min{θi/θj : θi > θj > 0 or θi < θj < 0} (the minimum
over the empty set being +∞). Let (λi), 1 ≤ i ≤ n, be the eigenvalues of A with
|λn| ≤ · · · ≤ |λ1|. Then there exists a permutation σ ∈ Sr such that for all i ∈ [r],

|λi − θσ(i)| ≤ C|θσ(i)|
�

and for i ≥ r + 1, |λi | ≤
(

2c1

c0

)1/�

‖R�‖1/�,
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with C = π/2 + 2
√

c1 ∨ 1 log(2(c1 ∨ c−1
0 )). Moreover, if θσ(i) has multiplicity one

in θ , λi is a simple eigenvalue and there exists a unit eigenvector ψi of A with
eigenvalue λi such that ∥∥∥∥ψi − x�,σ(i)

‖x�,σ(i)‖
∥∥∥∥ ≤ C′‖R�‖|ϑ |−�,

with C′ = 24c1c
−1
0 /(1 ∧ (c0γ

k − c1)+ ∧ c0).

PROOF. We may assume that ϑ = 1. Fix k ∈ {�, �′} and let x̃j = xk,j /‖xk,j‖,
ỹj = yk,j /‖yk,j‖, σj = θk

j ‖xk,j‖‖yk,j‖, νj = θk
j 〈yk,j , xk,j 〉 = σj 〈ỹk,j , x̃k,j 〉. Let

Hj = span(xk,j , yk,j ). By assumption, the vector spaces Hj , 1 ≤ j ≤ n, are or-
thogonal. For ease of notation, let us assume for all j ∈ [r], Hj has dimension 2
(the case where xk,j and yk,j are colinear is identical). We consider an orthonor-
mal basis (f1, . . . , fn) of Cn, such that span(f2j−1, f2j ) = Hj , f2j−1 = ỹj . We
have

Ak =
r∑

j=1

σj x̃j ỹ
∗
j + Rk = UDU−1 + Rk,

where D = diag(ν1,0, ν2,0, . . . , νr ,0, . . . ,0), U = (x̃1, f2, x̃2, f4, . . . , x̃r , f2r ,

. . . , fn) (provided that U is indeed invertible). Arguing as in the proof of Propo-
sition 7, denote by V the unitary matrix V = (f1, . . . , fn) and decompose x̃j as
x̃j = ajf2j−1 + bjf2j . Then V ∗U has a block diagonal structure with blocks Wj ,
1 ≤ j ≤ r , and In−2r , where

Wj =
(
aj 0
bj 1

)
.

We find, as in Proposition 7,

κ(U) = max
j

κ(Wj ) ≤ κ = 2c1c
−1
0 .

Now, by assumption, 2κ‖Rk‖ < c0 ∧(c0γ
k −c1)+ is less than the minimal distance

between the distinct eigenvalues of D. We deduce from Theorem 6 applied to
D + U−1RkU that there is a permutation s ∈ Sr such that

(21)
∣∣λk

i − νs(i)

∣∣ ≤ κ‖Rk‖ and for i ≥ r + 1, |λi |k ≤ κ‖Rk‖.
Importantly, we claim that the permutation s = sk ∈ Sr is such that for 1 ≤ i ≤ r ,

θs�(i) = θs�′ (i). Indeed, we first observe that the assumptions γ kc0 > c1 and k odd
imply that νi = νj is equivalent to θi = θj . Assume first for simplicity that all
θi are positive and let m1 be the multiplicity in θ of t1 = maxi θi . Then the m1
eigenvalues such that |λk

i − νj | ≤ κ‖Rk‖ for some j such that θj = t1 are precisely
the m1 largest eigenvalues of A. If m1 < r , we may then repeat the same argu-
ment for the second largest value of the set {θ1, . . . , θr}. By iteration, we deduce
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the claimed statement when all θi have the same sign. In the general case, we no-
tice that if |λ�′

i − νj | ≤ ε = κ‖R�′‖ with θj > 0, then νj > c0, | sin(λ�′
i )| ≤ ε/c0,

| arg(λ�′
i )| ≤ πε/(2c0) and | arg(λ�

i )| ≤ πε�/(2c0�
′) ≤ π/2 (we use here the as-

sumption � < 2�′). It follows that if |λ�′
i − νj | ≤ κ‖R�′‖ with θj > 0 then we

cannot have |λ�
i − νj ′ | ≤ κ‖R�‖ with θj ′ < 0. We may thus repeat the previous

argument by considering the largest eigenvalues of A with positive real part and
the largest eigenvalues of A with negative real part separately.

We now bound the difference between λi and θs(i). By assumption, c0|θj | ≤
|νj | ≤ c1|θj |. Hence, arguing as in the proof of Proposition 7,∣∣|λi | − |θs(i)|

∣∣ ≤ c2|θs(i)|/k,

with c2 = √
c1 ∨ 1 log(2(c1 ∨c−1

0 )). We next control the argument ωi ∈ (−π,π ] of
λi = |λi | sign(θσ(i))e

iω. Arguing as in the proof of Proposition 7, we get for p ∈ Z,
|ω − 2pπ | ≤ π |ε|/k and we may conclude the proof of the claim of Proposition 8
on eigenvalues as in Proposition 7.

It now remains to control the eigenvector of λi such that θσ(i) has multiplicity
one. First, from (21), λi is a simple eigenvalue of A. Let z be a corresponding
normed eigenvector of A. Applying Ak yields

(22) λk
i z = ∑

j∈[r]
σj

(
ỹ∗
j z

)
x̃j + Rkz.

Applying Ak once more to (22) yields

λ2k
i z = λk

i Rkz + ∑
j∈[r]

σj

[
σj

(
ỹ∗
j z

)(
ỹ∗
j x̃j

) + ỹ∗
j Rkz

]
x̃j .

Multiplying (22) by λk
i and subtracting it to the previous display yields∑
j∈[r]

σj

[(
λk

i − νj

)
ỹ∗
j z − ỹ∗

j Rkz
]
x̃j = 0.

Thus, for all j ∈ [r],
(23)

(
λk

i − νj

)
ỹ∗
j z − ỹ∗

j Rkz = 0.

Now for j �= s(i), from (21), we have

∣∣λk
i − νj

∣∣ ≥ |νs(i) − νj | −
∣∣λk

i − νs(i)

∣∣ ≥ 1

2

((
c0γ

k − c1
)
+ ∧ c0

)
.

It follows that ( ∑
j �=s(i)

∣∣ỹ∗
j z

∣∣2)1/2
≤ 2‖Rk‖

(c0γ k − c1)+ ∧ c0
.
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Moreover, this implies upon dividing (23) by λk
i :( ∑

j �=s(i)

∣∣∣∣σj

λk
i

ỹ∗
j z

∣∣∣∣2
)1/2

≤ c1

c0

( ∑
j �=s(i)

∣∣∣∣νj

λk
i

ỹ∗
j z

∣∣∣∣2
)1/2

≤ c1

c0

(
2‖Rk‖

(c0γ k − c1)+ ∧ c0
+ 2

c0
‖Rk‖

)
,

where we have used the fact that |λk
i | ≥ c0/2. It then follows from (22) that for

some constant c = σs(i)(ỹ
∗
s(i)z)/λ

k
i ,

‖z − cx̃s(i)‖ =
∥∥∥∥ ∑
j �=s(i)

σj

λk
i

(
ỹ∗
j z

)
x̃j + λ−k

i Rkz

∥∥∥∥
≤ c1

c0

(
2‖Rk‖

(c0γ k − c1)+ ∧ c0
+ 4

c0
‖Rk‖

)
.

We then obtain the announced bound on ‖z − x̃s(i)‖ by appealing to (20). �

We conclude this paragraph with an elementary lemma on the Gram–Schmidt
orthonormalization process. It will be used to obtain vectors which are exactly
orthogonal as in the assumptions of Proposition 8.

LEMMA 9. Let u1, . . . , uk be vectors in C
n with unit norms such that

|〈ui, uj 〉| ≤ δ for all i �= j . If δ < k−k , then (u1, . . . , uk) are linearly indepen-
dent and, if (ū1, . . . , ūk) is the Gram–Schmidt orthonormalization process of
(u1, . . . , uk), we have for all j ∈ [k],

‖uj − ūj‖ ≤ δjj .

PROOF. We prove the statement by induction. For k = 1, ū1 = u1. For k ≥ 1,
we denote by vk+1 the orthonormal projection of uk+1 on the span of (u1, . . . , uk).
We have

‖vk+1‖2 =
k∑

j=1

∣∣〈uk+1, ūj 〉
∣∣2.

Now, from the induction hypothesis,

k∑
j=1

∣∣〈uk+1, ūj 〉
∣∣2 ≤ 2

k∑
j=1

(∣∣〈uk+1, uj 〉
∣∣2 + ‖ūj − uj‖2) ≤ 2kδ2(1 + k2k).

It is easy to check that
√

2k(1 + kk) ≤ 2−1(k + 1)k+1 for all k ≥ 1. In particular, if
δ < (k + 1)−(k+1), vk+1 �= uk+1 and then from (20), ‖uk+1 − ūk+1‖ ≤ 2‖vk+1‖ ≤
δ(k + 1)k+1. �
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5. Erdős–Rényi graph: Proof strategy for Theorem 3. In what follows, we
consider a sequence � = �(n) ∼ κ logα n for some κ ∈ (0,1/6) as in Theorem 3.
Note that the diameter of (the giant component of) an Erdős–Rényi graph with
average degree α is larger than logα n. Hence, for this choice of �, by looking
around a typical vertex up to depth �, we are much lower than the diameter but we
see some cycles. Indeed, it is clear that we need to take � diverging with n as the
local structure of a random graph up to a fixed depth converges to a tree which has
very different spectral properties. It turns out that for � = �(n) ∼ κ logα n, we are
still able to analyze the local structure of the random graph while we capture the
spectral property of B .

5.1. Proof of Theorem 3. Let

ϕ = B�χ

‖B�χ‖ , θ = ∥∥B�ϕ̌
∥∥,

and

ζ = B�ϕ̌

θ
= B�B∗�χ

‖B�B∗�χ‖
(if θ = 0, we set ζ = 0). The proof relies on the following two propositions.

PROPOSITION 10. For some c1, c0 > 0, w.h.p.

〈ζ, ϕ̌〉 ≥ c0 and c0α
� ≤ θ ≤ c1α

�.

PROPOSITION 11. For some c > 0, w.h.p.

sup
x:〈x,ϕ̌〉=0,‖x‖=1

∥∥B�x
∥∥ ≤ (logn)cα�/2.

Let us check that the last two Propositions 10 and 11 imply Theorem 3. Let
R = B� − θζ ϕ̌∗ and y ∈ R

�E with ‖y‖ = 1. We write y = sϕ̌ + x with x ∈ ϕ̌⊥ and
s ∈ R. We find

‖Ry‖ = ∥∥B�x + s
(
B�ϕ̌ − θζ

)∥∥ ≤ sup
x:〈x,ϕ̌〉=0,‖x‖=1

∥∥B�x
∥∥.

Hence, Proposition 11 implies that, w.h.p.,

(24) ‖R‖ ≤ (logn)cα�/2.

We may now apply Proposition 7. If λi = λi(B), we find that, w.h.p.,

|λ1 − α| = O(1/�), |λ2| ≤ (
C(logn)cα�/2)1/� = √

α + O

(
log logn

logn

)
,

and the normalized Perron eigenvector ξ of B satisfies, w.h.p.

‖ξ − ζ‖ = O
(
(logn)cα−�/2).

This concludes the proof of Theorem 3.
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REMARK 12. We note that from [15], Theorem 3.3.16, we get that in (3)

|s1,� − θ | ≤ ‖R‖ and s2,� ≤ ‖R‖.
Hence, from (24) w.h.p.,

s1,� = O
(
α�) and s2,� = O

(
(logn)cα�/2).

On the other hand, (5) implies that the above upper bound on s2,� is also a lower
bound up to the logarithmic factors, more precisely, w.h.p., s2,� ≥ c0α

�/2 for some
c0 > 0 (it follows from the proof of the forthcoming Theorem 37). Therefore,
the naive lower bound on s2,� in (5) is asymptotically tight and Propositions 10–
11 may be interpreted as a weak Ramanujan property for Erdős–Rényi random
graphs.

Proposition 10 will follow from a local analysis. Namely, the statistics of node
neighborhoods up to distance � in the original random graph will be related by
coupling to a Galton–Watson branching process; relevant properties of the cor-
responding Galton–Watson process will be established; finally, we shall deduce
weak laws of large numbers for the �-neighborhoods of the random graph from
the estimations performed on the branching process combined with some asymp-
totic decorrelation property between distinct node neighborhoods. This is done in
Section 9 where Proposition 19, which contains Proposition 10, is proven.

The proof of Proposition 11 relies crucially on a matrix expansion given in
Proposition 13, which extends the argument introduced in [23] for matrices count-
ing self-avoiding walks to the present setup where nonbacktracking walks instead
are considered. We now introduce some notation to state it.

5.2. Matrix expansion for B�. For convenience, we extend matrix B and vec-
tor χ to R

�E(V ) where �E(V ) = {(u, v) : u �= v ∈ V } is the set of directed edges of
the complete graph. We set for all e, f ∈ R

�E(V ), χ(e) = 1 and

Bef = AeAf 1(e2 = f1)1(e1 �= f2),

where A is the graph’s adjacency matrix. For integer k ≥ 1, e, f ∈ �E(V ), we define
�k

ef as the set of nonbacktracking walks γ = (γ0, . . . , γk) of length k starting from
(γ0, γ1) = e and ending at (γk−1, γk) = f in the complete graph on the vertex
set V . We have that

(
Bk)

ef = ∑
γ∈�k+1

ef

k∏
s=0

Aγsγs+1 .

We associate to each walk γ = (γ0, . . . , γk), a graph G(γ ) = (V (γ ),E(γ ))

with vertex set V (γ ) = {γi,0 ≤ i ≤ k} and edge set E(γ ) the set of distinct visited
edges {γi, γi+1}, 0 ≤ i ≤ k − 1. Following [24], we say that a graph H is tangle-
free (or �-tangle-free to make the dependence in � explicit) if every neighborhood
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of radius � in H contains at most one cycle. Otherwise, H is said to be tangled.
We say that γ is tangle-free or tangled if G(γ ) is. Obviously, if G is tangle-free
and 1 ≤ k ≤ � then Bk = B(k), where

B
(k)
ef = ∑

γ∈Fk+1
ef

k∏
s=0

Aγsγs+1,

and Fk+1
ef is the subset of tangle-free paths in �k+1

ef . For u �= v, we set

Auv = Auv − α

n
.

We define similarly the matrix �(k) on R
�E(V )

�
(k)
ef = ∑

γ∈Fk+1
ef

k∏
s=0

Aγsγs+1
.

The matrix �(k) can be thought of as an attempt to center the nonbacktracking
matrix Bk when the underlying graph is tangle-free. We use the convention that a
product over an empty set is equal to 1. We also set

(25) �
(0)
ef = 1(e = f )Ae and B

(0)
ef = 1(e = f )Ae.

Notably, B(0) is the projection on �E. We have the following telescopic sum de-
composition:

(26) B
(�)
ef = �

(�)
ef +

�∑
t=0

∑
γ∈F�+1

ef

t−1∏
s=0

Aγsγs+1

(
α

n

) �∏
s=t+1

Aγsγs+1 .

Indeed,

�∏
s=0

xs =
�∏

s=0

ys +
�∑

t=0

t−1∏
s=0

ys(xt − yt )

�∏
s=t+1

xs.

