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Consider the following nonlocal integro-differential operator: for α ∈
(0,2):

L(α)
σ,bf (x) := p.v.

∫
|z|<δ

f (x + σ(x)z) − f (x)

|z|d+α
dz + b(x) · ∇f (x) + L f (x),

where σ : Rd → R
d ⊗ R

d and b : Rd → R
d are smooth functions and have

bounded partial derivatives of all orders greater than 1, δ is a small positive
number, p.v. stands for the Cauchy principal value and L is a bounded lin-
ear operator in Sobolev spaces. Let B1(x) := σ(x) and Bj+1(x) := b(x) ·
∇Bj (x) − ∇b(x) · Bj (x) for j ∈ N. Suppose Bj ∈ C∞

b (Rd ;Rd ⊗ R
d) for

each j ∈ N. Under the following uniform Hörmander’s type condition: for
some j0 ∈N,

inf
x∈Rd

inf|u|=1

j0∑
j=1

∣∣uBj (x)
∣∣2 > 0,

by using Bismut’s approach to the Malliavin calculus with jumps, we prove

the existence of fundamental solutions to operator L(α)
σ,b. In particular, we

answer a question proposed by Nualart [Sankhyā A 73 (2011) 46–49] and
Varadhan [Sankhyā A 73 (2011) 50–51].

1. Introduction and main results. Consider the following nonlocal (integro-
differential) operator: for α ∈ (0,2):

L(α)
σ,bf (x) := p.v.

∫
R

d
0

f (x + σ(x)z) − f (x)

|z|d+α
dz + b(x) · ∇f (x),(1.1)

where R
d
0 := R

d − {0}, and σ : Rd → R
d ⊗R

d and b : Rd → R
d are two smooth

functions and have bounded k-order partial derivatives for all k ≥ 1. Define a fam-
ily of matrix-valued functions Bj(x), j ∈ N recursively as follows:

B1(x) := σ(x) and Bj+1(x) := b(x) · ∇Bj(x) − ∇b(x) · Bj(x) for j ∈ N.
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Recently, in previous works [25] and [26], we have proved that if for each x ∈ R
d ,

there is a n(x) ∈ N such that

Rank
[
B1(x), . . . ,Bn(x)(x)

]= d,

then the heat kernel of operator L(α)
σ,b denoted by ρt (x, y) exists, and as a function

of y, the mapping

(0,∞) ×R
d � (t, x) 	→ ρt (x, ·) ∈ L1(

R
d)

is continuous. Moreover, when σ(x) = σ is constant and Bj ∈ C∞
b for each j ∈ N,

under the following uniform Hörmander’s type condition: for some j0 ∈N,

inf
x∈Rd

inf|u|=1

j0∑
j=1

∣∣uBj (x)
∣∣2 > 0,

we also show the smoothness of (t, x, y) 	→ ρt (x, y). The proofs in [25] and [26]
are based on the Malliavin calculus to the subordinate Brownian motion (cf. [15]).
More precisely, let us consider the following stochastic differential equation (ab-
breviated as SDE):

dXt(x) = b
(
Xt(x)

)
dt + σ

(
Xt−(x)

)
dWSt , X0(x) = x,(1.2)

where Wt is a d-dimensional Brownian motion and St is an independent α/2-
stable subordinator. It is well known that the generator of Markov process Xt(x) is
given by L(α)

σ,b. Thus, the main purpose is to study the existence and smoothness of
the distribution density ρt (x, y) of Xt(x), where the key point in [26] is to regard
Xt(x) as a functional of Brownian motion due to the independence of W and S. If
σ(x) depends on x, since the solution {Xt(x), x ∈ R

d} of SDE (1.2) does not form
a stochastic diffeomorphism flow in general (cf. [19]), it seems hard to prove the
smoothness of ρt(x, y) in the framework of [26]. In this work, we shall study the
smoothness of ρt (x, y) for nonconstant coefficient σ(x) in a different framework.

As far as we know, Bismut [4] first used Girsanov’s transformation to study
the smoothness of distribution densities to SDEs with jumps. Later, in the mono-
graph [3], Bichteler, Gravereaux and Jacod systematically developed the Malliavin
calculus with jumps and studied the smooth density for SDEs driven by nondegen-
erate jump noises. In [18], Picard used difference operator to give another criterion
for the smoothness of the distribution density of Poisson functionals, and also ap-
plied it to SDEs driven by pure jump Lévy processes. By combining the classical
Malliavin calculus and Picard’s difference operator argument, Ishikawa and Kunita
[10] obtained a new criterion for the smooth density of Wiener–Poisson function-
als (see also [13]). On the other hand, Cass [5] established a Hörmander’s-type
theorem for SDEs with jumps by proving a Norris’ type lemma for discontinuous
semimartingales, but the Brownian diffusion term cannot disappear. In the pure
jump degenerate case, by using a Komatsu–Takeuchi’s estimate proven in [11] for
discontinuous semimartingales, Takeuchi [22] and Kunita [12, 14] also obtained
similar Hörmander’s theorems. However, their results do not cover operator (1.1).
More discussions about their results can be found in [26].
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1.1. Statement of main results. For δ > 0, define �δ
0 := {z ∈ R

d : 0 < |z| < δ}.
Let us now consider the following nonlocal (integro-differential) operator:

L0f (x) := p.v.

∫
�δ

0

(
f
(
x + σ(x, z)

)− f (x)
)
ν(dz) + b(x) · ∇f (x),(1.3)

where σ(x, z) : Rd × �δ
0 → R

d and b(x) : Rd → R
d are Borel measurable func-

tions, and ν(dz) is a Lévy measure on �δ
0 and satisfies∫

ε<|z|<δ
σ(x, z)ν(dz) = 0 ∀ε ∈ (0, δ), x ∈ R

d .(1.4)

Here, p.v. stands for the Cauchy principal value. Notice that (1.4) is a common
assumption in the study of nonlocal operators, which is some symmetric require-
ment (cf. [7, 8]). For example, if ν is symmetric and σ(x,−z) = −σ(x, z), then
(1.4) holds.

Let N0 := {0} ∪N. We make the following assumptions:

(Hσ
b ) b and σ are smooth and for any k ∈ N, m,j ∈ N0 and some constants

Ck,Cmj ≥ 1,∣∣∇kb(x)
∣∣≤ Ck,

∣∣∇m
x ∇j

z σ (x, z)
∣∣≤ Cmj |z|(1−j)∨0.(1.5)

(Hν) ν(dz)|�δ
0
= κ(z)dz|�δ

0
, where κ ∈ C∞(�δ

0; (0,∞)) satisfies the following or-
der condition: for some α ∈ (0,2),

lim
ε↓0

εα−2
∫
|z|≤ε

|z|2κ(z)dz =: c1 > 0,(1.6)

and bounded condition: for any m ∈ N and some Cm ≥ 1,

∣∣∇m logκ(z)
∣∣≤ Cm|z|−m, z ∈ �

δ
2
0 .(1.7)

(Hj0) Let B1(x) := ∇zσ (x,0) and define Bj+1(x) := b(x) · ∇Bj(x) − ∇b(x) ·
Bj(x) for j ∈ N. Assume that for some j0 ∈ N, m ∈ N0, c0 > 0 and all
x ∈ R

d ,

inf|u|=1

j0∑
j=1

∣∣uBj (x)
∣∣2 ≥ c0/

(
1 + |x|m).(1.8)

The first aim of this paper is to prove the following Hörmander’s type theorem.

THEOREM 1.1. Under (Hσ
b ), (Hν) and (Hj0), if δ < 1

2C10
, where C10 is the

same as in (1.5), then there exists a nonnegative smooth function ρt (x, y) on
(0,∞) ×R

d ×R
d called fundamental solution of operator L0 such that

∂tρt (x, y) = L0ρt (·, y)(x) ∀(t, x, y) ∈ (0,∞) ×R
d ×R

d .
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Let us briefly introduce the strategy of proving this theorem. Let N(dt,dz) be
a Poisson random measure with intensity dtν(dz), and Ñ(dt,dz) := N(dt,dz) −
dtν(dz) the compensated Poisson random measure. Consider the following SDE:

Xt(x) = x +
∫ t

0
b
(
Xs(x)

)
ds +

∫ t

0

∫
�δ

0

σ
(
Xs−(x), z

)
Ñ(ds,dz).(1.9)

Under (Hσ
b ), it is well known that the above SDE has a unique solution Xt(x),

which defines a Markov process with generator L0. Let T 0
t f (x) := Ef (Xt(x)).

Our aim is to show that under (1.5)–(1.8), Xt(x) admits a smooth density, which,
by Sobolev’s embedding theorem, will be a consequence of the following gradient-
type estimate: for any m,k ∈ N0 and f ∈ C∞

b (Rd),∣∣∇mT 0
t ∇kf (x)

∣∣≤ C(x)(t ∧ 1)−γmk‖f ‖∞,(1.10)

where ∇ stands for the gradient operator and γmk > 0. This will be achieved by
using Bismut’s approach to the Malliavin calculus with jumps, where the core task
is to prove the Lp-integrability of the inverse of the reduced Malliavin matrix (see
Section 3 and [16]).

However, the above result requires that δ is smaller than 1/(2C10) so that SDE
(1.9) defines a C∞-stochastic diffeomorphism flow. In other words, the large jump
is not allowed in (1.9) or L0. The following result provides a way to treat large
jumps under stronger assumptions.

THEOREM 1.2. Let L be a bounded linear operator in Sobolev space
W

k,p(Rd) for any p > 1 and k ∈ N0. Under (Hσ
b ), (Hν) and (Hj0) with m = 0

and Bj ∈ C2
b for each j = 1, . . . , j0 + 1, if δ < 1

2C10
, where C10 is the same as in

(1.5), then there exists a continuous function ρt (x, y) on (0,∞) ×R
d ×R

d called
fundamental solution of operator L0 + L with the properties that:

(i) For each t > 0 and y ∈ R
d , the mapping x 	→ ρt (x, y) is smooth, and for any

T > 0, there is a γ = γ (α, j0, d) > 0 such that for any p ∈ (1,∞) and k ∈ N0,∥∥∇k
xρt (x, ·)∥∥p ≤ Ct−(k+d)γ ∀(t, x) ∈ (0, T ] ×R

d .(1.11)

(ii) For any p ∈ (1,∞) and ϕ ∈ Lp(Rd), Ttϕ(x) := ∫
Rd ϕ(y)ρt (x, y)dy ∈⋂

k W
k,p(Rd) satisfies

∂tTtϕ(x) = (L0 + L )Ttϕ(x) ∀(t, x) ∈ (0,∞) ×R
d .(1.12)

The idea of proving this result is as follows: Let Tt be the semigroup associated
with operator L0 + L . By Duhamel’s formula, we can formally write

Ttϕ = T 0
t ϕ +

∫ t

0
T 0

t−sL Tsϕ ds.

Using similar short-time estimate as in (1.10) and suitable interpolation tech-
niques, we shall prove some gradient estimates in Soboelv spaces for Ttϕ, which
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in turn yields the desired results by Sobolev’s embedding theorem as above. In or-
der to obtain the gradient estimate for T 0

t in Lp-spaces, we need to assume m = 0
and Bj ∈ C2

b for each j = 1, . . . , j0 + 1 in (Hj0).
In this result, the operator L is designed to treat the large jump part as expected.

To illustrate this point, we present an application of Theorem 1.2. Consider opera-
tor L(α)

σ,b in (1.1) with σ taking the following special form:

σ(x) =
(

0d1×d1, 0d1×d2

0d2×d1, σ0(x)

)
,(1.13)

where d1 + d2 = d and σ0(x) is an invertible d2 × d2-matrix-valued function.

COROLLARY 1.3. Assume that σ0, b are smooth and have bounded partial
derivatives of all orders greater than 1, and (Hj0) holds with m = 0 and Bj ∈ C2

b

for each j = 1, . . . , j0 + 1. If σ0 is invertible and satisfies∥∥σ−1
0

∥∥∞ < ∞,(1.14)

then the conclusions in Theorem 1.2 hold for operator L(α)
σ,b.

PROOF. For δ ∈ (0, 1
2‖∇σ0‖∞ ), let χδ : [0,∞) → [0,1] be a smooth function

with

χδ(x) = 1, x ∈
[
0,

δ

2

]
, χδ(x) = 0, x ∈ [δ,∞).

We make the following decomposition:

L(α)
σ,bf (x) = L0f (x) + L f (x),

where

L0f (x) := p.v.

