
The Annals of Probability
2017, Vol. 45, No. 5, 3266–3292
DOI: 10.1214/16-AOP1136
© Institute of Mathematical Statistics, 2017

A CLARK–OCONE FORMULA FOR TEMPORAL POINT
PROCESSES AND APPLICATIONS
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“Mauro Picone”

We provide a Clark–Ocone formula for square-integrable functionals of
a general temporal point process satisfying only a mild moment condition,
generalizing known results on the Poisson space. Some classical applications
are given, namely a deviation bound and the construction of a hedging portfo-
lio in a pure-jump market model. As a more modern application, we provide
a bound on the total variation distance between two temporal point processes,
improving in some sense a recent result in this direction.

1. Introduction. Clark–Ocone formulas are powerful results in stochastic
analysis with many significant applications such as deviation inequalities and port-
folio replication; see, for example, [14, 15, 22, 23, 31]. On the Poisson space, the
Clark–Ocone formula provides the following representation of a square-integrable
random variable F :

F = E[F ] +
∫ 1

0
E[DtF | Ft ](N(dt) − dt

)
,

where Dt is the finite difference operator [see (4)] and {Ft } is the filtration gen-
erated by the homogeneous Poisson process N . Similar formulas for square-
integrable functionals hold also on the Wiener and Lévy spaces; see, for example,
[9]. Various kinds of generalizations have been obtained recently in, for example,
[1, 10].

In addition to the well-known applications cited above, Clark–Ocone formulas
have been recently used to prove Gaussian and Poisson approximation of random
variables; see [19, 24, 25, 28, 29]. In another direction, such formulas have been
used to obtain variational representations for the Laplace transform of functionals
on the Wiener and Poisson spaces; cf. [32, 33].

The main achievement of this paper is a Clark–Ocone formula for point pro-
cesses on a finite interval possessing a conditional intensity; see Theorem 4.1.
Specifically, we shall consider two different notions of conditional intensity. The
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first, denoted by {λt }, which we call classical stochastic intensity, is commonly de-
fined for point processes on the line (see, e.g., [2, 5]). Roughly speaking, λt (ω)dt

is the probability that the point process has a point in the infinitesimal region dt

given that it agrees with the configuration ω before time t . The second, denoted by
{πt } and called the Papangelou conditional intensity, is defined for general point
processes (see, e.g., [6, 18]). Intuitively, πt(ω)dt is the probability that the point
process has a point in the infinitesimal region dt given that it agrees with the con-
figuration ω outside of dt .

The proof of the Clark–Ocone formula in Theorem 4.1 is based on the repre-
sentation theorem for square-integrable martingales, and a use of an integration by
parts and an isometry formula to identify the integrand.

We provide three applications of our result. The first is a deviation inequality for
functionals of the point process (see Proposition 5.1), which extends to our setting
the bound provided in Proposition 3.1 of [31]. The second provides a bound on
the total variation distance between the laws of two point processes possessing
Papangelou conditional intensities; see Proposition 5.5. Under mild assumptions
on the point processes, we improve to some extent the constant appearing in the
analogous bound given in Theorem 4 of [26]; see Remark 5.6. The third provides
a self-financing strategy for option hedging in a market with one risky asset and
dynamics according to a general pure-jump process.

All our results hold for point processes possessing a conditional intensity and
such that the variance of the number of points in the interval is finite. If we further
assume that the point process is locally stable, as defined in Section 2.4, then we
obtain a more explicit deviation bound; see Corollary 5.3 as well as Remark 5.4.
For a large class of renewal processes which is particularly suited to our setting,
we prove local stability in Proposition 2.10.

In order to not overshadow the main ideas with technicalities, in this paper we
stick to the simple case of a 1-dimensional point process on a finite interval. Ex-
tensions of the Clark–Ocone formula to a point process on a more general space,
together with new applications (e.g., to optimal transport problems) are presently
under investigation by the authors and shall be the subject of a future work.

The paper is structured as follows. In Section 2, we give some preliminaries
on point processes, proving that, under natural assumptions, a point process on a
finite interval has a Papangelou conditional intensity if and only if it has a classi-
cal stochastic intensity, while expressing one intensity as a function of the other.
In Section 3, we recall some results related to the martingale representation the-
orem, namely Proposition 3.1 and Proposition 3.2. After these preparations, we
give our main result in Section 4. The aforementioned applications are provided in
Section 5.

2. Point processes with conditional intensities. Let T > 0 be a fixed positive
constant. All the random quantities considered in this paper are assumed to be
defined on the space � of all integer-valued measures ω on ([0, T ],B([0, T ])),
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where B([0, T ]) is the Borel σ -field on [0, T ], such that ω({0}) = 0, ω({t}) ≤ 1
for any t ∈ [0, T ] and ω([0, T ]) < ∞. We define

N(ω) = ω, ω ∈ �

and for a Borel set D ∈ B([0, T ]) we shall consider the σ -field

FD := σ
{
N(A) : A ∈ B(D)

}
.

For ease of notation, we also set Ft := F[0,t] and Ft− := F[0,t) for t ∈ [0, T ].
We set F := FT , let P be a probability on (�,F), and consider the canonical

probability space (�,F,P). Throughout the paper, we denote by E the expectation
operator with respect to P. For any Borel set D ∈B([0, T ]), we let �D denote the
space of integer-valued measures ω ∈ � such that supp(ω) ⊂ D, where supp(ω)

denotes the support of ω. We define PD as the restriction of P to (�D,FD). The
sample measure LD on (�D,FD) is defined by∫

�D

f (ω)LD(dω) := f (0) + ∑
n≥1

1

n!
∫
Dn

f

(
n∑

i=1

εti

)
dt1 · · · dtn,

for any nonnegative measurable function f : �D → [0,∞). Here, εt denotes the
Dirac measure at t ∈ [0, T ] and 0 denotes the null measure.

A stochastic process X : [0, T ]×� →R is called predictable if it is measurable
with respect to the predictable σ -field on [0, T ] × � defined by σ {(a, b] × A :
a, b ∈ [0, T ],A ∈ Fa}. We often denote X by {Xt }t∈[0,T ]. For later purposes, we
recall that if X is predictable, then for a fixed t ∈ [0, T ] the random variable Xt

is measurable with respect to Ft− (and, therefore, with respect to Ft ); see, for
example, Lemma A3.3.I, page 425 in [5].

The point process N may be described in terms of its points, that is, the random
sequence T0 := 0 < T1 < T2 < · · · < Tn < · · · < TN([0,T ]), where N([0, t]) = n

if and only if t ∈ [Tn,Tn+1). Throughout this paper, for a stochastic process
{Xt }t∈[0,T ], we set∫ t

0
XsN(ds) := ∑

n≥1

XTn1[0,t](Tn), t ∈ [0, T ].

We shall consider two different notions of conditional intensity for point pro-
cesses: the classical stochastic intensity and the Papangelou conditional intensity.

2.1. Classical stochastic intensity. We start by recalling the notion of classi-
cal stochastic intensity (see [2, 5]). A nonnegative predictable stochastic process
{λt }t∈[0,T ] such that

∫ T
0 λt dt < ∞ P-almost surely is a classical stochastic inten-

sity of N if for any nonnegative and predictable stochastic process {Xt }t∈[0,T ],

E

[∫ T

0
XtN(dt)

]
= E

[∫ T

0
Xtλt dt

]
.
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Hereafter, given two stochastic processes X,Y : [0, T ] × � → R we say that
X ∼ Y if X and Y are equal λt (ω)P(dω)dt-almost everywhere on [0, T ] × �.

