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RELATIVE COMPLEXITY OF RANDOM WALKS IN RANDOM
SCENERY IN THE ABSENCE OF A WEAK INVARIANCE

PRINCIPLE FOR THE LOCAL TIMES

BY GEORGE DELIGIANNIDIS AND ZEMER KOSLOFF1

University of Oxford and University of Warwick

We answer a question of Aaronson about the relative complexity of Ran-
dom Walks in Random Sceneries driven by either aperiodic two-dimensional
random walks, two-dimensional Simple Random walk, or by aperiodic ran-
dom walks in the domain of attraction of the Cauchy distribution. A key step
is proving that the range of the random walk satisfies the Fölner property
almost surely.

1. Introduction. The notion of entropy was introduced to ergodic theory by
Kolmogorov as an isomorphism invariant. That is, if two measure preserving sys-
tems are measure-theoretically isomorphic then their entropy is the same. It was
later shown in the seminal paper of Ornstein [26] that two Bernoulli automor-
phisms, transformations isomorphic to a shift of an i.i.d. sequence, are isomorphic
if and only if their entropies coincide. Therefore, entropy is a complete invariant for
Bernoulli automorphisms. In an attempt to understand whether two zero entropy
systems are isomorphic, Ferenczi [16], Katok and Thouvenot [18] and others in-
troduced notions of measure theoretic complexity, which roughly measure the rate
of growth of information.

Aaronson [1] recently introduced relative complexity which is a relativised no-
tion of complexity. He calculated the relative complexity of Random Walk in Ran-
dom Scenery (RWRS), where the jump random variable is integer-valued, cen-
tred, aperiodic and in the domain of attraction of an α-stable distribution with
1 < α ≤ 2. The main tool used there is Borodin’s weak invariance principle for the
local times [6, 7]. Random walks in random scenery are examples of non-Bernoulli
K-automorphisms [17], and the relative complexity was conjectured by Thouvenot
to be an isomorphism invariant for them. Indeed Austin [2] recently introduced the
bi-covering number as an isomorphism invariant, and used the weak convergence
of local times to show that for the class of random walks in random scenery with
jump distribution of finite variance, the bi-covering number grows at the same rate
as Aaronson’s relative complexity.
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For the purpose of this Introduction, we now describe the classical random walk
in random scenery. Let X1,X2, . . . be i.i.d. Zd -valued random variables, the jump
process, and Sn := ∑n

k=1 Xk the corresponding random walk. The scenery is a
field of i.i.d. random variables {Zj }j∈Zd , independent of {Xi}. The joint process
(Xn,ZSn) is then known as a random walk in random scenery. The relative com-
plexity of Aaronson in that case is heuristically the rate of growth of the informa-
tion arising from the scenery for most realizations of X1,X2, . . . .

In the case where Sn is the simple random walk on the integers, it follows from
the local central limit theorem that the range of the random walk at time n, R(n) :=
{Sj : 1 ≤ j ≤ n}, is almost surely of order constant times

√
n. The range of the

random walk is related to this problem since {ZSj
: j ∈ [1, n]} = {Zk : k ∈ R(n)}. It

then appears that the rate of growth of information arising from the scenery should
be of the order of exp(H(Z0) ·#R(n)), where H(Z0) is the Shannon entropy of Z0.
Thus, for this example one would expect that for most w, the relative complexity
is of the order of exp(cw

√
nH(Z0)). A precise formulation of this statement, in

terms of nontrivial distributional limits, was verified in Aaronson [1].
In this paper, we treat random walks in random sceneries driven by the simple

random walk in Z
2, by aperiodic, recurrent, Z2-valued random walks with finite

variance, or by an aperiodic, recurrent, integer-valued random walk in the domain
of attraction of the Cauchy distribution. Since the limiting distributions do not
have local times, Aaronson’s and Austin’s methods do not apply. For these types
of RWRS, Kesten and Spitzer [20] conjectured that when var(Z0) < ∞, there ex-
ists a sequence an → ∞ such that 1

an

∑nt
k=1 ZSn converges weakly to a Brownian

motion. This was shown to be true by Bolthausen [5] when Sn is the planar sim-
ple random walk and by the first author and Utev [12] for the case of the Cauchy
distribution. Bolthausen’s argument was generalised by Černy [9] and the ideas
there were a major inspiration for us. Since there is no weak invariance principle
for the local time, Černy’s argument relies on the asymptotic behaviour of the self-
intersection local times (see Section 4) in order to prove that “for most of the points
in R(n), the local time up to time n, is greater than a constant times log(n)”; see
Theorem 4.1 for a precise formulation. We refine this method to prove a result of
independent interest, namely that the range of the random walk is almost surely a
Fölner sequence (Theorem 4.2). With these two theorems at hand, we can proceed
by a simplified argument to deduce the main result, Theorem 3.1, which answers
Aaronson’s question about the relative complexity of this type of RWRS. We think
that this simpler and softer method can be used to calculate the relative complexity
of other RWRS’s such as those in [3, 27].

The paper is organised as follows. In Section 2, we provide the relevant defini-
tions and results from ergodic theory. Section 3 contains the precise formulation
of RWRS and the main results. In Section 4, we state and prove the results we
need for the random walk and its range. Section 5 contains the proof of the main
theorem. For the sake of completeness, we include an Appendix with proofs of
some standard facts about the random walks we consider, and a formulation of
Karamata’s Tauberian theorem.
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2. Preliminaries.

2.1. Relative complexity over a factor. Let (X,B,m) be a standard probabil-
ity space and T : X → X a m-preserving transformation. Denote by B(X) the
collection of all measurable countable partitions of X. In order to avoid confu-
sion with notions from probability, we will denote the partitions by Greek letters
β ∈ B(X) and the atoms of β by β1, β2, . . . , β#β,#β ∈ N∪ {∞}. A partition β is
a generating partition if the smallest σ -algebra containing {T −nβ : n ∈ Z} is B.
For β ∈ B(X) and n ∈N, let

βn
0 :=

n∨
j=0

T −jβ =
{

n⋂
j=0

T −j bj : b1, . . . , bn ∈ β

}
.

The β-name of a point x ∈ X is the sequence β(x) ∈ (#β)Z defined by

βn(x) = i if and only if T nx ∈ βi.

The (T ,β,n)-Hamming pseudo-metric on X is defined by

d̄(β)
n (x, y) = 1

n
#
{
k ∈ {0, . . . , n − 1} : βk(x) �= βk(y)

}
.

That is two points x, y ∈ X are d̄
(β)
n -close if for most of the k′s in {0, . . . , n − 1},

T kx and T ky lie in the same partition element of β . An ε-ball in the Hamming
pseudo-metric will be denoted by

B(n,β, x, ε) := {
y ∈ X : d̄(β)

n (x, y) < ε
}
.

This pseudo-metric was used in [16, 18] to define complexity sequences and
slow-entropy-type invariants. It was shown, for example, by Katok and Thouvenot
[18] that if the growth rate of the complexity sequence is of order ehn with h > 0,
then h equals the entropy of X and by Ferenczi [16] that T is isomorphic to a
translation of a compact group if and only if the complexity is of lesser order than
any sequence which grows to infinity. In this paper, we will be interested with the
relativised versions of these invariants which were introduced in Aaronson [1].

A T -invariant sub-σ -algebra C ⊂ B is called a factor. An equivalent defini-
tion in ergodic theory is a probability preserving transformation (Y, C̃, ν, S) with a
(measurable) factor map π : X → Y such that πT = Sπ and ν = m ◦ π−1, in this
case C = π−1C̃.

Given a factor C ⊂ B, n ∈ N, β ∈ B(X) and ε > 0, we define a C-measurable
random variable KC(β,n, ε) : X →N by

KC(β,n, ε)(x) := min
{

#F : F ⊂ X,m

(⋃
z∈F

B(n,β, z, ε)
∣∣∣C)(x) > 1 − ε

}
,

where m(·|C) denotes the conditional measure of m with respect to C. The se-
quence of random variables {KC(β,n, ε)}∞n=1 is called the relative complexity of
(T ,β) with respect to β given C.
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Given a sequence of random variables Yn,n ∈ N taking values in [0,∞] we

write Yn
D−−−→

n→∞ Y to denote “Yn converges to Y in distribution” and Yn
m−−−→

n→∞ Y

to denote convergence in probability.
The upper entropy dimension of T given C is defined by

EDim(T ,C) := inf
{
t > 0 : logKC(β,n, ε)

nt

m−−−−−−−→
n→∞,ε→0

0,∀β ∈ B(X)

}

and the lower entropy dimension of T given C is

Edim(T ,C) = sup
{
t > 0 : ∃β ∈ B(X),

logKC(β,n, ε)

nt

m−−−−−−−→
n→∞,ε→0

∞
}
.