For 0 ≤ t ≤ �, we define R
(�)
t via

(
R

(�)
t

)
ef = ∑

γ∈F�+1
t,ef

t−1∏
s=0

Aγsγs+1

�∏
s=t+1

Aγsγs+1,

where for 1 ≤ t ≤ � − 1, F�+1
t,ef ⊂ ��+1

ef is the set of nonbacktracking tan-

gled paths γ = (γ0, . . . , γ�+1) = (γ ′, γ ′′) ∈ ��+1
ef with γ ′ = (γ0, . . . , γt ) ∈ F t

eg ,

γ ′′ = (γt+1, . . . , γ�+1) ∈ F�−t
g′f for some g,g′ ∈ �E(V ). Note that since γ is non-

backtracking, we have g �= g′. For t = 0, F�+1
0,ef is the set of nonbacktracking
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tangled paths γ = (γ ′, γ ′′) with γ ′ = e1, γ ′′ = (γ1, . . . , γ�+1) ∈ F�
g′f for some

g′ ∈ �E(V ) (necessarily γ1 = g′
1 = e2 and γ2 = g′

2 �= e1). Similarly, for t = �, F�+1
�,ef

is the set of nonbacktracking tangled paths γ = (γ0, . . . , γ�+1) = (γ ′, γ ′′) with
γ ′′ = f2, γ ′ = (γ0, . . . , γ�) ∈ F�

eg for some g ∈ �E(V ) (necessarily γ� = g2 = f1
and γ�−1 = g1 �= f2).

We denote by K the nonbacktracking matrix of the complete graph on V . We
define

L = K2 − χχ∗

(L is nearly the orthogonal projection of K2 on χ⊥). We further denote for 1 ≤
t ≤ � − 1

S
(�)
t = �(t−1)LB(�−t−1).

We then have the following.

PROPOSITION 13. With the above notation, matrix B(�) admits the following
expansion:

B(�) = �(�) + α

n
KB(�−1) + α

n

�−1∑
t=1

�(t−1)K2B(�−t−1)

+ α

n
�(�−1)K − α

n

�∑
t=0

R
(�)
t .

(27)

If G is tangle free, for any normed vector x ∈ C
�E(V ), one has

∥∥B�x
∥∥ ≤ ∥∥�(�)

∥∥ + α

n

∥∥KB(�−1)
∥∥ + α

n

�−1∑
t=1

∥∥�(t−1)χ
∥∥∣∣〈χ,B(�−t−1)x

〉∣∣

+ α

n

�−1∑
t=1

∥∥S(�)
t

∥∥ + α
∥∥�(�−1)

∥∥ + α

n

�∑
t=0

∥∥R(�)
t

∥∥.
(28)

PROOF. Equation (27) readily follows by adding and subtracting α
n
R

(�)
t to the

t th term of the summation in (26) and noticing that this term plus α
n
R

(�)
t factorizes

into a matrix product. More precisely, for 1 ≤ t ≤ � − 1, we have

(
�(t−1)K2B(�−t−1))

ef = ∑
g �=g′∈ �E(V )

( ∑
γ∈F t

eg

t−1∏
s=0

Aγsγs+1

)( ∑
γ∈F�−t

g′f

�−t−1∏
s=0

Aγsγs+1

)

= (
R

(�)
t

)
ef ,
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hence we have α
n

∑�−1
t=1 �(t−1)K2B(�−t−1) = α

n

∑�−1
t=1 R

(�)
t . Similarly, we have

R
(�)
0 = KB(�−1) and R

(�)
� = �(�−1)K .

Inequality (28) follows from (27) by noting that B� = B(�) as G is tangle free,
decomposing K2 into L + χχ∗, and finally using the fact that ‖K‖ ≤ n. �

5.3. Norm bounds. The following proposition will be established in Section 6
using path counting combinatorial arguments.

PROPOSITION 14. Let � ∼ κ logα n with κ ∈ (0,1/6). With high probability,
the following norm bounds hold for all k, 0 ≤ k ≤ �:∥∥�(k)

∥∥ ≤ (logn)10αk/2,(29) ∥∥�(k)χ
∥∥ ≤ (logn)5αk/2√n,(30) ∥∥R(�)

k

∥∥ ≤ (logn)25α�−k/2,(31) ∥∥B(k)
∥∥ ≤ (logn)10αk and

∥∥KB(k)
∥∥ ≤ √

n(logn)10αk,(32)

and the following bound holds for all k, 1 ≤ k ≤ � − 1:

(33)
∥∥S(�)

k

∥∥ ≤ √
n(logn)20α�−k/2.

5.4. Proof of Proposition 11. Together with Propositions 13 and 14, we shall
also need the next two results, established by local analysis in Section 9. In partic-
ular, the forthcoming Lemma 30 implies the following.

LEMMA 15. For � ∼ κ logα n with κ < 1/2, w.h.p. the random graph G is
�-tangle-free.

For the Erdős–Rényi graph, Corollary 34 states the following.

PROPOSITION 16. For � ∼ κ logα n with κ < 1/2, w.h.p., for any 0 ≤ t ≤
� − 1, it holds that

sup
‖x‖=1,〈B�χ,x〉=0

∣∣〈Btχ, x
〉∣∣ ≤ (logn)5n1/2αt/2.

We now have all the ingredients necessary to prove Proposition 11. In view of
Lemma 15, we may use the bound (28) of Proposition 13 and take the supremum
over of all x, ‖x‖ = 1, 〈ϕ̌, x〉 = 〈χ,B�x〉 = 0. By the norm bounds (29)–(31)–(33)
of Proposition 14, w.h.p.,

α
∥∥�(�−1)

∥∥ + ∥∥�(�)
∥∥ + α

n

�∑
t=0

∥∥R(�)
t

∥∥ + α

n

�−1∑
t=1

∥∥S(�)
t

∥∥
≤ C(logn)cα�/2(1 + α�/2/

√
n
) = O

(
(logn)cα�/2).
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Also, from (1), since χ̌ = χ ,

sup
‖x‖=1,〈χ,B�x〉=0

∣∣〈χ,B(t)x
〉∣∣ = sup

‖x‖=1,〈χ,B�x̌〉=0

∣∣〈χ,B(t)x̌
〉∣∣

= sup
‖x‖=1,〈B�χ,x〉=0

∣∣〈B(t)χ, x
〉∣∣.

Hence, from Proposition 16 and norm bound (30), w.h.p.,∥∥�(t−1)χ
∥∥∣∣〈χ,B(�−t−1)x

〉∣∣ ≤ C(logn)cnα�/2.

Hence, w.h.p.,

α

n

�−1∑
t=1

∥∥�(t−1)χ
∥∥∣∣〈χ,B(�−t−1)x

〉∣∣ = O
(
(logn)c+1α�/2).

It remains to use norm bound (32) to deal with the term ‖KB(�−1)‖/n in (28) to
conclude the proof of Proposition 11.

6. Proof of Proposition 14: Path count combinatorics. In this section, we
use the method of moments to prove the norm upper bounds stated in Proposi-
tion 14. Recall that � ∼ κ logα n with κ > 0. All our constants will depend implic-
itly on κ . We will use a version of the moment method by taking the mth moments
with m of the order logn/ log logn and then applying Markov’s inequality. The
particular choice of logn/ log logn is mainly technical as we will have error terms
of the order (�m)m and we want to bound them by a power of n.

6.1. Bound (29) on ‖�(k)‖. The proof will use a version of the trace method.
For n ≥ 3, we set

(34) m =
⌊

logn

13 log(logn)

⌋
.

The symmetry (1) implies that �
(k)
ef = �

(k)

f −1e−1 . With the convention that e(2m +
1) = e(1), we get∥∥�(k−1)

∥∥2m = ∥∥�(k−1)�(k−1)∗∥∥m ≤ tr
{(

�(k−1)�(k−1)∗)m}
= ∑

e(1),...,e(2m)

m∏
i=1

(
�(k−1))

e(2i−1),e(2i)

(
�(k−1))

e(2i+1),e(2i)

= ∑
e(1),...,e(2m)

m∏
i=1

(
�(k−1))

e(2i−1),e(2i)

(
�(k−1))

e−1(2i)e−1(2i+1)

= ∑
γ∈Wk,m

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s
,

(35)
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where Wk,m is the set of sequences of paths γ = (γ1, . . . , γ2m) such that γi =
(γi,0, . . . , γi,k) ∈ V k+1 is nonbacktracking tangle-free of length k and for all i =
1, . . . ,2m,

(γi,k−1, γi,k) = (γi+1,1, γi+1,0),

with the convention that γ2m+1 = γ1.
We take expectations in (35) and use independence of the edges Axy together

with EAxy = 0. We find

(36) E
∥∥�(k−1)

∥∥2m ≤ ∑
γ∈W ′

k,m

E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s
,

where W ′
k,m is the subset of Wk,m where each nonoriented edge is visited at least

twice. For each γ ∈ Wk,m we associate the graph G(γ ) = (V (γ ),E(γ )) of visited
vertices and edges. We set

v(γ ) = ∣∣V (γ )
∣∣ and e(γ ) = ∣∣E(γ )

∣∣.
We say that a path γ is canonical if V (γ ) = {1, . . . , v(γ )} and the vertices are

first visited in order. Wk,m will denote the set of canonical paths in Wk,m. Each
canonical path is isomorphic to

( n
v(γ )

)
v(γ )! paths in Wk,m. We also have the fol-

lowing.

LEMMA 17 (Enumeration of canonical paths). Let Wk,m(v, e) be the set of
canonical paths with v(γ ) = v and e(γ ) = e. We have∣∣Wk,m(v, e)

∣∣ ≤ k2m(2km)6m(e−v+1).

PROOF. In order to upper bound |Wk,m(v, e)|, we need to find an injective
way to encode the canonical paths x ∈Wk,m(v, e).

Let x = (xi,t )1≤i≤2m,0≤t≤k ∈Wk,m(v, e). We set yi,t = {xi,t , xi,t+1}, yi,t will be
called an edge of x. We explore the sequence (xi,t ) in lexicographic order denoted
by � [i.e., (i, t) � (i + 1, t ′) and (i, t) � (i, t + 1)]. We think of the index (i, t) as
a time. For 0 ≤ t ≤ k − 1, we say that (i, t) is a first time, if xi,t+1 has not been
seen before [i.e., xi,t+1 �= xi′,t ′ for all (i ′, t ′) � (i, t)]. If (i, t) is a first time, the
edge yi,t is called a tree edge. By construction, the set of tree edges forms a tree
T with vertex set {1, . . . , v}. The edges which are not in T are called the excess
edges of x. Since T has v − 1 edges, it follows that the cardinal of excess edges is
ε = e − v + 1.

We build a first encoding of Wk,m(v, e). If (i, t) is not a first time, we say that
(i, t) is an important time and we mark the time (i, t) by the vector (xi,t+1, xi,τ ),
where (i, τ ) is the next time that yi,τ will not be a tree edge (by convention τ = k

if xi,s remains on the tree for all t + 1 ≤ s ≤ k). Since there is a unique nonback-
tracking path between two vertices of a tree, we can reconstruct x ∈ Wk,m from the
position of the important times and their mark. It gives rise to our first encoding.
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The main issue with this encoding is that the number of important times could
be large. We have however not used so far the hypothesis that each path xi is
tangle free. To this end, we are going to partition important times into three cate-
gories, short cycling, long cycling and superfluous times. First, consider the case
where the ith path xi contains a cycle. In this case, the first time (i, t) such that
xi,t+1 ∈ {xi,0, . . . , xi,t } is called a short cycling time. Let 0 ≤ σ ≤ t be such that
xi,t+1 = xi,σ . By the assumption of tangle-freeness, C := (xi,σ , . . . , xi,t+1) is the
only cycle visited by xi . We denote by (i, τ ) the first time after (i, t) that yi,τ in
not an edge of C (by convention τ = k if xi remains on C). We add the extra mark
τ to the short cycling time. Important times (i, t) with 1 ≤ t < σ or τ < t ≤ k are
called long cycling times. The other important times are called superfluous. The
key observation is that if xi contains a cycle, the number of long cycling times
(i, t) is bounded by ε − 1 (since there is at most one cycle, no edge of x can be
seen twice outside those of C, the −1 coming from the fact that the short cycling
time is an excess edge). Now consider the case where the ith path does not contain
a cycle, then all important times are called long cycling times and their number is
bounded by ε.

We now have our second encoding. We can reconstruct x from the positions of
the long cycling and the short cycling times and their marks. For each 1 ≤ i ≤ 2m,
there are at most 1 short cycling time and ε − 1 long cycling times within xi if xi

contains a cycle and 0 short cycling time and ε long cycling times if xi does not
contain a cycle. There are at most k2mε ways to position them (in time). There are
at most v2 different possible marks for a long cycling time and v2k possible marks
for a short cycling time. We deduce that∣∣Wk,m(v, e)

∣∣ ≤ k2mε(v2k
)2m(

v2)2m(ε−1)
.

We use v ≤ 2km to obtain the announced bound. �

PROOF OF PROPOSITION 14, NORM BOUND (29). From (36) and Markov’s
inequality, it suffices to prove that

(37) S = ∑
γ∈W ′

k,m

E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s
≤ (C logn)16mαkm.

Observe that if γ ∈ W ′
k,m, v(γ ) − 1 ≤ e(γ ) ≤ km because each edge is visited at

least twice and v(γ ) ≥ 3. As
( n
v(γ )

)
v(γ )! < nv(γ ), any γ ∈ Wk,m is isomorphic to

fewer than nv(γ ) elements in Wk,m. Also, from the independence of the edges and
EA

p
xy ≤ α/n for integer p ≥ 2, we get that

(38) E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s
≤

(
α

n

)e(γ )

.
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Hence, using Lemma 17, we obtain for k ≤ � (remember that α > 1 so that αe ≤
αkm)

S ≤
km+1∑
v=3

km∑
e=v−1

∣∣Wk,m(v, e)
∣∣(α

n

)e

nv

≤ nαkm
km+1∑
v=3

km∑
e=v−1

k2m(2km)6m(e−v+1)nv−e−1

≤ nαkm�2m(�m)

∞∑
s=0

(
(2�m)6m

n

)s

.

(39)

For our choice of m in (34), we have, for n large enough,

n1/(2m) = o(logn)7, �m = o(logn)2 and (2�m)6m ≤ n12/13.

In particular, the above geometric series converges and (37) follows. �

6.2. Bound (30) on ‖�(k)χ‖.
PROOF. The bound (30) on ‖�(k)χ‖ that we will now establish improves, by

a factor
√

n on the trivial estimate ‖�(k)χ‖ ≤ ‖χ‖‖�(k)‖. Its proof parallels the
argument used to show (29). We have

E
∥∥�(k−1)χ

∥∥2 = E
∑
e,f,g

�
(k−1)
ef �(k−1)

eg

= ∑
γ∈W ′′

k,1

E

2∏
i=1

k∏
s=1

Aγi,s−1,γi,s
,

where W ′′
k,1 is the set of pairs of paths (γ1, γ2) such γi = (γi,0, . . . , γi,k) is nonback-

tracking and (γ1,k−1, γ1,k) = (γ2,1, γ2,0) and each edge is visited at least twice. The
only difference with W ′

k,1 defined above is that we do not require that (γ1,0, γ1,1) =
(γ2,k, γ2,k−1). However, this last condition (γ1,0, γ1,1) = (γ2m,k, γ2m,k−1) was
not used in the proof of Lemma 17. It follows that the set of canonical paths
in W ′′

k,1 with v distinct vertices and e distinct edges has cardinal bounded by

k2(2k)6(e−v+1). Since the paths are connected and each edge appears at least twice,
we have v − 1 ≤ e ≤ k. As in the proof of (29), we get from (39) with m = 1

E
∥∥�(k−1)χ

∥∥2 ≤ Cnαk(logn)3.

We conclude with Markov’s inequality and the union bound. �

6.3. Bound (31) on ‖R(�)
k ‖. For n ≥ 3, we set

(40) m =
⌊

logn

25 log(logn)

⌋
.



NONBACKTRACKING SPECTRUM OF RANDOM GRAPHS 31

For 0 ≤ k ≤ � − 1, we have that

‖R(�−1)
k ‖2m ≤ tr

{(
R

(�−1)
k R

(�−1)
k

∗)m}

= ∑
γ∈T ′

�,m,k

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

�∏
s=k+2

Aγi,s−1γi,s
,

(41)

where T ′
�,m,k is the set of sequences of paths γ = (γ1, . . . , γ2m) such that γ 1

i =
(γi,0, . . . , γi,k) and γ 2

i = (γi,k+1, . . . , γi,�) are nonbacktracking tangle-free, γi =
(γ 1

i , γ 2
i ) is nonbacktracking tangled and for all odd i ∈ {1, . . . ,2m},
(γi,0, γi,1) = (γi−1,0, γi−1,1) and (γi,�−1, γi,�) = (γi+1,�−1, γi+1,�),

with the convention that γ0 = γ2m.
We define G̃(γ ) = (V (γ ), Ẽ(γ )) as the union of the graph G(γ z

i ), 1 ≤ i ≤ 2m,
z ∈ {1,2}. Note that the edges (γi,k, γi,k+1) are not taken into account in G̃(γ ). As
usual, we set v(γ ) = |V (γ )| and ẽ(γ ) = |Ẽ(γ )| ≥ v(γ ). Since γi is tangled either
(a) G(γ 1

i )∪G(γ 2
i ) contains a cycle and is connected or (b) both G(γ 1

i ) and G(γ 2
i )

contain a cycle. In particular, all connected components of G̃(γ ) contain a cycle
and it follows that

v(γ ) ≤ ẽ(γ ).