For p ∈ [1,+∞), we denote by Pp(λ) the family of equivalence classes formed
by predictable stochastic processes X ≡ {Xt }t∈[0,T ] such that

‖X‖p

Pp
:= E

[∫ T

0
|Xt |pλt dt

]
< ∞

and, for ease of notation, we set P1,2(λ) := P1(λ) ∩ P2(λ). Note that ‖ · ‖Pp
is a

norm on Pp(λ).
Under suitable integrability conditions on X and λ, we shall consider the com-

pensated stochastic integral

δ(X) :=
∫ T

0
Xt

(
N(dt) − λt dt

)
, P-almost surely.

The following proposition is proved in [3] (see Theorem 3 therein) and provides a
fundamental isometry formula for point processes with classical stochastic inten-
sity.

PROPOSITION 2.1. The following relations hold:

(i) E[δ(X)] = 0, for any X ∈ P1(λ);
(ii) E[δ(X)δ(Y )] = E[∫ T

0 XtYtλt dt], for any X,Y ∈ P1,2(λ).

2.2. Papangelou conditional intensity. We now recall the notion of Papan-
gelou conditional intensity (see, e.g., [6, 18]). A nonnegative stochastic process
{πt }t∈[0,T ] is a Papangelou conditional intensity of N if, for any stochastic process
{Xt }t∈[0,T ],

(1) E

[∫ T

0
Xt(N − εt )N(dt)

]
= E

[∫ T

0
Xt(N)πt dt

]
.

If N has a Papangelou conditional intensity {πt }t∈[0,T ], then we define its com-
pound Papangelou conditional intensity π̂ : � × � → [0,∞) as

π̂(0,ω) := 1 and π̂

(
n∑

i=1

εti ,ω

)
:= πt1(ω)

n∏
i=2

πti (ω + εt1 + · · · + εti−1),

for ω ∈ � and t1, . . . , tn ∈ [0, T ].
A stochastic process is called exvisible if it is measurable with respect to

the exvisible σ -field on [0, T ] × � defined by σ {(a, b] × A : a, b ∈ [0, T ],A ∈
F[0,T ]\(a,b]}. For later purposes, we note that if X is predictable then X is exvisi-
ble. Indeed, for any a ∈ [0, T ], we have Fa ≡ F[0,T ]\(a,T ]. If N has a Papangelou
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conditional intensity {πt }t∈[0,T ], then for any nonnegative and exvisible process
{Xt }t∈[0,T ]

E

[∫ T

0
XtN(dt)

]
= E

[∫ T

0
Xtπt dt

]
.

Indeed, by Proposition 5.2 in [8], for any nonnegative exvisible process {Xt }t∈[0,T ],
we have Xt(ω − εt ) = Xt(ω) for any ω ∈ � and t ∈ supp(ω).

The next proposition may be found in [17] (see Theorem 3.3 therein) and [20]
(see Theorem 2′ therein).

PROPOSITION 2.2. For any D ∈B([0, T ]),
P

(
0 <

∫
�D

π̂(α,N[0,T ]\D)LD(dα) < ∞
)

= 1,

and for any nonnegative random variable Z : � → [0,∞) we have

E[Z] =
∫
�

∫
�D

(∫
�D

π̂(β,ω)LD(dβ)

)−1

(2)
× Z(α + ω)π̂(α,ω)LD(dα)P[0,T ]\D(dω).

REMARK 2.3. It is worth noting that, for any D ∈ B([0, T ]), we have
that (

∫
π̂(β,ω|[0,T ]\D)LD(dβ))−1 is a version of P(N(D) = 0 | N |[0,T ]\D =

ω|[0,T ]\D), cf. p. 123 in [17] as well as Remark 2.5(c) in [11]. Consequently, (2)
may be rewritten as

E[Z] =
∫
�[0,T ]\D

∫
�D

Z(α + ω)π̂(α,ω)LD(dα)P(dω),

which is the presentation adopted in Theorem 2′ of [20].

As a straightforward consequence of Proposition 2.2, we obtain an explicit pre-
dictable projection of a stochastic process under mild integrability conditions (see
(2.10) in [11] for a similar result).

PROPOSITION 2.4. Let {Xt }t∈[0,T ] be a stochastic process which is either as-
sumed to be nonnegative or satisfying Xt ∈ L1(�,F,P) for all t ∈ [0, T ]. Then
E[Xt | Ft−](ω) has the version(∫

�[t,T ]
π̂(β,ω|[0,t))L[t,T ](dβ)

)−1

(3)
×

∫
�[t,T ]

Xt(α + ω|[0,t))π̂(α,ω|[0,t))L[t,T ](dα),

for t ∈ [0, T ) and ω ∈ �. The version (3) of E[Xt | Ft−](ω) depends only on ω|[0,t)

and is therefore predictable by Proposition 3.3 in [15]. It is denoted by p(X)t (ω).
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PROOF. For A ∈ Ft− and t ∈ [0, T ], by Proposition 2.2 we have

E[Xt1A] =
∫
�

∫
�[t,T ]

(∫
�[t,T ]

π̂ (β,ω)L[t,T ](dβ)

)−1
1A(α + ω)Xt(α + ω)

× π̂ (α,ω)L[t,T ](dα)P[0,t)(dω)

=
∫
�

∫
�[t,T ]

(∫
�[t,T ]

π̂ (β,ω)L[t,T ](dβ)

)−1
1A(ω)Xt(α + ω)

× π̂ (α,ω)L[t,T ](dα)P[0,t)(dω)

= E

[
1A(N)

(∫
�[t,T ]

π̂(β,N |[0,t))L[t,T ](dβ)

)−1

×
∫
�[t,T ]

Xt(α + N |[0,t))π̂(α,N |[0,t))L[t,T ](dα)

]
,

which concludes the proof. �

We define the discrete Malliavin derivative of a random variable F : � →R as

(4) DtF(ω) := F+
t (ω) − F(ω), t ∈ [0, T ],ω ∈ �,

where

F+
t (ω) := F(ω + εt ) =

{
F(ω) if t ∈ supp(ω),

F (ω + εt ) if t /∈ supp(ω).

Under suitable integrability conditions on X and π , we shall consider the
stochastic integral

�(X) :=
∫ T

0
Xt

(
N(dt) − πt dt

)
, P-almost surely.

In particular, we note that if X is predictable, then as remarked previously, Xt(ω−
εt ) = Xt(ω) and so

�(X)(ω) :=
∫ T

0
Xt(ω − εt )

(
ω(dt) − πt(ω)dt

)
.

We conclude this subsection by stating the following lemma, whose proof may be
found in [27] (see Corollary 3.1 therein).

LEMMA 2.5. For any {Xt }t∈[0,T ] ∈ P1(p(π)) and any measurable F : � →R

such that

(5) E

[∫ T

0
|FXt |πt dt

]
< ∞ and E

[∫ T

0
|XtDtF |πt dt

]
< ∞,

we have

(6) E
[
F�(X)

] = E

[∫ T

0
XtπtDtF dt

]
.
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2.3. Relations between the two notions of conditional intensity. In this sub-
section, we assume that N is such that E[N([0, T ])] < ∞.

The next lemma characterizes the classical stochastic intensity of a point process
N which possesses a Papangelou conditional intensity.

LEMMA 2.6. If N has a Papangelou conditional intensity {πt }t∈[0,T ], then N

has a classical stochastic intensity {p(π)t }t∈[0,T ].