In case Edim(T ,C) = Edim(T ,C) = a, we write Edim(T ,C) = a and call this
quantity the entropy dimension of T given C.

The next theorem is a special case of [1], Theorem 2, when {nk}∞k=1 = N.

THEOREM 2.1 (Aaronson’s generator theorem). Let (X,B,m,T ) be a mea-
sure preserving transformation and dn > 0 a sequence.

(a) If there is a countable T -generator β ∈ B(X) and a random variable Y on
[0,∞] satisfying

logKC(β,n, ε)

dn

D−−−−−−−→
n→∞,ε→0

Y.

Then for all T -generating partitions α ∈B(X),

logKC(α,n, ε)

dn

D−−−−−−−→
n→∞,ε→0

Y.

(b) If for some β ∈ B(X), a generating partition for T ,

logKC(β,n, ε)

nt

m−−−−−−−→
n→∞,ε→0

0,

then EDim(T ,C) ≤ t .
(c) If for some partition β ∈B(X),

logKC(β,n, ε)

nt

m−−−−−−−→
n→∞,ε→0

∞
then Edim(T ,C) ≥ t .

2.2. Basic ergodic theory for Zd actions. Let (X,B,m) be a standard proba-
bility space and G be a countable Abelian group. A measure preserving action of
G on (X,B,m) is a map S : G → Aut(X,B,m) such that for every g1, g2 ∈ G,
Sg1g2 = Sg1Sg2 and for all g ∈ G, (Sg)∗m = m. The action is ergodic if there are
no nontrivial S-invariant sets.
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Given an ergodic G action on (X,B,m,S) and an increasing sequence Fn of
subsets of G, one can define a sequence of averaging operators An : L2(X,B,m)�
by

An(f ) := 1

#Fn

∑
g∈Fn

f ◦ Sg

and ask whether for all f ∈ L2(X,B,m) one has An(f ) → ∫
X f dm in L2. The

sequences of sets {Fn}∞n=1 for which this is necessarily true are called Fölner se-
quences and they are characterised by the property that for every g ∈ G,

#[Fn�{Fn + g}]
#Fn

−−−→
n→∞ 0.

In this work, we will be concerned with either actions of G = Z which is gen-
erated by one measure preserving transformation or G = Z

2 which corresponds to
two commuting measure preserving transformations. For a finite partition β of X,
one defines the entropy of S with respect to β by

h(S, β) := lim
n→∞

1

nd
H

( ∨
j∈[0,n]d∩Zd

S−1
j β

)
,

where H(β) =∑#β
j=1 m(βi) logm(βi) is the Shannon entropy of the partition. The

entropy of S is then defined by

h(S) = sup
β∈B(X):βfinite

h(S, β).

As in the case of a Z-action, one says that β is a generating partition if the smallest
sigma algebra containing

∨
j∈Zd S−1

j β is B. In an analogous way to the case of
Z-actions, it follows that if β is a generating partition for S then h(S) = h(S, β)

and if h(S) < ∞ then there exist finite generating partitions [10, 19, 22].

3. Random walks in random sceneries and statement of main theorem. In
what follows, we will be interested in a random walk in random scenery where
the jump random variable ξ ∈ Z

2 is in the domain of attraction of 2-dimensional
Brownian Motion, or ξ ∈ Z and is in the domain of attraction of the Cauchy law.
The reason that these two models are of most interest to us is that the limiting
distribution does not have a local time process.

To be more precise, let ξ, ξ1, ξ2, . . . be i.i.d. Zd -valued random variables defined
on a probability space (	,F,P), with characteristic function φξ (t) := E(eit ·ξ ) for
t ∈ [−π,π ]d , and that either:

A1 (1-stable) ξ ∈ Z and φξ (t) = 1−γ |t |+o(|t |) for t ∈ [−π,π ], for some γ > 0;
or

A2 ξ is in Z
2 and E|ξ |2 < ∞ with nonsingular covariance matrix �; equivalently

φξ (t) = 1 − 〈t,�t〉 + o(|t |2) for t ∈ [−π,π ]2.
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In the above cases, the random walk is given by Sn(ξ) := ξ1 + ξ2 +· · ·+ ξn. We
will also assume that the random walk is strongly aperiodic in the sense that there
is no proper subgroup L of Zd such that P(ξ − x ∈ L) = 1 for some x ∈ Z

d .
We are also interested in the two-dimensional simple random walk, which has

period 2 and is thus not covered by A2 above.

A2′ ξ ∈ Z
2 and P[ξ = e] = 1/4 for |e| = 1. Then

√
det(�) = 1/2.

Denote by μξ the distribution of ξ . The base of the RWRS is then defined as 	 =
(Zd)N the space of all Zd -valued sequences, P =∏∞

k=1 μξ , the product measure,
and σ : 	 → 	 the left shift on 	 defined by

(σw)n = wn+1.

When d = 2, the random scenery is an ergodic probability preserving Z
2- action

(Y,C, ν,S) and when d = 1 it is just an ergodic probability preserving transforma-
tion S : (Y,C, ν) → (Y,C, ν).

The skew product transformation on Z = 	 × Y , BZ = B	 ⊗ BY , m = P × ν,
defined by

T (w,y) = (
σw,Sw1(y)

)
,

is the random walk in random scenery with scenery (Y,C, ν,S) and jump random
variable ξ .

REMARK 3.1. The results of Kalikow [17] were extended to more general
RWRSs, including the planar case, by den Hollander and Steif [13]. In particular,
they show that these RWRSs are not Bernoulli.

THEOREM 3.1. Let (Z,BZ,m,T ) be RWRS with random scenery (Y,C, ν,S)

and jump random variable ξ .

(a) If d = 1 and ξ satisfies A1 then for any generating partition β for T ,

log(n)

πγ n
logKB	(β,n, ε)

m−→ h(S).

(b) If d = 2 and ξ satisfies A2 or A2′ then for any generating partition β for T ,

logn

2π
√

det(�)n
logKB	(β,n, ε)

m−→ h(S).

In particular, in both cases

Edim(T ,B	) = 1.

REMARK 3.1. This theorem states that the rate of growth of the complexity
is of order #R(n), where R(n) is the range of the random walk up to time n. This
conclusion is similar to the conclusion of Aaronson for the case where the random
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walk is in the domain of attraction of an α-stable random variable with 1 < α ≤ 2.
Our method of proof can apply to these cases as well. In addition, since we are not
using the full theory of weak convergence of local times, one can hope that this
method will apply also to a wider class of dependent jump distributions.

Two probability preserving transformations (Xi,Bi ,mi, Ti),1 = 1,2, are rel-
atively isomorphic over the factors Ci ⊂ Bi if there exists a measurable isomor-
phism π : (X1,B1,m1, T1) → (X2,B2,m2, T2) such that π−1C2 = C1. The fol-
lowing corollary follows from Theorem 3.1 together with [1], Corollary 4.

COROLLARY 3.1. Suppose that (Zi,BZi
,mi, Ti), i = 1,2, are two Random

walks in random sceneries with strongly aperiodic Z
2-valued jump random vari-

able ξ which satisfy A2 or A2′ and their sceneries S(i) have finite entropies.
If these two systems are isomorphic over their bases B	i

, then√
det(�1)h

(
S(1))=√

det(�2)h
(
S(2)).

4. The range of the random walk. Let R(n) = {S(1), . . . , S(n)}, be the
range of the random walk and for x ∈ Z

d define the local time,

l(n, x) =
n∑

j=1

1
{
S(j) = x

}
.

Denote by F the σ -algebra generated by {ξn}∞n=1.
The following theorem extends [9], Theorem 2, to the case A1.