Taking the expectation in (41), we find that

(42) E
∥∥R(�−1)

k

∥∥2m ≤ ∑
γ∈T�,m,k

E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

�∏
s=k+2

Aγi,s−1γi,s
,

where T�,m,k is the subset of γ ∈ T ′
�,m,k such that

(43) v(γ ) ≤ ẽ(γ ) ≤ km + 2m(� − 1 − k) = m(2� − 2 − k).

Indeed, for the contribution of a given γ in (42) to be nonzero, each pair
{γi,s−1, γi,s}, 1 ≤ i ≤ 2m, 1 ≤ s ≤ k, should appear at least twice in the sequence
of the 2(� − 1)m pairs {γi,s−1, γi,s}, s �= k + 1.

LEMMA 18 (Enumeration of canonical tangled paths). Let T�,m,k(v, e) be the
set of canonical paths in T�,m,k with v(γ ) = v and ẽ(γ ) = e. We have∣∣T�,m,k(v, e)

∣∣ ≤ (4�m)12m(e−v+1)+8m.

PROOF. We will adapt the proof of Lemma 17 and use the same terminology.
We start by reordering γ ∈ T�,m,k into a new sequence which preserves as much
as possible the connectivity of the path. First, we reorder γ = (γ1, . . . , γ2m) into
γ̂ = (γ̂1, . . . , γ̂2m) by setting for i odd, γ̂i = γi and for i even, γ̂i,t = γi,�−t . Also,
for i odd, we set ki = k and for i even ki = � − k − 1. Finally, we write γ̂i =
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(γ̂ ′
i , γ̂

′′
i ) with γ̂ ′

i = (γ̂i,0, . . . , γ̂i,ki
) and γ̂ ′′

i = (γ̂i,ki+1, . . . , γ̂i,�). To each i, we say
that γi is connected or disconnected whether G(γ̂ ′′

i ) intersects the graph Hi =⋃
j<i G(γ̂j ) ∪ G(γ̂ ′

i ) or not. If γi is disconnected, we define for 0 ≤ t ≤ �, xi,t =
γ̂i,t . If γi is connected, for 0 ≤ t ≤ ki , we set xi,t = γ̂i,t , and if qi > ki is the first
time such that γ̂i,qi

∈ Hi , we set for ki + 1 ≤ t ≤ qi , xi,t = γ̂i,qi+ki+1−t and for
qi + 1 ≤ t ≤ �, xi,t = γ̂i,t . We then explore the sequence (xi,t ) in lexicographic
order and set yi,t = {xi,t , xi,t+1}. The definition of first time, tree edge and excess
edge carry over, that is, (i, t) �= (i, ki) is a first time if the end vertex of yi,t , that
is, xi,t+1 has not been seen before. When γi is connected, we add the extra mark
(qi, γ̂i,qi

), if γi is disconnected this extra mark is set to 0. With our ordering, all
vertices of V (γ ) \ {1} will have an associated tree edge, at the exception of xi,ki+1
when γi is disconnected. If δ is the number of disconnected γi’s, we deduce that
there are δ + e − v + 1 excess edges. Note, however, that there are at most ε =
e − v + 1 excess edges in each connected component of G(γ ).

We may now repeat the proof of Lemma 17. The main difference is that, for
each i, we use that γ̂ ′

i and γ̂ ′′
i are tangle free, it gives short cycling times and long

cycling times for both γ̂ ′
i and γ̂ ′′

i . For each i, there are at most 2 short cycling times
and 2(ε−1) long cycling times. Since there are at most �4mε ways to position these
cycling times, we arrive at∣∣T�,m,k(v, e)

∣∣ ≤ (2�v)2m�4mε(v2�
)4m(

v2)4m(ε−1)
,

where the factor (2�v)2m accounts for the extra mark. Using v ≤ 2�m, we obtain
the claimed statement. �

PROOF OF BOUND (31). From (42), it suffices to prove that

(44) S = ∑
γ∈T�,m,k

E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

�∏
s=k+2

Aγi,s−1γi,s
≤ (C logn)24mα(2�−k)m.

As in (38), we find

(45) E

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

�∏
s=k+2

Aγi,s−1γi,s
≤

(
α

n

)e(γ )

.

From (43) and Lemma 18, we obtain

S ≤
m(2�−2−k)∑

v=1

m(2�−2−k)∑
e=v

∣∣T�,m,k(v, e)
∣∣(α

n

)e

nv

≤ α(2�−k)m
m(2�−2−k)∑

v=1

∞∑
e=v

(4�m)12m(e−v)+20mnv−e

≤ α(2�−k)m(4�m)20m(2�m)

∞∑
s=0

(
(4�m)12m

n

)s

.
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For our choice of m in (40), we have �m = o(logn)2 and (4�m)12m ≤ n24/25 and
(44) follows. �

6.4. Bound (32) on ‖B(k)‖. Since ‖K‖ is of order n, we observe that the
second statement in (32) improves by a factor

√
n the crude bound ‖KB(k)‖ ≤

‖K‖‖B(k)‖.

PROOF. We only prove the second statement. The first statement is proved
similarly. The argument again parallels that used to show (29). We take m as in
(34). We have∥∥KB(k−2)

∥∥2m ≤ tr
{((

KB(k−2))(KB(k−2))∗)m}

= ∑
γ∈Wk,m

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s
,

(46)

where Wk,m is the set of sequences of paths γ = (γ1, . . . , γ2m) such that γi =
(γi,0, . . . , γi,k) ∈ V k+1 are nonbacktracking paths of length k + 1 with the follow-
ing constraints: (γ2i−1,1, . . . , γ2i−1,k) and (γ2i,0, . . . , γ2i,k−1) are tangle-free paths
of length k, for all i = 1, . . . ,m, and such that for all i = 1, . . . ,2m,

(γi,k−1, γi,k) = (γi+1,1, γi+1,0),

with the convention that γ2m+1 = γ1. From (46) and Markov’s inequality, it suffices
to prove that

(47) S = ∑
γ∈Wk,m

E

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s
≤ (C logn)16mnmα2km.

Note that Wk,m ⊂ Wk,m and for a path γ ∈ Wk,m \ Wk,m, there must exist
i ∈ {1, . . . ,2m}, such that γi is tangled. If i is odd, this can only happen if
γi,0 ∈ {γi,2, . . . , γi,k}, hence there are only k − 1 possible choices for γi,0. Simi-
larly, if i is even and γi is tangled, then γi,k ∈ {γi,0, . . . , γi,k−2}. Hence, to each path
γ in Wk,m we can associate a path γ ′ in Wk,m such that (γ2i−1,1, . . . , γ2i−1,k) =
(γ ′

2i−1,1, . . . , γ
′
2i−1,k) and (γ2i,0, . . . , γ2i,k−1) = (γ ′

2i,0, . . . , γ
′
2i,k−1) and by previ-

ous argument, there are at most (2k)m paths in Wk,m which are associated with the
same path γ ′ in Wk,m. Hence, we have, for k ≤ �,

S ≤ (2�)m
∑

γ∈Wk,m

E

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s
.

If γ ∈ Wk,m is a canonical element of Wk,m, then v(γ ) − 1 ≤ e(γ ) ≤ 2km and
v(γ ) ≥ 3. Also, any γ ∈ Wk,m is isomorphic to fewer than nv(γ ) elements in Wk,m.
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Moreover, we have that

(48) E

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s
≤

(
α

n

)e(γ )−m

,

indeed, for any p ≥ 1, EA
p
u,v ≤ α/n and, since (γ2i+1,0, γ2i+1,1) = (γ2i,k, γ2i,k−1)

at most m distinct edges are covered by the union of {γ2i−1,0, γ2i−1,1} and
{γ2i,k−1, γ2i,k}. Hence, using Lemma 17, we obtain

S ≤ (2�)m
(

n

α

)m km+1∑
v=3

2km∑
e=v−1

∣∣Wk,m(v, e)
∣∣(α

n

)e

nv

≤ (2�)mnm+1α(2k−1)m
km+1∑
v=3

2km∑
e=v−1

k2m(2km)6m(e−v+1)nv−e−1

≤ nm+1α(2k−1)m2m(�)3m(�m)

∞∑
s=0

(
(2�m)6m

n

)s

.

For our choice of m in (34), the above geometric series converges and (47) follows.
�

6.5. Bound (33) on ‖S(�)
k ‖.

PROOF. Observe that Lef = 0 unless e = f , Kef = 1, Kf −1e = 1 or Kef −1 =
1 in which cases Lef = −1. We may thus decompose

L = −I − K ′,
where I is the identity, and the nonzero entries of K ′ are equal 1 and are the pairs
(e, f ) such that Kef = 1, Kf −1e = 1 or Kef −1 = 1. Thus,∥∥S(�)

k

∥∥ ≤ ∥∥�(k−1)
∥∥∥∥B(�−k−1)

∥∥ + ∥∥�(�−1)K ′∥∥∥∥B(�−k−1)
∥∥.

Bounds (29)–(32) imply that the first term has a smaller order than the intended
bound (33). Hence, we only need to bound the last term. We use again the method
of moments. We observe that K ′

ef ≤ Kef + (PK)ef + (KP )ef . A straightforward
adaptation of the proof of bound (32) shows that w.h.p., for any 1 ≤ k ≤ � − 1,∥∥�(k−1)K ′∥∥ ≤ √

n(logn)10αk/2,

which completes the proof. �

7. Stochastic block model: Proof of Theorem 4. In this section, we give the
strategy of proof for Theorem 4. Let � = �(n) ∼ κ logα n for some κ ∈ (0, γ /6) as
in Theorem 4. Recalling the definition (13) of vector χk , we further introduce for
all k ∈ [r]

(49) ϕk = B�χk

‖B�χk‖ , θk = ∥∥B�ϕ̌k

∥∥,
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and

ζk = B�ϕ̌k

θk

= B�B∗�χ̌k

‖B�B∗�χ̌k‖
(in the above, if θk = 0, we set ζk = 0). We also define

H = span
(
ϕ̌k, k ∈ [r]).

We then have the following.

PROPOSITION 19. For some b, c > 0, w.h.p.:

(i) b|μ�
k| ≤ θk ≤ c|μ�

k| if k ∈ [r0],
(ii) sign(μ�

k)〈ζk, ϕ̌k〉 ≥ b if k ∈ [r0],
(iii) θk ≤ (logn)cα�/2 if k ∈ [r] \ [r0],
(iv) |〈ϕj ,ϕk〉| ≤ (logn)cα3�/2n−γ /2 if k �= j ∈ [r],
(v) |〈ζj , ϕ̌k〉| ≤ (logn)cα2�n−γ /2 if k �= j ∈ [r0],

(vi) |〈ζj , ζk〉| ≤ (logn)cα5�/2n−γ /2 if k �= j ∈ [r0].

Proposition 19 will follow from the local analysis done in Section 9. The next
proposition will be established in Section 10 using a matrix expansion together
with norm bounds derived by combinatorial arguments parallel to the proof of
Proposition 11 for the Erdős–Rényi graph.

PROPOSITION 20. For some c > 0, w.h.p.,

sup
x∈H⊥,‖x‖=1

∥∥B�x
∥∥ ≤ (logn)cα�/2.

We now check that the two preceding propositions imply Theorem 4. We
consider (ϕ̄1, . . . , ϕ̄r ′) obtained by the Gram–Schmidt orthonormalization of
(ϕ̌1, . . . , ϕ̌r ). By Lemma 9 and Proposition 19(iv), w.h.p. r ′ = r and for all k ∈ [r],
(50) ‖ϕ̌k − ϕ̄k‖ = O

(
(logn)cα3�/2n−γ /2).

Similarly, for k ∈ [r0], we denote by ζ̃k the orthogonal projection of ζk on the
orthogonal of the vector space spanned by ϕ̄j , j ∈ [r0], j �= k and ζ̃j , j < k. We
set ζ̄k = ζ̃k/‖ζ̃k‖. From Proposition 19(v)–(vi), we find w.h.p. for k ∈ [r0],
(51) ‖ζk − ζ̄k‖ = O

(
(logn)cα5�/2n−γ /2).

We then set

D0 =
r0∑

k=1

θkζ̄kϕ̄
∗
k .
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Since ‖ϕ̌k − ϕ̄k‖ = o(1), from Proposition 19(i)–(iii), we find by induction on
k ∈ [r], w.h.p. for all k ∈ [r], ∥∥B�ϕ̄k

∥∥ = O
(
α�).

Consequently, from Proposition 20, we have, w.h.p.,∥∥B�
∥∥ = O

(
α�).

In particular, since D0ϕ̄k = θkζ̄k = B�ϕ̌k + θk(ζ̄k − ζk), we get for k ∈ [r0],∥∥B�ϕ̄k − D0ϕ̄k

∥∥ ≤ ∥∥B�
∥∥‖ϕ̄k − ϕ̌k‖ + ∥∥B�ϕ̌k − D0ϕ̄k

∥∥ + θk‖ζ̄k − ζk‖
= O

(
(logn)cα7�/2n−γ /2).

We have α7�/2n−γ /2 = n7κ/2+o(1)−γ /2. Since 0 < κ < γ/6, 7κ/2−γ /2 < κ/2, we
thus obtain, if P0 is the orthogonal projection of H0 = span(ϕ̄k, k ∈ [r0]),
(52)

∥∥B�P0 − D0
∥∥ = O

(
α�/2).

We also set D1 = B�P1 where P1 is the orthogonal projection of H1 =
span(ϕ̄k, k ∈ [r] \ [r0]) and C = B� − D0 − D1. Arguing similarly, from Proposi-
tion 19(iii), w.h.p., for k ∈ [r] \ [r0],

‖D1ϕ̄k‖ = ∥∥B�ϕ̄k

∥∥ ≤ ∥∥B�
∥∥‖ϕ̄k − ϕ̌k‖ + ∥∥B�ϕ̌k

∥∥ = O
(
(logn)cα�/2).

Hence,

(53) ‖D1‖ = O
(
(logn)cα�/2).

Also, let y ∈R
�E with ‖y‖ = 1. We write y = x+h0 +h1 with x ∈ H⊥, h1 ∈ H1,

h0 ∈ H0 = span(ϕk, k ∈ [r0]). We find

‖Cy‖ = ∥∥B�x + (
B� − D0

)
h0

∥∥ ≤ sup
x∈H⊥,‖x‖=1

∥∥B�x
∥∥ + ∥∥B�P0 − D0

∥∥.
Hence, Proposition 20 and (52)–(53) imply that w.h.p.:

‖C‖ = O
(
(logn)cα�/2).

We decompose B� = D0 + R with R = C + D1, from what precedes w.h.p.:

‖R‖ = O
(
(logn)cα�/2).

We are now in position to apply Proposition 8. From (51), the statement of
Proposition 19(ii) also holds with ζk replaced by ζ̄k . It readily implies Theorem 4.

8. Controls on the growth of Poisson multitype branching processes. In
this section, we derive results for multitype Galton–Watson branching processes
with Poisson offspring that will be crucial for the local analysis of Section 9. We
refer to Section 3.2 for the notation used below.



NONBACKTRACKING SPECTRUM OF RANDOM GRAPHS 37

8.1. Two theorems of Kesten and Stigum. We consider a multitype branching
process where a particle of type j ∈ [r] has a Poi(Mij ) number of children with
type i. We denote by Zt = (Zt (1), . . . ,Zt (r)) the population at generation t , where
Zt(i) is the number of particles at generation t with type i. We denote by Ft the
natural filtration associated to Zt . Following Kesten and Stigum [17, 18], we have
the following statement.