PROOF. Since predictability implies exvisibility, for any nonnegative and pre-
dictable stochastic process {Xt }t∈[0,T ], by Fubini’s theorem and standard proper-
ties of the conditional expectation, we have

E

[∫ T

0
XtN(dt)

]
=

∫ T

0
E[Xtπt ]dt =

∫ T

0
E

[
XtE[πt |Ft−]] dt

=
∫ T

0
E

[
Xtp(π)t

]
dt.

Additionally, by taking Xt = 1 in the previous series of equalities we get that∫ T
0 p(π)t dt < ∞ P-almost surely, and so {p(π)t }t∈[0,T ] is a classical stochastic

intensity of N . �

The next lemma explicits the Papangelou conditional intensity of a point process
possessing a classical stochastic intensity.

LEMMA 2.7. If N has a classical stochastic intensity {λt }t∈[0,T ], then N has
a Papangelou conditional intensity {πt }t∈[0,T ] defined by

πt(ω) := exp
(∫ T

0

(
λs(ω) − λs(ω + εt )

)
ds

(7)

+
∫ T

0

(
ln

(
λs(ω + εt )

)
(ω + εt )(ds) − ln

(
λs(ω)

)
ω(ds)

))
,

and {λt }t∈[0,T ] is a version of {p(π)t }t∈[0,T ].

PROOF. Let P∗ be a new probability measure on (�,F) under which N is a
homogeneous Poisson process on [0, T ] with intensity 1. Since E[N([0, T ])] <

∞, by a result in [13] (see also Theorem 19.7, page 315 in [16]) we have that P is
absolutely continuous with respect to P

∗, and setting Pt := P[0,t] and P
∗
t := P

∗[0,t],
we have

Pt (dω) = ρt (ω)P∗
t (dω),

where

ρt (ω) := exp
(∫ t

0

(
1 − λs(ω)

)
ds +

∫ t

0
ln

(
λs(ω)

)
ω(ds)

)
.
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Since {λt }t∈[0,T ] is predictable, by Theorem T12, page 31 in [2] [see formula (4.4)]
we have that λs(ω) > 0 for any s ∈ supp(ω), and P-almost all ω ∈ �. Therefore,
ρt > 0 P-almost surely and so the probability measures P and P

∗ are equivalent.
The claim then follows by, for example, Theorem 1.6, page 41 in [30]. By the
uniqueness of the classical stochastic intensity (cf., e.g., T12, page 31 in [2]), the
latter claim follows by Lemma 2.6. �

REMARK 2.8. Since the stochastic intensity characterizes the law of a point
process (cf. Proposition 7.2.IV., page 233 in [5]), under the foregoing assumption,
by Lemma 2.6 we have that the Papangelou conditional intensity also determines
the probability structure of the point process uniquely.

We also remark that if N has a classical stochastic intensity then, under the fore-
going assumption, the moment formulas in [4] and [8] apply with the Papangelou
conditional intensity given by (7).

2.4. Locally stable point processes and renewal processes. In this subsection,
we begin by recalling the definition of locally stable point processes, a class of pro-
cesses for which, as already mentioned in the Introduction, we are able to provide
a more explicit deviation bound (see Corollary 5.3 and Remark 5.4). We introduce
afterwards a large class of locally stable renewal processes.

Let N be a point process on [0, T ] and assume that E[N([0, T ])] < ∞ and
that N has a Papangelou conditional intensity {πt }t∈[0,T ]. We remark that, due to
Lemma 2.6 and Lemma 2.7, this is equivalent to assuming that N has a classical
stochastic intensity. We say that N is locally stable with dominating function β

(see, e.g., [18]) if there exists β ∈ L1([0, T ],B([0, T ]),dt) such that

πt ≤ β(t), t ∈ [0, T ],P-almost surely.

For classical examples of locally stable point processes whose dynamics are de-
scribed via a Papangelou conditional intensity, we refer the reader to [18, 30]. If
instead the dynamics of N are given by a classical stochastic intensity, then one
may try to check the local stability of the point process with the aid of Lemma 2.7.
As an illustration, we consider a large class of renewal processes on [0, T ] which
is particularly suited to the 1-dimensional setting.

Specifically, we say that N is a renewal process on [0, T ] with spacing density
f if, conditional on N([0, T ]) = n, the realization T0 = 0 < T1 < · · · < Tn is such
that Ti+1 − Ti , 1 ≤ i ≤ n − 1 are independent and identically distributed random
variables with density f with respect to the Lebesgue measure on [0,∞). We start
by providing a Papangelou conditional intensity of N as a corollary of Lemma 2.7.

COROLLARY 2.9. Let N be a renewal process on [0, T ] with spacing density
f which is continuous on [0,+∞) and such that f > 0 on (a,C) for some a ∈
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[0, T ] and C ∈ (T ,+∞]. Then N has a Papangelou conditional intensity

(8) πt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f (Ti − t)f (t − Ti−1)
/

f (Ti − Ti−1)

if Ti−1 ≤ t < Ti,

f (t − TN([0,T ]))
∫ ∞
T −t

f (s)ds
/ ∫ ∞

T −TN([0,T ])
f (s)ds

if TN([0,T ]) ≤ t ≤ T .

In particular, note that the above assumption on f covers many significant exam-
ples, for example, exponential, gamma, Weibull and Pareto distributions.

PROOF. It is well known that the classical stochastic intensity of the renewal
process is given by

(9) λt (ω) = f (t − ω−
t )∫ ∞

t−ω−
t

f (s)ds
,

where t ∈ [0, T ], and ω−
t := max{ωi ∈ supp(ω) : ωi < t} with the convention

max{∅} = 0 (see, e.g., Exercise 7.2.3 in [5]). Note that the classical stochastic
intensity is integrable on [0, T ] because

(10) λt(ω) ≤ sups∈[0,T ] f (s)∫ C
T f (s)ds

,

and that {λt }0≤t≤T is predictable by Proposition 3.3 in [15] since λt (ω) =
λt (ω|[0,t)). Letting ω+

t := min{ωi ∈ supp(ω) : ωi ≥ t} (with the convention
min{∅} = +∞), we have

πt(ω) = exp
(∫ ω+

t

t

(
λs(ω) − λs(ω + εt )

)
ds + ln

(
λt (ω + εt )

)
+ ln

(λω+
t
(ω + εt )

λω+
t
(ω)

)
1{ω+

t <T }
)

= exp
(∫ ω+

t

t

(
f (s − ω−

t )∫ ∞
s−ω−

t
f (u)du

− f (s − t)∫ ∞
s−t f (u)du

)
ds + ln

(
λt (ω + εt )

)

+ ln
(λω+

t
(ω + εt )

λω+
t
(ω)

)
1{ω+

t <T }
)

(11)

= exp
(∫ ω+

t −ω−
t

t−ω−
t

f (u)∫ ∞
u f (v)dv

du −
∫ ω+

t −t

0

f (u)∫ ∞
u f (v)dv

du

+ ln
(
λt (ω + εt )

) + ln
(λω+

t
(ω + εt )

λω+
t
(ω)

)
1{ω+

t <T }
)
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= exp
(

ln
(∫ ∞

t−ω−
t

f (s)ds

)
− ln

(∫ ∞
ω+

t −ω−
t

f (s)ds

)
+ ln

(
λt (ω + εt )

)
+ ln

(∫ ∞
ω+

t −t
f (s)ds

)
+ ln

(λω+
t
(ω + εt )

λω+
t
(ω)

)
1{ω+

t <T }
)
.

Here, the first equality follows by Lemma 2.7 noticing that λs(ω) = λs(ω + εt ) for
all s ∈ [0, t] ∪ (ω+

t , T ] and the last equality follows by∫ x

0

f (u)∫ ∞
u f (s)ds

du = − ln
(∫ ∞

x
f (s)ds

)
, x ∈ [0,∞).