∫
�δ

0

f (x + σ(x)z) − f (x)

|z|d+α
χδ

(|z|)dz + b(x) · ∇f (x)

and

L f (x) :=
∫
R

d
0

f (x + σ(x)z) − f (x)

|z|d+α

(
1 − χδ

(|z|))dz.(1.15)

CLAIM. L is a bounded linear operator in Sobolev spaces W
k,p(Rd) for

each p > 1 and k ∈ N0.

PROOF. Let z = (z1, z2) with z1 ∈ R
d1 and z2 ∈ R

d2 . Define

ξ(x, z) := (
z1, σ

−1
0 (x)z2

) ∈ R
d .

Notice that by (1.14), there is a positive constant c0 > 0 such that for all x, z,

c0|z| ≤
∣∣ξ(x, z)

∣∣≤ c−1
0 |z|.
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By the change of variables, we have

L f (x) =
∫
R

d
0

(
f
(
x + (0, z2)

)− f (x)
)1 − χδ(|ξ(x, z)|)

|ξ(x, z)|d+α
det
(
σ−1

0 (x)
)

dz

(1.16)

=
∫
|z|> δ

2c0

(
f
(
x + (0, z2)

)− f (x)
)1 − χδ(|ξ(x, z)|)

|ξ(x, z)|d+α
det
(
σ−1

0 (x)
)

dz.

Thus, by Minkovskii’s inequality, we have

‖L f ‖p ≤
∫
|z|> δ

2c0

∥∥f (· + (0, z2)
)− f (·)∥∥p ‖det(σ−1

0 )‖∞
(c0|z|)d+α

dz ≤ C‖f ‖p,

which shows the claim for k = 0. For k ≥ 1, starting from (1.16) and by the chain
rule and cumbersome calculations, one sees that

∥∥∇kL f
∥∥
p ≤ C

k∑
j=0

∥∥∇jf
∥∥
p.

The proof of the claim is thus complete. �

Moreover, if we let κ(z) := χδ(|z|)|z|−d−α , then it is easy to check that (1.7) is
true. Thus, we can use Theorem 1.2 to deduce the result. �

It is noticed that in Corollary 1.3, σ is required to take a special form (1.13),
which plays a crucial role in showing the boundedness of L defined by (1.15)
in W

k,p-space. Without assuming (1.13), due to the non-invertibility of x 	→ x +
σ(x)z, it seems hard to show that the operator L in (1.15) is bounded in W

k,p-
space. Consider the following operator:

Lν
σ,bf (x) := p.v.

∫
R

d
0

(
f
(
x + σ(x, z)

)− f (x)
)
ν(dz) + b(x) · ∇f (x),

where σ, b and ν are as above. Let Tt be the corresponding semigroup associated
to Lν

σ,b. Instead of working in the Sobolev space, if we consider the usual Hölder
space C

β := H
β,∞ [see (5.1) below for a definition], then we have the following.

THEOREM 1.4. Under (Hσ
b ), (Hν) and (Hj0) with m = 0 and Bj ∈ C2

b for
each j = 1, . . . , j0 + 1, if

∫
|z|≥1 |z|qν(dz) < ∞ for some q > 0, then there exists

a probability density function ρt(x, y) such that for any ϕ ∈ L∞(Rd), Ttϕ(x) =∫
Rd ϕ(y)ρt (x, y)dy belongs to C

q+ε , where ε ∈ (0,1) only depends on α, j0, d

with α from (1.6) and j0 from (1.8). Moreover, if α < q + ε, then ∂tTtϕ(x) =
Lν

σ,bTtϕ(x) for all (t, x) ∈ (0,∞) ×R
d .

As a corollary, we have the following.
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COROLLARY 1.5. Consider operator L(α)
σ,b in (1.1). Assume that σ and b are

smooth and have bounded partial derivatives of all orders greater than 1, and (Hj0)

holds with m = 0 and Bj ∈ C2
b for each j = 1, . . . , j0 + 1. For some ε > 0 and any

ϕ ∈ L∞(Rd), Ttϕ(x) = Eϕ(Xt(x)) ∈ C
α+ε is a classical solution of equation

∂tf (t, x) = L(α)
σ,bf (t, x), (t, x) ∈ (0,∞) ×R

d .

Compared with Corollary 1.3, in this corollary, σ is not assume to take form
(1.13). The price we have to pay is that the regularity of Ttϕ depends on the mo-
ment of the Lévy measure ν(dz) = dz/|z|d+α .

1.2. Examples. In this subsection, we provide several examples to illustrate
our main results.

EXAMPLE 1.6. Let b : Rd → R
d and σ(x) : Rd → R

d ⊗ R
d be two C∞

b -
functions. Suppose that σ is uniformly nondegenerate. By Corollay 1.3, the law
of solutions to SDE (1.2) has a continuous density, which is smooth in the first
variable. Even in this case, this result seems to be new as all of the well-known
results require that x 	→ x + σ(x)z is invertible (cf. [2, 18]).

EXAMPLE 1.7. Consider the following second-order stochastic differential
equation:

dẊt = F(Xt , Ẋt )dt + σ0(Xt−, Ẋt−)dWSt , (X0, Ẋ0) = (x,v),

where Ẋt denotes the first order derivative of Xt with respect to the time variable,
(x,v) stands for the position and velocity, F :Rd ×R

d →R
d and σ :Rd ×R

d →
R

d ⊗R
d are two C∞

b -functions. Notice that if we let Zt := (Xt , Ẋt ), then Zt solves
the following degenerate SDE:

dZt = (
Ẋt ,F (Zt)

)
dt + σ0(Zt−)dWSt ,

whose generator is given by

L(α)
v f (x,v) := p.v.

∫
R

d
0

f (x,v + σ0(x,v)v′) − f (x,v)

|v′|d+α
dv′

+ v · ∇xf (x,v) + F(x,v) · ∇vf (x,v).

Suppose that for any k,m ∈ N0,∣∣∇k
x∇m

v F(x,v)
∣∣≤ C1/

(
1 + |v|2),

(1.17) ∣∣∇k+1
x ∇m

v σ0(x,v)
∣∣≤ C1/

(
1 + |v|2)

and

c0|ξ | ≤ ∣∣σ ∗
0 (x,v)ξ

∣∣≤ C0|ξ |, ξ ∈ R
d .(1.18)
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Let b(x,v) := (v,F (x,v)) and σ be defined by (1.13) with d1 = d2 = d . We now
check that (1.8) holds for m = 0 and j0 = 2. First of all, by (1.17) and (1.18), it is
easy to see B1,B2,B3 ∈ C2

b . For u = (u1, u2) ∈ R
2d , by definition we have∣∣uB1(x,v)

∣∣2 + ∣∣uB2(x,v)
∣∣2 = ∣∣u2σ0(x,v)

∣∣2 + ∣∣u2A(x,v) − u1σ0(x,v)
∣∣2,

where A(x,v) = v · ∇xσ0(x,v) + F(x,v) · ∇vσ0(x,v) − ∇vF(x,v) · σ0(x,v) is a
bounded function by (1.17). Hence, for any ε ∈ (0,1), by (1.18) we have∣∣uB1(x,v)

∣∣2 + ∣∣uB2(x,v)
∣∣2

≥ ∣∣u2σ0(x,v)
∣∣2 + ε

∣∣u1σ0(x,v)
∣∣2 − ε

1 − ε

∣∣u2A(x,v)
∣∣2

≥
(
c0 − ε

1 − ε
‖A‖∞

)
|u2|2 + εc0|u1|2.

By taking ε small enough, we get (1.8) with m = 0. Thus, by Corollary 1.3,
Zt(x,v) admits a continuous density ρt (x,v;x′,v′) so that for each p > 1 and
ϕ ∈ Lp(R2d), the function

ft (x,v) := Eϕ
(
Zt(x,v)

)= ∫
R2d

ϕ
(
x′,v′)ρt

(
x,v;x′,v′)dx′ dv′

belongs to C∞((0,∞)×R
2d) and satisfies the following nonlocal kinetic Fokker–

Planck equation:

∂tft (x,v) = L(α)
v ft (x,v), f0(x,v) = ϕ(x,v).(1.19)

It should be emphasized that the initial value ϕ is not necessary to be smooth, and
the following special case has been studied in [1, 6]:

∂tft (x,v) = a(x,v)�̃
α
2
v ft (x,v) + v · ∇xft (x,v), f0(x,v) = ϕ(x,v),

where a ∈ C∞
b has a positive lower bound, and �̃

α
2 is some cutoff fractional Lapla-

cian.

EXAMPLE 1.8. More generally, consider the following n-order stochastic dif-
ferential equation:

dX
(n)
t = F

(
X

(0)
t ,X

(1)
t , . . . ,X

(n)
t

)
dt + σ0

(
X

(0)
t− ,X

(1)
t− , . . . ,X

(n)
t−
)

dWSt

with initial value (X
(0)
0 , . . . ,X

(n)
0 ) = (x0, x1, . . . , xn) =: x ∈ R

(n+1)d , where X
(k)
t

denotes the kth order derivative of Xt with respect to t , F : R(n+1)d → R
d

and σ0 : R(n+1)d → R
d ⊗ R

d are C∞
b -functions. Let ∇(0) := ∇x0 and ∇(n) :=

(∇x1, . . . ,∇xn). Suppose that for any k,m ∈ N0,∣∣∇k
(0)∇m

(n)F (x)
∣∣≤ C1/

(
1 + ∣∣(x1, . . . , xn)∣∣n+1)

,

(1.20) ∣∣∇k+1
(0) ∇m

(n)σ0(x)
∣∣≤ C1/

(
1 + ∣∣(x1, . . . , xn)∣∣n+1)
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and

c0|ξ | ≤ ∣∣σ ∗
0 (x)ξ

∣∣≤ C0|ξ |, ξ ∈R
d .(1.21)

Under the above conditions, one can verify as above that (Hj0) with j0 = n + 1
and m = 0 holds for b(x) = (x1, . . . , xn,F (x)) and σ in (1.13) with d1 = nd and
d2 = d . Thus, we can apply Corollary 1.3 to this situation.

EXAMPLE 1.9. Consider the following random ODE:

dXt/dt = F(Xt) + Lt, X0 = x ∈R
d,

where F ∈ C∞
b (Rd;Rd), and Lt is a Lévy process with Lévy measure ν satisfying

(Hν). Let Zt = (Xt ,Lt ). Then Zt satisfies SDE (1.2) with b(x,v) := (v+F(x),0)

and σ as in (1.13) with σ0 = I. In this case, it is easy to see that (Hj0) holds for
j0 = 2 and m = 0. In particular, Corollary 1.3 is applicable.

1.3. Layout and notations. This paper is organized as follows: In Section 2,
we first recall Bismut’s approach to the Malliavin calculus with jumps, and an
inequality for discontinuous semimaringales proven in [26] which is originally due
to Komatsu–Takeuchi [11]. Moreover, we also prove an estimate for exponential
Poisson random integrals. In Section 3, we prove a quantitive estimate for the
Laplace transform of the reduced Malliavin matrix, which is the key step in our
proofs and can be read independently. In Section 4, we prove Theorem 1.1. In
Section 5, we treat big jump part and prove our main Theorems 1.2 and 1.4 by
interpolation and bootstrap arguments. In the Appendix, two technical lemmas are
proven.

Before concluding this Introduction, we collect some notation and make some
conventions for later use.

• Write N0 := N∪ {0}, Rd
0 := R

d − {0}.
• ∇ := (∂1, . . . , ∂d) denotes the gradient operator.
• For a càdlàg function f :R+ →R

d , �fs := fs − fs−.
• The inner product in Euclidean spaces is denoted by 〈x, y〉 or x · y.
• For p ∈ [1,∞], (Lp(Rd),‖ · ‖p) is the Lp-space with respect to the Lebesgue

measure.
• W

k,p: Sobolev space; Hβ,p: Bessel potential space; Hβ,∞ =C
β : Hölder space.

• For a smooth function f : Rd → R
d , (∇f )ij := (∂jf

i) denotes the Jacobian
matrix of f .

• C0: The space of all continuous functions with values vanishing at infinity.
• Ck

b : The space of all bounded continuous functions with bounded continuous
partial derivatives up to k-order. Here, k can be infinity.

• Ck
p : The space of all continuous functions with all partial derivatives up to k-

order being of polynomial growth. Here k can be infinity.
• The letters c and C with or without indices will denote unimportant constants,

whose values may change in different places.
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2. Preliminaries.

2.1. Bismut’s approach to the Malliavin calculus with jumps. In this subsec-
tion, we recall some basic facts about Bismut’s approach to the Malliavin calculus
with jumps (cf. [3, 4] and [20], Section 2). Let � ⊂ R

d be an open set containing
the origin. Let us define

�0 := � \ {0}, �(z) := 1 ∨ d
(
z,�c

0
)−1

,(2.1)

where d(z,�c
0) is the distance of z to the complement of �0. Notice that �(z) = 1

|z|
near 0.