THEOREM 4.1. Let Yn be a point chosen uniformly at random from R(n), that
is,

(4.1) P[Yn = x|F] = 1{x ∈ R(n)}
#R(n)

.

(i) If A1 holds, then

(4.2) P

[
πγ

l(n,Yn)

logn
≥ u

∣∣∣F]→ e−u a.s. as n → ∞.

(ii) If A2 ([9], Theorem 2) or A2′ holds, then

(4.3) P

[
2π
√

det(�)
l(n,Yn)

logn
≥ u

∣∣∣F]→ e−u a.s. as n → ∞.

The following is the main result of this section.

THEOREM 4.2. Suppose that A1, A2 or A2′ holds, then R(n) is almost surely
a Fölner sequence, that is, almost surely for all j ∈ Z

d

(4.4) lim
n→∞

#[R(n)�(R(n) + j)]
#R(n)

= 0.
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4.1. Auxiliary results. Before we embark on the proofs of Theorems 4.1 and
4.2, we require several standard results. The next result is a direct consequence of
strong aperiodicity and Assumptions A1 and A2. Its proof is a standard application
of Fourier inversion, and is included in the Appendix for the sake of completeness.

LEMMA 4.1. Suppose that A1 or A2 holds. Then with γ1 := πγ and γ2 :=
2π

√|�|

sup
w

P
[
S(m) = w

]= O

(
1

m

)
,(4.5)

P
[
S(m) = w

]− P
[
S(m) = 0

]= O

( |w|
m2

)
,(4.6)

P
[
S(m) = w

]∼ 1

γdm
.(4.7)

LEMMA 4.2. Suppose that A1 holds. Then as λ ↑ 1,

(4.8)
1

2π

∫ π

−π

λφ(t)dt

1 − λφ(t)
∼ 1

πγ
log
(

1

1 − λ

)
.

Since simple random walk is not aperiodic, to prove Theorem 4.1 for the case
A2′ we recall the following (see [23], Theorem 1.2.1).

LEMMA 4.3. Under A2′

sup
x

P
[
S(m) = x

]= O

(
1

m

)
,(4.9)

n∑
k=0

P[Sm = 0] ∼ 1

π
logn.(4.10)

4.2. Proof of Theorem 4.1. The result under A2 has been proven in [9]. We
will therefore focus on the remaining cases, explaining how to adapt the arguments
in [9]. We write C for a generic positive constant.

For α ≥ 0, define the α-fold self-intersection local time as follows:

Ln(α) := ∑
x∈Zd

l(n, x)α, α > 0

Ln(0) := lim
α↓0

Ln(α) = ∑
x∈Zd

I
{
l(n, x) > 0

}= #R(n).

The first step of the method in [9] is to calculate the asymptotic behaviour of
Ln(α) for α ∈ N. The next step is to use the aforementioned asymptotics to show
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that all integer moments of 2π
√|�|l(n,Yn)/ log(n), where Yn is uniformly dis-

tributed in R(n), converge to those of the exponential distribution with unit mean
for almost every random walk path. Since the exponential distribution is uniquely
determined by its integer moments the result follows.

The following Proposition 4.1 extends the estimates of [9] to the cases A1
and A2′. See also the appendix [8] for the estimates in the case of assumption A2
under the aperiodicity condition.

PROPOSITION 4.1. For d = 1,2, and any integer k ≥ 1 if A1 or A2′ holds
then as n → ∞

ELn(k) ∼ �(k + 1)

(πγd)k−1 n(logn)k−1,(4.11)

var
(
Ln(k)

)= O
(
n2(logn)2k−4),(4.12)

lim
n→∞

n(logn)k−1

(πγd)k−1 Ln(k) = �(k + 1) almost surely.(4.13)

PROOF. Once (4.11) and (4.12) have been established, (4.13) follows for ge-
ometric subsequences by Chebyshev’s inequality and the complete result by the
same argument as in Černy [9], which uses in addition the monotonicity of Ln(α)

with respect to n in order to interpolate.

Case A1: The estimate (4.12) is contained in Theorem 3 of Deligiannidis and
Utev [11]. It remains to prove (4.11).

Similar to [9], we write

ELn(k) =
n∑

j1,...,jk=0

P[Sk1 = · · · = Sjk
]

=
k∑

b=1

ρ(b, k)
∑

0≤j1<···<jb≤n

P[Sj1 = · · · = Sjb
],

where ρ(k, k) = k!, while the remaining factors will not be important.
Letting

(4.14) Mn(b) :=
{
(m0, . . . ,mb) ∈ N

b+1 : m1, . . . ,mb−1 ≥ 1,
∑

mi = n
}
,

we have by the Markov property

ab(n) := ∑
0≤j1<···<jb≤n

P[Sj1 = · · · = Sjb
]

(4.15)

= ∑
m∈Mn(b)

b−1∏
i=1

P[Smi
= 0].
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Then for λ ∈ [0,1), by standard Fourier inversion

∞∑
n=0

ab(n)λn = ∑
n=0

λn
∑

m∈Mn(b)

b−1∏
i=1

P[Smi
= 0]

= ∑
m0≥0

∞∑
m1,...,mb−1≥1

∞∑
n=0

λm0+···+mb−1+n
b−1∏
i=1

P[Smi
= 0]

=
∞∑

m0=0

λm0

∞∑
n=0

λn
b−1∏
i=1

∞∑
mi=1

λmiP[Smi
= 0]

= 1

(1 − λ)2

[
1

2π

∫ π

−π

λφ(t)dt

1 − λφ(t)

]b−1
∼ (πγ )1−b

(1 − λ)2 log
(

1

1 − λ

)b−1
,

as λ ↑ 1, by Lemma 4.2. Then under A1 (4.11) follows by Karamata’s Tauberian
theorem, given in Appendix B, since the sequence ab(n) is monotone increasing.

Case A2′: The estimate (4.11) follows from (4.15) and (4.10).
The proof of (4.12) can be adapted from [11]. The variance is given by

var
(
Ln(k)

)= C(k)
∑

i1≤···≤ik

∑
l1≤···≤lk

{
P
[
S(i1) = · · · = S(ik);S(l1) = · · · = S(lk)

]

− P
[
S(i1) = · · · = S(ik)

]
P
[
S(l1) = · · · = S(lk)

]}
.

The terms where l1, . . . , lk are not completely contained in any of the intervals
[ij , ij+1] can be bounded above by the positive term in the sum using (4.9). A
similar, albeit more involved, calculation is performed in the proof of Proposi-
tion 4.2.

Suppose then that l1, . . . , lk ∈ [ij , ij+1] for some j , and by symmetry we can
take j = 1. Define Mn(2k) as in (4.14) and change variables to

i1 = m0, l1 = m0 + m1, l2 = m0 + m1 + m2, . . . , lk = m0 + · · · + mk,

i2 = lk + mk+1, . . . , ik = lk + mk+1 + · · · + m2k−1.

Write p(m) = P[S(m) = 0] and p̄(m) = 1/(πm). The contribution of these terms
is then

Jn(k) = C(k)
∑

Mn(2k)

∏
1≤j≤2k−1
j �=1,k+1

p(mj ) × {
p(m1 + mk+1) − p(m1 + · · · + mk+1)

}
.

By [24], Theorem 2.1.3, we have that

∣∣p(m) + p(m + 1) − 2p̄(m)
∣∣≤ C

m2 .
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Let q := m2 + · · · + mk and

M := n − ∑
0≤j≤2k−1
j �=1,k+1

mj .

Then∣∣∣∣∣
M∑

m1+mk+1=0

p(m1 + mk+1) − p(m1 + mk+1 + q)

∣∣∣∣∣
≤

M∑
m1=0

[(M−m1)/2]∑
mk+1=0

∣∣p(m1 + 2mk+1) + p(m1 + 2mk+1 + 1)

− p(m1 + 2mk+1 + q) − p(m1 + 2mk+1 + 1 + q)
∣∣

≤
M∑

m1=0

[(M−m1)/2]∑
mk+1=0

{∣∣p̄(m1 + 2mk+1) − p̄(m1 + 2mk+1 + q)
∣∣

+ C

(m1 + 2mk+1)2

}

≤
M∑

m1=0

[(M−m1)/2]∑
mk+1=0

{
q

(m1 + 2mk+1)(m1 + 2mk+1 + q)
+ C

(m1 + 2mk+1)2

}

≤
n∑

m1+mk+1=0

{
q

(m1 + mk+1)(m1 + mk+1 + q)
+ C

(m1 + mk+1)2

}
.