Combining (11) with (9), we conclude the proof. �

Finally, we show that the class of renewal processes considered above is locally
stable.

PROPOSITION 2.10. Let the notation and the assumptions of Corollary 2.9
prevail. Then the renewal process with spacing density f is locally stable.

PROOF. It suffices to prove that the two terms in (8) are bounded uniformly
in ω by a Lebesgue-integrable function on [0, T ]; let us thus fix an ω ∈ �, denote
its support by ω0 = 0 < ω1 < · · · < ωn < T and let t ∈ [0, T ]. If ωi ≤ t < ωi+1 for
some 0 ≤ i ≤ n − 1, then we separate two cases: f (a) > 0 and f (a) = 0. In the
first case, we have f > 0 on [a,T ], and thus

πt(ω) ≤ (sups∈[a,T ] f (s))2

mins∈[a,T ] f (s)
< ∞, P-almost every ω ∈ �.

Next, if f (a) = 0 then since f > 0 on (a,C), there exists an ε > 0 such that f is
increasing on [a, ε]. It follows that

πt(ω) ≤ f (t − ωi)1{ωi+1−ωi≤ε} + (sups∈[0,T ] f (s))2

mins∈[ε,T ] f (s)
1{ωi+1−ωi>ε}

≤ sup
s∈[0,ε]

f (s) + (sups∈[0,T ] f (s))2

mins∈[ε,T ] f (s)
< ∞.

Lastly, if t ≥ ωn,

πt(ω) ≤ sups∈[0,T ] f (s)∫ C
T f (s)ds

< ∞,

which concludes the proof. �
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3. Predictable representation of square-integrable functionals. Through-
out this section, it is assumed that N has a classical stochastic intensity {λt }t∈[0,T ].

By the martingale representation theorem (see, e.g., Theorem T11, page 68 in
[2]), we have that any right-continuous {Ft }t∈[0,T ]-martingale {Mt }t∈[0,T ] such that
supt∈[0,T ]E[M2

t ] < ∞ admits the representation

(12) Mt = M0 +
∫ t

0
u(M)

s

(
N(ds) − λs ds

)
, P-almost surely

for some u(M) ≡ {u(M)
t }t∈[0,T ] ∈ P2(λ). Note that M0 is a constant since F0 is the

trivial σ -field. Note also that if ũ(M) ≡ {ũ(M)
t }t∈[0,T ] ∈ P2(λ) is such that

Mt = M0 +
∫ t

0
ũ(M)

s

(
N(ds) − λs ds

)
, P-almost surely

then

u
(M)
t (ω) = ũ

(M)
t (ω), P(dω)λt (ω)dt-almost everywhere;

see, for example, Theorem T10, pages 67-68 in [2]. In other words, u(M) ∼ ũ(M)

(using the notation introduced in Section 2.1).
For square-integrable functionals, the following predictable representation

holds.

PROPOSITION 3.1. For any G ∈ L2(�,F,P), there exists {u(G)
t }t∈[0,T ] ∈

P2(λ) such that

(13) G = E[G] +
∫ T

0
u

(G)
t

(
N(dt) − λt dt

)
, P-almost surely.

We remark that the stochastic process {u(G)
t }t∈[0,T ] ∈ P2(λ) is not made explicit.

In the next section, we shall give an explicit expression for this process under some
additional assumptions.

PROOF. Define the martingale Gt := E[G|Ft ], t ∈ [0, T ]. Since G is square
integrable, a simple application of Jensen’s inequality ensures that we have
supt∈[0,T ]E[G2

t ] < ∞. Since the filtration {Ft }t∈[0,T ] is right-continuous (see, e.g.,
Theorem T25, page 304 in [2]), the martingale {Gt }t∈[0,T ] is right-continuous, and
by (12) we have

GT = G0 +
∫ T

0
u

(G)
t

(
N(dt) − λt dt

)
, P-almost surely

for some {u(G)
t }t∈[0,T ] ∈ P2(λ). The claim follows noticing that by the F-

measurability of G we have GT = E[G|FT ] = E[G|F] = G and by F0 ≡ {∅,�}
we have G0 = E[G|F0] = E[G]. �
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Using the predictable representation (13), it is possible to derive a formula,
called hereafter smoothing formula, which allows to transform the expectation of
the product between a random variable and an integral with respect to a compen-
sated random point measure into the expectation of an integral with respect to the
Lebesgue measure.

We start with some preliminaries. Note that if E[N([0, T ])] < ∞, then P2(λ) ≡
P1,2(λ) and so, for any random variable G ∈ L2(�,F,P), the process {u(G)

t }t∈[0,T ]
in the representation (13) belongs to P1,2(λ). Indeed, for any {ut }t∈[0,T ] ∈ P2(λ),
applying the Cauchy–Schwarz inequality we have

E

[∫ T

0
|ut |λt dt

]
≤ E

[∫ T

0
λt dt

]1/2
‖u‖P2(λ) = E

[
N

([0, T ])]1/2‖u‖P2(λ) < ∞,

and so u ∈ P1,2(λ).
The following smoothing formula holds.

PROPOSITION 3.2. Let G ∈ L2(�,F,P) be a random variable whose
stochastic process {u(G)

t }t∈[0,T ] in the representation (13) belongs to P1,2(λ) and
let {ut }t∈[0,T ] ∈ P1,2(λ). Then

(14) E
[
Gδ(u)

] = E

[∫ T

0
u

(G)
t utλt dt

]
.

PROOF. By Proposition 2.1(i), we have E[δ(u)] = 0. By Proposition 3.1, we
have G −E[G] = δ(u(G)), for some {u(G)

t }t∈[0,T ] ∈ P1,2(λ). Therefore,

E
[
Gδ(u)

] = E
[(

G −E[G])δ(u)
] = E

[
δ
(
u(G))δ(u)

] = E

[∫ T

0
u

(G)
t utλt dt

]
,

where the latter equality follows by Proposition 2.1(ii). �

4. Clark–Ocone formula. Throughout this section, we assume that E[N([0,

T ])2] < ∞. Moreover, we assume that N has a Papangelou conditional intensity
which, due to Lemma 2.6 and Lemma 2.7, is equivalent to assuming that it has
a classical stochastic intensity. Theorem 4.1 below provides a Clark–Ocone for-
mula. Note that, in contrast with the predictable representation (13), the integrand
appearing in (15) is explicit [and given by (16)]. Hereafter, we work under the
convention 0/0 := 0.

THEOREM 4.1. Let G be a random variable which is either:

(i) nonnegative and in L1(�,F,P); or
(ii) in L2(�,F,P).
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Then

(15) G = E[G] +
∫ T

0
ϕ

(G)
t

(
N(dt) − p(π)t dt

)
, P-almost surely,

where

(16) ϕ
(G)
t := p(πG+)t − p(G)tp(π)t

p(π)t
,

for t ∈ [0, T ].

REMARK 4.2. It should be noticed that under either (i) or (ii), p(G)t is well
defined by Proposition 2.4. Additionally, under (ii) we have πtG

+
t ∈ L1(�,F,P)

for dt-almost all t ∈ [0, T ] since∫ T

0
E

[∣∣πtG
+
t

∣∣] dt = E

[∫ T

0
|G|N(dt)

]
(17)

≤ ‖G‖L2(�,F,P)

∥∥N([0, T ])∥∥L2(�,F,P) < ∞,

where the first equality follows from (1). This implies that p(πG+)t is also well
defined. We also note that under (i) or (ii) the difference p(πG+)t − p(G)tp(π)t
is well defined since the second term is actually finite dt dP-almost everywhere
[which can be seen, e.g., by checking that p(G)t and p(π)t are integrable]. Note
also that by the Cauchy–Schwarz inequality,

p
(
πG+)2

t ≤ p(π)tp
(
π

(
G+)2)

t , t ∈ [0, T ],P-almost surely,

and so if p(π)t = 0 then, by the convention 0/0 = 0, ϕ
(G)
t = 0. Thus, ϕ(G) is

welldefined by (16).