Let � be the canonical space of all integer-valued measure ω on [0,1]×�0 with
μ(A) < +∞ for any compact set A ⊂ [0,1]×�0. Define the canonical process on
� as follows:

N(ω;dt,dz) := ω(dt,dz).

Let (Ft )t∈[0,1] be the smallest right-continuous filtration on � such that N is op-
tional. In the following, we write F := F1, and endow (�,F ) with a unique
probability measure P such that N is a Poisson random measure with intensity
dtν(dz), where ν(dz) = κ(z)dz with

κ ∈ C1(�0; (0,∞)
)
,

∫
�0

(
1 ∧ |z|2)κ(z)dz < +∞,

(2.2) ∣∣∇ logκ(z)
∣∣≤ C�(z),

where �(z) is defined by (2.1). In the following, we write

Ñ(dt,dz) := N(dt,dz) − dtν(dz).

Let p ≥ 1 and k ∈ N. We introduce the following spaces for later use:

• L
1
p: The space of all predictable processes: ξ : �×[0,1]×�0 →R

k with finite
norm:

‖ξ‖L1
p

:=
[
E

(∫ 1

0

∫
�0

∣∣ξ(s, z)
∣∣ν(dz)ds

)p] 1
p +

[
E

∫ 1

0

∫
�0

∣∣ξ(s, z)
∣∣pν(dz)ds

] 1
p

< ∞.

• L
2
p: The space of all predictable processes: ξ : �×[0,1]×�0 →R

k with finite
norm:

‖ξ‖L2
p

:=
[
E

(∫ 1

0

∫
�0

∣∣ξ(s, z)
∣∣2ν(dz)ds

)p
2
] 1

p +
[
E

∫ 1

0

∫
�0

∣∣ξ(s, z)
∣∣pν(dz)ds

] 1
p

< ∞.
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• Vp: The space of all predictable processes v : � × [0,1] × �0 →R
d with finite

norm:

‖v‖Vp
:= ‖∇zv‖L1

p
+ ‖v�‖L1

p
< ∞,

where �(z) is defined by (2.1). Below we shall write

V∞− := ⋂
p≥1

Vp.

• V0: The space of all predictable processes v : �×[0,1]×�0 →R
d with the fol-

lowing properties: (i) v and ∇zv are bounded; (ii) there exists a compact subset
U ⊂ �0 such that

v(t, z) = 0 ∀z /∈ U.

Moreover, V0 is dense in Vp for all p ≥ 1 (cf. [20], Lemma 2.1).

Let C∞
p (Rm) be the class of all smooth functions on R

m which together with
all the derivatives are of at most polynomial growth. Let FC∞

p be the class of all
Poisson functionals on � with the following form:

F(ω) = f
(
ω(g1), . . . ,ω(gm)

)
,

where f ∈ C∞
p (Rm) and g1, . . . , gm ∈ V0 are nonrandom, and

ω(gj ) :=
∫ 1

0

∫
�0

gj (s, z)ω(ds,dz).

Notice that

FC∞
p ⊂ ⋂

p≥1

Lp(�,F ,P).

For v ∈V∞− and F ∈FC∞
p , let us define

DvF =:
m∑

j=1

(∂jf )(·)
∫ 1

0

∫
�0

v(s, z) · ∇zgj (s, z)ω(ds,dz),

where “(·)” stands for (ω(g1), . . . ,ω(gm)).
We have the following integration by parts formula (cf. [20], Theorem 2.9).

THEOREM 2.1. Let v ∈ V∞− and p > 1. The linear operator (Dv,FC∞
p ) is

closable in Lp(�). The closure is denoted by W
1,p
v (�), which is a Banach space

with respect to the norm:

‖F‖v;1,p := ‖F‖Lp + ‖DvF‖Lp .

Moreover, for any F ∈ W
1,p
v (�), we have

E(DvF) = −E
(
F div(v)

)
,(2.3)
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where div(v) is defined by

div(v) :=
∫ 1

0

∫
�0

div(κv)(s, z)

κ(z)
Ñ(ds,dz).(2.4)

Here, with a little of abuse, the div in the right integral denotes the usual diver-
gence of a vector field in Euclidean space.

Below, we shall write

W
1,∞−
v (�) := ⋂

p>1

W
1,p
v (�).

The following Kusuoka and Stroock’s formula is proven in [20], Proposition 2.11.

PROPOSITION 2.2. Fix v ∈ V∞−. Let η(ω, s, z) : � × [0,1] × �0 → R be
a measurable map and satisfy that for each (s, z) ∈ � × [0,1] × �0, η(·, s, z) ∈
W

1,∞−
v (�), and for each (ω, s) ∈ � × [0,1], η(ω, s, ·) ∈ C1(�0), and for each

z ∈ �0,

(2.5) s 	→ η(s, z),Dvη(s, z),∇zη(s, z) are left-continuous and Fs -adapted,

and for any p ≥ 1,

E

[
sup

s∈[0,1]
sup
z∈�0

( |η(s, z)|p + |Dvη(s, z)|p
(1 ∧ |z|)p + ∣∣∇zη(s, z)

∣∣p)]< +∞.(2.6)

Then I (η) := ∫ 1
0
∫
�0

η(s, z)Ñ(ds,dz) ∈ W
1,∞−
v (�) and

DvI (η) =
∫ 1

0

∫
�0

Dvη(s, z)Ñ(ds,dz)

(2.7)

+
∫ 1

0

∫
�0

〈∇zη(s, z),v(s, z)
〉
N(ds,dz).

We also need the following Burkholder’s type inequalities (cf. [20], Lemma 2.3).

LEMMA 2.3. (i) For any p > 1, there is a constant Cp > 0 such that for any
ξ ∈ L

1
p ,

E

(
sup

t∈[0,1]

∣∣∣∣
∫ t

0

∫
�0

ξ(s, z)N(ds,dz)

∣∣∣∣p
)

≤ Cp‖ξ‖p

L1
p
.(2.8)

(ii) For any p ≥ 2, there is a constant Cp > 0 such that for any ξ ∈ L
2
p ,

E

(
sup

t∈[0,1]

∣∣∣∣
∫ t

0

∫
�0

ξ(s, z)Ñ(ds,dz)

∣∣∣∣p
)

≤ Cp‖ξ‖p

L2
p
.(2.9)
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2.2. Two lemmas. We first recall the following important Komatsu–Takeuchi’s
type estimate proven in [26], Theorem 4.2, which will be used in Section 3.

LEMMA 2.4. Let (ft )t≥0 and (f 0
t )t≥0 be two m-dimensional semimartingales

given by

ft = f0 +
∫ t∧τ

0

(
f 0

s + hδ
s

)
ds +

∫ t

0

∫
|z|≤δ

gs−(z)Ñ(ds,dz),

f 0
t = f 0

0 +
∫ t

0
f 00

s ds +
∫ t

0

∫
|z|≤δ

g0
s−(z)Ñ(ds,dz),

where δ ∈ (0,1], τ is a stopping time and ft , f
0
t , hδ

t , f
00
t and gt (z), g

0
t (z) are

càdlàg Ft -adapted processes. Assume that for some κ ≥ 1 and β ≥ 0,

|ft |2 ∨ ∣∣f 0
t

∣∣2 ∨ ∣∣f 00
t

∣∣2 ∨ (δ−βhδ
t

)∨ (sup
z

|gt (z)|2 ∨ |g0
t (z)|2

1 ∧ |z|2
)

≤ κ, a.s.

Then for any ε, T ∈ (0,1], there exists a positive random variable ζ with Eζ ≤ 1
such that

c0

∫ T ∧τ

0

∣∣f 0
t

∣∣2 dt ≤ (δ− 3
2 + ε− 3

2
) ∫ T

0
|ft |2 dt + κδ

1
2 log ζ

(2.10)
+ κ

(
εδ− 1

2 + ε
1
2 + T δ

1
2 ∧β),

where c0 ∈ (0,1) only depends on
∫
|z|≤1 |z|2ν(dz).

The following result will be used in Section 4.

LEMMA 2.5. Let gs(z), ηs be two left continuous Fs -adapted processes sat-
isfying

0 ≤ gs(z) ≤ ηs,
∣∣gs(z) − gs(0)

∣∣≤ ηs |z| ∀|z| ≤ 1,(2.11)

and for any p ≥ 2,

E

(
sup

s∈[0,1]
|ηs |p

)
< +∞.

If for some α ∈ (0,2),

lim
ε→0

εα−2
∫
|z|≤ε

|z|2ν(dz) =: c1 > 0,(2.12)

then for any δ ∈ (0,1), there exist c2, θ ∈ (0,1),C2 ≥ 1 such that for all λ,p ≥ 1
and t ∈ (0,1),

E exp
{
−λ

∫ t

0

∫
R

d
0

gs(z)ζ(z)N(ds,dz)

}
(2.13)

≤ C2

(
E exp

{
−c2λ

θ
∫ t

0
gs(0)ds

}) 1
2 + Cpλ−p,
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where ζ(z) = ζδ(z) is a nonnegative smooth function with

ζδ(z) = |z|3, |z| ≤ δ/4, ζδ(z) = 0, |z| > δ/2.

PROOF. For λ ≥ 1 and β > 0, define a stopping time

τ := inf
{
s > 0 : ηs ≥ λβ}∧ 1.

Set

hλ
t :=

∫
R

d
0

(
1 − e−λgt (z)ζ(z))ν(dz)

and

Mλ
t := −λ

∫ t∧τ

0

∫
R

d
0

gs(z)ζ(z)N(ds,dz) +
∫ t∧τ

0
hλ

s ds.(2.14)

By Itô’s formula, we have

eMλ
t = 1 +

∫ t∧τ

0

∫
R

d
0

eMλ
s−(e−λgs(z)ζ(z) − 1

)
Ñ(ds,dz).

Since for any x ≥ 0,

1 − e−x ≤ 1 ∧ x,

by (2.11) and the definition of τ , we have

Mλ
t ≤

∫ t∧τ

0
hλ

s ds ≤
∫ t∧τ

0

∫
R

d
0

(
1 ∧ (λgs(z)ζ(z)

))
ν(dz)ds

≤
∫
R

d
0

(
1 ∧ (λ1+βζ(z)

))
ν(dz) < ∞.

Hence, EeMλ
t = 1, and by (2.14) and Hölder’s inequality,

E exp
{
−λ

2

∫ t∧τ

0

∫
R

d
0

gs(z)ζ(z)N(ds,dz)

}
(2.15)

≤
(
E exp

{
−
∫ t∧τ

0
hλ

s ds

}) 1
2
.

Since by (2.11) and definition of τ , 1s<τgs(z) ≤ λβ , and

1 − e−x ≥ x

e
, x ≤ 1,
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for any q ≥ 1 +β , there exists a c ∈ (0,1) small enough such that for all λ ≥ 1 and
s < τ ,

hλ
s ≥

∫
|z|3≤cλ−q

(
1 − e−λgs(z)|z|3)ν(dz) ≥ λ

e

∫
|z|3≤cλ−q

gs(z)|z|3ν(dz)

(2.16)

= λgs(0)

e

∫
|z|3≤cλ−q

|z|3ν(dz) + λ

e

∫
|z|3≤cλ−q

(
gs(z) − gs(0)

)|z|3ν(dz).

Notice that by (2.12), for any p ≥ 2, there exist constants c0,C0 > 0 such that for
all ε ∈ (0,1) (cf. [20], Lemma 5.2),

c0ε
p−α ≤

∫
|z|≤ε

|z|pν(dz) ≤ C0ε
p−α.(2.17)

If we choose

β ∈
(

0,
α ∧ 1

3 − α

)
, q =

⎧⎪⎨
⎪⎩

1 + β, α ∈ (0,1],
3(1 + β)

4 − α
, α ∈ (1,2),

then by (2.16), (2.11) and (2.17), for all λ ≥ 1 and s < τ , we further have

hλ
s ≥ c2gs(0)λ1− (3−α)q

3 − C1λ
1+β− (4−α)q

3 ≥ c2gs(0)λ1− (3−α)q
3 − C1.(2.18)

On the other hand, by Chebyshev’s inequality, for any p ≥ 2 we have

P(τ ≤ t) = P

(
sup

s∈[0,t]
ηs > λβ

)
≤ λ−βp

E

(
sup

s∈[0,t]
|ηs |p

)
,

which together with (2.15) and (2.18) yields the desired estimate (2.13). �

3. Estimate of Laplace transform of reduced Malliavin matrix. The cur-
rent section is written to be independent of the settings in Section 2.1 so that it can
be used to other framework such as the one used by Picard in [18]. Let Lt be a
d-dimensional pure jump Lévy process with Lévy measure ν. We assume that the
Lévy measure ν satisfies the following conditions: for some α ∈ (0,2),∫

|z|<δ
|z|2ν(dz) ≤ Cδ2−α ∀δ ∈ (0,1),

(3.1) ∫
|z|≥1

|z|mν(dz) < ∞ ∀m ∈ N.