THEOREM 21. For any k ∈ [r0],

Xk(t) = 〈φk,Zt 〉
μt

k

− 〈φk,Z0〉

is an Ft -martingale converging a.s. and in L2 such that for some C > 0 and all
t ≥ 0, EXk(t) = 0 and E[X2

k(t)|Z0] ≤ C‖Z0‖1.

PROOF. We include the proof for later use. For 0 ≤ s < t , we have

Zt − Mt−sZs =
t−1∑
u=s

Mt−u−1(Zu+1 − MZu),

so that, as φ∗
kM = μkφ

∗
k ,

(54)
〈φk,Zt 〉

μt
k

= 〈φk,Zs〉
μs

k

+
t−1∑
u=s

〈φk, (Zu+1 − MZu)〉
μu+1

k

.

It follows easily that (Xk(t)) is an Ft -martingale with mean 0. From Doob’s mar-
tingale convergence theorem, the statement will follow if we prove that for some
C > 0 and all integer t ≥ 0,

E
[
X2

k(t)|Z0
] ≤ C‖Z0‖1 = C〈1,Z0〉.

To this end, we denote by Zs+1(i, j) the number of individuals of type i in the
(s + 1)th generation which descend from a particle of type j in the sth generation.
Thus,

∑
j∈[r] Zs+1(i, j) = Zs+1(i). We then have

E
[‖Zs+1 − MZs‖2

2|Zs

] = ∑
i∈[r]

E

[(
Zs+1(i) − ∑

j∈[r]
MijZs(j)

)2∣∣∣Zs

]

= ∑
i,j∈[r]

E
[(

Zs+1(i, j) − MijZs(j)
)2|Zs(j)

]

= ∑
i,j∈[r]

MijZs(j)

= 〈1,MZs〉,

(55)
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where in the penultimate equality we used the fact that the variance of a Poisson
random variable equals its mean. It follows that

E
[‖Zs+1 − MZs‖2|Z0

] = 〈
1,Ms+1Z0

〉
.

Recall 1 is a left eigenvector of M : 1∗Ms+1 = μs+1
1 1∗. We thus obtain

E
[‖Zs+1 − MZs‖2

2|Z0
] = 〈1,Z0〉μs+1

1 .

Hence finally,

E
[
X2

k(t)|Z0
] =

t−1∑
s=0

E[〈φk, (Zs+1 − MZs)〉2|Z0]
μ

2(s+1)
k

≤
t−1∑
s=0

‖φk‖2
2E[‖Zs+1 − MZs‖2

2|Z0]
μ

2(s+1)
k

≤ 〈1,Z0〉
t−1∑
s=0

(
μ1

μ2
k

)s+1
.

Since μ2
k > μ1 the above series is convergent. �

We also need to control the behavior of 〈φk,Zt 〉 for k ∈ [r]\[r0]. The next result
is contained in Kesten and Stigum [17], Theorem 2.4.

THEOREM 22. Assume Z0 = x. For k ∈ [r] \ [r0] define

Xk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈φk,Zt 〉
μ

t/2
1

if μ2
k < μ1,

〈φk,Zt 〉
μ

t/2
1 t1/2

if μ2
k = μ1.

Then Xk(t) converges weakly to a random variable Xk with finite positive variance.

Note that Theorem 2.4 in [17] expresses Xk as a mixture of Gaussian variables.
The normalization in the case μ2

k = μ1 comes from the fact that M is diagonaliz-
able, and hence all its Jordan blocks are of size 1.

8.2. Quantitative versions of the Kesten–Stigum theorems. We will also need
probabilistic bounds on the growth of the total population at generation t defined
as

St = ‖Zt‖1 = 〈φ1,Zt 〉.
We observe that (10) implies that St itself is a Galton–Walton branching process
with offspring distribution Poi(μ1).
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LEMMA 23. Assume S0 = 1. There exist c0, c1 > 0 such that, for all s ≥ 0,

P
(∀k ≥ 1, Sk ≤ sμk

1
) ≥ 1 − c1e

−c0s .

PROOF. For k ≥ 1, we set

εk = μ
−k/2
1

√
k and fk =

k∏
�=1

(1 + ε�).

It is straightforward to check that fk converges, hence there exist constants c0, c1 >

0 such that for all k ≥ 1,

(56) c0 ≤ fk ≤ c1 and εk ≤ c1.

Using Chernov bound, if Yi are i.i.d. Poi(μ1) variables then, for any integer � ≥ 1
and positive real s > 1,

(57) P

(
�∑

i=1

Yi ≥ �μ1s

)
≤ e−�μ1γ (s),

where we have set γ (s) = s log s −s +1. In particular, on the event {Sk ≤ sfkμ
k
1} ∈

Fk , we have

P
(
Sk+1 > sfk+1μ

k+1
1 |Fk

) ≤ e−sμk+1
1 fkγ (1+εk+1) ≤ e−c′

0sμ
k+1
1 ε2

k+1 = e−c′
0(k+1)s,

where we have used the existence of some θ > 0 such that for x ∈ [0, c1], one has
γ (1 + x) ≥ θx2. Finally, by our choice of εk and (56), if s ≥ max(1/c′

0,1/c1),

P
(∃k : Sk > sc1μ

k+1
1

) ≤
k∑

�=1

e−c′
0s� ≤ e−c′

0s

1 − e−c′
0s

.

Hence, we deduce the statement of the lemma for some (suitably redefined) con-
stants c0, c1 > 0. �

A key ingredient in the subsequent analysis will be the following result, which
bounds by how much the growth of processes s → 〈φk,Zs〉 deviates from a purely
deterministic exponential growth.

THEOREM 24. Let β > 0 and Z0 = x ∈ N
r be fixed. There exists C =

C(x,β) > 0 such that with probability at least 1−n−β , for all k ∈ [r0], all s, t ≥ 0,
with 0 ≤ s < t ,∣∣〈φk,Zs〉 − μs−t

k 〈φk,Zt 〉
∣∣ ≤ C(s + 1)μ

s/2
1 (logn)3/2,

and for all k ∈ [r] \ [r0], all t ≥ 0,∣∣〈φk,Zt 〉
∣∣ ≤ C(t + 1)2μ

t/2
1 (logn)3/2.

Finally, for all k ∈ [r] \ [r0], all t ≥ 0, E|〈φk,Zt 〉|2 ≤ C(t + 1)3μt
1.
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PROOF. We start with classical tail bounds for Y
d= Poi(λ). From (57) for

s > 0,

P(Y − λ > λs) ≤ e−λγ (1+s),

with γ (s) = s log s + 1 − s. Similarly, for s < 1 one has

P(Y − λ < −λs) ≤ e−λγ (1−s),

where by convention γ (x) = +∞ for x ≤ 0. Let δ(x) := γ (1 − x) ∧ γ (1 + x).
Then for any s ≥ 0,

P
(|Y − λ| > λs

) ≤ 2e−λδ(s).

In particular, for any i ∈ [r], letting y := MZt , we have, if Zt �= 0,

P
(∣∣Zt+1(i) − y(i)

∣∣ > s‖y‖1/2
1 |Ft

) ≤ 2e−y(i)δ(s‖y‖1/2
1 /y(i)).

Consider first the case where s‖y‖1/2
1 ≤ y(i). As there exists θ > 0 such that for

all x ∈ [0,1], δ(x) ≥ θx2, we get

P
(∣∣Zt+1(i) − y(i)

∣∣ > s‖y‖1/2
1 |Ft

) ≤ 2e
− θs2‖y‖1

y(i) ≤ 2e−θs2
.

Consider now the case where s‖y‖1/2
1 > y(i). As there exists θ ′ > 0 such that, for

all x ≥ 1, δ(x) ≥ θ ′x, we get

P
(∣∣Zt+1(i) − y(i)

∣∣ > s‖y‖1/2
1 |Ft

) ≤ 2e−θ ′s‖y‖1/2
1 ≤ 2e−θ ′√μ1s,

since Zt �= 0 implies that ‖y‖1 ≥ μ1 from (10). Thus, there exists some c0 > 0
such that, for any s ≥ 0,

P
(‖Zt+1 − MZt‖2 > s‖Zt‖1/2

1 |Ft

) ≤
r∑

i=1

P

(∣∣Zt+1(i) − y(i)
∣∣ > s‖Zt‖1/2

1√
r

∣∣∣Ft

)

≤ 2re−c0(s∧s2).

If Zt = 0, then Zt+1 = 0 and the same bound trivially holds. We thus obtain the
existence of constants c0, c1 > 0 such that, for any u ≥ 1,

P
(∀t ≥ 0,‖Zt+1 − MZt‖2 ≤ u(t + 1) logn‖Zt‖1/2

1

)
≥ 1 − ∑

t≥1

2re−c0ut logn ≥ 1 − c1n
−c0u.

(58)

Now, from (54), for any s, 0 ≤ s ≤ t ,

∣∣〈φk,Zs〉 − μs−t
k 〈φk,Zt 〉

∣∣ ≤ μs
k

t−1∑
h=s

‖φk‖2‖Zh+1 − MZh‖2

μh+1
k

.
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From equation (58) and Lemma 23, for C large enough, with probability at least
1 − n−β , we have for all h ≥ 0 that ‖Zh+1 − MZh‖2 ≤ C(logn)(h + 1)‖Zh‖1/2

1
and ‖Zh‖1 ≤ C(logn)μh

1 . On this event, we get, for k ∈ [r0],
∣∣〈φk,Zs〉 − μs−t

k 〈φk,Zt 〉
∣∣ ≤ C′(logn)3/2μs

k

t−1∑
h=s

(h + 1)

(√
μ1

μk

)h

≤ C′′(logn)3/2(s + 1)μ
s/2
1 ,

where at the last line, we used that μ2
k > μ1 and

∑
h≥s hah ≤ c(a)sas for

0 < a < 1. Similarly, on the same event, for k ∈ [r] \ [r0], from (54), for t ≥ 1
and s = 0,

∣∣〈φk,Zt 〉 − μt
k〈φk,Z0〉

∣∣ ≤ μt
k

t−1∑
u=0

‖φk‖2‖Zu+1 − MZu‖2

μu+1
k

≤ C′(logn)3/2μt
k

t−1∑
u=0

(u + 1)

(√
μ1

μk

)u

.

Using now μ2
k ≤ μ1, we have

∑t−1
u=0(u + 1)(

√
μ1

μk
)u = O(t2(

√
μ1/μk)

t ).
For the last result, we define

U = sup
t≥0

‖Zt+1 − MZt‖2

(t + 1)‖Zt‖1/2
1

.

From (58) (with n = 2), for any p ≥ 1, EUp = O(1). We obtain from (54) and the
Cauchy–Schwarz inequality,

E
∣∣〈φk,Zt 〉 − μt

k〈φk,Z0〉
∣∣2 ≤ μ2t

k

t−1∑
s=0

E
‖φk‖2

2‖Zs+1 − MZs‖2
2

μ
2(s+1)
k

≤ μ2t
k

t−1∑
s=0

E
U2(s + 1)2‖Zs‖1

μ
2(s+1)
k

≤ t2μ2t
k

√
EU4

t−1∑
s=0

√
E‖Zs‖2

1

μ
2(s+1)
k

= O
(
t3μt

1
)
,

where for the last equality, we used the fact that E‖Zs‖2
1 = O(μ2s

1 ) which follows
from Theorem 21 with k = 1 (recall that φ1 = 1), and the bound of O(tμt

1/μ
2t
k )

on the sum, which holds for k /∈ [r0]. �
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8.3. A cross-generation functional. For the subsequent analysis, in order to
control the law of the candidate eigenvectors B�B∗�χ̌k , we also need to consider a
functional of the multitype branching process which depends on particles in more
than one generation. More precisely, assuming that ‖Z0‖1 = 1, we denote by V

the particles of the random tree and o ∈ V the starting particle. Particle v ∈ V has
type σ(v) ∈ [r] and generation |v| from o ∈ V . For v ∈ V and integer t ≥ 0, let
Y v

t denote the set of particles of generation t from v in the subtree of particles
with common ancestor v ∈ V . Finally, Zv

t = (Zv
t (1), . . . ,Zv

t (r)) is the vector of
population at generation t from v, that is, Zv

t (i) = ∑
u∈Y v

t
1(σ (u) = i). We set

Sv
t = ∥∥Zv

t

∥∥
1 = 〈

φ1,Z
v
t

〉
.

With our previous notation, Zo
t = Zt , So

t = St . We fix an integer k ∈ [r], � ≥ 1 and
set

(59) Qk,� = ∑
(u0,...,u2�+1)∈P2�+1

φk

(
σ(u2�+1)

)
,

where the sum is over (u0, . . . , u2�+1) ∈P2�+1, the set of paths in the tree starting
from u0 = o of length 2� + 1 with (u0, . . . , u�) and (u�, . . . , u2�+1) nonbacktrack-
ing and u�−1 = u�+1 [i.e., (u0, . . . , u2�+1) backtracks exactly once at the (�+ 1)th
step].

The following alternative representation of Qk,� will prove useful. By distin-
guishing paths (u0, . . . , u2�+1) according to the smallest depth t ∈ {0, . . . , � − 1}
to which they climb back after visiting u�+1 and the node u2�−t they then visit at
level t we have that

(60) Qk,� =
�−1∑
t=0

∑
u∈Yo

t

Lu
k,�,

where we let for |u| = t ≥ 0,

Lu
k,� = ∑

w∈Yu
1

Sw
�−t−1

( ∑
v∈Yu

1 \{w}

〈
φk,Z

v
t

〉)
.

We then have the following.

THEOREM 25. Assume Z0 = δx . For k ∈ [r0], Qk,�/μ
2�
k converges in L2 as

� tends to infinity to a random variable with mean μkφk(x)/(μ2
k/α − 1). For k ∈

[r] \ [r0], there exists a constant C such that EQ2
k,� ≤ Cα2��5.

PROOF. Let Ft be the filtration generated by (Z0, . . . ,Zt ). The variables
(Lu

k,�, u ∈ Yo
t ) are independent given Ft . We will show that the sum (60) con-

centrates around its mean. Let us first compute the mean of Lu
k� for u ∈ Yo

t . We
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use the fact, that given Ft+1 and v �= w ∈ Yo
t+1, Zv

t and Sw
�−t−1 are independent.

Hence, we have with the short-hand notation EFt = E(·|Ft ):

EFt L
u
k,� = EFt

∑
(v,w)∈Yu

1 ,v �=w

EFt+1

〈
φk,Z

v
t

〉
EFt+1S

w
�−t−1.

By assumption (10), EFt+1S
w
�−t−1 = α�−t−1. Moreover, we have EFt+1〈φk,Z

v
t 〉 =

μt
k〈φk,Z

v
0〉 so that

EFt L
u
k,� = α�−t−1μt

kEFt

((∣∣Yu
1

∣∣ − 1
) ∑
v∈Yu

1

〈
φk,Z

v
0
〉)

= α�−t−1μt
kEFt

((∣∣Yu
1

∣∣ − 1
)∣∣Yu

1

∣∣) ∑
i∈[r]

φk(i)
Mi,σ(u)

α

= μt+1
k α�−t 〈φk,Z

u
0
〉

(61)

and

(62) EFt

∑
u∈Yo

t

Lu
k,� = μt+1

k α�−t 〈φk,Zt 〉 = μ2t+1
k α�−tYk(t),

where Yk(t) = Xk(t) + 〈φk,Z0〉 and Xk is the centered martingale defined in The-
orem 21.

We now prove the statements of the theorem for k ∈ [r0]. We find similarly

VarFt

(
Lu

k,�

) = EFt

(
Lu

k,� −EFt L
u
k,�

)2

≤ EFt

(
Lu

k,�

)2

= EFt

( ∑
v �=w∈Yu

1

Sw
�−t−1

〈
φk,Z

v
t

〉)2

≤ CE∗〈φk,Zt 〉2
E∗S2

�−t−1,

where E∗(·) = maxi∈[r]E(·|Z0 = δi) and constant C can be taken equal to
E∗|Yo

1 |4. For k ∈ [r0], we deduce from Theorem 21 that, for some new C > 0,

(63) VarFt

( ∑
u∈Yo

t

Lu
k,�

)
= ∑

u∈Yo
t

VarFt

(
Lu

k,�

) ≤ Cμ2t
k α2(�−t)St .