REMARK 4.3. For later purposes, in the following we provide sufficient con-
ditions to ensure that ϕ(G) ∈ P1,2(p(π)) ≡ P2(p(π)). More precisely:

(i) If G ∈ L4(�,F,P) and N is locally stable with dominating function β , as
defined in Section 2.4, then ϕ(G) ∈ P1,2(p(π)). Indeed,

E

[∫ T

0

∣∣ϕ(G)
t

∣∣2p(π)t dt

]
= E

[∫ T

0

(p(πG+)t − p(π)tp(G)t )
2

p(π)t
dt

]

≤ 2E
[∫ T

0

p(πG+)2
t

p(π)t
dt

]
(18)

+ 2E
[∫ T

0
p(π)tp(G)2

t dt

]
.
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The first term in (18) is bounded, indeed

E

[∫ T

0

p(πG+)2
t

p(π)t
dt

]
≤ E

[∫ T

0
E

[
πt

(
G+

t

)2 | Ft−
]
dt

]
(19)

= E
[
G2N

([0, T ])](20)

≤ ‖G‖L4(�,F,P)

∥∥N([0, T ])∥∥L2(�,F,P),(21)

where (19) and (21) follow by the Cauchy–Schwarz inequality and (20) follows by
(1). The second term in (18) is also finite since

E

[∫ T

0
p(π)tp(G)2

t dt

]
≤ E

[∫ T

0
β(t)E

[
G2 | Ft−

]
dt

]
= E

[
G2] ∫ T

0
β(t)dt.

(ii) If G ∈ L∞(�,F,P) then ϕ(G) ∈ P2(p(π)), cf. part 1 of the proof of Theo-
rem 4.1.

REMARK 4.4. Under either (i) or (ii) from Remark 4.3, by the considerations
preceding Proposition 3.1 we have that ϕ(G) given by (16) is unique in the sense
that any u(G) ∈ P2(p(π)) which satisfies a representation formula for G of the type
(15) verifies ϕ(G) ∼ u(G) (where the equivalence relation is defined in Section 2.1).

PROOF OF THEOREM 4.1. We divide the proof in two steps: in the first step,
we prove (15) under the stronger condition G ∈ L∞(�,F,P), and in the second
step we prove the general case.

1. Assume that G ∈ L∞(�,F,P). By Lemma 2.6, {p(π)t }t∈[0,T ] is a clas-
sical stochastic intensity of N . Since E[N([0, T ])] < ∞, we have P2(p(π)) ≡
P1,2(p(π)) and so, for any random variable Z ∈ L2(�,F,P), the stochastic pro-
cess {u(Z)

t }t∈[0,T ] in the representation (13) belongs to P1,2(λ). Let {ut }t∈[0,T ] be
a predictable stochastic process and, for any n ≥ 0, define u(n) ≡ {u(n)

t }t∈[0,T ]
by u

(n)
t := ut1{ut∈[−n,n]}. We have u(n) ∈ P1(p(π)), for any n ≥ 0, and so by

Lemma 2.5, Proposition 3.2 and Proposition 2.1

E

[∫ T

0
u

(n)
t πtDtGdt

]
= E

[
G�

(
u(n))]

= E

[
G

∫ T

0
u

(n)
t

(
N(dt) − p(π)t dt

)] +E

[
G

∫ T

0
u

(n)
t

(
p(π)t − πt

)
dt

]
(22)

= E

[∫ T

0
u

(n)
t u

(G)
t p(π)t dt

]

+E

[
G

∫ T

0
u

(n)
t

(
p(π)t − πt

)
dt

]
∀n ≥ 0.
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Therefore,

0 = E

[∫ T

0
u

(n)
t

(
πtDtG − u

(G)
t p(π)t − Gp(π)t + Gπt

)
dt

]

= E

[∫ T

0
u

(n)
t

(
E

[
πtG

+
t |Ft−

] − u
(G)
t p(π)t −E[G|Ft−]p(π)t

)
dt

]
∀n ≥ 0.

As discussed in Remark 4.2, there exist the predictable projections p(πG+) and
p(G). Consequently,

(23) E

[∫ T

0
u

(n)
t

(
p

(
πG+)

t − u
(G)
t p(π)t − p(G)tp(π)t

)
dt

]
= 0 ∀n ≥ 0.

The stochastic process

v ≡ {vt }t∈[0,T ] ≡ {
p(πG+)t − u

(G)
t p(π)t − p(G)tp(π)t

}
t∈[0,T ]

is clearly predictable. Since u ≡ {ut }t∈[0,T ] is an arbitrary predictable stochastic
process, choosing u = v, equation (23) reads as

E

[∫ T

0
v2
t 1{vt∈[−n,n]} dt

]
= 0 ∀n ≥ 0.

By the monotone convergence theorem, letting n tend to infinity, we deduce
E[∫ T

0 v2
t dt] = 0 which implies

u
(G)
t p(π)t = p

(
πG+)

t − p(G)tp(π)t , dtP(dω)-almost everywhere,

and thus

u
(G)
t = ϕ

(G)
t , p(π)t dtP(dω)-almost everywhere.

2. Now let G be a random variable verifying the assumptions of the theorem.
For a positive integer m > 0, set G(m) := sup(inf(G,m),−m), and for t ∈ [0, T ]
define

ϕm
t := p(π(G(m))+)t − p(G(m))tp(π)t

p(π)t
.

By the previous step,

(24) G(m) = E
[
G(m)] +

∫ T

0
ϕm

t

(
N(dt) − p(π)t dt

)
, P-almost surely.

Note that G(m) converges to G P-almost surely and that, by the dominated conver-
gence theorem, E[G(m)] converges to E[G] as m goes to infinity. So (15) follows
from (24) if we show that∫ T

0
ϕm

t

(
N(dt) − p(π)t dt

)
(25)

−−−−→
m→∞

∫ T

0
ϕ

(G)
t

(
N(dt) − p(π)t dt

)
, P-almost surely.
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We begin by proving that

(26) ϕm
t −−−−→

m→∞ ϕ
(G)
t , dt dP-almost surely.

For all t ∈ [0, T ], by Proposition 2.4 and the dominated convergence theorem, we
have p(G(m))t −−−−→

m→∞ p(G)t P-almost surely. Indeed, |G(m)(ω)| ≤ |G(ω)| for all

ω ∈ � and(∫
π̂ (β,N |[0,t))L[t,T ](dβ)

)−1 ∫ ∣∣G(α ∪ N |[0,t))
∣∣π̂ (α,N |[0,t))L[t,T ](dα) < ∞,

P-almost surely, since its mean equals E[|G|] which is finite. In order to prove
(26), it remains to show

(27) p
(
π

(
G(m))+)

t −−−−→
m→∞ p

(
πG+)

t , dt dP-almost surely.