Let N(dt,dz) be the Poisson random measure associated with Lt , that is,

N
(
(0, t] × E

)=∑
s≤t

1E(�Ls), E ∈ B
(
R

d
0
)
.
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Let Ñ(dt,dz) := N(dt,dz) − dtν(dz) be the compensated Poisson random mea-
sure. Consider the following SDE:

Xt(x) = x +
∫ t

0
b
(
Xs(x)

)
ds +

∫ t

0

∫
R

d
0

σ
(
Xs−(x), z

)
Ñ(ds,dz),(3.2)

where b : Rd → R
d and σ : Rd × R

d → R
d are two smooth functions satisfying

that for any k ∈N, m ∈ N0 and j = 0,1,∣∣∇kb(x)
∣∣≤ C,

∣∣∇m
x ∇j

z σ (x, z)
∣∣≤ C|z|1−j(3.3)

and ∫
r<|z|<R

σ(x, z)ν(dz) = 0, 0 < r < R < ∞.(3.4)

Under (3.3), it is well known that SDE (3.2) has a unique solution denoted by
Xt := Xt(x), which defines a C∞-stochastic flow (cf. [9] and [19]). Let Jt :=
Jt (x) := ∇Xt(x) = (∂jX

i
t (x))ij be the Jacobian matrix of Xt(x), which solves the

following linear matrix-valued SDE:

Jt = I+
∫ t

0
∇b(Xs)Js ds +

∫ t

0

∫
R

d
0

∇xσ (Xs−, z)Js−Ñ(ds,dz).(3.5)

If we further assume

inf
x∈Rd

inf
z∈Rd

det
(
I+ ∇xσ (x, z)

)
> 0,(3.6)

then the matrix Jt (x) is invertible (cf. [9]). Let Kt = Kt(x) be the inverse matrix
of Jt (x). By Itô’s formula, it is easy to see that Kt solves the following linear
matrix-valued SDE (cf. [26], Lemma 3.2):

Kt = I−
∫ t

0
Ks∇b(Xs)ds +

∫ t

0

∫
R

d
0

Ks−Q(Xs−, z)Ñ(ds,dz)

(3.7)

−
∫ t

0

∫
R

d
0

Ks−Q(Xs−, z)∇xσ (Xs−, z)ν(dz)ds,

where

Q(x, z) := (
I+ ∇xσ (x, z)

)−1 − I.(3.8)

First of all, we have the following easy estimate. Since the proof is standard by
Burkholder’s inequality (see Lemma 2.3) and Gronwall’s inequality, we omit the
details.

LEMMA 3.1. Under (3.1), (3.3) and (3.6), for any p ≥ 1, we have

sup
x∈Rd

E

(
sup

t∈[0,1]

( |Xt(x)|p
1 + |x|p + ∣∣Jt (x)

∣∣p + ∣∣Kt(x)
∣∣p))< +∞.(3.9)
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We now prove the following crucial lemma.

LEMMA 3.2. Let V : Rd → R
d ⊗ R

d be a C∞
p -function. Under (3.1), (3.3),

(3.4) and (3.6), there exist β1, β3 ∈ (0,1), β2 ≥ 1 only depending on α, and con-
stants C1 ≥ 1, c1 ∈ (0,1) such that for all δ, t ∈ (0,1), x ∈R

d , |u| = 1 and p ≥ 1,

P

⎛
⎜⎜⎜⎝
∫ t

0

∣∣uKs(x)[b,V ](Xs(x)
)∣∣2 ds ≥ tδβ1

and
∫ t

0

∣∣uKs(x)V
(
Xs(x)

)∣∣2 ds ≤ tδβ2

⎞
⎟⎟⎟⎠

(3.10)
≤ C1e−c1tδ

−β3 + Cp(x)δp,

where [b,V ] := b ·∇V −∇b ·V , and Cp(x) continuously depends on x. Moreover,
if we assume that V, [b,V ], [b, [b,V ]] ∈ C2

b , then Cp(x) can be independent of x.

PROOF. We divide the proof into four steps.
(1) Fixing δ ∈ (0,1), we decompose the Lévy process Lt as the small and large

jump parts, that is, Lt = Lδ
t + L̂δ

t , where

Lδ
t :=

∫
|z|≤δ

zÑ
(
(0, t],dz

)
, L̂δ

t :=
∫
|z|>δ

zN
(
(0, t],dz

)
.

Clearly,

Lδ
t and L̂δ

t are independent.

Let us fix a path � with finitely many jumps on any finite time interval. Let Xδ
t (x;�)

solve the following SDE:

Xδ
t (x;�) = x +

∫ t

0
b
(
Xδ

s (x;�))ds +∑
s≤t

σ
(
Xδ

s−(x;�),��s

)
(3.11)

+
∫ t

0

∫
|z|≤δ

σ
(
Xδ

s−(x;�), z)Ñ(ds,dz).

Let Kδ
t (x;�) := [∇Xδ

t (x;�)]−1. Clearly, by (3.4) we have

Xt(x) = Xδ
t (x;�)|

�=L̂δ , Kt (x) = Kδ
t (x;�)|

�=L̂δ .(3.12)

Moreover, Kδ
t := Kδ

t (x;0) solves the following equation:

Kδ
t = I−

∫ t

0
Kδ

s ∇b
(
Xδ

s

)
ds +

∫ t

0

∫
|z|≤δ

Kδ
s−Q

(
Xδ

s−, z
)
Ñ(ds,dz)

(3.13)

−
∫ t

0

∫
|z|≤δ

Kδ
s−Q

(
Xδ

s−, z
)∇xσ

(
Xδ

s−, z
)
ν(dz)ds.
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(2) Let V :Rd →R
d ⊗R

d be a C∞
p -function. Define

HV (x, z) := V
(
x + σ(x, z)

)− V (x) + Q(x, z)V
(
x + σ(x, z)

)
,(3.14)

GV (x, z) := HV (x, z) + ∇xσ (x, z) · V (x) − σ(x, z) · ∇V (x)(3.15)

and

V0(x) := [b,V ](x), Gδ
V (x) :=

∫
|z|≤δ

GV (x, z)ν(dz),

V1(x) := [b,V0](x) +
∫
|z|≤δ

GV0(x, z)ν(dz).

Since V ∈ C∞
p , by (3.1) and (3.3), there is an m ∈ N0 such that for all |z| ≤ 1,∣∣HV (x, z)

∣∣≤ C
(
1 + |x|m)|z|, ∣∣GV (x, z)

∣∣≤ C
(
1 + |x|m)|z|2,

(3.16) ∣∣Gδ
V (x)

∣∣| ≤ C
(
1 + |x|m)δ2−α,

∣∣V0(x)
∣∣+ ∣∣V1(x)

∣∣≤ C
(
1 + |x|m).

For a row vector u ∈ R
d , we introduce the processes:

ft := uKδ
t V
(
Xδ

t

)
, f 0

t := uKδ
t V0

(
Xδ

t

)
, hδ

t := uKδ
t Gδ

V

(
Xδ

t

)
,

f 00
t := uKδ

t V1
(
Xδ

t

)
, gt (z) := uKδ

t HV

(
Xδ

t , z
)
, g0

t (z) := uKδ
t HV0

(
Xδ

t , z
)
,

where

Xδ
t := Xδ

t (x;0), Kδ
t := Kδ

t (x;0).

By equations (3.13) and (3.11) with � = 0, using Itô’s formula, we have

ft = uV (x) +
∫ t

0
uKδ

s [b,V ](Xδ
s

)
ds +

∫ t

0

∫
|z|≤δ

gs−(z)Ñ(ds,dz)

+
∫ t

0

∫
|z|≤δ

uKδ
s GV

(
Xδ

s , z
)
ν(dz)ds

= uV (x) +
∫ t

0

(
f 0

s + hδ
s

)
ds +

∫ t

0

∫
|z|≤δ

gs−(z)Ñ(ds,dz)

and

f 0
t = uV0(x) +

∫ t

0
f 00

s ds +
∫ t

0

∫
|z|≤δ

g0
s−(z)Ñ(ds,dz).

For γ ∈ (0,4 − 2α), define a stopping time

τ := τu(x) := inf
{
s ≥ 0 : ∣∣uKδ

s (x;0)
∣∣2 ∨ ∣∣Xδ

s (x;0)
∣∣2m

> δ−γ /2}.
By (3.16) and (3.1), there is a constant κ0 ≥ 1 (not depending on x) such that for
all t ∈ [0, τ ) and |z| ≤ 1,

|ft |2,
∣∣f 0

t

∣∣2, ∣∣f 00
t

∣∣2 ≤ κ0δ
−γ ,

∣∣hδ
t

∣∣2 ≤ κ0δ
4−2α−γ ,∣∣gt (z)

∣∣2, ∣∣g0
t (z)

∣∣2 ≤ κ0δ
−γ |z|2.
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If we make the following replacement in Theorem 2.4:

ft , gt (z), f
0
t , hδ

t , g
0
t (z) ⇒ ft∧τ ,1t<τ gt (z), f

0
t∧τ , h

δ
t∧τ ,1t<τ g

0
t (z),

then by (2.10) with ε = δ5 and κ = κ0δ
−γ , we obtain

c0

∫ t∧τ

0

∣∣f 0
s

∣∣2 ds ≤ (δ− 3
2 + δ− 15

2
) ∫ t

0
|fs∧τ |2 ds + κ0δ

1
2 −γ log ζ

+ κ0δ
−γ (δ5− 1

2 + δ
5
2 + tδ

1
2 ∧(4−2α−γ ))

≤ 2κ0δ
− 15

2

∫ t

0
|fs∧τ |2 ds + κ0δ

1
2 −γ log ζ

+ 2κ0
(
δ

5
2 −γ + tδ

1
2 ∧(4−2α−γ )−γ ) a.s.,

where c0 ∈ (0,1) only depends on
∫
|z|≤1 |z|2ν(dz) and ζ > 0 with Eζ ≤ 1. From

this, dividing both sides by 2κ0δ
1
2 −γ and taking exponential, then multiplying 1τ≥t

and taking expectations, we derive that for c1 := c0
2κ0

and β0 := 0 ∧ (7
2 − 2α − γ ),

sup
u∈Rd

E

(
exp
{
c1δ

γ− 1
2

∫ t

0

∣∣uKδ
s [b,V ](Xδ

s

)∣∣2 ds

− δγ−8
∫ t

0

∣∣uKδ
s V
(
Xδ

s

)∣∣2 ds

}
1τ≥t

)
(3.17)

≤ E
(
1τ≥t ζ

1/2) exp
{
δ2 + tδ

1
2 ∧(4−2α−γ )− 1

2
}≤ exp

{
δ2 + tδβ0

}
.

(3) For t ∈ (0,1) and u ∈ R
d , define a random set

�u
t (x;�) :=

{
ω : sup

s∈[0,t]
(∣∣uKδ

s (ω, x;�)∣∣2 ∨ ∣∣Xδ
s (ω, x;�)∣∣2m)≤ δ−γ /2

}
,

and let

J u
t (x;�) := exp

{
c1δ

γ− 1
2

∫ t

0

∣∣uKδ
s (x;�)[b,V ](Xδ

s (x;�))∣∣2 ds

(3.18)

− δγ−8
∫ t

0

∣∣uKδ
s (x;�)V (Xδ

s (x;�))∣∣2 ds

}
1�u

t (x;�).

Since �u
t (x;0) ⊂ {τu(x) ≥ t}, by (3.17) we have

sup
x∈Rd

sup
u∈Rd

EJ u
t (x;0) ≤ exp

{
δ2 + tδβ0

}
.(3.19)

Let 0 = t0 < t1 < · · · < tn ≤ tn+1 = t be the jump times of �. If we set

φtj (x;�) := Xδ
tj−(x;�) + σ

(
Xδ

tj−(x;�),��tj

)
,

then for s ∈ [0, tj+1 − tj ),

Xδ
s+tj

(x;�) = Xδ
s

(
φtj (x;�);0

)⇒ Kδ
s+tj

(x;�) = [∇φtj (x;�)]−1
Kδ

s

(
φtj (x;�);0

)



1818 X. ZHANG

and

�u
tj+1

(x;�) = �u
tj
(x;�)

∩
{

sup
s∈(0,tj+1−tj ]

(∣∣uKδ
s+tj

(x;�)∣∣2 ∨ ∣∣Xδ
s+tj

(x;�)∣∣2m)≤ δ−γ /2
}
.