We now define

(64) Q̄k,� =
�−1∑
t=0

EFt

∑
u∈Yo

t

Lu
k,� =

�−1∑
t=0

μ2t+1
k α�−tYk(t).
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Since k ∈ [r0], ρk := μ2
k/α > 1. We write

Q̄k,�

μ2�
k

= μk

�−1∑
t=0

ρt−�
k Yk(t).

From Theorem 21, Q̄k,�/μ
2�
k converges a.s. to μkYk(∞)/(ρk −1) where Yk(∞) =

Xk(∞) + 〈φk,Z0〉 and Xk(∞) is the limit of the martingale defined in Theo-
rem 21. Moreover, Q̄k,�/μ

2�
k also converges in L2. Indeed, we find easily from

the Cauchy–Schwarz inequality

E

(
Q̄k,�

μ2�
k

− μkYk(∞)

ρk − 1

(
1 − ρ−�

k

))2

= μ2
kE

(
�−1∑
t=0

ρt−�
k

(
Yk(t) − Yk(∞)

))2

≤ μ2
k

(
�−1∑
t=0

ρt−�
k

)(
�−1∑
t=0

E
(
Yk(t) − Yk(∞)

)2
ρt−�

k

)
.

Since ρk > 1, the first term of the above expression is of order O(1). For the
second term, from Theorem 21, for any ε > 0, there is t0 such that for all t ≥ t0,
E(Yk(t) − Yk(∞))2 ≤ ε. We find that the second term is O(ε + ρ

t0−�
k ) = o(1). It

proves that Q̄k,�/μ
2�
k converges in L2.

We now check that Qk,� and Q̄k,� are close in L2 for k ∈ [r0]. For a real random
variable Z, set ‖Z‖2 = √

EZ2. From (60)–(63) and the triangle inequality, we
get

‖Qk,� − Q̄k,�‖2 ≤
�−1∑
t=0

∥∥∥∥ ∑
u∈Yo

t

Lu
k,� −EFt

∑
u∈Yo

t

Lu
k,�

∥∥∥∥
2

=
�−1∑
t=0

∥∥∥∥
(

VarFt

( ∑
u∈Yo

t

Lu
k,�

))1/2∥∥∥∥
2

≤ C

�∑
t=0

μt
kα

�−t‖√St‖2

= O
(
μ�

kα
�/2)

= o
(
μ2�

k

)
,

where at the last line, we have used Lemma 23 and k ∈ [r0]. It follows that
‖(Qk,� − Q̄k,�)/μ

2�
k ‖2 goes to 0 and it concludes the statements of the theorem for

k ∈ [r0].
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For k /∈ [r0], we note that EZ2 ≤ E(EY Z)2 + EVarY (Z) so that ‖Z‖2 ≤
‖EY Z‖2 + ‖VarY (Z)1/2‖2. From (60) and the triangle inequality, we get

‖Qk,�‖2 ≤
�−1∑
t=0

∥∥∥∥ ∑
u∈Yo

t

Lu
k,�

∥∥∥∥
2

≤
�−1∑
t=0

∥∥∥∥EFt

( ∑
u∈Yo

t

Lu
k,�

)∥∥∥∥
2
+

∥∥∥∥
(

VarFt

( ∑
u∈Yo

t

Lu
k,�

))1/2∥∥∥∥
2
.

(65)

The last statement of Theorem 24 and (63) gives

VarFt

( ∑
u∈Yo

t

Lu
k,�

)
= O

(
Stα

2(�−t)αt t3).
We deduce from (65) and (62)

‖Qk,�‖2 ≤ C

�−1∑
t=0

(
μt

kα
�−t

∥∥〈φk,Zt 〉
∥∥

2 + α�−tαt/2t3/2‖√St‖2
) = O

(
α��5/2).

This completes the proof. �

We finish this section with a rough bound on Qk,�.

LEMMA 26. For any p ≥ 1, there exists a constant C = C(p,α) > 0 such that
for any k ∈ [r],

E|Qk,�|p ≤ Cα2p�.

PROOF. We use the notation of Theorem 25. First, from Lemma 23, for any
p ≥ 1, ES

p
t ≤ Cαtp . In particular, for any v ∈ Yo

t+1 and k ∈ [r],
EFt+1

∣∣〈φk,Z
v
t

〉∣∣p = O
(
EFt+1

(
Sv

t

)p) = O
(
αtp).

We use twice the bound |∑n
i=1 xi |p ≤ np−1 ∑n

i=1 |xi |p . We find

EFt

∣∣∣∣ ∑
u∈Yo

t

Lu
k,�

∣∣∣∣p ≤ S
p−1
t

∑
u∈Yo

t

EFt

∣∣Lu
k,�

∣∣p

≤ S
p−1
t

∑
u∈Yo

t

EFtEFt+1

∣∣∣∣ ∑
(v,w)∈Yu

1 ,v �=w

〈
φk,Z

v
t

〉
Sw

�−t−1

∣∣∣∣p

≤ S
p−1
t

∑
u∈Yo

t

EFt

(
Su

1
)2(p−1)

∑
(v,w)∈Yu

1 ,v �=w

Cαtpα(�−t−1)p

≤ S
p−1
t

∑
u∈Yo

t

Cα(�−1)p
EFt

(
Su

1
)2p

≤ C′α�pS
p
t ,
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for some new constant C′ depending on α and p. We deduce that for some new
C > 0,

E

∣∣∣∣ ∑
u∈Yo

t

Lu
k,�

∣∣∣∣p ≤ Cpα(�+t)p.

For a real random variable Z, set ‖Z‖p = (EZp)1/p . Using (60) and the triangle
inequality we get

‖Qk,�‖p ≤
�−1∑
t=0

∥∥∥∥ ∑
u∈Yo

t

Lu
k,�

∥∥∥∥
p

≤ C

�−1∑
t=0

α(�+t) = O
(
α2�).

�

8.4. Decorrelation in homogeneous Galton–Watson branching processes. We
now establish that the variables Qk,� and Qj,� are uncorrelated when k �= j . To
this end, we need the following lemma.

LEMMA 27. Assume that the type σ(o) at the root node o is distributed ac-
cording to the stationary distribution π . Conditionally, on the branching tree T ,
the process of types σ(u) attached to the vertices of the tree is a Markov random
field. For any two neighbor nodes u, v of T and any i, j ∈ [r], one has the follow-
ing transition probabilities

P
(
σ(u) = i|σ(v) = j,T

) = 1

α
Mij .

For any two (possibly equal) nodes u, v of T , any k, j ∈ [r], k �= j , one has

(66) E
(
φk

(
σ(u)

)
φj

(
σ(v)

)|T ) = 0.

PROOF. By standard properties of independent Poisson random variables,
conditionally on the type σ(o) and on the number of children of the root o, the
types of each of the children of the root are i.i.d., distributed according to M·σ(o)/α.
Moreover, π is the stationary distribution for this transition kernel, which is re-
versible, as follows from the relation M = �W and the facts that W is symmetric
together with the assumption (10) that the column sums of M all coincide with
α. The Markov random field property and the expression of the transition kernel
follow by iterating this argument.

We now evaluate the conditional expectation in (66). Let u1 = u, . . . , ut = v

denote the unique path in T connecting nodes u and v. Let Fs denote the σ -field
generated by T and the type variables σ(u1), . . . , σ (us). We then have by the
Markov random field property

E
(
φj

(
σ(us+1)

)|Fs

) = ∑
i∈[r]

1

α
Miσ(us)φj (i) = μj

α
φj

(
σ(us)

)
,
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where we used the fact that φj is a left-eigenvector of M associated with eigen-
value μj . Thus,

E
(
φk

(
σ(u)

)
φj

(
σ(v)

)|T ) =
(

μj

α

)t−1
E
(
φk

(
σ(u)

)
φj

(
σ(u)

)|T )

=
(

μj

α

)t−1 ∑
i∈[r]

πiφk(i)φj (i)

= 0,

where the last equality follows from π -orthogonality (8) between vectors φk and
φj for j �= k. �

We now show the following.

THEOREM 28. Let j �= k ∈ [r] and Z0 = δι where ι has distribution
(π(1), . . . , π(r)). Then, for any � ≥ 0,

EQk,�Qj,� = 0.

PROOF. Write Qk,� as

Qk,� = ∑
(v,w)∈P(T )

φk

(
σ(w)

)
,

where the sum extends over a set P(T ) of node pairs (v,w) that depends only on
the tree T . Using the analogue expression for Qj,�, one obtains

E(Qk,�Qj,�|T ) = ∑
(v,w)∈P(T )

∑
(v′,w′)∈P(T )

E
(
φk

(
σ(w)

)
φj

(
σ
(
w′))|T )

= 0

by Lemma 27, equation (66). This completes the proof. �

9. Local structure of random graphs. We now derive the necessary controls
on the local structure of the SBM random graphs under consideration. Coupling re-
sults will allow to bound the deviation of their local structure from branching pro-
cesses. Asymptotic independence between local neighborhoods of distinct nodes
will then be used to establish weak laws of large numbers.

9.1. Coupling. For e ∈ �E(V ) and f ∈ �E, we define the “oriented” distance

�d(e, f ) = min
γ

�(γ ),

where the minimum is taken over all self-avoiding paths γ = (γ0, γ1, . . . , γ�+1)

in G such that (γ0, γ1) = e, (γ�, γ�+1) = f and for all 1 ≤ k ≤ �, {γk, γk+1} ∈ E.
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Recall that �E(V ) is the set of oriented edges of the complete graph whereas �E is
the set of oriented edges of G. In particular, we do not require that e ∈ �E. Observe
that �d is not symmetric; we have instead �d(e, f ) = �d(f −1, e−1).

Then, for integer t ≥ 0, we introduce the vector Yt (e) = (Yt (e)(i))i∈[r] where,
for i ∈ [r],
(67) Yt (e)(i) = ∣∣{f ∈ �E : �d(e, f ) = t, σ (f2) = i

}∣∣.
We also set

St (e) = ∥∥Yt (e)
∥∥

1 = ∣∣{f ∈ �E : �d(e, f ) = t
}∣∣.

The vector Yt (e) counts the types at oriented distance t from e.
We shall denote by St (v) the set of vertices at distance t from v. We introduce

n(i) =
n∑

v=1

1
(
σ(v) = i

)
, πn(i) = n(i)

n
,

αn(i) =
r∑

j=1

πn(j)Wij , ᾱn = max
i∈[r] αn(i) = α + O

(
n−γ ),

(68)

where at the last line we have used Assumptions (10)–(12). Central to our lo-
cal study is the classical exploration process of the neighborhood of v which
starts with A0 = {v} and at stage t ≥ 0, if At is not empty, takes a vertex in At

at minimal distance from v, say vt , reveals its neighbors, say Nt+1, in [n] \ Dt

where Dt = ⋃
0≤s≤t As the set of discovered vertices at time t , and updates

At+1 = (At ∪ Nt+1) \ {vt }. We will denote by Ft the filtration generated by
(A0, . . . ,At ). We start by establishing a rough bound on the growth of St .

LEMMA 29. There exist c0, c1 > 0 such that, for all s ≥ 0 and for any w ∈
[n] ∪ �E(V ),

P
(∀t ≥ 0 : St (w) ≤ sᾱt

n

) ≥ 1 − c1e
−c0s .

Consequently, for any p ≥ 1, there exists c > 0 such that

E max
v∈[n],t≥0

(
St (v)

ᾱt
n

)p

≤ c(logn)p.

PROOF. Recall that E|X|p = p
∫ ∞

0 xp−1
P(|X| ≥ t) dt and P(maxv Xv ≥ t) ≤

1 ∧ ∑
v P(Xv ≥ t). Then the second statement is a direct consequence of the first

statement.
To prove the first statement, observe that, in the exploration process, given Ft , if

vt has type j , the number of neighbors of vt in [n] \ Dt is upper bounded stochas-
tically by

Vj =
r∑

i=1

Vij ,
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where Vij
d= Bin(n(i),Wij /n) = Bin(n(i),πn(i)Wij /n(i)) are independent. In

particular, for any θ ≥ 0, using 1 + t ≤ et , we find

EeθVj =
r∏

i=1

E

(
1 − πn(i)Wij

n(i)
+ πn(i)Wij

n(i)
eθ

)n(i)

≤ e−αn(j)+αn(j)eθ ≤ e−ᾱn+ᾱneθ

.

For any j ∈ [r], we have thus bounded the characteristic function of Vj for θ ≥ 0
by the characteristic function of a Poi(ᾱn) variable. It remains finally to repeat the
proof of Lemma 23 from (57) with μ1 replaced by ᾱn. �

We now check that the random graph G is locally tree-like. For v ∈ [n] and
integer h ≥ 0, we denote by (G,v)h the rooted subgraph of G rooted at v, spanned
by the vertices at distance at most h from v. If e = (u, v) ∈ �E(V ), we set (G, e)h =
(G′, v)h where G′ is the graph G with the edge {u, v} removed (if it was present
in G).

LEMMA 30. Let � ∼ κ logα n with κ < 1/2. Then, w.h.p. the random graph
G is �-tangle-free and w.h.p. there are fewer than α2� logn vertices whose �-
neighborhood contains a cycle.

PROOF. We start by proving the second statement. Let τ be defined as the
first time t at which all nodes at distance � or less from v have been discovered.
It is clearly a stopping time for the filtration Ft . By construction, given Fτ , the
set of discovered edges in V (G,v)� builds a spanning tree of V (G,v)�. Also,
given Fτ , the number of undiscovered edges between two vertices in V (G,v)� is
stochastically upper bounded by Bin(m,a/n) where m = |V (G,v)�| = S�(v) and
a = maxi,j W(i, j). It follows from Lemma 29 that, for some c > 0,

(69) P
(
(G,v)� is not a tree

) ≤ aES�(v)

n
≤ cα�

n
.

Hence, from Markov’s inequality,

P

(∑
v

1
(
(G,v)� is not a tree

) ≥ α� logn

)
≤ c

logn
.

The second statement follows.
We now turn to the first statement. First, recall that the probability that

Bin(m,q) is not in {0,1} is at most q2m(m − 1) ≤ q2m2. Also, if G is �-tangled,
then there exists v ∈ [n] such that V (G,v)� has at least two undiscovered edges.
In particular, from the union bound,

P(G is �-tangled) ≤
n∑

v=1

a2
ES�(v)2

n2 ≤ cα2�

n
= o(1),

where c > 0 and we have used again Lemma 29. �
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We conclude this subsection with a coupling of the process Yt (e) and a multi-
type Galton–Watson tree. Recall that for probability measures P,Q on a countable
set X , the total variation distance is given by

dTV(P,Q) = 1

2

∑
x∈X

∣∣P(x) − Q(x)
∣∣ = minP(X �= Y),

where the minimum is over all coupling (X,Y ) such that X
d∼ P , Y

d∼ Q.

PROPOSITION 31. Let � ∼ κ logα n with 0 ≤ κ < 1/2 and e = (u, v) ∈ �E(V ).
Let (T , o) be the random rooted tree associated to the Galton–Watson branching
process defined in Section 8 started from Z0 = δσ(v). The total variation distance
between the law of (G, e)� and (T , o)� goes to 0 as O((logn)α�n−γ∧(1−κ)). The
same holds with (G, e)� replaced by (G,v)�.

PROOF. We prove the first statement; the proof of the second statement is
identical [see comment below (70)]. If e = (u, v) and G′ = G \ {u, v}, we consider
the filtration Ft associated to the exploration process of (G′, v). We let τ be the
stopping time where all vertices of (G, e)� have been revealed. We set y0 = δv and
at step t ≥ 0, we denote by yt+1 = (yt+1(1), . . . , yt+1(r)) the number of discov-
ered neighbors of vt in [n] \ Dt of each type. If σ(vt ) = j then, given Ft , the vari-
ables (yt+1(i))i∈[r] are independent and yt+1(i) has distribution Bin(nt (i),Wij /n)

where

(70) nt(i) = n(i) −
t∑

s=0

ys(i) − 1
(
t = 0, σ (u) = i

)

[the last term comes from the difference between G and G′; this term is not present
in the case of the second statement on (G,v)�]. We perform the same exploration
process on (T , o), that is a breath-first search of the tree, we discover at each step
the offsprings say xt+1 = (xt+1(1), . . . , xt+1(r)) of the active vertex vt . In particu-
lar, if vt has type j then the variables (xt+1(i))i∈[r] are conditionally independent
and xt+1(i) has distribution Poi(π(i)Wij ). To couple the two processes, we shall
use the following classical bounds (see, e.g., [2]):

(71) dTV

(
Bin

(
m,

λ

m

)
,Poi(λ)

)
≤ λ

m
and dTV

(
Poi(λ),Poi

(
λ′)) ≤ ∣∣λ − λ′∣∣.