Under (i), (27) follows by Proposition 2.4 and the monotone convergence the-
orem. Under (ii), (27) follows by the dominated convergence theorem. Indeed,
πt(ω)|(G(m)

t )+(ω)| ≤ πt(ω)|G+(ω)| for all ω ∈ �, t ∈ [0, T ], and∫ T

0
E

[∫ (∫
π̂(β,N |[0,t))L[t,T ](dβ)

)−1
πt(α ∪ N |[0,t))

× ∣∣G+
t (α ∪ N |[0,t))

∣∣π̂(α,N |[0,t))L[t,T ](dα)

]
dt =

∫ T

0
E

[
πt

∣∣G+
t

∣∣] dt < ∞,

where the inequality follows from (17). We conclude the proof of (25) by a proper
application of the dominated convergence theorem. For t ∈ [0, T ], let us set

ϕt := p(π |G+| + p(π)|G|)t
p(π)t

.

Letting {Yt }t∈[0,T ] be any nonnegative predictable process, we have

E

[∫ T

0
Ytϕtp(π)t dt

]
= E

[∫ T

0
Yt

(
πt

∣∣G+
t

∣∣ + p(π)t |G|) dt

]
(28)

= E

[∫ T

0
Yt |G|(N(dt) + p(π)t dt

)]
,

where the last equality follows by (1), the exvisibility of {Yt }t∈[0,T ] and Proposi-
tion 5.2 in [8]. For n > 0, we define

ζn := inf
{
s ∈ [0, T ] :

∫ s

0

(
N(dt) + p(π)t dt

) ≥ n − 1
}
,

and take Yt := 1[0,ζn](t) thereby obtaining by (28) the inequality

E

[∫ ζn

0
ϕtp(π)t dt

]
≤ nE

[|G|].
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Additionally, since ϕt1[0,ζn](t) is predictable and, by Lemma 2.6, {p(π)t }t∈[0,T ] is
a classical stochastic intensity of N , we have

E

[∫ ζn

0
ϕt

(
N(dt) + p(π)t dt

)] = 2E
[∫ ζn

0
ϕtp(π)t dt

]
≤ 2nE

[|G|] < ∞.

Hence, for all n > 0, setting

An :=
{∫ ζn

0
ϕt

(
N(dt) + p(π)t dt

)
< ∞

}
,

we have P(An) = 1. Moreover,∫ T

0

(
N(dt) + p(π)t dt

)
< ∞, P-almost surely,

thus ζn = T for n sufficiently large, P-almost surely. Consequently,

P

(∫ T

0
ϕt

(
N(dt) + p(π)t dt

)
< ∞

)
= P

(⋂
n>0

An

)
= lim

n→∞P(An) = 1,

where the second equality follows since the sequence {An}n>0 is nonincreasing.
To conclude the proof by the dominated convergence theorem, it suffices to notice
that dt dP-almost surely, we have

∣∣ϕm
t

∣∣ ≤ E[πt |G+
t | | Ft−] +E[|G| | Ft−]p(π)t

p(π)t
= ϕt . �

We now give a bound on ϕ(G), which will be important for some of our appli-
cations.

LEMMA 4.5. For any G ∈ L∞(�,F,P),∥∥ϕ(G)
t

∥∥
L∞(�,F,P) ≤ 2‖G‖L∞(�,F,P) ∀t ∈ [0, T ].

If G is further assumed to be nonnegative, then∥∥ϕ(G)
t

∥∥
L∞(�,F,P) ≤ ‖G‖L∞(�,F,P) ∀t ∈ [0, T ].

PROOF. Note that for P-almost all ω ∈ � and any t ∈ [0, T ], we have∣∣∣∣p(πG+)t − p(G)tp(π)t

p(π)t

∣∣∣∣ =
∣∣∣∣E[G+

t πt | Ft−]
E[πt | Ft−] −E[G | Ft−]

∣∣∣∣ ≤ 2‖G‖L∞(�,F,P).

Note also that in the latter inequality one can take ‖G‖L∞(�,F,P) in place of
2‖G‖L∞(�,F,P) if G ≥ 0. �

We conclude this section with a remark on two different extensions of the clas-
sical integration by parts formula on the Poisson space; cf. [21].
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REMARK 4.6. Suppose that N has a classical stochastic intensity {λt }t∈[0,T ].
Then, under the assumptions of Lemma 2.5, the integration by parts formula (6)
holds with {πt }t∈[0,T ] defined as in (7). Also, under the assumptions (i) or (ii) of
Remark 4.3, the smoothing formula (14) holds with ϕ(G) in place of u(G). Note that
these formulas are not contained in [7] where a different gradient is considered.

5. Applications. Throughout this section, we assume that E[N([0, T ])] < ∞
and that N has a Papangelou conditional intensity {πt }t∈[0,T ] which, due to
Lemma 2.6 and Lemma 2.7, is equivalent to assuming that it has a classical
stochastic intensity.

5.1. Deviation bound. The following deviation bound holds.

PROPOSITION 5.1. Assume E[N([0, T ])2] < ∞. Let G be a random variable
satisfying the assumptions of Theorem 4.1 and such that there exists k > 0 verifying

(29)
∥∥ϕ(G)

∥∥
L∞(�×[0,T ],F⊗B([0,T ]),dPdt) ≤ k,

and

(30) α2 :=
∥∥∥∥∫ T

0

|p(πG+)t − p(G)tp(π)t |2
p(π)t

dt

∥∥∥∥
L∞(�,F,P)

< ∞,

then

P
(
G −E[G] ≥ x

) ≤ exp
(

x

k
−

(
α2

k2 + x

k

)
log

(
1 + xk

α2

))
(31)

≤ exp
(
− x

2k
log

(
1 + xk

α2

))
,

for any x > 0.

The proof of Proposition 5.1 is based on the following lemma.

LEMMA 5.2. Under the assumptions of Proposition 5.1, for all convex func-
tions φ : R→R such that φ′ is convex,

(32) E
[
φ

(
G −E[G])] ≤ E

[
φ

(
kP̃o

(
α2/k2))]

,

where k is the constant in (29), α2 is defined by (30) and P̃o(α2/k2) is a centered
Poisson distributed random variable with parameter α2/k2.

PROOF OF LEMMA 5.2. The claim easily follows combining Theorem 4.1
with Theorem 4.1 in [14] [formula (4.3)]. �
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PROOF OF PROPOSITION 5.1. Taking φ(u) := eλu, λ > 0, in (32), for any G

as in the statement and x > 0, we deduce

P
(
G −E[G] ≥ x

) ≤ inf
λ>0

E
[
eλ(G−E[G]−x)1{G−E[G]≥x}

]
≤ inf

λ>0
E

[
eλ(G−E[G]−x)]

(33)
≤ inf

λ>0
E

[
eλ(kP̃o(α2/k2)−x)]

= inf
λ>0

exp
(

α2

k2

(
eλk − λk − 1

) − λx

)
.

Let C > 0 be a positive constant. One may easily see that the function λ �→
C
k2 (e

λk − λk − 1) − λx attains its minimum at λ0(C) := k−1 log(1 + C−1kx) and
so

inf
λ>0

exp
(

α2

k2

(
eλk − λk − 1

) − λx

)
= exp

(
x

k
−

(
x

k
+ α2

k2

)
log

(
1 + α−2kx

))
.

The proof is complete. �

The next corollary provides a further deviation bound for functionals of locally
stable point processes. In Remark 5.4, which follows the corollary, we provide a
worse but more explicit deviation bound.

COROLLARY 5.3. Assume that N is locally stable with dominating func-
tion β . Then, for all G satisfying the assumptions of Proposition 5.1, inequality
(31) holds with α2 replaced by

(34)
∫ T

0
β(t)

∥∥E[∣∣G+
t −E[G | Ft−]∣∣2 | Ft−

]∥∥
L∞(�,F,P) dt.