Thus, by the Markovian property, we have for all u ∈R
d ,

EJ u
tn+1

(x;�) = E
(
J u

tn
(x;�) · (EJ u′

tn+1−tn
(y;0)

)|u′=u[∇φtn (x;�)]−1,y=φtn (x;�)
)

(3.19)≤ EJ u
tn
(x;�) exp

{
δ2 + (tn+1 − tn)δ

β0
}

≤ · · ·(3.20)

≤
n∏

j=0

exp
{
δ2 + (tj+1 − tj )δ

β0
}

= exp
{
δ2(n + 1) + tn+1δ

β0
}
.

Let Nδ
t be the jump number of L̂δ· before time t , that is,

Nδ
t = ∑

s∈(0,t]
1|�L̂δ

s |>0 =
∫
|z|>δ

N
(
(0, t],dz

)= ∑
s∈(0,t]

1|�Ls |>δ,

which is a Poisson process with intensity
∫
|z|>δ ν(dz) =: λδ . We estimate λδ as

follows: letting m = [log δ−1/ log 2], by (3.1) we have

λδ ≤
∫
|z|≥1

ν(dz) +
m∑

k=0

∫
2kδ≤|z|≤2k+1δ

ν(dz)

≤ C +
m∑

k=0

(
2kδ
)−2

∫
2kδ≤|z|≤2k+1δ

|z|2ν(dz)

(3.21)

≤ C + C

m∑
k=0

(
2kδ
)−2(2k+1δ

)2−α

= C + C22−α
m∑

k=0

(
2kδ
)−α ≤ Cδ−α.

Recalling (3.12), (3.18) and the independence of Lδ and L̂δ , we have for any x,u ∈
R

d ,

E

(
exp
{
c1δ

γ− 1
2

∫ t

0

∣∣uKs(x)[b,V ](Xs(x)
)∣∣2 ds

− δγ−8
∫ t

0

∣∣uKs(x)V
(
Xs(x)

)∣∣2 ds

}
1
�u

t (x;L̂δ)

)
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= E
(
EJ u

t (x;�)|
�=L̂δ

)= ∞∑
n=0

E
((
EJ u

t (x;�))
�=L̂δ ;Nδ

t = n
)

(3.20)≤
∞∑

n=0

exp
{
δ2(n + 1) + tδβ0

}
P
(
Nδ

t = n
)

(3.22)

= exp
{
δ2 + tδβ0

} ∞∑
n=0

eδ2n (tλδ)
n

n! e−tλδ

= exp
{
δ2 + tδβ0 + (eδ2 − 1

)
tλδ

}
(3.21)≤ exp

{
1 + tδβ0 + C2tδ

2−α} ∀t, δ ∈ (0,1),

where in the last step we have used that es − 1 ≤ 3s for s ∈ (0,1).
(4) By (3.22) and Chebyshev’s inequality, we have for any β ∈ (0,1),

P

({
c1δ

γ− 1
2

∫ t

0

∣∣uKs(x)[b,V ](Xs(x)
)∣∣2 ds

− δγ−8
∫ t

0

∣∣uKs(x)V
(
Xs(x)

)∣∣2 ds ≥ tδ− β
2

}
∩ �u

t

(
x; L̂δ))

≤ exp
{
1 + tδβ0 + C2tδ

2−α − tδ− β
2
}
,

where β0 = 0 ∧ (7
2 − 2α − γ ), and by (3.9),

P
([

�u
t

(
x; L̂δ)]c)= P

{
sup

s∈[0,t]
(∣∣uKs(x)

∣∣2 ∨ ∣∣Xδ
s (x)

∣∣2m)
> δ−γ /2

}

≤ δp
E

(
sup

s∈[0,t]
(∣∣uKs(x)

∣∣2 ∨ ∣∣Xδ
s (x)

∣∣2m)2p/γ
)

≤ (Cp(x) + C|u|4p/γ )δp ∀p ≥ 1.

In particular, for β ∈ (0 ∨ (4α + 2γ − 7),1), there exists a δ0 ∈ (0,1) such that for
all δ ∈ (0, δ0), t ∈ (0,1), x ∈ R

d , |u| = 1 and p ≥ 1,

P

⎛
⎜⎜⎜⎜⎝
∫ t

0

∣∣uKs(x)[b,V ](Xs(x)
)∣∣2 ds ≥ 2tδ

1−β
2 −γ

c1

and
∫ t

0

∣∣uKs(x)V
(
Xs(x)

)∣∣2 ds ≤ tδ8− β
2 −γ

⎞
⎟⎟⎟⎟⎠≤ exp

{
2 − tδ− β

2
}+ Cp(x)δp,

which then gives the desired estimate (3.10) by adjusting the constants and rescal-
ing δ.

(5) Finally, if V, [b,V ], [b, [b,V ]] ∈ C2
b , then the m in (3.16) can be zero so

that the constant Cp(x) does not depend on the starting point x. �
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The reduced Malliavin matrix is defined by

�̂t (x) :=
∫ t

0
Ks(x)

[
(∇zσ )(∇zσ )∗

](
Xs(x),0

)
K∗

s (x)ds.(3.23)

We are now in a position to prove the following main result of this section.

THEOREM 3.3. Let B1(x) := ∇zσ (x,0) and define for j ∈ N,

Bj+1(x) := [b,Bj ] := b(x) · ∇Bj(x) − ∇b(x) · Bj(x).

Assume that for some j0 ∈N, m ∈ N0 and c0 > 0,

inf|u|=1

j0∑
j=1

∣∣uBj (x)
∣∣2 ≥ c0/

(
1 + |x|m), x ∈ R

d .(3.24)

Under (3.1), (3.3), (3.4) and (3.6), there exist γ = γ (α, j0) ∈ (0,1) and constants
C2 ≥ 1, c2 ∈ (0,1) such that for all t ∈ (0,1), x ∈ R

d , λ ≥ 1 and p ≥ 1,

sup
|u|=1

E exp
{−λu�̂t (x)u∗}≤ C2 exp

{−c2tλ
γ }+ Cp(x)(λt)−p,(3.25)

where Cp(x) continuously depends on x. Moreover, if m = 0 in (3.24) and Bj ∈ C2
b

for each j = 1, . . . , j0 + 1, then Cp(x) can be independent of x.

PROOF. Let β1, β2, β3 be as in (3.10). Set a := β1
β2

≤ 1 and define for j =
1, . . . , j0,

Ej :=
{∫ t

0

∣∣uKs(x)Bj

(
Xs(x)

)∣∣2 ds ≤ tδaj β2

}
.

Since aj+1β2 = ajβ1 and Bj+1 = [b,Bj ], by (3.10) with δ replaced by δaj
, we

have for any p ≥ 1,

P
(
Ej ∩ Ec

j+1
)≤ C1 exp

{−c1tδ
−aj β3

}+ Cp(x)δajp.(3.26)

Noticing that

E1 ⊂
( j0⋂

j=1

Ej

)
∪
(j0−1⋃

j=1

(
Ej ∩ Ec

j+1
))

,

we have

P(E1) ≤ P

( j0⋂
j=1

Ej

)
+

j0−1∑
j=1

P
(
Ej ∩ Ec

j+1
)
.(3.27)

On the other hand, if we define

τ := inf
{
t ≥ 0 : ∣∣Jt (x)

∣∣∧ (1 + |Xt(x)|m)≥ δ−aj0β2/4},
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then for any s ≤ τ and |u| = 1,

∣∣uKs(x)
∣∣2 ≥ ∣∣Js(x)

∣∣−2 ≥ δaj0β2/2.

Thus, by (3.24) we have

j0⋂
j=1

Ej ∩ {τ ≥ t} ⊂
{ j0∑

j=1

∫ t

0

∣∣uKs(x)Bj

(
Xs(x)

)∣∣2 ds ≤ t

j0∑
j=1

δajβ2; τ ≥ t

}

⊂
{
c0

∫ t

0

∣∣uKs(x)
∣∣2/(1 + ∣∣Xs(x)

∣∣m)ds ≤ t

j0∑
j=1

δaj0β2; τ ≥ t

}
(3.28)

⊂ {
tc0δ

3aj0β2/4 ≤ tj0δ
aj0β2

}=∅,

provided δ < δ1 = (c0/j0)
4/(aj0β2). Moreover, by (3.9), we have for any p ≥ 2,

P(τ < t) ≤ P

(
sup

s∈[0,t]
(∣∣Js(x)

∣∣∧ (1 + ∣∣Xs(x)
∣∣m))≥ δ−aj0β2/4

)
≤ Cp(x)δpaj0β2/4.

Now, combining this with (3.26)–(3.28) and resetting ε = δβ1 and θ = aj0β3/β1,
we obtain that for all ε ∈ (0,1), t ∈ (0,1), x ∈ R

d and p ≥ 1,

sup
|u|=1

P

{∫ t

0

∣∣uKs(x)B1
(
Xs(x)

)∣∣2 ds ≤ tε

}
≤ C2 exp

{−c1tε
−θ}+ Cp(x)εp.

For λ ≥ t , setting r := (λ/t)
−1

1+θ and ξ := 1
t

∫ t
0 |uKs(x)B1(Xs(x))|2 ds, we have

Ee−λξ =
∫ ∞

0
λe−λε

P(ξ ≤ ε)dε

≤
∫ ∞
r

λe−λε dε +
∫ r

0
λe−λε(C2e−c1tε

−θ + Cp(x)εp)dε

= e−λr + C2

∫ λr

0
e−s−c1tλ

θ s−θ

ds + Cp(x)λ−p
∫ λr

0
e−ssp ds

≤ e−λr + C2e−c1tr
−θ
∫ λr

0
e−s ds + Cp(x)λ−p

≤ e−t (λ/t)
θ

1+θ + C2e−c1t (λ/t)
θ

1+θ + Cp(x)λ−p.

By replacing λ with λt and recalling definition (3.23), we obtain the desired esti-
mate (3.25).

If m = 0 in (3.24) and Bj ∈ C2
b for each j = 1, . . . , j0 +1, from the above proof

and by Lemma 3.2, it is easy to see that Cp(x) is independent of x. �
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4. Proof of Theorem 1.1. In the remainder of this paper, we assume (Hσ
b ) and

(Hν) and choose δ being small enough so that

∣∣∇xσ (x, z)
∣∣≤ 1

2
, |z| ≤ δ,(4.1)

and set

�δ
0 := {

z ∈ R
d : 0 < |z| < δ

}
.

Let Xt(x) = Xt solve the following SDE:

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0

∫
�δ

0

σ(Xs−, z)Ñ(ds,dz).(4.2)

It is well known that the generator of Xt(x) is given by L0 as in (1.3).
This section is based on Section 2.1, Lemma 2.5 and Theorem 3.3. We first

prove the following Malliavin differentiability of Xt with respect to ω in the sense
of Theorem 2.1.

LEMMA 4.1. Fix v ∈ V∞−. For any t ∈ [0,1], we have Xt ∈ W
1,∞−
v (�) and

DvXt =
∫ t

0
∇b(Xs)DvXs ds +

∫ t

0

∫
�δ

0

∇xσ (Xs−, z)DvXs−Ñ(ds,dz)

(4.3)

+
∫ t

0

∫
�δ

0

〈∇zσ (Xs−, z),v(s, z)
〉
N(ds,dz).

Moreover, for any p ≥ 2, we have

sup
x∈Rd

E

(
sup

t∈[0,1]
∣∣DvXt(x)

∣∣p)< ∞.(4.4)

PROOF. (1) Consider the following Picard’s iteration: X0
t ≡ x and for n ∈N,

Xn
t := x +

∫ t

0
b
(
Xn−1

s

)
ds +

∫ t

0

∫
�δ

0

σ2
(
Xn−1

s− , z
)
Ñ(ds,dz).

Since b and σ are Lipschitz continuous, it is by now standard to prove that for any
p ≥ 2,

sup
n∈N

E

(
sup

t∈[0,1]
∣∣Xn

t

∣∣p)< ∞ and lim
n→∞E

(
sup

t∈[0,1]
∣∣Xn

t − Xt

∣∣p)= 0.(4.5)

(2) Next, we use induction to show that for each n ∈ N,

Xn
t ∈ W

1,∞−
v (�) and E

(
sup

t∈[0,1]
∣∣DvX

n
t

∣∣p)< +∞ ∀p ≥ 2.(4.6)
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First of all, it is clear that (4.6) holds for n = 0. Suppose now that (4.6) holds for
some n ∈ N. By (4.5) and the induction hypothesis, it is easy to check that the
assumptions of Proposition 2.2 are satisfied. Thus, Xn+1

t ∈ W
1,∞−
v (�) and

DvX
n+1
t =

∫ t

0
∇b
(
Xn

s

)
DvX

n
s ds +

∫ t

0

∫
�δ

0

∇xσ
(
Xn

s−, z
)
DvX

n
s−Ñ(ds,dz)

+
∫ t

0

∫
�δ

0

〈∇zσ
(
Xn

s−, z
)
,v(s, z)

〉
N(ds,dz).