In order to ease the notation, here and elsewhere in the paper we allow fractions of
the form 1/m where m may be zero. In these cases, we treat the fraction as 1.

Going back to Jn(k), we have

Jn(k) ≤ ∑
Mn(2k)

∏
1≤j≤2k−1
k �=1,k+1

p(mk) ×
{

m2 + · · · + mk

(m1 + · · · + mk+1)(m1 + mk+1)

+ C

(m1 + mk+1)2

}

= ∑
Mn(2k)

∏
1≤k≤2k−1
k �=1,k+1

p(mk)
m2 + · · · + mk

(m1 + · · · + mk+1)(m1 + mk+1)

+ O
(
n(logn)2k−2)

=: J ′
n(k) + O

(
n(logn)2k−2).
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By symmetry after we split the sum in the numerator and we combine m = m1 +
mk+1,

J ′
n(k) ≤ Ckn

n∑
m1,...,m2k−1=0

1

m3 · · ·m2k−1(m1 + mk+1)(m1 + · · · + mk+1)

≤ Cn(logn)2k−4
n∑

m,m2=0

1

m + m2
≤ Cn2(logn)2k−4.

�

REMARK 4.1. A similar proof can be performed for any periodic random
walk, by summing over the period.

Given Proposition 4.1, the proof of Theorem 4.1 is very similar to [9] and is
thus omitted. We just point out that under A1

(4.16)
log(n)

πγ n
#R(n) → 1 a.s. as n → ∞,

by a simple application of Result 2 in Le Gall and Rosen [25] with β = d = 1 and
s(n) ≡ 1, after one notices that in our case the truncated Green’s function satisfies

(4.17) h(n) :=
n∑

k=0

P(Sk = 0) ∼ log(n)

πγ
,

by Lemma 4.8 and Karamata’s Tauberian theorem B.1.
For A2′ note that [15], Theorem 4, states that almost surely

logn

πn
#R(n) → 1.

4.3. Proof of the Fölner property of the range (Theorem 4.2). Let α > 0 and
define

Ln,w(α) := ∑
x∈Zd

l(n, x)αl(n, x + w)α.

These quantities are of interest since

Ln,w(0) := lim
α↓0

Ln,w(α) = ∑
x∈Zd

I
(
l(n, x) > 0

)
I
(
l(n, x + w) > 0

)

= #
(
R(n) ∩ R(n) + w

)
.

Using the above notation, the Fölner property (4.4) can be written as

lim
n→∞

Ln,w(0)

Ln,0(0)
= 1, a.s.

We will use the following result.
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PROPOSITION 4.2. Assume A1 or A2 holds. For all w ∈ Z
d and α ∈ Z, α ≥ 1

Ln,w(α)

n(logn)2α−1 →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(2α + 1)

(πγ )2α−1 , for d = 1,

�(2α + 1)

(2π
√|�|)2α−1

, for d = 2,

almost surely as n → ∞.

We first complete the proof of Theorem 4.2 and then we prove the above propo-
sition.

PROOF OF THEOREM 4.2. We first treat the cases A1 and A2.
Let Yn be defined as in (4.1). Setting γd = 2π

√|�| for d = 2 and γd = πγ for
d = 1, define

Wn := γ 2
d

l(n,Yn)l(n,Yn + w)

log(n)2 .

For integer α, by Proposition 4.2

E
[
Wα

n |F]= γ 2α
d

#R(n)

∑
x

l(n, x)αl(n, x + w)α

log(n)2α

= γ 2α−1
d Ln,w(α)

n log(n)2α−1

γdn/ log(n)

R(n)
→ �(2α + 1),

almost surely. These are the moments of Y 2, where Y ∼ Exp(1). Since

lim sup
k→∞

�(1 + 2k)1/2k

2k
= lim

�(1 + 2k)1/2k

2k
= e−1 < ∞,

these moments define a unique distribution on the positive real line (see [14]) and,
therefore, P-almost surely, we have that conditionally on F , Wn → Y 2 in distribu-
tion. Then ∑

x I(l(n, x) > 0, l(n, x + w) > 0)

#R(n)

= lim
α↓0

γ 2α
d

R(n)

∑
x

l(n, x)αl(n, x + w)α

log(n)2α

= lim
α↓0

E
[
Wα

n |F] and by monotone convergence

= E

[
lim
α↓0

Wα
n |F

]
= P(Wn > 0|F),

almost surely. This shows that∑
x I(l(n, x) > 0, l(n, x + w) > 0)

#R(n)
= P(Wn > 0|F) −−−→

n→∞ P
(
Y 2 > 0

)= 1.



2518 G. DELIGIANNIDIS AND Z. KOSLOFF

Simple Random Walk. For the simple random walk in Z
2, notice that one can

consider the lazy version of the random walk, where P[ξ ′ = 0] = 1/2 while for
e ∈ Z

2, with |e| = 1 we have P[ξ ′ = e] = 1/4d . Then the lazy simple random
walk S′

n :=∑n
i=1 ξ ′, is strongly aperiodic and satisfies A2′ and, therefore, letting

R′(n) := {S′(0), . . . , S′(n)} be the range of {S′(n)}n we have for all w ∈ Z
2

#(R′(n) ∩ R′(n) + w)

#R′(n)
→ 1,

almost surely. Define recursively the successive jump times

T0 := min
{
j ≥ 1 : S′

j �= S′
j−1

}
, Tk := min

{
j > Tk−1 : S′

j �= S′
j−1

}
.

Notice that the range of the simple random walk R(n) is equal to the range of the
lazy walk at the time of the nth jump, R′(Tn). Therefore,

#(R(n) ∩ R(n) + w)

#R(n)
= #(R′(Tn) ∩ R′(Tn) + w)

#R′(Tn)
→ 1,

since Tn → ∞ almost surely. �

REMARK 4.2. Note that it is also possible to prove Theorem 4.2 under A2′ di-
rectly, by proving the corresponding version of Proposition 4.2 and then following
the same argument as for A2. To adapt the variance calculation in Proposition 4.2
to the simple random walk, one has to sum first over the period similarly to the
proof of Proposition 4.1.

PROOF OF PROPOSITION 4.2. First, we prove the result for α ∈ N and then
we extend it to the general case α ≥ 0. For α ∈ N, we have

Ln,w(α) = ∑
x∈Z2

(
n∑

i=0

I(Si = x)

)α( n∑
i=0

I(Si = x + w)

)α

= ∑
x∈Z2

n∑
i1,...,iα=0

I
[
S(i1) = · · · = S(iα) = x

]

×
n∑

k1,...,kα=0

I
[
S(k1) = · · · = S(kα) = x + w

]

=
n∑

i1,...,i2α=0

I
{
S(i1) = · · · = S(iα) = S(iα+1) − w = · · · = S(i2α) − w

}
,

which for w = 0 corresponds to the term Ln(2α). Then we can rewrite Ln,w(α) as

Ln,w(α) =
2α∑

β=1

α∧β∑
j=(β−α)∨0

∑
εεε∈E(β,j)

j !(β − j)!
(4.18)

× ∑
0≤i1<···<iβ≤n

I
{
S(i1) + ε1w = · · · = · · · = S(iβ) + εβw

}
,
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where the third sum is over the set

E(β, j) :=
{
εεε = (ε1, . . . , εβ) ∈ {−1,0}β :∑ |εi | = j

}
.

Expectation of Ln,w(α). For given β , n and εεε ∈ E(β, j), we have using the
Markov property

α(εεε,β,n) := E

∑
0≤i1<···<iβ≤n

I
{
S(i1) + ε1w = · · · = · · · = S(iβ) + εβw

}

= ∑
m∈Mn(β)

β−1∏
i=1

P
[
S(mi) = (εi − εi+1)w

]
.