PROOF. We have, for example, by [8],∥∥N([0, T ])∥∥2
L2(�,F,P) = E

[∫ T

0
πt(N)dt

]
+E

[∫ T

0

∫ T

0
π̂

({s, t},N)
ds dt

]

≤
∫ T

0
β(t)dt +

(∫ T

0
β(t)dt

)2
< ∞,

and so, by Proposition 5.1, inequality (31) holds. Therefore, since the right-hand
side of (31) is nondecreasing in α2, the claim follows if we check that α2 is less
than or equal to the term in (34). To this aim, we note that∣∣E[

πtG
+
t | Ft−

] −E[πt | Ft−]E[G | Ft−]∣∣
≤ E

[
πt

∣∣G+
t −E[G | Ft−]∣∣ | Ft−

]
≤ E[πt | Ft−]1/2

E
[
πt

∣∣G+
t −E[G | Ft−]∣∣2 | Ft−

]1/2
,
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where the last relation follows by the Cauchy–Schwarz inequality. Therefore, by
the local stability we have

α2 ≤
∥∥∥∥∫ T

0
E

[
πt

∣∣G+
t −E[G | Ft−]∣∣2 | Ft−

]
dt

∥∥∥∥
L∞(�,F,P)

≤
∫ T

0
β(t)

∥∥E[|G+
t −E[G | Ft−]|2 | Ft−

]∥∥
L∞(�,F,P) dt,

which concludes the proof. �

REMARK 5.4. Let G ∈ L∞(�,F,P). Then by Lemma 4.5, one may choose

k =
{‖G‖L∞(�,F,P) if G ≥ 0,

2‖G‖L∞(�,F,P) otherwise,

in Proposition 5.1. Moreover, under the assumptions of Corollary 5.3 we have that
the term in (34) is less than or equal to k2‖β‖L1([0,T ],B([0,T ]),dt). Thus,

P
(
G −E[G] ≥ x

) ≤ exp
(

x

k
−

(
‖β‖L1([0,T ],B([0,T ]),dt) + x

k

)
× log

(
1 + x

k‖β‖L1([0,T ],B([0,T ]),dt)

))
,

for x > 0.

5.2. Bound for the total variation distance between finite point processes on the
line. Let Ñ : � → � be a measurable map and consider the filtration

F̃t := σ
{
Ñ(A) : A ∈ B

([0, t])}, t ∈ [0, T ].
Setting F̃ := F̃T , we denote by P a probability measure on (�,F∨ F̃) under which
N has a Papangelou conditional intensity {πt }t∈[0,T ] and Ñ has a Papangelou con-
ditional intensity {π̃t (Ñ)}t∈[0,T ]. We set P̃ := P|F̃ and note that since an event
A ∈ F depends only on N , by Remark 2.8 we have P = P|F .

We recall that the total variation distance between (the laws of) N and Ñ is by
definition

dT V (N, Ñ) := sup
G:�→[0,1],
G measurable

∣∣E[
G(N)

] − E
[
G(Ñ)

]∣∣,
where E denotes the expectation operator with respect to P. The following bound
on dT V (N, Ñ) holds.

PROPOSITION 5.5. If E[Ñ([0, T ])2] < ∞, then

(35) dT V (N, Ñ) ≤
∫ T

0
E

[∣∣πt(N) − π̃t (N)
∣∣] dt.
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REMARK 5.6. Assume:

(i) supω∈�

∫ T
0 π̃t (ω)dt < ∞ and

(ii) P absolutely continuous with respect to the law of a Poisson process with
intensity 1 on [0, T ].

Then by Theorem 4 in [26] one has

(36) dT V (N, Ñ) ≤ c1(π̃)

∫ T

0
E

[∣∣πt(N) − π̃t (N)
∣∣] dt,

where c1(π̃) is a finite constant such that, for any n∗ ∈ N∪ {∞},

c1(π̃) ≤ (
n∗ − 1

)!(ε

c

)n∗−1(
1

c

∑
i≥n∗

ci

i! +
∫ c

0

1

s

∑
i≥n∗

si

i! ds

)
(37)

+ 1 + ε

ε

n∗−1∑
i=1

εi

i
,

where, letting ‖ · ‖ denote the total variation norm for signed measures on [0, T ],

ε := sup
ω1,ω2∈�:‖ω1−ω2‖=1

∫ T

0

∣∣πt(ω1) − πt(ω2)
∣∣ dt < ∞

and

c = c
(
n∗) := sup

ω1,ω2∈�:‖ω1−ω2‖≥n∗

∫ T

0

∣∣πt(ω1) − πt(ω2)
∣∣ dt < ∞.

If n∗ = ∞, we interpret the long first summand in the upper bound as 0. For ε = 0
and/or c = 0, the upper bound is to be understood in the limit sense. We also recall
that by the definition of the total variation norm ‖ · ‖ the quantity ‖ω1 − ω2‖,
ω1,ω2 ∈ �, is the total number of points appearing in the support of one of the
counting measures ωi , i = 1,2, but not in the other.

We remark that the proof of (36) in [26] is based on the generator approach to
Stein’s method, and the result indeed holds for finite spatial point processes.

Note that, if we replace condition (i) with the significantly weaker condi-
tion E[Ñ([0, T ])2] < ∞ and condition (ii) with the slightly stronger condition
E[N([0, T ])] < ∞, by Proposition 5.5 we have the bound (36) with c1(π̃) = 1.

It is in general a difficult task to further bound the constants ε and c in order to
obtain an explicit bound on c1(π̃). In Remark 6 of [26], the authors show that if
ε < 1, then

(38) c1(π̃) ≤ 1 + ε

ε
log

(
1

1 − ε

)
.

Note that the term on the right-hand side of (38) is greater than or equal to 1. In
this sense, (35) is certainly a relevant improvement of (36).



A CLARK-OCONE FORMULA FOR TEMPORAL POINT PROCESSES 3287

PROOF OF PROPOSITION 5.5. Let P′ be a probability measure on (�,F) un-
der which N has a Papangelou conditional intensity {π̃t }t∈[0,T ]. We verify first that
P and P

′ are equivalent, that is, they have the same null sets. As in the proof of
Lemma 2.7, we use the absolute continuity of the law of a point process with a
classical stochastic intensity with respect to the law of a Poisson process with in-
tensity 1. Let P∗ be a probability measure on (�,F) under which N is a Poisson
process with intensity 1. Since, under P′, N has the same law as Ñ under P̃ (see Re-
mark 2.8) and, under P̃, Ñ([0, T ]) has a finite mean, we have E

′[N([0, T ])] < ∞,
where E

′ denotes the expectation under P
′. Consequently, by Lemma 2.6 and a

result in [13] (see also Theorem 19.7, page 315 in [16]) we have that P and P
′

are absolutely continuous with respect to P
∗ and letting Pt , P′

t and P
∗
t denote the

restrictions of P, P′ and P
∗ on (�,Ft ), respectively, we have

Pt (dω) = ρt (ω)P∗
t (dω) and P

′
t (dω) = ρ′

t (ω)P∗
t (dω),

where

ρt(ω) := exp
(∫ t

0

(
1 − p(π)s(ω)

)
ds +

∫ t

0
ln

(
p(π)s(ω)

)
ω(ds)

)
and

ρ′
t (ω) := exp

(∫ t

0

(
1 − p′(π̃)s(ω)

)
ds +

∫ t

0
ln

(
p′(π̃)s(ω)

)
ω(ds)

)
.