By Lemma 2.3, we have for any p ≥ 2,

E

(
sup

s∈[0,t]
∣∣DvX

n+1
s

∣∣p)≤ C

∫ t

0
E
∣∣DvX

n
s

∣∣p ds

+ CE

(∫ t

0

∫
�δ

0

∣∣〈∇zσ
(
Xn

s−, z
)
,v(s, z)

〉∣∣ν(dz)ds

)p

+ CE

(∫ t

0

∫
�δ

0

∣∣〈∇zσ
(
Xn

s−, z
)
,v(s, z)

〉∣∣pν(dz)ds

)
.

Since v ∈ V∞−, by (Hσb) we further have

E

(
sup

s∈[0,t]
∣∣DvX

n+1
s

∣∣p)≤ C

∫ t

0
E
∣∣DvX

n
s

∣∣p ds + C

≤ C

∫ t

0
E

(
sup

r∈[0,s]
∣∣DvX

n
r

∣∣p)ds + C,

where C is independent of n and the starting point x. Thus, we have proved (4.6)
by the induction hypothesis. Moreover, by Gronwall’s inequality, we also have

sup
n∈N

E

(
sup

s∈[0,1]
∣∣DvX

n
s

∣∣p)< +∞.(4.7)

(3) Let Yt solve the following linear matrix-valued SDE:

Yt =
∫ t

0
∇b(Xs)Ys ds +

∫ t

0

∫
�δ

0

∇xσ (Xs−, z)Ys−Ñ(ds,dz)

+
∫ t

0

∫
�δ

0

〈∇zσ (Xs−, z),v(s, z)
〉
N(ds,dz).

By Fatou’s lemma and (4.5), (4.7), for any p ≥ 2, we have

lim
n→∞E

∣∣DvX
n
t − Yt

∣∣p ≤ C

∫ t

0
lim

n→∞E
∣∣DvX

n−1
s − Ys

∣∣p ds,

which then gives

lim
n→∞E

∣∣DvX
n
t − Yt

∣∣p = 0.
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Thus, Xt ∈ W
1,p
v (�) and DvXt = Yt . Moreover, the estimate (4.4) follows by (4.5)

and (4.7). �

Let Jt = Jt (x) be the Jacobian matrix of x 	→ Xt(x), and Kt(x) be the inverse
of Jt (x). Recalling equations (3.5) and (4.3), by the formula of constant variation,
we have for any v ∈ V∞−,

DvXt = Jt

∫ t

0

∫
�δ

0

Ks∇zσ (Xs−, z)v(s, z)N(ds,dz).(4.8)

Here, the integral is the Lebesgue–Stieltjes integral.
Next, we want to choose special direction � = (v1, . . . ,vd) so that the Malliavin

matrix D�Xt := (Dv1Xt, . . . ,Dvd
Xt ) is invertible. Let

U(x, z) := (
I+ ∇xσ (x, z)

)−1∇zσ (x, z), x ∈ R
d, z ∈ �δ

0,

and define

vj (x; s, z) := [
Ks−(x)U

(
Xs−(x), z

)]∗
·j ζ(z),

where ζ(z) = ζδ(z) is a nonnegative smooth function with

ζδ(z) = |z|3, |z| ≤ δ/4, ζδ(z) = 0, |z| > δ/2.

The following lemma is easily verified by definitions and (3.9).

LEMMA 4.2. For any m ∈ N0, there is a constant C > 0 such that for all
x ∈ R

d and z ∈ �δ
0,

∣∣∇m
x U(x, z)

∣∣, ∣∣∇m
z U(x, z)

∣∣≤ C,
∣∣U(x, z) − U(x,0)

∣∣≤ C|z|.
(4.9)

Moreover, for each j = 1, . . . , d and x ∈R
d , vj (x) ∈ V∞−.

Write

�(s, z) := �(x; s, z) := (
v1(x; s, z), . . . ,vd(x; s, z))

and

(D�Xt)ij := Dvj
Xi

t .

Noticing that by equation (3.7),

Ks = Ks−
(
I+ ∇xσ (Xs−,�Ls)

)−1
,

by (4.8) we have

D�Xt(x) = Jt (x)�t(x),(4.10)

where

�t(x) :=
∫ t

0

∫
�δ

0

Ks−(x)
(
UU∗)(Xs−(x), z

)
K∗

s−(x)ζ(z)N(ds,dz).(4.11)
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LEMMA 4.3. For any p ≥ 2 and m,k ∈ N0 with m + k ≥ 1, we have

sup
x∈Rd

E

(
sup

t∈[0,1]
∣∣Dvj1

· · ·Dvjm
∇kXt (x)

∣∣p)< ∞,(4.12)

sup
x∈Rd

E

(
sup

t∈[0,1]
∣∣Dvj1

· · ·Dvjm
div
(
vi (x)

)∣∣p)< ∞,(4.13)

where j1, . . . , jm and i runs in {1,2, . . . , d}.

PROOF. For m + k = 1, (4.12) has been proven in (3.9) and (4.4). For general
k and m, it follows by induction. Let us look at (4.13) with m = 1. Notice that by
(2.4),

div(vi ) =
∫ 1

0

∫
�δ

0

[〈∇ logκ(z),vi(s, z)
〉+ divz(vi )(s, z)

]
Ñ(ds,dz).

By Proposition 2.2, we have

Dvj
div(vi ) =

∫ 1

0

∫
�δ

0

[〈∇ logκ(z),Dvj
vi (s, z)

〉+ Dvj
divz(vi )(s, z)

]
Ñ(ds,dz)

+
∫ 1

0

∫
�δ

0

〈
vj (s, z),∇z

〈∇ logκ(z),vi(s, z)
〉

+ ∇z divz(vi )(s, z)
〉
N(ds,dz).

In view of supp vi (s, ·) ⊂ �
δ
2
0 , by Lemma 2.3 and (1.7), (4.9), (4.12), one obtains

(4.13) with m = 1. For general m, it follows by similar calculations. �

Write

T 0
t f (x) := Ef

(
Xt(x)

)
.(4.14)

The following lemma is proven in the Appendix.

LEMMA 4.4. Under (Hσ
b ), there exists a constant C > 0 such that for any

f ∈ L1(Rd),

sup
t∈[0,1]

∫
Rd

∣∣T 0
t f (x)

∣∣dx ≤ C

∫
Rd

∣∣f (x)
∣∣dx.(4.15)

Now we can prove the following main result of this section.

THEOREM 4.5. Assume that (Hσ
b ), (Hν) and (Hj0) hold. Let δ be as in (4.1).

For any k,m,n ∈ N0 with n ≤ k + m, p ∈ (1,∞] and R > 0, there exist γkmn ≥ 0
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only depending on k,m,n,α, j0, d and a constant CR ≥ 1 such that for all f ∈⋂
k W

k,p(Rd) and t ∈ (0,1),∥∥∇kT 0
t ∇mf

∥∥
p;R ≤ CRt−γkmn‖f ‖n,p,(4.16)

where ‖ · ‖p;R denotes the norm in Lp(BR), BR is the ball in R
d with radius R,

γkmn is increasing with respect to k,m and decreasing in n, and γkmn = 0 for
n = k + m. In particular, Xt(x) admits a smooth density ρt (x, y) such that

∂tρt (x, y) = L0ρt(·, y)(x) ∀(t, x, y) ∈ (0,1) ×R
d ×R

d .

Moreover, if m = 0 and Bj ∈ C2
b in (Hj0) for each j = 1, . . . , j0 + 1, then R can

be infinity in (4.16) so that the local norm in (4.16) becomes a global norm.

PROOF. Below we only prove (4.16) for p ∈ (1,∞). For p = ∞, it is similar
and simpler. We assume f ∈ C∞

0 (Rd) and divide the proof into four steps.
(1) Let �t(x) be defined by (4.11). In view of U(x,0) = ∇zσ (x,0), by (3.9),

(4.9), (3.25) and Lemma 2.5, there are constants C3 ≥ 1, c3, θ ∈ (0,1) and γ =
γ (α, j0) ∈ (0,1) such that for all t ∈ (0,1), x ∈ R

d , λ ≥ 1 and p ≥ 1,

sup
|u|=1

E exp
{−λu�t(x)u∗}≤ C3 exp

{−c3tλ
γ }+ Cp(x)

(
λθ t
)−p

,(4.17)

where �t(x) is defined by (4.11). As in [26], Lemma 5.3, for any p ≥ 1 and x ∈
R

d , there exist constant Cp(x) ≥ 1 an γ ′ = γ ′(α, j0, d) > 0 such that for all t ∈
(0,1),

E
((

det�t(x)
)−p)≤ Cp(x)t−γ ′p,

which in turn gives that for all p ≥ 1,∥∥�−1
t (x)

∥∥
Lp(�) ≤ Cp(x)t−γ ′

.(4.18)

(2) For t ∈ (0,1) and x ∈ R
d , let Ct (x) be the class of all polynomial functionals

of

div�,�−1
t ,Kt ,

(∇kXt

)�1
k=1,

(
Dvj1

· · ·Dvjm

(
Xt, . . . ,∇�2Xt,Kt ,div�,�t

))�3
m=1,

where �1, �2, �3 ∈ N, ji ∈ {1, . . . , d}, and the starting point x is dropped in the
above random variables. By (4.18) and Lemma 4.3, for any Ht(x) ∈ Ct (x), there
exists a γ (H) ≥ 0 only depending on the degree of �−1

t appearing in H and
α, j0, d such that for all t ∈ (0,1) and p ≥ 1,∥∥Ht(x)

∥∥
Lp(�) ≤ Cp(x)t−γ (H),(4.19)

where Cp(x) continuously depends on x. Notice that if Ht does not contain �−1
t ,

then γ (H) = 0.
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(3) Let ξ ∈ Ct (x). Since D�X is an invertible matrix, by (4.10) and the integra-
tion by parts formula (2.3), we have

E
(
(∇f )(Xt)ξ

)= E
(∇f (Xt)D�Xt · (D�Xt)

−1ξ
)= E

(
D�f (Xt)�

−1
t Ktξ

)

= E

(
−f (Xt)

(
div� · �−1

t Ktξ −
d∑

i=1

Dvi

[(
�−1

t Kt

)
i·ξ
]))

= E
(
f (Xt)ξ

′),
where ξ ′ ∈ Ct (x). Starting from this formula, by the chain rule and induction, we
have for n ≤ k + m,

∇k
E
((∇mf

)
(Xt)

)= k∑
j=0

E
((∇m+jf

)
(Xt)Gj

(∇Xt, . . . ,∇kXt

))

=
n∑

j=0

E
((∇jf

)
(Xt)Hj

)
,

where {Gj, j = 1, . . . , k} are real polynomial functions and Hj ∈ Ct (x). Notice
that if n = k + m, then Hj will not contain �−1

t .
(4) Now, for any p ∈ (1,∞), by Hölder’s inequality, we have

∥∥∇kT 0
t ∇mf

∥∥
p;R ≤

n∑
j=0

(∫
BR

∣∣E((∇jf
)(

Xt(x)
)
Hj(x)

)∣∣p dx

) 1
p

≤
n∑

j=0

(∫
BR

E
(∣∣∇jf

∣∣p(Xt(x)
))(

E
∣∣Hj(x)

∣∣ p
p−1
)p−1 dx

) 1
p

(4.19)≤ CR

n∑
j=0

t−γ (Hj )

(∫
Rd

E
(∣∣∇jf

∣∣p(Xt(x)
))

dx

) 1
p

(4.15)≤ CRt−max{γ (Hj ),j=1,...,n}‖f ‖n,p, t ∈ (0,1).