For 0 ≤ t ≤ τ , define the event �t = {|Dt | ≤ cα� logn} ∈ Ft , where Dt is the
set of discovered vertices. By Lemma 29, for c large enough, τ ≤ cα� logn and �τ

holds with probability larger than 1 − 1/n. Also, by (69), with probability at least
1 − cα�/n, (G, e)� is a tree. It follows that by iteration, it is enough to check that,
if �t holds, there exists C > 0 such that

(72) dTV(Pt+1,Qt+1) ≤ Cn−γ∧(1−κ),
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where Pt+1 is the distribution of yt+1 under P(·|Ft ) and Qt+1 has the law of
xt+1 = (x1, . . . , xr) where xi are independent with distribution Poi(π(i)Wij ), with
j = σ(vt ). However, from (71) and the triangle inequality, we have

dTV(Pt+1,Qt+1) ≤ dTV

(
Pt+1,

⊗
i∈[r]

Poi
(

nt (i)Wij

n

))

+ dTV

(⊗
i∈[r]

Poi
(

nt(i)Wij

n

)
,Qt+1

)

≤
r∑

i=1

(
Wij

n
+ Wij

∣∣∣∣nt (i)

n
− π(i)

∣∣∣∣
)

≤ C
α�(logn)

n
+

r∑
i=1

Wij

∣∣πn(i) − π(i)
∣∣.

From (12), the latter is O(n−γ∧(1−κ)). We thus have proved that (72) holds for
some new C > 0. �

We will use the following corollary of Proposition 31.

COROLLARY 32. Let � ∼ κ logα n with 0 < κ < γ ∧ 1/2. For e ∈ �E(V ),
we define the event E(e) that for all 0 ≤ t < � and k ∈ [r]: |〈φk,Yt (e)〉 −
μt−�

k 〈φk,Y�(e)〉| ≤ (logn)4αt/2, if k ∈ [r0], and |〈φk,Yt (e)〉| ≤ (logn)4αt/2, if
k ∈ [r] \ [r0].

Then w.h.p. the number of edges e ∈ �E such that E(e) does not hold is at most
(logn)2α�n1−γ .

PROOF. First, with exponentially small probability there are fewer than 2αn

edges in �E. From the union bound, it is thus enough to prove that for any e ∈ �E(V ),
P(E(e)c) ≤ C(logn)α�n−γ . To show this, use the coupling result of Proposi-
tion 31 to deduce that with probability at least 1 − C(logn)α�n−γ , the processes
(Yt (e))0≤t≤� and (Zt )0≤t≤� coincide. It then remains to use Theorem 24 with
β = 1. �

9.2. Geometric growth of linear functions of nonbacktracking walks. For k ∈
[r], we recall that

χk(e) = φk

(
σ(e2)

)
.

The next proposition asserts that for most e ∈ �E, 〈Btχk, δe〉 grows nearly geomet-
rically in t with rate μk up to an error of order αt/2.

PROPOSITION 33. Let � ∼ κ logα n with 0 < κ < γ ∧ 1/2. There exists a ran-
dom subset of edges �E� ⊂ �E such that w.h.p. the following hold:
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(i) for all e ∈ �E \ �E�, 0 ≤ t ≤ �,∣∣〈Btχk, δe

〉 − μt−�
k

〈
B�χk, δe

〉∣∣ ≤ (logn)4αt/2 if k ∈ [r0],∣∣〈Btχk, δe

〉∣∣ ≤ (logn)4αt/2 if k ∈ [r] \ [r0],
(ii) for all e ∈ �E�, 0 ≤ t ≤ � and k ∈ [r],∣∣〈Btχk, δe

〉∣∣ ≤ (logn)2αt ,

(iii) | �E�| ≤ (logn)3α�n1−γ .

PROOF. We define �E� as the set of oriented edges such that either (G, e2)�
is not a tree or the event E(e) defined in Corollary 32 does not holds. Then by
Lemma 30 and Corollary 32, w.h.p. �E� satisfies condition (iii). Moreover, by defi-
nition if (G, e2)� is a tree

(73)
〈
Btχk, δe

〉 = 〈
φk,Yt (e)

〉
,

and statement (i) follows from Corollary 32. For statement (ii), we simply use that
w.h.p. G is tangle free (by Lemma 30), hence, there are at most two nonbacktrack-
ing walks of length t from e to any f . We get〈

Btχk, δe

〉 ≤ 2‖φk‖∞St (e).

However, by Lemma 29 w.h.p. for all t ≥ 0 and all e ∈ �E, |St (e)| ≤ C(logn)αt .
�

COROLLARY 34. Let � ∼ κ logα n with 0 < κ < γ/2. With high probability,
for any 0 ≤ t ≤ � − 1 and k ∈ [r],

sup
〈B�χk,x〉=0,‖x‖=1

∣∣〈Btχk, x
〉∣∣ ≤ (logn)5n1/2αt/2.

PROOF. We write〈
Btχk, x

〉 = ∑
e∈ �E�

xe

〈
Btχk, δe

〉 + ∑
e/∈ �E�

xe

〈
Btχk, δe

〉 = I + J.

From the Cauchy–Schwarz inequality, the first term is bounded w.h.p. by

|I | ≤ (logn)2αt
∑
e∈ �E�

|xe| ≤ (logn)2αt
√

| �E�|

≤ (logn)4αtα�/2n(1−γ )/2 = o
(
n1/2αt/2),
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where we have used that αt/2α�/2n−γ /2 ≤ nκ−γ /2+o(1) and κ < γ/2. For the sec-
ond term, if k ∈ [r0], using 〈B�χk, x〉 = 0, we get similarly w.h.p.

|J | ≤ μt−�
k

∑
e∈ �E�

|xe|
∣∣〈B�χk, δe

〉∣∣ + ∑
e/∈ �E�

|xe|
∣∣〈Btχk, δe

〉 − μt−�
k

〈
B�χk, δe

〉∣∣

≤ (logn)2αt−�α�α�/2n(1−γ )/2 + (logn)4
√

| �E|αt/2

≤ (logn)2n1/2αt/2α�n−γ /2 + C(logn)4n1/2αt/2.

Finally, if k ∈ [r] \ [r0], we simply write w.h.p. |J | ≤ ∑
e/∈ �E�

|xe||〈Btχk, δe〉| ≤
(logn)4n1/2αt/2. �

9.3. Laws of large numbers for local functions. We first prove weak laws of
large numbers for general local functionals of SBM random graphs that will then
be applied to specific functionals of interest.

9.3.1. Weak laws of large numbers for local functionals: Convergence speed.
We start with a general variance bound for local functions of an inhomogeneous
random graph. A colored graph is a graph G = (V ,E) with a map σ : V → [r].
We denote by G∗ the set of rooted colored graphs, that is, the set of pairs (G,o)

formed by a colored graph G and a distinguished vertex o ∈ V . We shall say that
a function τ from G∗ to R is �-local, if τ(G,o) is only function of (G,o)�.

PROPOSITION 35. There exists c > 0 such that if τ,ϕ : G∗ → R are �-local,
|τ(G,o)| ≤ ϕ(G,o) and ϕ is nondecreasing by the addition of edges, then

Var

(
n∑

v=1

τ(G,v)

)
≤ cnᾱ2�

n

(
Emax

v∈[n]ϕ
4(G,v)

)1/2
.

PROOF. We first bound the expectation of

Z =
n∑

u=1

�2(G,u),

where �(G,u) is defined as the number of vertices at distance � from u ∈ V . By
Lemma 29, for any u ∈ [n],

P

(
�(G,u) ≥ s

ᾱ�+1
n − 1

ᾱn − 1

)
≤ c1e

−c0s .

Hence, for any p ≥ 1, for some cp > 0,

EZp ≤ np−1
E

n∑
u=1

�2p(G,u) ≤ cpnpᾱ2�p
n .
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Now, for 1 ≤ k ≤ n, let Xk = {1 ≤ v ≤ k : {v, k} ∈ E}, where E is the edge set
of G. The vector (X1, . . . ,Xn) is an independent vector and for some function F ,

Y :=
n∑

u=1

τ(G,u) = F(X1, . . . ,Xn).

We also define Gk as the graph with edge set
⋃

v �=k Xv . We set

Yk =
n∑

u=1

τ(Gk,u).

Since τ is �-local, we observe that τ(G,u) − τ(Gk,u) can be nonzero only if
u ∈ V ((G,k)�) and it is bounded by � = 2 maxu∈[n] ϕ(G,u). Consequently,

n∑
k=1

|Y − Yk|2 ≤
n∑

k=1

�2(G, k)�2 = Z�2.

Finally, we conclude by using Efron–Stein’s inequality: Var(Y ) ≤ EZ�2 ≤√
EZ2

√
E�4. �

We now apply the above proposition and Proposition 31 to show that the SBM
random graph with uniform root selection converges weakly to the multitype
Galton–Watson process previously studied. The established convergence implies
convergence for the local weak topology of Benjamini and Schramm (see [3]).
Crucially, we are able to consider local functions with logarithmic distance param-
eter � and obtain bounds on the convergence speed.

PROPOSITION 36. Let � ∼ κ logα n with 0 < κ < 1/2. There exists c > 0, such
that if τ,ϕ : G∗ → R are �-local, |τ(G,o)| ≤ ϕ(G,o) and ϕ is nondecreasing by
the addition of edges, then if Eϕ(T , o) is finite,

E

∣∣∣∣∣1

n

n∑
v=1

τ(G,v) −Eτ(T , o)

∣∣∣∣∣
≤ c

α�/2√logn

nγ/2

((
Emax

v∈[n]ϕ
4(G,v)

)1/4 ∨ (
Eϕ2(T , o)

)1/2
)
,

where (T , o) is the random rooted tree associated to the Galton–Watson branch-
ing process defined in Section 8 started from Z0 = δι and ι has distribution
(π(1), . . . , π(r)).

PROOF. In view of Proposition 35 and Jensen’s inequality, it is sufficient to
prove that ∣∣∣∣∣1

n

n∑
v=1

Eτ(G,v) −Eτ(T , o)

∣∣∣∣∣
= O

(
α�/2

nβ

√
logn

(
max
v∈[n]Eϕ2(G,v) ∨Eϕ2(T , o)

)1/2
)
,

(74)
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with β = (γ ∧ (1 − κ))/2. For i ∈ [r], we set τi = τ(Ti, o) where (Ti, o) has dis-
tribution the the random tree (T , o) started from Z0 = δi . Let v ∈ V with σ(v) = i.
We denote by χv the indicator function that the coupling of (G,v)� and (Ti, o)�
described in Proposition 31 is not successful. We have, from the Cauchy–Schwarz
inequality∣∣Eτ(G,v) −Eτi

∣∣ = ∣∣Eχvτ(G,v) −Eχvτi

∣∣
≤ 2

√
(Eχv)

(
Eϕ(G,v)2 ∨Eϕ(Ti, o)2

)
= O

(
α�/2n−β

√
logn

√
Eϕ(G,v)2 ∨Eϕ(Ti, o)2

)
.

Let v1, . . . , vr be fixed vertices such that σ(vi) = i [since π(i) > 0 such vi exists
for n large enough]. We recall that Eτ(G,v) depends only on σ(v). Hence, using
(12),

E
1

n

∑
v∈V

τ(G,v)

=
r∑

i=1

n(i)

n
Eτ(G,vi)

=
r∑

i=1

{(
π(i) + O

(
n−γ ))

Eτi

+ O
(
α�/2n−β

√
logn

√
Eϕ(G,vi)2 ∨Eϕ(Ti, o)2

)}

= Eτ(T , o) + O

(
α�/2n−β

√
logn

r∑
i=1

√
Eϕ(G,vi)2 ∨Eϕ(Ti, o)2

)
.

This completes the proof of (74). �

9.3.2. Law of large numbers for specific local functions. We will now apply
Proposition 36 to deduce weak laws of large numbers for expressions closely re-
lated to 〈B�χk,B

�χj 〉, 〈B2�χk,B
�χj 〉 and 〈B�B∗�χ̌k,B

�B∗�χ̌j 〉. Recall the defi-
nition of Yt (e) in (67).

PROPOSITION 37. Let � ∼ κ logα n with 0 < κ < γ/4:

(i) For any k ∈ [r0], there exists ρk > 0 such that, in probability,

1

αn

∑
e∈ �E

〈φk,Y�(e)〉2

μ2�
k

→ ρk.
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(ii) For any k ∈ [r] \ [r0], there exists ρk > 0 such that w.h.p.

1

αn

∑
e∈ �E

〈φk,Y�(e)〉2

α�
≥ ρk.

(iii) For any k �= j ∈ [r],
E

∣∣∣∣ 1

αn

∑
e∈ �E

〈
φk,Y�(e)

〉〈
φj ,Y�(e)

〉∣∣∣∣ = O
(
α5�/2n−γ /2(logn)5/2).

(iv) For any k �= j ∈ [r],
E

∣∣∣∣ 1

αn

∑
e∈ �E

〈
φk,Y2�(e)

〉〈
φj ,Y�(e)

〉∣∣∣∣ = O
(
α7�/2n−γ /2(logn)5/2).

(v) For any k ∈ [r0], in probability

1

αn

∑
e∈ �E

〈φk,Y2�(e)〉〈φk,Y�(e)〉
μ3�

k

→ ρk.

PROOF. Let Zt , t ≥ 0, be the Galton–Watson branching process defined in
Section 8 started from Z0 = δι and ι has distribution (π(1), . . . , π(r)). We denote
by (T , o) the associated random rooted tree. If k ∈ [r0], by Theorem 21, for some
ρk > 0,

E〈φk,Z�〉2μ−2�
k = ρk + o(1).

We set τ(G,v) = ∑
e∈ �E:e2=v

〈φk,Y�(e)〉2μ−2�
k . We observe that∑

e∈ �E:e2=v

〈
φk,Y�(e)

〉2 ≤ ∑
e∈ �E:e2=v

S2
� (e) ≤ S2

�+1(v).

We get, using μ−2
k < α−1, that τ(G,v) ≤ ϕ(G,v) := α−�S2

�+1(v). Also, Lem-
ma 29 implies that Emaxv ϕ(G,v)4 = O((logn)8α4�). The same upper bound
holds for ϕ(T , o) by Lemma 23. We deduce from Proposition 36 that

E

∣∣∣∣ 1

αn

∑
e∈ �E

〈φk,Y�(e)〉2

μ2�
k

− E〈φk,Z�〉2

μ2�
k

∣∣∣∣ = O
(
α3�/2(logn)5/2n−γ /2).

It proves statement (i) of the proposition.
For statement (ii), we use Theorem 22 instead. We denote by Xk the limit mar-

tingale in Theorem 22 when Z0 = δι. If μ2
k < μ1, we find similarly that for any

θ > 0,

1

αn

∑
e∈ �E

(〈φk,Y�(e)〉
α�/2

)2
∧ θ
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converges in L1 to E(|Xk|2 ∧ θ). From Theorem 22, the latter is positive if θ

is large enough. In the case μ2
k = μ1, by Theorem 22, we need to normalize by

α�/2�1/2.
For (iii), we use Lemma 27. We set τ(G,v) := ∑

e∈ �E:e2=v
〈φk,Y�(e)〉〈φj ,Y�(e)〉.

Arguing as above, we have τ(G,v) ≤ ϕ(G,v) = S2
�+1(v) and Emaxv ϕ(G,v)4 is

O((logn)8α8�), by Lemma 29. The same upper bound holds for ϕ(T , o) from
Lemma 23. It remains to apply Proposition 36.

For statement (iv), we have E〈φk,Z2�〉〈φj ,Z�〉 = μ�
kE〈φk,Z�〉〈φj ,Z�〉 = 0 by

Lemma 27. We set τ(G,v) = ∑
e∈ �E:e2=v

〈φk,Y2�(e)〉〈φj ,Y�(e)〉. We have

τ(G,v) ≤ ϕ(G,v) = ∑
e∈ �E:e2=v

S2�(e)S�(e) ≤ S2�+1(v)S�+1(v).