Here, for a stochastic process {Xt }0≤t≤T , {p′(X)t }t∈[0,T ] denotes the predictable
version of {E′[Xt | Ft−]}t∈[0,T ] (see Proposition 2.4). By Theorem T12, page 31
in [2] [see formula (4.4)], we have p(π)s(ω) > 0 for any s ∈ supp(ω), P-almost
surely, and p′(π̃)s(ω) > 0 for any s ∈ supp(ω), P′-almost surely. Therefore, for
any t ∈ [0, T ], ρt > 0 Pt -almost everywhere and ρ′

t > 0 P
′
t -almost everywhere,

and so the laws P, P∗ and P
′ are equivalent.

By Theorem 4.1, for any G : � → [0,1] measurable, we have

G(ω) = E
′[G] +

∫ T

0

(
p′(π̃G+)t (ω) − p′(π̃)t (ω)p′(G)t (ω)

p′(π̃)t (ω)

)
(39)

× (
ω(dt) − p′(π̃)t (ω)dt

)
,

for P′-almost every ω ∈ �. Thus, by the equivalence of P and P
′, taking the expec-

tation with respect to P in (39) yields∣∣E′[G] −E[G]∣∣
≤

∣∣∣∣E[∫ T

0

(
p′(π̃G+)t − p′(π̃)tp

′(G)t

p′(π̃)t

)(
N(dt) − p(π)t dt

)]∣∣∣∣(40)

+E

[∫ T

0

∣∣∣∣p′(π̃G+)t − p′(π̃)tp
′(G)t

p′(π̃)t

∣∣∣∣∣∣p(π)t − p′(π̃)t
∣∣ dt

]
,
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by the triangle inequality. Note that the term∣∣∣∣p′(π̃G+)t − p′(π̃)tp
′(G)t

p′(π̃)t

∣∣∣∣
is bounded by 1 due to Lemma 4.5 (indeed, 0 ≤ G ≤ 1). Note also that

E

[∫ T

0

(
p′(π̃G+)t − p′(π̃)tp

′(G)t

p′(π̃)t

)(
N(dt) − p(π)t dt

)] = 0

since {p(π)t }t∈[0,T ] is a classical stochastic intensity of N under P and the inte-
grand is bounded and, therefore, belongs to P1,2(p(π)). Combining these consid-
erations with (40), we get

∣∣E′[G] −E[G]∣∣ ≤ E

[∫ T

0

∣∣p(π)t − p′(π̃)t
∣∣ dt

]
(41)

= E

[∫ T

0

∣∣E[πt | Ft−] −E
′[π̃t | Ft−]∣∣ dt

]
.

We note that, for any A ∈ Ft− ,

E

[
ρ′

t

ρt

π̃t1A

]
= E

′[π̃t1A] = E
′[
E

′[π̃t |Ft−]1A

] = E

[
ρ′

t

ρt

E
′[π̃t |Ft−]1A

]
and so, using the Ft−-measurability of {ρ′

t /ρt }t∈[0,T ], we have

ρ′
t

ρt

E[π̃t |Ft−] = E

[
ρ′

t

ρt

π̃t |Ft−
]

= ρ′
t

ρt

E
′[π̃t |Ft−], P-almost surely

which gives E[π̃t |Ft−] = E
′[π̃t |Ft−], P-almost surely. Combining this with (41)

and using the definition of the probability measure P, we deduce

∣∣E[
G(Ñ)

] − E
[
G(N)

]∣∣ ≤
∫ T

0
E

[∣∣πt(N) − π̃t (N)
∣∣] dt,

and the claim follows by taking the supremum over all the functionals G. �

5.3. Option hedging in a market model with jumps governed by a classical
stochastic intensity. In this subsection, we apply the Clark–Ocone formula to op-
tion hedging in a pure jump market model. In the following, we shall use the same
notation as in the previous sections.

The application of the Clark–Ocone formula to mathematical finance is well
documented in both continuous and discontinuous models. It is a central part of
Ocone’s original paper; see Sections 3-5 in [22] and also [9, 15] and Chapter 8
in [23] for additional details on the topic. We refer to these texts for the common
terminology adopted in mathematical finance.
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We consider a market with two assets, one nonrisky and one risky, we assume
that the assets are defined on the probability space (�,F,P) and that the market is
arbitrage-free. We also assume that the nonrisky asset {S(0)

t }t∈[0,T ] has dynamics

dS
(0)
t = r(t)S

(0)
t dt, S

(0)
0 = 1

and the risky asset {St }t∈[0,T ] has risk-neutral dynamics

dSt = St−
(
r(t)dt + σ(t)

(
N(dt) − p(π)t dt

))
, S0 = x > 0.

Here, r and σ are two continuous functions and it is assumed that σ(t) > 0 for
t ∈ [0, T ]. We also assume that the market is frictionless and that agents may buy
and sell fractions of both assets. By, for example, Theorem 5.1 in [12], one has
St > 0 for all 0 ≤ t ≤ T , P-almost surely.

Let {ξ (0)
t }t∈[0,T ] and {ξt }t∈[0,T ] be two predictable processes. We say that

(ξ (0), ξ) is a portfolio if ξ
(0)
t represents the number of units of investment of an

agent in the risk-free asset at a time t , and ξt represents the number of units of
investment of an agent in the risky asset at time t . The value Vt of a portfolio
(ξ (0), ξ) at time t is defined by Vt := ξ

(0)
t S

(0)
t + ξtSt , t ∈ [0, T ]. We say that a

portfolio (ξ (0), ξ) is self-financing if

dVt = ξ
(0)
t dS

(0)
t + ξt dSt , t ∈ [0, T ].

In the next proposition, we compute a self-financing hedging strategy replicat-
ing an arbitrary option with payoff G at time T .

PROPOSITION 5.7. Let the notation and assumptions of Theorem 4.1 prevail
and set

ξ
(0)
t := p(G)te− ∫ T

t r(s)ds − ξtSt−

S
(0)
t

, ξt := ϕ
(G)
t e− ∫ T

t r(s)ds

σ (t)St−
,

(42)
t ∈ [0, T ].

Then (ξ (0), ξ) is a self-financing portfolio such that its value at time 0 is that of the
option price at time 0 under the nonarbitrage assumption, that is,

(43) V0 = E[G]e− ∫ T
0 r(s)ds, P-almost surely

and its value at time T is equal to G, that is,

(44) VT = G, P-almost surely.

PROOF. Since the arguments used in the proof are standard, we omit some
details. The processes ξ (0) and ξ defined in (42) are clearly predictable. According
to the definition of ξ (0), ξ and V , we easily have

Vt := ξ
(0)
t S

(0)
t + ξtSt = p(G)te

− ∫ T
t r(s)ds



3290 I. FLINT AND G. L. TORRISI

and so (43) and (44) are verified. It remains to check that the portfolio (ξ (0), ξ) is
self-financing. By Theorem 4.1, we have

E[G|Ft ] = E[G] +
∫ t

0
ϕ(G)

s

(
N(ds) − p(π)s ds

)
∀t ∈ [0, T ],P-almost surely.

Therefore, since E[G|Ft ] = p(G)t , for any t ∈ [0, T ], P-almost surely, by a stan-
dard computation we deduce

Vt = V0e
∫ t

0 r(s)ds +
∫ t

0
e
∫ t
s r(u)duσ (s)ξsSs−

(
N(ds) − p(π)s ds

)
.

Consequently, setting

Ṽt := Vte
− ∫ t

0 r(s)ds and S̃t := Ste
− ∫ t

0 r(s)ds, t ∈ [0, T ],
we have

Ṽt = Ṽ0 +
∫ t

0
σ(s)ξsS̃s−

(
N(ds) − p(π)s

)
ds, t ∈ [0, T ]

and the claim follows by the same argument as in the proof of Lemma 8.1.2. in
[23] [the implication (ii) ⇒ (i)]. �
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