(5) Finally, if m = 0 and Bj ∈ C2
b in (Hj0) for each j = 1, . . . , j0 + 1, then by

Theorem 3.3, all the constants appearing in the above estimates will be indepen-
dent of the starting point x. Thus, we can take R = ∞ in step (4). The proof is
complete. �

5. Proofs of Theorems 1.2 and 1.4. We first recall some definitions about the
Sobolev and Hölder spaces. For k ∈ N0 and p ∈ [1,∞], let Wk,p = W

k,p(Rd) be
the usual Sobolev space with the norm:

‖ϕ‖k,p :=
k∑

j=0

∥∥∇jϕ
∥∥
p.
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For β ≥ 0 and p ∈ [1,∞), let Hβ,p := (I − �)−
β
2 (Lp(Rd)) be the usual Bessel

potential space. For p = ∞, let Hβ,∞ be the usual Hölder space, that is, if β =
k + θ with θ ∈ [0,1), then

‖ϕ‖β,∞ := ‖ϕ‖k,∞ + [∇kϕ
]
θ < ∞,(5.1)

where [∇kϕ]0 := 0 by convention and for θ ∈ (0,1),

[∇kϕ
]
θ := sup

x �=y

|∇kϕ(x) − ∇kϕ(y)|
|x − y|θ .

It is well known that for any k ∈ N0 and p ∈ (1,∞) (cf. [21]),

H
k,p =W

k,p,

and for any β1, β2 ≥ 0, p ∈ (1,∞) and θ ∈ [0,1],[
H

β1,p,Hβ2,p
]
θ = H

β1+θ(β2−β1),p,(5.2)

and if β1 + θ(β2 − β1) is not an integer, then(
H

β1,∞,Hβ2,∞)
θ,∞ = H

β1+θ(β2−β1),∞,(5.3)

where [·, ·]θ [resp., (·, ·)θ,∞] stands for the complex (resp., real) interpolation
space.

We recall the following interpolation theorem (cf. [23], page 59, Theorem (a)).

THEOREM 5.1. Let Ai ⊂ Bi, i = 0,1 be Banach spaces. Let T : Ai →
Bi, i = 0,1 be bounded linear operators. For θ ∈ [0,1], we have

‖T ‖Aθ→Bθ ≤ ‖T ‖1−θ
A0→B0

‖T ‖θ
A1→B1

,

where Aθ := [A0,A1]θ , Bθ := [B0,B1]θ , and ‖T ‖Aθ→Bθ denotes the operator
norm of T mapping Aθ to Bθ . The same is true for real interpolation spaces.

In what follows, we always assume that (Hσ
b ) and (Hν) hold and (Hj0) holds

with m = 0 and Bj ∈ C2
b for each j = 1, . . . , j0 + 1. Let T 0

t be the semigroup
defined by (4.14), whose infinitesimal generator is given by L0. We have the fol-
lowing.

LEMMA 5.2. Let γ100 be the same as in Theorem 4.5. For any p ∈ (1,∞),
θ ∈ [0,1) and β ≥ 0, there exist constants C1,C2 > 0 such that for all t ∈ (0,1),∥∥T 0

t ϕ
∥∥
θ+β,p ≤ C1t

−θγ100‖ϕ‖β,p,(5.4)

and if β and θ + β are not integers, then∥∥T 0
t ϕ
∥∥
θ+β,∞ ≤ C2t

−θγ100‖ϕ‖β,∞.(5.5)
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PROOF. Let θ ∈ [0,1) and β ≥ 0. For any p ∈ (1,∞], by Theorem 4.5 and the
interpolation Theorem 5.1, there exists a constant C > 0 such that for all t ∈ (0,1),∥∥T 0

t ϕ
∥∥

β
1−θ

,p
≤ C‖ϕ‖ β

1−θ
,p

and ∥∥T 0
t ϕ
∥∥

1,p ≤ Ct−γ100‖ϕ‖p.

On the other hand, noticing that by (5.2),[
H

β
1−θ

,p,H1,p]
θ =H

β+θ,p,
[
H

β
1−θ

,p,H0,p]
θ = H

β,p,

and if β and θ + β are not integers, then by (5.3),(
H

β
1−θ

,∞,H1,∞)
θ,∞ = H

β+θ,∞,
(
H

β
1−θ

,∞,H0,∞)
θ,∞ =H

β,∞,

by the interpolation Theorem 5.1 again, we obtain the desired estimate. �

LEMMA 5.3. Let γ010 be the same as in Theorem 4.5. For any p ∈ (1,∞] and
θ ∈ (0,1), there exists a constant C > 0 such that for all ϕ ∈ Lp(Rd) ∩ C∞

b (Rd)

and t ∈ (0,1), ∥∥T 0
t �

θ
2 ϕ
∥∥
p ≤ Ct−θγ010‖ϕ‖p.(5.6)

PROOF. Notice that

T 0
t �

θ
2 ϕ(x) = E

∫
Rd

ϕ(Xt(x) + z) − ϕ(Xt(x))

|z|d+θ
dz = I1(x) + I2(x),(5.7)

where

I1(x) := E

∫
|z|≤tγ010

ϕ(Xt(x) + z) − ϕ(Xt(x))

|z|d+θ
dz,

I2(x) := E

∫
|z|>tγ010

ϕ(Xt(x) + z) − ϕ(Xt(x))

|z|d+θ
dz.

For I1(x), setting ϕsz(x) := ϕ(x + sz), we have

I1(x) = E

∫
|z|≤tγ010

(∫ 1

0
z · ∇ϕ

(
Xt(x) + sz

)
ds

)
dz

|z|d+θ

=
∫
|z|≤tγ010

(∫ 1

0
z · T 0

t ∇ϕsz(x)ds

)
dz

|z|d+θ
.

Hence,

‖I1‖p ≤
∫
|z|≤tγ010

(∫ 1

0
‖T 0

t ∇ϕsz‖p ds

)
dz

|z|d+θ−1

(5.8)
(4.16)≤ Ct−γ010‖ϕ‖p

∫
|z|≤tγ010

dz

|z|d+θ−1 ≤ Ct−θγ010‖ϕ‖p.
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For I2(x), we have

‖I2‖p ≤
∫
|z|>tγ010

‖T 0
t ϕz‖p + ‖T 0

t ϕ‖p

|z|d+θ
dz

(5.9)
(4.15)≤ C‖ϕ‖p

∫
|z|>tγ010

1

|z|d+θ
dz ≤ Ct−θγ010‖ϕ‖p.

Combining (5.7)–(5.9), we obtain (5.6). �

5.1. Proof of Theorem 1.2. Let L be a bounded linear operator in Sobolev
space W

k,p(Rd) for any p > 1 and k ∈ N0. Let Tt be the semigroup in Lp(Rd)

associated with L0 + L , that is, for any ϕ ∈ Lp(Rd),

∂tTtϕ = L0Ttϕ + L Ttϕ.

By Duhamel’s formula, we have

Ttϕ = T 0
t ϕ +

∫ t

0
T 0

t−sL Tsϕ ds.(5.10)

LEMMA 5.4. Let γ100, γ010 be as in Theorem 4.5. Fix θ ∈ (0, 1
γ100

∧ 1) and

θ ′ ∈ [0, 1
γ010

∧ 1). For any m ∈ N and p ∈ (1,∞), there exists a constant C > 0

such that for all t ∈ (0,1) and ϕ ∈ Lp(Rd) ∩ C∞
b (Rd),

∥∥Tt�
θ ′
2 ϕ
∥∥
mθ,p ≤ Ct−mθγ100−θ ′γ010‖ϕ‖p.(5.11)

PROOF. First of all, since L is a bounded linear operator in W
k,p , by inter-

polation Theorem 5.1, we have for all β ≥ 0 and p ∈ (1,∞),

‖L ϕ‖β,p ≤ C‖ϕ‖β,p.

Let θ ∈ (0, 1
γ100

∧ 1) and m ∈ N. By (5.10) and Lemma 5.2, we have

‖Ttϕ‖mθ,p ≤ ∥∥T 0
t ϕ
∥∥
mθ,p +

∫ t

0

∥∥T 0
t−sL Tsϕ

∥∥
mθ,p ds

≤ Ct−θγ100‖ϕ‖(m−1)θ,p + C

∫ t

0
‖Tsϕ‖mθ,p ds,

which, by Gronwall’s inequality, yields that for all t ∈ (0,1),

‖Ttϕ‖mθ,p ≤ Ct−θγ100‖ϕ‖(m−1)θ,p.

Thus, by the semigroup property of Tt and iteration, we obtain

(5.12) ‖T(m+1)tϕ‖mθ,p ≤ Ct−θγ100‖Tmtϕ‖(m−1)θ,p ≤ · · · ≤ Ct−mθγ100‖Ttϕ‖p.
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On the other hand, by (5.10) and Lemma 5.2, we have

∥∥Tt�
θ ′
2 ϕ
∥∥
p ≤ ∥∥T 0

t �
θ ′
2 ϕ
∥∥
p +

∫ t

0

∥∥T 0
t−sL Ts�

θ ′
2 ϕ
∥∥
p ds

≤ Ct−θ ′γ010‖ϕ‖p + C

∫ t

0

∥∥Ts�
θ ′
2 ϕ
∥∥
p ds,

which, by Gronwall’s inequality, yields that for all t ∈ (0,1),

∥∥Tt�
θ ′
2 ϕ
∥∥
p ≤ Ct−θ ′γ010‖ϕ‖p.(5.13)

Combining (5.12) with (5.13), we obtain the desired estimate. �

Now we can give the following.

PROOF OF THEOREM 1.2. By a standard time-shifting argument, we can as-
sume t ∈ (0,1). Let L be a bounded linear operator in Sobolev space W

k,p(Rd)

for any p > 1 and k ∈ N0. Let Tt be the semigroup in Lp(Rd) associated with
L0 + L . For any p ∈ (1,∞) and ϕ ∈ Lp(Rd), by Lemma 5.4 and Sobolev’s
embedding theorem, we have Ttϕ ∈ C∞

b (Rd) and for any k ∈ N0, t ∈ (0,1) and
θ ′ ∈ [0, 1

γ010
∧ 1),

∥∥Tt�
θ ′
2 ϕ
∥∥
k,∞ ≤ C

∥∥Tt�
θ ′
2 ϕ
∥∥
k+d,p ≤ Ct−(k+d)γ100−θ ′γ0101‖ϕ‖p.(5.14)

In particular, there is a function ρt (x, ·) ∈ L
p

p−1 (Rd) such that for any ϕ ∈ Lp(Rd),

Ttϕ(x) =
∫
Rd

ϕ(y)ρt (x, y)dy.

By (5.14), for each k ∈ N0, we have

ess. sup
x∈Rd

∥∥∇k
x�

θ ′
2
y ρt (x, ·)∥∥ p

p−1

= ess. sup
x∈Rd

sup
ϕ∈C∞

0 (Rd ),‖ϕ‖p≤1

∣∣∣∣
∫

ϕ(y)∇k
x�

θ ′
2
y ρt (x, y)dy

∣∣∣∣
= ess. sup

x∈Rd

sup
ϕ∈C∞

0 (Rd ),‖ϕ‖p≤1

∣∣∣∣
∫

�
θ ′
2
y ϕ(y)∇k

xρt (x, y)dy

∣∣∣∣
= ess. sup

x∈Rd

sup
ϕ∈C∞

0 (Rd ),‖ϕ‖p≤1

∣∣∇k
xTt�

θ ′
2 ϕ(x)

∣∣

= sup
ϕ∈C∞

0 (Rd ),‖ϕ‖p≤1

∥∥∇k
xTt�

θ ′
2 ϕ
∥∥∞ ≤ Ct−(k+d)γ100−θ ′γ0101,
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where ∇k
x stands for the distributional derivative. Therefore, by Fubini’s theorem,

we have for any R > 0 and p > 1,∫
Rd

∫
BR

∣∣∇k
x�

θ ′
2
y ρt (x, y)

∣∣ p
p−1 dx dy < ∞,

which, by Sobolev’s embedding theorem again, produces that (x, y) 	→ ρt (x, y) is
continuous and for each y ∈ R

d ,

x 	→ ρt (x, y) is smooth.

As for equation (1.12), it follows by (5.10). �

5.2. Proof of Theorem 1.4. Let δ be as in (4.1). We decompose the operator
Lν

σ,b as

Lν
σ,bf (x) = L0f (x) +L1f (x),

where

L0f (x) := p.v.

∫
|z|<δ

f
((

x + σ(x, z)
)− f (x)

)
ν(dz) + b(x) · ∇f (x)

and

L1f (x) :=
∫
|z|≥δ

f
((

x + σ(x, z)
)− f (x)

)
ν(dz).