Next, we show that the asymptotic behaviour does not actually depend on w or εεε.
In this direction, we rewrite

α(εεε,β,n) = ∑
m∈Mn

β−1∏
i=1

P
[
S(mi) = 0

]

+ ∑
m∈Mn

{β−1∏
i=1

P
[
S(mi) = (εi − εi+1)w

]− β−1∏
i=1

P
[
S(mi) = 0

]}

=: α(000, β, n) + E(εεε,β,n,w),

and we claim that E(β,n,w) = o(α(000, β, n)) as n → ∞.
Letting δi = εi − εi+1 we telescope the product to get

E(εεε,β,n,w)

= ∑
m∈Mn

{β−1∏
i=1

P[Smi
= δiw] −

β−1∏
i=1

P[Smi
= 0]

}

(4.19)

=
β−1∑
j=0

∑
m∈Mn

β−1−j∏
i=1

P
[
S(mi) = δiw

]× [
P
[
S(mβ−1−j+1) = δβ−1−j+1w

]

− P
[
S(mβ−1−j+1) = 0

]] β−1∏
l=β−1−j+2

P
[
S(ml) = 0

]
,

where implicitly the indices are not allowed to exceed their corresponding ranges.
We analyse the first term in detail to obtain∣∣∣∣∣
∑

m∈Mn

β−2∏
i=1

P
[
S(mi) = δiw

]× [
P
[
S(mβ−1) = δβ−1w

]− P
[
S(mβ−1) = 0

]]∣∣∣∣∣
≤

n∑
m0,...,mβ−2=0

β−2∏
i=1

P
[
S(mi) = δiw

]
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×
n∑

mβ−1=0

∣∣P[S(mβ−1) = δβ−1w
]− P

[
S(mβ−1) = 0

]∣∣

≤
n∑

m0,...,mβ−20

β−2∏
i=1

P
[
S(mi) = δiw

][
1 +

∞∑
mβ−1=1

C

m2

]
= O

(
n log(n)β−2),

by Lemma 4.1. The remaining errors are very similar.
The asymptotic behaviour of α(000, β, n) follows from [9] for d = 2 and

Lemma 4.2 for d = 1 and is given by

α(000, β, n) ∼ n

(
logn

γd

)β−1
,

where γ1 := πγ and γ2 := 2π
√

det(�). Going back to (4.18), we see that the
leading term corresponds to β = 2α, while from the above discussion we can re-
place the terms α(εεε,2α,n) by α(000,2α,n). Since #E(2α,α)(α!)2 = �(2α + 1), we
conclude that

ELn,w(α) = E
∑

x∈Zd

l(n, x)αl(n, x + w)α ∼ �(2α + 1)n

(
logn

γd

)2α−1
.

Variance of Ln,w(α). To compute the variance, we will follow the approach
developed in [11]. First, notice that

ELn,w(α)2

= E

n∑
i1,...,i2α=0

I
(
S(i1) = · · · = S(iα) = S(iα+1) − w = · · · = S(i2α) − w

)

×
n∑

j1,...,j2α=0

I
(
S(j1) = · · · = S(jα) = S(jα+1) − w = · · · = S(j2α) − w

)
.

Let Am,A′
m be 0 or 1 according to whether there is a w or not in the mth increment.

Then

var
(
Ln,w(α)

)= ∑
k1,...,k2α

∑
l1,...,l2α

{
P
[
S(k1) = S(k2) + A2w = · · · = S(k2α) + A2αw;

S(l1) = S(l2) + A′
2w = · · · = S(l2α) + A′

2αw
]

− P
[
S(k1) = S(k2) + A2w = · · · = S(k2α) + A2αw

]
× P

[
S(l1) = S(l2) + A′

2w = · · · = S(l2α) + A′
2αw

]}
.

As we shall see, the presence of w does not affect the asymptotic behaviour.
The main role is played by the interlacement of the sequences k = (k1, . . . , k2α)

and l = (l1, . . . , l2α). In order to define the interlacement index v(k, l), of two
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sequences k = (k1, . . . , kr) and l = (l1, . . . , ls), let j be the combined sequence
of length r + s, where ties between elements of k and l are counted twice. We
also define εεε = (ε1, . . . , εr+s), where εi = 1 if the ith element of the combined
sequence is from k and 0 if it is from l; that is, ε1 = 1 if ji ∈ k and 0 otherwise.
Then we define the interlacement index,

(4.20) v(k, l) = v(k1, . . . , kr; l1, . . . , ls) :=
r+s−1∑
i=1

|εi+1 − εi |,

which counts the number of times k and l cross over.
When v = 1, then the contribution is zero by the Markov property. The main

contribution will be from v = 2. Similar to [11], the contributions of terms with
v ≥ 3 can be bounded above by just considering the positive part, ELn,w(α)2. Let
us first treat this case leaving v = 2 for later.

Case v ≥ 3. Letting ρ(α) denote combinatorial factors, the contribution to
ELn,w(α)2 from the terms with interlacement v ≥ 3 is trivially bounded above
by

In(w,α) := ρ(α)
∑

k1,...,k2α

∑
l1,...,l2α

P
[
S(k1) = S(k2) + A2w = · · · = S(k2α) + A2αw;

S(l1) = S(l2) + A′
2w = · · · = S(l2α) + A′

2αw
]

= ρ(α)
∑

k1,...,k2α

∑
l1,...,l2α

∑
x

P
[
S(k1) = · · · = S(k2α) + A2αw;

S(l1) = S(k1) − x,S(l1) = S(l2) + A′
2w = · · · = S(l2α) + A′

2αw
]
,

where Ai,A
′
i ∈ Z and may vary from line to line. Let (j1, . . . , j4α) denote the

combined sequence, allowing for matches. Changing variables

j1 = m0, j2 = m0 + m1, . . . , j4α = m0 + · · · + m4α−1,

n = m0 + · · · + m4α,

with m0, . . . ,m4α ≥ 0, we get

In(w,α) ≤ ρ(α)
∑

m0,...,m4α−1≥0

∑
x

P
[
S(m1) = S(m1 + m2) + A2w + δ2x

= · · · = S(m1 + · · · + m4α) + A4αw + δ4αx
]
,

where δi := εi − εi+1 ∈ {−1,0,+1}, and εεε is defined as earlier. A simple applica-
tion of the Markov property results in

In(w,α) ≤ ρ(α)n
∑

m1,...,m4α−1≥0

∑
x

4α−1∏
k=1

P
[
S(mk) = (δk−1 − δk)x + Akw

]
,
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where the factor n resulted from the free index m0. Notice that since v is the num-
ber of interlacements, exactly u := 4α − 1 − v of the δ’s are 0, and thus by (4.17)

In(w,α) ≤ Cn log(n)4α−1−v
∑

j1,...,jv

∑
x

v∏
t=1

P
[
S(jt ) = δ′

t x + Atw
]
,(4.21)

where δ′
t ∈ {−1,+1}. Letting

Dn,v :=
n∑

j1,...,jv=0

∑
x

v∏
k=1

P
[
S(jk) = δ′

kx + Akw
]
,

notice that

Dn,v ≤ Dn,v−1
∑
jv

sup
y

P
[
S(jv) = y

]≤ CDn,v−1

n∑
jv=1

1

jv

≤ C log(n)Dn,v−1.

Repeating we arrive at Dn,v ≤ C log(n)v−3Dn,3 and, therefore,

In(w,α) ≤ Cn log(n)4α−4Dn,3.

To complete our study of the v ≥ 3 case, we now treat the term Dn,3,

Dn,3 ≤ C
∑

i≤j≤k

∑
x

P
[
S(i) = δ′

ix + Aiw
]× P

[
S(j) = δ′

j x + Ajw
]

× P
[
S(k) = δ′

kx + Akw
]

≤ C
∑

i≤j≤k

(
sup
y

P
[
S(j) = y

])
sup
y

P
[
S(i + k) = y

]
.

By symmetry and Lemma 4.1,

Dn,3 ≤ C
∑

1≤i≤j≤k≤n

1

j

1

i + k
≤ C

n∑
m1=1

n∑
m2,m3=0

1

m1 + m2

1

2m1 + m2 + m3

≤ C

n∑
m1=1

n∑
m2=0

1

m1 + m2
log
(

1 + n

m1 + m2

)
≤ C

2n∑
j=1

log
(

1 + n

j

)

≤ C

∫ 2n

x=1
log
(

1 + n

x

)
dx ≤ n

∫ n

1/2
log(1 + y)

dy

y2 ≤ Cn.