Moreover, Emaxv ϕ(G,v)4 = O((logn)8α12�) by Lemma 29 and the Cauchy–
Schwarz inequality. The same upper bound holds for ϕ(T , o) from Lemma 23. It
remains to apply Proposition 36.

Finally, for statement (v), E〈φk,Z2�〉〈φk,Z�〉 = μ�
kE〈φk,Z�〉2 = μ3�

k (ρk +
o(1)). We use μ2

k > α and then repeat the proof of statement (iv), we get

E

∣∣∣∣ 1

αn

∑
e∈ �E

〈φk,Y2�(e)〉〈φk,Y�(e)〉
μ3�

k

− ρk

∣∣∣∣ = O
(
α7�/2−3�/2n−γ /2(logn)5/2).

Since κ < γ/4, the right-hand side is o(1). �

We conclude this subsection by estimates on quantities which are closely related
to B�B∗�χ̌k . For e ∈ �E(V ), we define for t ≥ 0, Yt (e) = {f ∈ �E : �d(e, f ) = t}. For
k ∈ [r], we set

(75) Pk,�(e) =
�−1∑
t=0

∑
f ∈Yt (e)

Lk(f ),

where

Lk(f ) = ∑
(g,h)∈Y1(f )\Yt (e);g �=h

〈
φk, Ỹt (g)

〉
S̃�−t−1(h),

and Ỹt (g), S̃�−t−1(h) = ‖Ỹ�−t−1(h)‖1 are the variables Yt (g), S�−t−1(h) defined
on the graph G where all edges in (G, e2)t have been removed. In particular, if
(G, e)2� is a tree, Ỹs(g) and Ys(g) coincide for s ≤ 2� − t .

We also define

(76) Sk,�(e) = S�(e)φk

(
σ(e1)

)
.

As can be seen from (60), when (G, e2)2� is a tree, it follows that

(77) B�B∗�χ̌k(e) = Pk,�(e) + Sk,�(e).
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This is the reason why controls of quantities Pk,� and Sk,�, themselves based on
the previous branching analysis of quantities Qk,� and S�, respectively, will be
instrumental in our analysis of vectors B�B∗�χ̌k ; see Lemma 39 below. We have
the following.

PROPOSITION 38. Let � ∼ κ logα n with 0 < κ < γ/5:

(i) For any k ∈ [r0], there exists ρ′
k > 0 such that, w.h.p.,

1

αn

∑
e∈ �E

P 2
k,�(e)

μ4�
k

→ ρ′
k.

(ii) For any k ∈ [r] \ [r0], there exists Ck > 0 such that, w.h.p.,

1

αn

∑
e∈ �E

P 2
k,�(e)

α2�(logn)5 ≤ Ck.

(iii) For any k �= j ∈ [r], for some c > 0,

E

∣∣∣∣ 1

αn

∑
e∈ �E

(
Pk,�(e) + Sk,�(e)

)(
Pj,�(e) + Sk,�(e)

)∣∣∣∣ = O
(
α9�/2n−γ /2(logn)c

)
.

PROOF. Let Zt , t ≥ 0, be the Galton–Watson branching process defined in
Section 8 started from Z0 = δι and ι has distribution (π(1), . . . , π(r)). We denote
by (T , o) the associated random rooted tree. For any k ∈ [r0], by Theorem 25, for
some positive constant ρ ′

k ,

(78)
E[Q2

k,�]
μ2�

k

= ρ′
k + o(1).

On the other hand, Theorem 25 also ensures that for some Ck > 0, for k ∈ [r]\[r0],

(79)
E[Q2

k,�]
α2�(logn)5 ≤ 2Ck.

Let us denote here by Ft the σ -algebra spanned by (G, e)t , given Ft+1 and
g ∈ (G, e)t+1. By a monotonicity argument, the statement of Lemma 29 applies to
variables (S̃s(g), s ≥ 0). Thus, for any p ≥ 1, there is a constant c > 0 such that
for any integer s ≥ 0, E[S̃s(g)p|Ft+1] ≤ cᾱ

sp
n . We thus have, repeating the proof

of Lemma 26, that for any fixed p ≥ 1,

EPk,�(e)
p ≤ C(ᾱn)

2�p = O
(
α2�p).

Then the argument in the proof of Proposition 37 can be applied. For statement
(i), we let k ∈ [r0] and define τ(G,v) = ∑

e∈ �E,e2=v
P 2

k,�(e)μ
−4�
k . Let

M(v) = max
0≤t≤�

max
u∈(G,v)t

max
s≤2�−t

(
Ss(u)/αs).
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Since μ2
k > α, we have the rough bound

τ(G,v) ≤ α−2�
∑

e∈ �E,e2=v

(
�−1∑
t=0

∑
f ∈Yt (e)

M2(v)αt+1α�−t

)2

= (
M2(v)α

)2 ∑
e∈ �E,e2=v

(
�−1∑
t=0

∑
f ∈Yt (e)

1

)2

.

Hence, τ(G,v) ≤ CM(v)6α2� = ϕ(G,v). However, we have by Lemma 29 that
Emaxv ϕ(G,v)4 = O((logn)24α8�). By Lemma 23, the same bound holds for
ϕ(T , o). We deduce from Proposition 36 that

E

∣∣∣∣ 1

αn

∑
e∈ �E

P 2
k,�(e)

μ4�
k

− EQ2
k,�

μ4�
k

∣∣∣∣ = O
(
α5�/2n−γ /2(logn)c

)
.

Since κ < γ/5, the right-hand side goes to 0 and statement (i) follows from (78).
Statement (ii) is proved similarly using (79). For statement (iii), we use the above
computation, together with Theorem 28 and (8). It gives the claimed bound. �

9.4. Proof of Proposition 19. For the next lemma, recall the definitions (75)–
(76) of the vectors Pk,� and Sk,� in R

�E . We also introduce the vector in R
�E , for

k ∈ [r],
Nk,�(e) = 〈

φk,Y�(e)
〉
.

LEMMA 39. Let � ∼ κ logα n with 0 < κ < γ ∧ 1/2. Then, w.h.p. ‖B�χk −
Nk,�‖ = O((logn)5/2α3�/2) = o(α�/2√n), ‖B�B∗�χ̌k − Pk,� − Sk,�‖ =
O((logn)4α3�) and ‖B�B∗�χ̌k − Pk,�‖ = O(α�

√
n).

PROOF. Let �E� be as in Proposition 33 and let �E′
� ⊂ �E� be the subset of edges

such that (G, e2)� is a not tree. From (73), Lemma 29 and Proposition 33 we have,
w.h.p., ∥∥Nk,� − B�χk

∥∥2 = ∑
e∈ �E′

�

(〈
φk,Y�(e)

〉 − 〈
B�χk, δe

〉)2

≤ 2
∑
e∈ �E′

�

(
S�(e)

2 + 〈
B�χk, δe

〉2)

= O
(∣∣ �E′

�

∣∣ log(n)4α2�) = O
(
(logn)5α3�),

where at the last line, we have used Lemma 30. Since κ < 1/2, it proves the first
statement.
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Similarly, for the second statement, recall as stated in (77) that when (G, e2)2�

is a tree, then B�B∗�χ̌k(e) = Pk,�(e) + Sk,�(e). Let �E′
2� ⊂ �E2� be the subset of

edges such that (G, e2)2� is not a tree. If G is 2�-tangle-free, then there are at most
two different nonbacktracking paths between two edges. Hence, if e ∈ �E′

2�,∣∣B�B∗�χ̌k(e)
∣∣ ≤ 2‖φk‖∞

(
P1,�(e) + S�(e)

) ≤ 2
(
P1,�(e) + S�(e)

)
.

Now, by Lemma 29, w.h.p. S�(e) ≤ C(logn)α�. Moreover, if M = maxv,t≤� St (v)/

αt ≤ C logn, P1,�(e) ≤ ∑�−1
t=0

∑
f ∈Yt (e)

αt+1α�−tM2 ≤ M3 ∑�−1
t=0 αt+�+1. So fi-

nally, w.h.p. for all e ∈ �E′
2�,∣∣B�B∗�χ̌k(e)

∣∣ = O
(
(logn)3α2�).

Hence, by Lemma 30, w.h.p.,∥∥B�B∗�χ̌k − Pk,� − Sk,�

∥∥ = O
(√∣∣E′

2�

∣∣(logn)3α2�
)

= O
(
(logn)4α3�).

On the other hand, from Proposition 37(i), w.h.p.,

(80) ‖Sk,�‖ = O
(√

nα�).
The conclusion follows since κ < 1/2. �

All ingredients are finally gathered to prove Proposition 19.

PROOF OF PROPOSITION 19. We use the notation of Lemma 39.
Proof of (i). Let k ∈ [r0]. By definition,

θk = ‖B�B∗�χ̌k‖
‖B�χk‖ .

From Proposition 37(i) and Proposition 38(i), respectively, for some positive con-
stants c0, c1, w.h.p.,

c0

2
≤ ‖Nk,�‖√

nμ�
k

≤ 2c1 and
c0

2
≤ ‖Pk,�‖√

nμ2�
k

≤ 2c1.

It remains to use Lemma 39 and the assumption μ2
k > α. We find, w.h.p.,

(81) c0 ≤ ‖B�χk‖√
nμ�

k

≤ c1 and c0 ≤ ‖B�B∗�χ̌k‖√
nμ2�

k

≤ c1.

Proof of (iii). Let k ∈ [r] \ [r0]. From Proposition 37(ii) w.h.p. ‖Nk,�‖ ≥
(c0/2)

√
nα�/2 and from Proposition 38(ii) w.h.p. ‖Pk,�‖ = O(

√
n(logn)5/2α�).

Using Lemma 39, we find, w.h.p.,

(82) c0 ≤ ‖B�χk‖√
nα�/2 and

‖B�B∗�χ̌k‖√
n(logn)5/2α�

≤ c1.
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Proof of (ii). Let k ∈ [r0]. Since Px = x̌ is an isometry,

〈ζk, ϕ̌k〉 = 〈B�B∗�χ̌k,B
∗�χ̌k〉

‖B�B∗�χ̌k‖‖B∗�χ̌k‖ = 〈B�χk,B
2�χk〉

‖B�B∗�χ̌k‖‖B�χk‖ .

In view of (81), it is sufficient to prove that for some c0 > 0, w.h.p. 〈B�χk,

B2�χk〉 > c0μ
3�
k n. Note then that∣∣〈B�χk,B

2�χk

〉 − 〈Nk,�,Nk,2�〉
∣∣

≤ ∥∥B�χk

∥∥∥∥B2�χk − Nk,2�

∥∥ + ∥∥B�χk − Nk,�

∥∥‖Nk,2�‖.
(83)

However, from (81) and Lemma 39, we have w.h.p. ‖B�χk‖‖B2�χk − Nk,2�‖ =
o(μ3�

k n). Also, from Proposition 37(i), and Lemma 39, we find w.h.p. ‖B�χk −
Nk,�‖‖Nk,2�‖ = o(μ3�

k n). So finally, w.h.p.,∣∣〈B�χk,B
2�χk

〉 − 〈Nk,�,Nk,2�〉
∣∣ = o

(
μ3�

k n
)
.

On the other hand, by Proposition 37(v), 〈Nk,�,Nk,2�〉 is w.h.p. larger than c0μ
3�
k n

for some c0 > 0. This completes the proof of (ii).
Proof of (iv). Let μ̄k = μk ∨ √

α. From (1) and (81)–(82) for k, j ∈ [r], w.h.p.,

∣∣〈ϕ̌j , ϕ̌k〉
∣∣ = |〈B�χj ,B

�χk〉|
‖B�χj‖‖B�χk‖ ≤ |〈B�χj ,B

�χk〉|
c2

0nμ̄�
j μ̄

�
k

≤ |〈B�χj ,B
�χk〉|

c2
0nα�

.

In addition, equations (81)–(82), Proposition 37(i) and Lemma 39 entail that,
w.h.p.,∣∣〈B�χj ,B

�χk

〉 − 〈Nj,�,Nk,�〉
∣∣ ≤ ∥∥B�χj

∥∥∥∥B�χk − Nk,�

∥∥ + ∥∥B�χj − Nj,�

∥∥‖Nk,�‖
= O

(
α5�/2(logn)5/2√n

)
.

From Proposition 37(iii), we get, if k �= j , that w.h.p.,∣∣〈ϕ̌j , ϕ̌k〉
∣∣ = O

(
α3�/2n−γ /2(logn)5/2).

Proof of (v). Let k �= j ∈ [r0]. From (1) and (81), w.h.p.,

∣∣〈ζj , ϕ̌k〉
∣∣ = |〈B�χj ,B

2�χk〉|
‖B�B∗�χ̌k‖‖B�χk‖ ≤ |〈B�χj ,B

2�χk〉|
c2

0nα3�/2
.

As in (83), we use |〈x, y〉 − 〈x′, y′〉| ≤ ‖x′‖‖y − y′‖+ ‖y‖‖x − x′‖. We find from
(81), Proposition 37(i) and Lemma 39 that, w.h.p.,∣∣〈B�χj ,B

2�χk

〉 − 〈Nj,�,Nk,2�〉
∣∣ = O

(
α4�

√
n(logn)5/2).

Also, from Proposition 37(iv), w.h.p. 〈Nj,�,Nk,2�〉 is O(n1−γ /2α7�/2(logn)5/2).
We conclude finally that∣∣〈ζj , ϕ̌k〉

∣∣ = O
(
α2�n−γ /2(logn)5/2).
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Proof of (vi). We again use the same argument. Let k �= j ∈ [r0]. From (81),

∣∣〈ζk, ζj 〉
∣∣ = |〈B�B∗�χ̌k,B

�B∗�χ̌k〉|
‖B�B∗�χ̌k‖‖B�B∗�χ̌j‖ ≤ |〈B�B∗�χ̌k,B

�B∗�χ̌k〉|
c2

0nα2�
.

Recall that |〈x, y〉 − 〈x′, y′〉| ≤ ‖x′‖‖y − y′‖ + ‖y‖‖x − x′‖. Then from (81),
Proposition 38(i) and Lemma 39, we obtain w.h.p.∣∣〈B�B∗�χ̌k,B

�B∗�χ̌j

〉 − 〈Pk,� + Sk,�,Nj,� + Sk,�〉
∣∣ = O

(
(logn)4α5�

√
n
)
.

Finally, from Proposition 38(iii), the scalar product 〈Pk,� + Sk,�,Nj,� + Sk,�〉 is
O(n1−γ /2α9�/2(logn)5/2). �

10. Norm of nonbacktracking matrices. In this section, we prove Proposi-
tion 20. The argument used for Erdős–Rényi graphs extends rather directly to the
stochastic block model.

10.1. Decomposition of B�. In this paragraph, we essentially repeat the argu-
ment of Section 5.2. We define, for u �= v ∈ V , the centered variable,

Auv = Auv − Wσ(u)σ(v).

We now re-define K as the weighted nonbacktracking matrix on the complete
graph on V , for e, f ∈ �E(V ),

Kef = 1(e → f )Wσ(e1)σ (e2),

where e → f represents the nonbacktracking property, e2 = f1 and e �= f −1. We
also introduce

K
(2)
ef = 1(e

2→ f )Wσ(e2)σ (f1),

where e
2→ f means that there is a nonbacktracking path with one intermediate

edge between e and f . We define �(�), B(�) as in Section 5.2. R
(�)
t is now defined

as

(
R

(�)
t

)
ef = ∑

γ∈F�+1
t,ef

t−1∏
s=0

Aγsγs+1
Wσ(γt )σ (γt+1)

�∏
t+1

Aγsγs+1,

where the set of paths F�+1
t,ef is still defined as in Section 5.2. We again use the

decomposition

B
(�)
ef = �

(�)
ef + ∑

γ∈F�+1
ef

�∑
t=0

t−1∏
s=0

Aγsγs+1

(
Wσ(γt )σ (γt+1)

n

) �∏
t+1

Aγsγs+1
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to obtain

B(�) = �(�) + 1

n
KB(�−1) + 1

n

�−1∑
t=1

�(t−1)K(2)B(�−t−1)

+ 1

n
�(�−1)K − α

n

�∑
t=0

R
(�)
t .