Therefore, Dn,3 = O(n), and thus the total contribution of the terms with v ≥ 3 is
O(n2 log(n)4α−4).

Case v = 2. Letting Mn(4α) be defined as usual, we have for some q that
l1, . . . , l2α ∈ [kq, kq+1]. Denoting by Jn(w,α) the contribution of a single term
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with v = 2

Jn(w,α) = ∑
Mn(4α)

∏
1≤k≤4α−1
k �=q,q+2α

P
[
S(mk) = Akw

]

× [
P
(
S(mq) + S(mq+2α) = K1w

)
(4.22)

− P
(
S(mq) + · · · + S(mq+2α) = K2w

)]
,

where K1,K2 are integers determined by k, l and their interlacement. By (4.7), it
follows that

Jn(w,α)

≤ Cn log(n)2α−2
∑

p0,...,p2α

1

p2 · · ·p2α

[
1

p0 + p1
− 1

p0 + p1 + · · · + p2α

]

= Cn log(n)2α−2
∑

p0,...,p2α

p2 + · · · + p2α

p2 · · ·p2α(p0 + p1)(p0 + p1 + · · · + p2α)

≤ Cαn log(n)2α−2
∑

p0,...,p2α

1

p3 · · ·p2α(p0 + p1)(p0 + p1 + p2 + · · · + p2α)

≤ Cαn log(n)2α−2
∑

p2,...,p2α

2n∑
j=0

1

p3 · · ·p2α(j + p2 + · · · + p2α)

≤ Cαn log(n)2α−2 log(n)2α−3+1
n∑

p1,p2=0

1

p1 + p2
≤ Cαn2 log(n)4α−4.

Thus, the total contribution of terms with interlacement index v = 2 is
O(n2 log(n)4α−4).

To complete the proof of Proposition 4.2, we first use Chebyshev’s inequality to
prove convergence along subsequences n = �ρk�, for 0 < ρ < 1. We can fill in the
gaps following the standard trick, as in [9]. �

5. Proof of Theorem 3.1. Our proof follows closely the outline of the proof
of [1] and [18]. The main difference in our approach is that we are using the almost
sure Fölner property of the range and that we substitute the role of the local times
with Theorem 4.1. In the following, we assume that the entropy of S is finite. The
case of infinite entropy can be easily derived by the same method.

Fix a finite generator β for S, the existence of which is a consequence of
Krieger’s Finite Generator Theorem [22] for d = 1 and [10, 19] for d = 2. Let
α = {[x1] : x ∈ 	} be the partition of 	 according to the first coordinate. The par-
tition ϒ := α × β is a countable generating partition of 	 × Y for T . Thus, by
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Aaronson’s Generator Theorem (Theorem 2.1), we need to show that

logn

n
logKB	×Y (ϒ,n, ε)

m−→ πh(S) ·
{
γ, d = 1,A1,

2
√

det�, d = 2,A2,A2′.
For a0, a1, . . . , an ∈ ϒ , we write

[a0, a1, . . . , an] :=
n⋂

j=0

T −j aj

and the d̄n metric on
∨n−1

j=0 T −jϒ ,

d̄n

([a0, a1, . . . , an−1], [a′
0, a

′
1, . . . , an−1

]) := #{0 ≤ j ≤ n − 1 : aj �= a′
j }

n
.

Since T n(w,y) = (σnw,S∑n
j=1 wj

(y)), it is straightforward to check that for all
n ∈ N and (w,y) ∈ 	 × Y ,(

n−1∨
j=0

T −jϒ

)
(w,y) = [

wn−1
0

]× βRn(w)(y),

where βRn(w)(y) := (
∨

l∈Rn(w) S−1
l β)(y) and Rn(w) := {∑l

j=1 wj : 1 ≤ l ≤ n} is

the range of the random walk up to time n. For n ∈ N, define �n : 	 → 2
∨n−1

j=0 T −jϒ

by

�n(w) : =
{
a ∈

(
n−1∨
j=0

T −jϒ

)
: m(a|B	 × Y

)
(w) > 0

}
.

These are the partition elements seen by w. The function

�n,ε(x) : = min
{

#F : F ⊂ �n(x),m

(⋃
a∈F

a
∣∣∣B	 × Y

)
> 1 − ε

}
,

is an upper bound for KB	×Y(ϒ,n, ε)(x) since in the definition of �n,ε we are
using all sequences in �n(x) on their own and not grouping them into balls.

To get a lower bound, introduce

Qn,ε(x) := max
{
#
{
z ∈ �n(x) : d̄n(a, z) ≤ ε

} : a ∈ �n(x)
}

to be the maximal cardinality of elements of �n(x) at a d̄n ball centred at some
a ∈ �n(x). It then follows that

KB	×Y (P,n, ε)(x) ≥ �n,ε(x)

Qn,ε(x)
.

Therefore, the proof is separated into two parts. First, we prove that

(5.1)
logn

n
log�n,ε

m−→ πh(S) ·
{
γ, d = 1,A1,

2
√

det�, d = 2,A2,A2′,
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and the second part consists of showing that

(5.2)
logn

n
logQn,ε(x)

m−→ 0.

We will deduce (5.1) from the following Shannon–Mcmillan–Breiman theorem.

LEMMA 5.1. For P-almost every w ∈ 	,

− logn

n
logν

(
βRn(w)(y)

) m−→ πh(S) ·
{
γ, d = 1,A1,

2
√

det�, d = 2,A2,A2′, as n → ∞.

PROOF. Let d ∈ {1,2}. By Theorem 4.2, for P-almost every w, the range
{Rn(w)} is a Fölner sequence for Zd . Whence by Kieffer’s Shannon–McMillan–
Breiman theorem [21], for P-a.e. w,

− 1

#Rn(w)
logν

(
βRn(w)(y)

) ν−−−→
n→∞ h(S)

and thus by Fubini,

− 1

#Rn(w)
logν

(
βRn(w)(y)

) m−−−→
n→∞ h(S).

Notice that h(S, β) = h(S) since β is a generating partition. Since by [15] and
(4.16),

logn

n
#Rn(w)

a.s.−−−→
n→∞ π

{
γ, d = 1,A1,

2
√

det�, d = 2,A2,A2′,

the conclusion of the lemma follows. �

To keep the notation short, write

bd(n) := πn

log(n)

{
γ, d = 1,A1,

2
√

det�, d = 2,A2,A2′.

PROOF OF (5.1). Let ε > 0 and for n ∈ N, x ∈ 	 let

Hn,x,ε := {
y ∈ Y : ν(βRn(x))(y) = e−bd (n)h(S)(1±ε)}.

By Lemma 5.1, there exists Nε such that for all n > Nε , ∃Gn,ε ∈ B	 so that
P(Gn,ε) > 1 − ε and for all x ∈ Gn,ε ,

(5.3) ν(Hn,x,ε) > 1 − ε

2
.

For x ∈ Gn,ε , set Fn,x,ε := {βRn(x)(y) : y ∈ Hn,x,ε}. Since

min
{
logν(a) : a ∈ Fn,x,ε

}
> −bd(n)h(S)(1 + ε),



2526 G. DELIGIANNIDIS AND Z. KOSLOFF

one has by a standard counting argument that for x ∈ Gn,ε

log�n,ε(x) ≤ log #Fn,x,ε ≤ bd(n)h(S)(1 + ε).

On the other hand, it follows from (5.3) that for small ε and x ∈ Gn,ε , if F ⊂
�n(x) with m(

⋃
a∈F a|B	 × Y )(x) > 1 − ε, then for large n

#F ≥ 1 − 3ε/2

max{logν(a) : a ∈ Fn,x,ε} ≥ ebd (n)h(S)(1−ε)

2
.

Thus, for every x ∈ Gn,ε with n large,

log�n,ε(x) ≥ bd(n)h(S)(1 − ε) + log(1/2) ≥ bd(n)h(S)(1 − 2ε).

The conclusion follows since

m
([

log�n,ε(x) = bd(n)h(S)(1 ± 2ε)
])≥ P(Gn,ε) −−−−−−−→

n→∞,ε→0
1. �

5.1. Proof of Equation (5.2). Let ε > 0 and choose δ > 0 such that

2H(3δ/2) + 3δ log(#β) < ε,

where for 0 < p < 1,

H(p) = −p log2(p) − (1 − p) log2(1 − p),

is the entropy appearing in the Stirling approximation for the binomial coefficients.
It follows from Theorem 4.1 that there exists c > 0 such that for all large n, the
sets

Aδ,n =
{
w ∈ 	 : #{x ∈ Rn(w) : l(n, x)(w) > c log(n)}

#Rn(w)
> 1 − δ

}
,

satisfy P(Aδ,n) > 1 − δ. Since #Rn(w) ∼ bd(n) almost surely we can assume fur-
ther that for all w ∈ Aδ,n, #Rn(w) � 2bd(n).

Since �n(w) ⊂ [wn−1
0 ] × βRn(w), we can define a map z : �n(w) → βRn(w) by

a =: [wn−1
0

]× z(a).

For z ∈ βRn(w) and j ∈ Rn(w), denote by zj the element of β such that z ⊂ S−1
j β .

LEMMA 5.2. For large n ∈ N and w ∈ Aδ,n, if a, a′ ∈ �n(w) then

#
{
j ∈ Rn(w) : z(a)j �= z

(
a′)

j

}≤ bd(n)

(
d̄n(a, a′)

ĉ
+ 2δ

)
,

where ĉ := c · bd(n) log(n)/n.
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PROOF. Define

Kn(w) := {
j ∈ Rn(w) : z(a)j �= z

(
a′)

j

}
and

Fn(w) := {
j ∈ Rn(w) : l(n, x)(w) ≥ c log(n)

}
.

Then Kn ⊂ (Kn ∩ Fn) ∪ Fc
n and, therefore, since w ∈ Aδ,n,

#Kn(w) ≤ #(Kn ∩ Fn)(w) + #Fc
n (w)

≤ #(Kn ∩ Fn)(w) + δ#Rn(w)

� #(Kn ∩ Fn)(w) + 2δbd(n).

Finally,

#(Kn ∩ Fn) ≤ 1

c log(n)

∑
j∈Fn(w)

l(n, j)1Kn(w)

≤ 1

c log(n)
#
{
0 ≤ i ≤ n − 1 : z(a)si (w) �= z

(
a′)

si (w)

}

= n

c log(n)
d̄n

(
a, a′).

The conclusion follows. �

PROOF OF (5.2). First, we show that for n large enough so that Aδ,n is defined,

max
w∈Aδ,n

logQn,ĉδ(w) ≤ εbd(n).

To see this, first notice that by Lemma 5.2 for every a ∈ �n(w),{
a′ ∈ �n(w) : d̄n

(
a, a′)≤ ĉδ

}
⊂ {

z ∈ βRn(w) : #
{
j ∈ Rn(w) : z(a)j �= zj

}≤ 3δbd(n)
}
.

Thus, for w ∈ Aδ,n, using the Stirling approximation for the Binomial and
#Rn(w) � 2bd(n),

logQn,ĉδ(w) ≤ log

[(
#Rn(w)

3δbd(n)

)
(#β)3δbd (n)

]

� 3bd(n)δ log(#β) + log

(
2bd(n)

3δbd(n)

)

∼ bd(n)
[
3δ log(#β) + 2H(3δ/2)

]
≤ εbd(n).
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This shows that for large n,

P
(
logQn,ĉδ > 2εbd(n)

)≤ P
(
Ac

δ,n

)≤ δ,

and thus we have completed the proof of (5.2). �

As was mentioned before, Theorem 3.1 follows from (5.1) and (5.2).

APPENDIX A: APPENDIX: PROOFS OF AUXILIARY RESULTS

PROOF OF LEMMA 4.1. We only prove the second statement, the first being
simpler. For d = 1 and any ε > 0 by strong aperiodicity for |t | > ε, it is true that
|φ(t)| < C(ε) < 0. Therefore,

∣∣P[S(m) = 0
]− P[Sm = w]∣∣≤ ∫ π

−π

∣∣1 − eitw∣∣∣∣φ(t)
∣∣m dt

≤
∫
|t |<ε

∣∣1 − eitw∣∣∣∣φ(t)
∣∣m dt + 4πC(ε)m,

where the second term decays exponentially. For the first term, we have since
φ(t) = 1 − γ |t | + o(|t |), for ε small enough and |t | < ε,∣∣φ(t)

∣∣≤ ∣∣1 − γ |t |∣∣+ D(ε)|t | ≤ 1 − γ

2
|t |.

Therefore,∫
|t |<ε

∣∣1 − eitw∣∣∣∣φ(t)
∣∣m dt ≤ C

∫
|t |<ε

|t ||w|
(

1 − γ

2
|t |
)m

dt

= C|w|
∫ ε

t=0
t

(
1 − γ t

2

)m

dt

≤ C|w|
∫ ε

t=0
t exp

(
−mγ t

2

)
dt ≤ C

|w|
m2 .

We prove (4.7) for d = 1. By (4.6) it suffices to consider w = 0. For the moment
fix a small ε > 0. Then, by aperiodicity, for |t | > ε, there exists ρ(ε) ∈ (0,1), such
that |φ(t)| < ρ(ε). Thus,

P
[
S(n) = 0

]= 1

2π

∫ π

−π
φ(t)n dt = 1

2π

∫ ε

−ε
φ(t)n dt + O

(
ρ(ε)n

)

= 1

2π

∫ ε

−ε

[
1 − γ |t | + R(t)

]n dt + O
(
ρ(ε)n

)
=: I (n, ε) + O

(
ρ(ε)n

)
.

Since R(t) = o(t), for |t | < ε, we can find C(ε) such that |R(t)| ≤ C(ε)|t | and
such that C(ε) → 0 as ε → 0.
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Therefore, letting γ1(ε) := γ (1 + C(ε))

I (n, ε) ≥ 1

2π

∫ ε

−ε

[
1 − γ |t | − C(ε)|t |]n dt = 1

π

∫ ε

0

[
1 − γ1(ε)t

]n dt

= 1

πγ1(ε)

∫ γ1(ε)ε

0
[1 − t]n dt = 1

πγ1(ε)

{
1

n + 1
− [1 − γ1(ε)ε]n+1

n + 1

}
.

Since for ε > 0 small enough, we have 0 < 1 − γ1(ε)ε < 1 we compute

lim inf
n→∞ nP

[
S(n) = 0

]≥ 1

πγ1(ε)
.

On the other hand, we also have

I (n, ε) ≤ 1

2π

∫ ε

−ε

[
1 − γ |t | + C(ε)|t |]n dt = 1

π

∫ ε

0

[
1 − γ2(ε)t

]n dt,

where γ2(ε) = 1 − C(ε). Thus,

I (n, ε) ≤ 1

π

∫ ε

0

[
1 − γ2(ε)t

]n dt = 1

πγ2(ε)

∫ γ2(ε)ε

0
[1 − t]n dt

= 1

πγ2(ε)

{
1

n + 1
− [1 − γ2(ε)ε]n+1

n + 1

}
.

For ε > 0 small enough, we have that 1 − γ2(ε)ε ∈ (0,1) and, therefore, we obtain
that

lim sup
n→∞

nP
[
S(n) = 0

]≤ 1

πγ2(ε)
.

Since ε > 0 is can be arbitrarily small and γ1(ε), limγ2(ε) → γ , (4.7) follows.
For d = 2, the proof is similar, using polar coordinates. �

PROOF OF LEMMA 4.2. Let δ > 0 be arbitrary but small. Then

1

2π

∫ π

t=−π

λφ(t)dt

1 − λφ(t)
= 1

2π

∫
|t |≤δ

λφ(t)dt

1 − λφ(t)
+ 1

2π

∫
π≥|t |>δ

λφ(t)dt

1 − λφ(t)
.