(84)

We introduce

W̄ = ∑
k

μkχkχ̌
∗
k and L = K(2) − W̄ .

It now follows from (84) that when G is �-tangle-free,

∥∥B�x
∥∥ ≤ ∥∥�(�)

∥∥ + 1

n

∥∥KB(�−1)
∥∥

+ 1

n

r∑
j=1

μj

�−1∑
t=1

∥∥�(t−1)χj

∥∥∣∣〈χ̌j ,B
�−t−1x

〉∣∣

+ 1

n

�−1∑
t=1

∥∥S(�)
t

∥∥ + ∥∥�(�−1)
∥∥ + α

n

�∑
t=0

∥∥R(�)
t

∥∥,
(85)

where we have again let S
(�)
t := �(t−1)LB(�−t−1) as in Section 5.2. We will now

upper bound the above expression over all x such that 〈χ̌j ,B
�x〉 = 0.

10.2. Proof of Proposition 20. The proof of Proposition 20 parallels that of
Proposition 11.

The main task is to adapt the arguments of Section 6 to bound the norms ‖�(t)‖,
‖�(t)χk‖, ‖R(�)

t ‖, ‖B(t)‖, ‖KB(t)‖, ‖S(�)
t ‖. We only highlight the two main dif-

ferences.
First, the expressions (38)–(45)–(48) now depend on the types of the vertices in-

volved in a path. We treat, for example, the case of (38) needed for Proposition 29.
We claim that if γ ∈ Wk,m is a canonical path with e edges and v vertices,

(86)
1

nv

∑
τ

E

2m∏
i=1

k∏
s=1

Aτ(γi,s−1),τ (γi,s )
≤

(
ᾱn

n

)v−1(a

n

)e−v+1
,

where the sum is over all injections τ : [v] → [n], a = maxi,j Wij and ᾱn =
α + O(n−γ ) is defined in (68). Indeed, we consider a spanning tree of G(γ ),
for the e − v + 1 edges not present in the spanning tree, we use the bound,
EA

p
uv ≤ Wσ(u)σ(v)/n ≤ a/n for any p ≥ 1 and u, v ∈ [n]. For the remaining v − 1

edges, we take a leaf, say l, of the spanning tree of G(γ ), and denote its unique
neighbor by g. Then the injection τ : [v] → [n] will give a label say i = σ(τ(g))
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to g and j = σ(τ(l)) to l. We use the bound that for any p ≥ 1 and i ∈ [n],∑r
j=1 n(j)Wij /n ≤ ᾱn. Hence, summing over all possible values of τ(l) while

fixing τ(q), q �= l, gives a factor of at most αn/n in (86). We then remove l from
the spanning tree and repeat this procedure v − 1 times; this yields (86).

With (86) in place of (38), using Lemma 17 we then bound S given by (37) as
follows:

S ≤
km+1∑
v=3

km∑
e=v−1

∣∣Wk,m(v, e)
∣∣( ᾱn

n

)v−1(a

n

)e−v+1
nv

≤ nᾱkm
n

km+1∑
v=3

km∑
e=v−1

(2km)10m(e−v+1)+8mae−v+1nv−e−1

≤ nᾱkm
n (2�m)8m(�m)

∞∑
s=0

(
(2�am)10m

n

)s

.

In the range of k ≤ � and m defined by (34), we have ᾱkm
n = αkm(1+o(1)). We de-

duce that the bound (29) on ‖�‖ continues to hold for the stochastic block model.
Similarly, by the same adaptation of (45)–(48), we find that bounds (31) and (32)
on ‖R(�)

t ‖ and ‖B(t)‖ continue to hold for the stochastic block model.
The second difference lies in the definition of the matrix L = K(2) − W̄ . For

the stochastic block model, from (9), the entry Lef is zero unless e = f , e → f ,
f −1 → e or e → f −1. Moreover, the nonzero entries are bounded by a. Then the
argument of the proof of bound (33) carries over easily.

With bounds (29)–(31)–(32)–(33) available for the stochastic block model, the
remainder of the proof of Proposition 20 repeats the argument of Section 5.4.

11. Stochastic block model: Proof of Theorem 5. The strategy of proof
is based on the following lemma which asserts that the existence of a Boolean
function nonconstant over the classes ensures the existence of an estimation with
asymptotically positive overlap.

LEMMA 40. Assume that π(i) ≡ 1/r and there exists a function F : V →
{0,1} of the graph G such that in probability, for any i ∈ [r],

lim
n→∞

1

n

n∑
v=1

1{σ(v)=i}F(v) = f (i)

r
,

where f : [r] → [0,1] is not a constant function [there exists (i, j) such that
f (i) �= f (j)]. Let (I+, I−) be a partition of [r], such that 0 < |I+| < r and

(87)
1

|I+|
∑
i∈I+

f (i) >
1

|I−|
∑
i∈I−

f (i).
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Then the following estimation procedure yields asymptotically positive overlap
with permutation p in (15) equal to the identity: assign to each vertex v a label
σ̂ (v) picked uniformly at random from I+ if F(v) = 1 and from I− if F(v) = 0.

Observe that the existence of a nontrivial partition (I+, I−) satisfying (87) is
implied by the assumption that f is not constant.

PROOF OF LEMMA 40. Let j ∈ I+ and v ∈ V such that σ(v) = j , then given
the realization of the graph, the event σ̂ (v) = σ(v) is equal to F(v)εv , where εv is
an independent Bernoulli {0,1}-random variable with P(εv = 1) = 1/|I+|. From
the law of large numbers we deduce that, in probability,

1

n

n∑
v=1

1σ(v)=j1σ̂ (v)=σ(v) → f (j)

r|I+| .

Summing over all j ∈ I+, in probability,

1

n

n∑
v=1

1σ(v)∈I+1σ̂ (v)=σ(v) → f+
r

,

where f+ is the left-hand side of (87). Similarly, if f− is the right-hand side of
(87), in probability,

1

n

n∑
v=1

1σ(v)∈I−1σ̂ (v)=σ(v) → 1 − f−
r

.

Finally, in probability,

1

n

n∑
v=1

1σ̂ (v)=σ(v) − 1

r
→ 1

r
(f+ + 1 − f− − 1) = 1

r
(f+ − f−) > 0,

where the strict inequality comes from (87). �

Our aim is now to find a nonconstant function over the classes which depends
on the eigenvector ξk . To this end, we introduce a new random variable, for v ∈ V ,

Ik,�(v) = ∑
e∈ �E:e2=v

Pk,�(e),

where Pk,� was defined by (75). Our first lemma is an extension of Proposition 38.

LEMMA 41. Let � ∼ κ logα n with 0 < κ < γ ∧ 1/2, k ∈ [r0] and i ∈ [r].
There exists a random variable Yk,i such that EYk,i = 0, E|Yk,i | < ∞ and for any
continuity point t of the distribution of |Yk,i |, in L2,

1

n

n∑
v=1

1{σ(v)=i}1{|Ik,�(v)μ−2�
k −αμkφk(i)/(μ

2
k/α−1)|≥t} → π(i)P

(|Yk,i | ≥ t
)
.
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PROOF. Let Zt , t ≥ 0, be the Galton–Watson branching process defined in
Section 8 started from Z0 = δι and ι has distribution (π(1), . . . , π(r)). We denote
by (T , o) the associated random rooted tree. Let D be the number of offspring of
the root and for 1 ≤ x ≤ D, let Qk,�(x) be the random variable Qk,� defined on
the tree T x where the subtree attached to x is removed and set

Jk,� =
D∑

x=1

Qk,�(x).

We observe that

EJk,� =
∞∑

n=0

αne−α

n! nE[Qk,�|D = n − 1]

=
∞∑

n=1

αne−α

(n − 1)!E[Qk,�|D = n − 1] = αEQk,�.

Also, by Theorem 25, the variable Qk,�μ
−2�
k − μkφk(ι)/(μ

2
k/α − 1) converges in

L2 to a centered variable Xk satisfying EX2
k ≤ C. However, the variables Qk,� and

Jk,� are closely related, indeed,

Jk,� = (D − 2)Lo
k,� + (D − 1)

�∑
t=1

∑
u∈Yo

t

Lu
k,� = (D − 1)Qk,� − Lo

k,�,

where Lu
k,� was defined above (60). Inequality (63) for t = 0, shows that

E|Lo
k,�|2 = O(α2�). Hence, Lo

k,�/μ
2�
k converges in L2 to 0. From Theorem 25,

we find that Jk,�μ
−2�
k − αμkφk(ι)/(μ

2
k/α − 1) converges weakly to a centered

variable Yk satisfying E|Yk| ≤ C. In particular, if t is a continuity point of
|Yk|, 1(σ (o) = i)1(|Jk,�μ

−2�
k − αμkφk(i)/(μ

2
k/α − 1)| ≥ t) converges weakly to

1(σ (o) = i)1(|Yk| ≥ t). It then remains to apply Proposition 36. �

Our second lemma checks that we may replace Pk,� in the above statement by
the eigenvector ξ ′

k properly renormalized to be asymptotically close to (14). More
precisely, we set

Ik(v) = ∑
e:e2=v

s
√

nξ ′
k(e),

where s =
√

αρ′
k and ρ′

k was defined in Proposition 38.

LEMMA 42. Let k ∈ [r0], i ∈ [r] and Yk,i be as in Lemma 41. For any conti-
nuity point t of the distribution of |Yk,i |, in L2,

1

n

n∑
v=1

1{σ(v)=i}1{|Ik(v)−αμkφk(i)/(μ
2
k/α−1)|≥t} → π(i)P

(|Yk,i | ≥ t
)
.
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PROOF. From Proposition 38(i), we find that, in probability,

1

n

∑
e∈ �E

P 2
k,�

μ4�
k

→ s2.

We set ξ̃k(e) = Pk,�/(μ
2�
k s

√
n). From Lemma 39, we have, w.h.p.,

‖ξ̃k − ζk‖ = O
(
α�μ−2�

k

) = o(1).

Also, from Theorem 4, w.h.p., ∥∥ζk − ξ ′
k

∥∥ = o(1).

Hence, from the triangle inequality, w.h.p.,∥∥ξ̃k − ξ ′
k

∥∥ = o(1).

We deduce from the Cauchy–Schwarz inequality that, w.h.p.,

1

n

n∑
v=1

∣∣∣∣Ik(v) − Ik,�(v)

μ2�
k

∣∣∣∣ ≤ s
√

n

n

∑
e∈ �E

∣∣ξ ′
k(e) − ξ̃k(e)

∣∣ ≤ s

√
n| �E|
n

∥∥ξ̃k − ξ ′
k

∥∥ = o(1).

Since t is a continuity point of |Yk,i |, it is then a routine to deduce Lemma 42 from
Lemma 41. �

All ingredients are now gathered to prove Theorem 5. We fix k ∈ [r0] as in
Theorem 5 and let ξ ′

k be as above. We set

J+ := {
i ∈ [r] : φk(i) > 0

}
and J− = [r] \ J+.

From Lemma 42, there exist random variables Xj , j ∈ [r] on R such that EXj =
αμkφk(j)/(μ2

k/α − 1) and the following holds for all j ∈ [r]. With Ik as above,
for all t ∈ R that is a continuity point of the distribution of Xj , the following
convergence in probability holds:

(88) lim
n→∞

1

n

n∑
v=1

1σ(v)=j1Ik(v)>t = π(j)P(Xj > t).

Write, for ε = ±, πε = ∑
j∈I ε π(j), gε = ∑

j∈J ε π(j)φk(j). Note that g+ > 0 by
definition of J+. Also by the orthogonality relation (8) between φ1 = 1 and φk we
obtain g+ + g− = 0, so that g− < 0. For ε = ±, we shall denote by Xε the random
variable obtained as a mixture of the Xj for j ∈ J ε , with weights π(j)/πε . Note
that Xε has mean gε/πε .

We now establish the existence of t0 ∈ R that is a continuity point of the distri-
bution of both X+ and X−, and such that

(89) P(X+ > t0) > P(X− > t0).
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To this end, since EX+ > 0, we write∫ +∞
0

P(X+ > t)dt >

∫ +∞
0

P(−X+ > t)dt =
∫ +∞

0
P(−X+ ≥ t) dt.

The same argument yields∫ +∞
0

P(X− > t)dt <

∫ +∞
0

P(−X− ≥ t) dt.

Combined, these two inequalities imply∫ +∞
0

{[
P(X+ > t) − P(X− > t)

] + [
P(X+ > −t) − P(X− > −t)

]}
dt > 0.

Thus, there is a subset of R+ of positive Lebesgue measure on which either
P(X+ > t) > P(X− > t) or P(X+ > −t) > P(X− > −t). This implies the exis-
tence of a continuity point t0 ∈ R of both X+, X−, −X+ and −X− such that (89)
holds.

We may now come back to the eigenvector ξk in Theorem 5. We set τ = st0 in
Theorem 5. For some unknown sign ω ∈ {−1,1}, we have

(90) ξk = ωξ ′
k.

Case 1: The sign can be estimated. We first assume that ω is known and ξ ′
k = ξk .

We consider the function

F(v) = 1{∑e:e2=v ξ ′
k(e)>τ/

√
n} = 1{Ik(v)>t0}.

From (89), (87) is satisfied with I± = J± and we can apply Lemma 40 to obtain
an asymptotically positive overlap. We note that the sign ω is easy to estimate
consistently if the random variable X which is the mixture of the Xj with weights
π(j) = 1/r is not symmetric. Indeed, in this case, for some bounded continuous
function f ,

Ef (X) =
r∑

j=1

π(j)Ef (Xj ) �=
r∑

j=1

π(j)Ef (−Xj) = Ef (−X).

Then, from (88), given ω, in probability,

lim
n→∞

1

n

n∑
v=1

f
(
ωIk(v)

) = Ef (ωX)

takes a different value for ω = 1 and ω = −1.

Case 2: Fully symmetric case. Another simple case is if X defined above is sym-
metric and |J+| = |J−|. If this occurs, X+ and −X− have the same distribution.
We consider the function F(v) = 1(

∑
e:e2=v ξk(e) > τ/

√
n) = 1(ωIk(v) > t0) and

the estimation where a vertex such that F(v) = 1 receives a uniform label in J+,
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and otherwise a label uniform in J−. By Lemma 40 applied to F , if ω = 1, we
obtain an positive overlap with I± = J± and the permutation p in (15) equal to
the identity. If ω = −1, we obtain an positive overlap with I± = J∓ and any per-
mutation p in (15) such that p(J±) = J∓.

Case 3: General case. In the general case, we may use the same idea: apply
Lemma 40 for a partition (I+, I−) which may depend on ω but such that the
cardinal of I± does not. First, from (88), the function f1(j) = P(Xj > t0) is not
constant on [r] and there exists j1 such that

f1(j1) >
1

r − 1

∑
j �=i1

f1(j).

We distinguish two subcases. The first case is when the function f−1(j) =
P(−Xj > t0) is also nonconstant. Then there exists j−1 such that

f−1(j−1) >
1

r − 1

∑
j �=j−1

f−1(j).

We consider the function F(v) = 1(
∑

e:e2=v ξk(e) > τ/
√

n) = 1(ωIk(v) > t0) and
the estimation where σ̂ (v) = 1 if F(v) = 1 and σ̂ (v) uniform on {2, . . . , r} other-
wise. We apply Lemma 40 to F and the partition I+ = {jω}, I− = [r] \ {jω}. We
obtain an asymptotically positive overlap for any permutation p in (15) such that
p(jω) = 1.

In the other case, f−1 is constant and equal to say a. We introduce extra random
independent variables ω′(v) ∈ {−1,1} i.i.d. such that P(ω′(v) = 1) = P(ω′(v) =
−1) = 1/2. We consider the function F(v) = 1(ω′(v)

∑
e:e2=v ξk(e) > τ/

√
n).

Then, by (88), in probability,

lim
n→∞

1

n

n∑
v=1

1σ(v)=jF (v) = π(j)

2

(
P(Xj > t0) + a

)
.

Hence, it follows from (89) that (87) is satisfied with I± = J±. We can then apply
Lemma 40 to obtain an asymptotically positive overlap.

This completes the proof of Theorem 5.
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