By strong aperiodicity for small enough δ > 0, there exists a small positive con-
stant D(δ) such that |φ(t)| < 1 − D(δ) when |t | > δ. Thus,∣∣∣∣ 1

2π

∫
π≥|t |>δ

λφ(t)dt

1 − λφ(t)

∣∣∣∣≤ CD(δ)−1,

for all λ ≤ 1. Also

1

2π

∫
|t |≤δ

λφ(t)dt

1 − λφ(t)
= 1

2π

∫
|t |≤δ

λφ(t)dt

1 − λ(1 − γ |t |) + I (λ, δ),
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where a standard argument using A1 and the strong aperiodicity shows that there
exists r(δ) = oδ(1), as δ → 0 such that∣∣I (λ, δ)

∣∣≤ r(δ) log
(

1

1 − λ

)
.

Finally, as λ ↑ 1 it is easily seen that

1

2π

∫
|t |≤δ

λφ(t)dt

1 − λ(1 − γ |t |) ∼ 1

π

∫ δ

t=0

dt

1 − λ + λγ t

= 1

π

∫ δ

t=0

dt

1 − λ + λγ t
∼ 1

πγ
log
(

1

1 − λ

)
.

Therefore, as λ ↑ 1

1

2π

∫ π

t=−π

λφ(t)dt

1 − λφ(t)
= 1

πγ
log
(

1

1 − λ

)(
1 + O

(
r(δ)

))+ O(1)

∼ 1

πγ
log
(

1

1 − λ

)
,

since δ is arbitrarily small and r(δ) → 0 as δ → 0. �

APPENDIX B: KARAMATA’S TAUBERIAN THEOREM FOR
POWER SERIES

A function h :R→R is slowly varying at ∞ if for any λ > 0

lim
x→∞

h(λx)

h(x)
= 1.

The case we have in mind is h(x) = logx.
For two functions (resp., sequences), write f (x) ∼ g(x) as x → x0 if

limx→x0 f (x)/g(x) = 1.

THEOREM B.1 (Corollary 1.7.3 in [4]). If an ≥ 0 and the power series
I (λ) =∑

n≥0 anλ
n converges for λ ∈ [0,1), then for c, ρ ≥ 0 and a slowly varying

function h,
n∑

k=0

ak ∼ cnρh(n)/�(1 + ρ)

as n → ∞, if and only if

I (λ) ∼ h

(
1

1 − λ

)
c

(1 − λ)ρ
,

as λ → 1. If in addition cρ > 0 and an is eventually monotone, both are equivalent
to

an ∼ cnρ−1h(n)/�(ρ), as n → ∞.
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[9] ČERNÝ, J. (2007). Moments and distribution of the local time of a two-dimensional random
walk. Stochastic Process. Appl. 117 262–270. MR2290196

[10] DANILENKO, A. I. and PARK, K. K. (2002). Generators and Bernoullian factors for amenable
actions and cocycles on their orbits. Ergodic Theory Dynam. Systems 22 1715–1745.
MR1944401

[11] DELIGIANNIDIS, G. and SERGEY, U. (2015). Optimal bounds for self-intersection local times.
Preprint. Available at arXiv:1505.07956.

[12] DELIGIANNIDIS, G. and SERGEY, U. (2011). Computation of the asymptotics of the variance
of the number of self-intersections of stable random walks using the Wiener–Darboux
theory. Sibirsk. Mat. Zh. 52 809–822.

[13] DEN HOLLANDER, F. and STEIF, J. E. (1997). Mixing properties of the generalized T ,T −1-
process. J. Anal. Math. 72 165–202. MR1482994

[14] DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Univ. Press, Cam-
bridge. MR2722836

[15] DVORETZKY, A. and ERDÖS, P. (1951). Some problems on random walk in space. In Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950
353–367. Univ. California Press, Berkeley. MR0047272

[16] FERENCZI, S. (1997). Measure-theoretic complexity of ergodic systems. Israel J. Math. 100
189–207. MR1469110

[17] KALIKOW, S. A. (1982). T ,T −1 transformation is not loosely Bernoulli. Ann. of Math. (2)
115 393–409. MR0647812

[18] KATOK, A. and THOUVENOT, J.-P. (1997). Slow entropy type invariants and smooth re-
alization of commuting measure-preserving transformations. Ann. Inst. Henri Poincaré
Probab. Stat. 33 323–338. MR1457054

[19] KATZNELSON, Y. and WEISS, B. (1972). Commuting measure-preserving transformations.
Israel J. Math. 12 161–173. MR0316680

http://www.ams.org/mathscinet-getitem?mr=3050509
http://arxiv.org/abs/arXiv:1405.1468
http://www.ams.org/mathscinet-getitem?mr=2013349
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=0972774
http://www.ams.org/mathscinet-getitem?mr=0636771
http://www.ams.org/mathscinet-getitem?mr=0749918
http://www.ams.org/mathscinet-getitem?mr=3088379
http://www.ams.org/mathscinet-getitem?mr=2290196
http://www.ams.org/mathscinet-getitem?mr=1944401
http://arxiv.org/abs/arXiv:1505.07956
http://www.ams.org/mathscinet-getitem?mr=1482994
http://www.ams.org/mathscinet-getitem?mr=2722836
http://www.ams.org/mathscinet-getitem?mr=0047272
http://www.ams.org/mathscinet-getitem?mr=1469110
http://www.ams.org/mathscinet-getitem?mr=0647812
http://www.ams.org/mathscinet-getitem?mr=1457054
http://www.ams.org/mathscinet-getitem?mr=0316680


2532 G. DELIGIANNIDIS AND Z. KOSLOFF

[20] KESTEN, H. and SPITZER, F. (1979). A limit theorem related to a new class of self-similar
processes. Z. Wahrsch. Verw. Gebiete 50 5–25. MR0550121

[21] KIEFFER, J. C. (1975). A generalized Shannon–McMillan theorem for the action of an
amenable group on a probability space. Ann. Probab. 3 1031–1037. MR0393422

[22] KRIEGER, W. (1970). On entropy and generators of measure-preserving transformations.
Trans. Amer. Math. Soc. 149 453–464. MR0259068

[23] LAWLER, G. F. (1991). Intersections of Random Walks. Birkhäuser, Boston, MA. MR1117680
[24] LAWLER, G. F. and LIMIC, V. (2010). Random Walk: A Modern Introduction. Cambridge

Univ. Press, Cambridge. MR2677157
[25] LE GALL, J.-F. and ROSEN, J. (1991). The range of stable random walks. Ann. Probab. 19

650–705. MR1106281
[26] ORNSTEIN, D. (1970). Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4

337–352. MR0257322
[27] RUDOLPH, D. J. (1988). Asymptotically Brownian skew products give non-loosely Bernoulli

K-automorphisms. Invent. Math. 91 105–128. MR0918238

DEPARTMENT OF STATISTICS

UNIVERSITY OF OXFORD

24-29 ST. GILES

OX1 3LB, OXFORD

UNITED KINGDOM

E-MAIL: deligian@stats.ox.ac.uk

MATHEMATICS INSTITUTE

ZEEMAN BUILDING

UNIVERSITY OF WARWICK

COVENTRY CV4 7AL
UNITED KINGDOM

E-MAIL: z.kosloff@warwick.ac.uk

http://www.ams.org/mathscinet-getitem?mr=0550121
http://www.ams.org/mathscinet-getitem?mr=0393422
http://www.ams.org/mathscinet-getitem?mr=0259068
http://www.ams.org/mathscinet-getitem?mr=1117680
http://www.ams.org/mathscinet-getitem?mr=2677157
http://www.ams.org/mathscinet-getitem?mr=1106281
http://www.ams.org/mathscinet-getitem?mr=0257322
http://www.ams.org/mathscinet-getitem?mr=0918238
mailto:deligian@stats.ox.ac.uk
mailto:z.kosloff@warwick.ac.uk

	Introduction
	Preliminaries
	Relative complexity over a factor
	Basic ergodic theory for Zd actions

	Random walks in random sceneries and statement of main theorem
	The range of the random walk
	Auxiliary results
	Proof of Theorem 4.1
	Proof of the Fölner property of the range (Theorem 4.2)

	Proof of Theorem 3.1
	Proof of Equation (5.2)

	Appendix A: Appendix: Proofs of auxiliary results
	Appendix B: Karamata's Tauberian theorem for power series
	Acknowledgements
	References
	Author's Addresses