LEMMA 5.5. If
∫
|z|≥1 |z|qν(dz) < ∞ for some q > 0, then for any β ∈ [0, q],

there exists a constant C > 0 such that for all f ∈ H
β,∞,

‖L1f ‖β,∞ ≤ C‖f ‖β,∞.(5.15)

PROOF. First of all, (5.15) is clearly true for β = 0. By interpolation The-
orem 5.1, it suffices to prove (5.15) for β ∈ [0, q] ∩ N and β = q . Setting
φz(x) := x + σ(x, z), by (1.5), we have∥∥∇m

x φz

∥∥∞ ≤ C
(
1 + |z|) ∀m ∈ N.(5.16)

If q ∈ (0,1), then

[f ◦ φz]q = sup
x �=y

|f ◦ φz(x) − f ◦ φz(y)|
|x − y|q

≤ [f ]q sup
x �=y

|φz(x) − φz(y)|q
|x − y|q

≤ [f ]q‖∇φz‖q∞
(5.16)≤ C[f ]q(1 + |z|q).
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Hence,

[L1f ]q ≤ C[f ]q
∫
|z|≥1

(
1 + |z|q)ν(dz).

For q = 1, it is easy to see that (5.15) is true by the chain rule. Now assume
q ∈ (1,2). By the chain rule, we have

[∇(f ◦ φz)
]
q−1 = sup

x �=y

|(∇f ) ◦ φz(x) · ∇φz(x) − (∇f ) ◦ φz(y) · ∇φz(y)|
|x − y|q−1

≤ sup
x �=y

|(∇f ) ◦ φz(x) − (∇f ) ◦ φz(y)| · ‖∇φz‖∞
|x − y|q−1

+ sup
x �=y

‖∇f ‖∞|∇φz(x) − ∇φz(y)|
|x − y|q−1

(5.16)≤ C‖∇f ‖q−1
(
1 + |z|) sup

x �=y

|φz(x) − φz(y)|q−1

|x − y|q−1

+ C‖∇f ‖∞
(
1 + |z|)2−q sup

x �=y

|∇φz(x) − ∇φz(y)|q−1

|x − y|q−1

(5.16)≤ C[∇f ]q−1
(
1 + |z|)q + C‖∇f ‖∞

(
1 + |z|).

Thus,

[∇L1f ]q−1 ≤ C‖∇f ‖q−1,∞
∫
|z|≥1

(
1 + |z|q)ν(dz).

For q ≥ 2, it follows by similar calculations. �

Let Tt be the semigroup associated with Lν
σ,b. For any ϕ ∈ C∞

b (Rd), as above
by Duhamel’s formula, we have

Ttϕ(x) = T 0
t ϕ(x) +

∫ t

0
T 0

t−sL1Tsϕ(x)ds.(5.17)

LEMMA 5.6. Let γ100 be as in Theorem 4.5. If
∫
|z|≥1 |z|qν(dz) < ∞ for some

q > 0, then for any β ∈ (0, 1
γ100

∧ 1), there exists a constant C > 0 such that for all

t ∈ (0,1) and ϕ ∈ L∞(Rd),

‖Ttϕ‖q+β,∞ ≤ Ct−(q+β)γ100‖ϕ‖∞.

PROOF. Without loss of generality, we assume that q +β is not an integer. Fix
an irrational number q0 ∈ (0, q] and choose m ∈ N being large so that

θ := q0

m
<

1

γ100
∧ 1.
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By (5.17), (5.15) and Lemma 5.2, we have

‖Ttϕ‖mθ,∞ ≤ ∥∥T 0
t ϕ
∥∥
mθ,∞ +

∫ t

0

∥∥T 0
t−sL1Tsϕ

∥∥
mθ,∞ ds

≤ Ct−θγ100‖ϕ‖(m−1)θ,∞ + C

∫ t

0
‖Tsϕ‖mθ,∞ ds,

which, by Gronwall’s inequality, yields that for all t ∈ (0,1),

‖Ttϕ‖mθ,∞ ≤ Ct−θγ100‖ϕ‖(m−1)θ,∞.

Since jθ is not an integer for any j ∈ N, by iteration we obtain

‖Ttϕ‖q0,∞ = ‖Ttϕ‖mθ,∞ ≤ Ct−mθγ100‖ϕ‖∞ = Ct−q0γ100‖ϕ‖∞.

Next, we choose θ0 ∈ (0, 1
γ100

∧1) and an irrational number q0 ≤ q so that q0 +θ0 =
q + β . As above, we have

‖Ttϕ‖q0+θ0,∞ ≤ Ct−θ0γ100‖ϕ‖q0,∞ + C

∫ t

0
(t − s)−θ0γ100‖L1Tsϕ‖q0,∞ ds

≤ Ct−θ0γ100‖ϕ‖q0,∞ + C‖ϕ‖q0,∞
∫ t

0
(t − s)−θ0γ100 ds

≤ C
(
t−θ0γ100 + t1−θ0γ100

)‖ϕ‖q0,∞.

Thus,

‖T2tϕ‖q0+θ0,∞ ≤ Ct−θ0γ100‖Ttϕ‖q0,∞ ≤ Ct−(q0+θ0)γ100‖ϕ‖∞.

The proof is complete. �

LEMMA 5.7. Let γ010 be as in Theorem 4.5. For any θ ∈ (0, 1
γ010

∧ 1), there

exists a constant C > 0 such that for all t ∈ (0,1) and ϕ ∈ C∞
b (Rd),∥∥Tt�

θ
2 ϕ
∥∥∞ ≤ Ct−θγ010‖ϕ‖∞.

PROOF. By (5.17) and (5.6), we have
∥∥Tt�

θ
2 ϕ
∥∥∞ ≤ ∥∥T 0

t �
θ
2 ϕ
∥∥∞ +

∫ t

0

∥∥T 0
t−sL1Ts�

θ
2 ϕ
∥∥∞ ds

≤ Ct−θγ010‖ϕ‖∞ + C

∫ t

0

∥∥Ts�
θ
2 ϕ
∥∥∞ ds,

which in turn gives the desired estimate by Gronwall’s inequality. �

PROOF OF THEOREM 1.4. Let Xt(x) solve SDE (3.2). By Lemmas 5.7
and A.4 in the Appendix, there exists a function ρt (x, y) ∈ (L1 ∩ Lp)(Rd) for
some p > 1 such that for all ϕ ∈ C0(R

d),

Ttϕ(x) = Eϕ
(
Xt(x)

)= ∫
Rd

ϕ(y)ρt (x, y)dy.
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By a further approximation, the above equality also holds for any ϕ ∈ L∞(Rd).
The q + ε-order Hölder continuity of x 	→ Ttϕ(x) follows by Lemma 5.6. �

APPENDIX

A.1. Proof of Lemma 4.4. Let δ be as in (4.1). For 0 < ε < δ, let Xε
t (x) = Xε

t

solve the following SDE:

Xε
t = x +

∫ t

0
b
(
Xε

s

)
ds +

∫ t

0

∫
�δ

ε

σ
(
Xε

s−, z
)
Ñ(ds,dz),(A.1)

where �δ
ε := {z ∈R

d : ε ≤ |z| < δ}. We first prove the following limit theorem.

LEMMA A.1. Under (Hσ
b ), there exist a subsequence εk → 0 and a null set

�0 such that for all ω /∈ �0,

lim
k→∞ sup

|x|≤R

sup
t∈[0,1]

∣∣Xεk
t (x,ω) − Xt(x,ω)

∣∣= 0 ∀R ∈ N.

PROOF. Set Zε
t := Xε

t − Xt . By Burkholder’s inequality (2.9) and (Hσ
b ), we

have for any p ≥ 2,

E

(
sup

s∈[0,t]
∣∣Zε

s

∣∣p)≤ CE

(∫ t

0

∣∣b(Xε
s

)− b(Xs)
∣∣ds

)p

+ CE

(
sup

t ′∈[0,t]

∣∣∣∣
∫ t ′

0

∫
�ε

0

σ(Xs−, z)Ñ(ds,dz)

∣∣∣∣p
)

+ CE

(
sup

t ′∈[0,t]

∣∣∣∣
∫ t ′

0

∫
�δ

ε

(
σ
(
Xε

s−, z
)− σ(Xs−, z)

)
Ñ(ds,dz)

∣∣∣∣p
)

≤ C

∫ t

0
E
∣∣Zε

s

∣∣p ds + C

∫
�ε

0

|z|pν(dz) + C

(∫
�ε

0

|z|2ν(dz)

)p
2
,

where C is independent of ε, t ∈ (0,1) and x ∈ R
d . By Gronwall’s inequality, we

obtain

lim
ε→0

sup
x∈Rd

E

(
sup

t∈[0,1]
∣∣Xε

t (x) − Xt(x)
∣∣p)= 0.

Similarly, we can prove that for any p ≥ 2,

lim
ε→0

sup
x∈Rd

E

(
sup

t∈[0,1]
∣∣∇Xε

t (x) − ∇Xt(x)
∣∣p)= 0.
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Thus, for any R > 0, by Sobolev’s embedding theorem, we have

lim
ε→0

E

(
sup

|x|<R

sup
t∈[0,1]

∣∣Xε
t (x) − Xt(x)

∣∣p)

≤ C lim
ε→0

E

(
sup

t∈[0,1]
∥∥Xε

t (·) − Xt(·)
∥∥p
W1,p(BR)

)
= 0,

where p > d and W
1,p(BR) is the first order Sobolev space over BR := {x ∈ R

d :
|x| < R}. The desired limit follows by a suitable choice of subsequence εk . �

Define φ(x, z) := x + σ(x, z). By (4.1), the mapping x 	→ φ(x, z) is invertible
for each |z| ≤ δ. Let φ−1(x, z) be the inverse of x 	→ φ(x, z). Write

σ̂ (x, z) := σ
(
φ−1(x, z), z

)
, |z| ≤ δ(A.2)

and

b̂(x) := b(x) +
∫
�δ

0

[
σ
(
φ−1(x, z), z

)− σ(x, z)
]
ν(dz),(A.3)

b̂ε(x) := b(x) +
∫
�δ

ε

[
σ
(
φ−1(x, z), z

)− σ(x, z)
]
ν(dz).(A.4)

By the chain rule, the following lemma is easy.

LEMMA A.2. Under (Hσ
b ), there exists a constant C > 0 such that for all

x ∈ R
d and |z| ≤ δ, ∣∣σ̂ (x, z)

∣∣≤ C|z|, ∣∣∇xσ̂ (x, z)
∣∣≤ C|z|.

Moreover, b̂, b̂ε ∈ C1
b(Rd) and for some C > 0,

‖b̂ε − b̂‖∞ + ‖∇b̂ε − ∇b̂‖∞ ≤ C

∫
�ε

0

|z|2ν(dz).

Fix T ∈ [0,1]. For t ∈ [0, T ], define

L̂T
t := LT − − LT −t+ with LT −t+ := lim

s↓t
LT −s .

In particular, (L̂T
t )t∈[0,T ] is still a Lévy process with the same Lévy measure ν and

�L̂T
t = �LT −t .(A.5)

Let N̂T (ds,dz) be the Poisson random measure associated with L̂T
t , that is,

N̂T ((0, t] × E
) := ∑

0<s≤t

1E

(
�L̂T

s

)
, E ∈ B

(
R

d),
and ˜̂

NT (ds,dz) := N̂T (ds,dz) − dsν(dz) the compensated Poisson random mea-
sure. We have
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LEMMA A.3. Let X̂T
t (x) = X̂T

t solve the following SDE:

X̂T
t = x −

∫ t

0
b̂
(
X̂T

s

)
ds −

∫ t

0

∫
�δ

0

σ̂
(
X̂T

s−, z
) ˜̂
NT (ds,dz),(A.6)

where σ̂ and b̂ are defined by (A.2) and (A.3), respectively. Then

X̂T
T (x) = X−1

T (x) ∀x ∈ R
d, a.s.(A.7)

PROOF. For ε ∈ (0, δ), let Xε
t (x) = Xε

t solve the following random ODE:

Xε
t = x +

∫ t

0
b
(
Xε

s

)
ds +

∫ t

0

∫
�δ

ε

σ
(
Xε

s−, z
)
Ñ(ds,dz)

= x +
∫ t

0
b̃ε

(
Xε

s

)
ds + ∑

0<s≤t

σ
(
Xε

s−,�Ls

)
1�δ

ε
(�Ls),

where

b̃ε(x) = b(x) −
∫
�δ

ε

σ (x, z)ν(dz).

By the change of variables, we have

Xε
T −t = Xε

T −
∫ T

T −t
b̃ε

(
Xε

s

)
ds − ∑

T −t<s≤T

σ
(
Xε

s−,�Ls

)
1�δ

ε
(�Ls)

= Xε
T −

∫ t

0
b̃ε

(
Xε

T −s

)
ds − ∑

0≤s<t

σ
(
Xε

(T −s)−,�LT −s

)
1�δ

ε
(�LT −s).

Noticing that if �Lt ∈ �δ
ε , then

Xε
t − Xε

t− = σ
(
Xε

t−,�Lt

)⇒ Xt− = φ−1(Xε
t ,�Lt

)
,

and since �LT = 0 almost surely, we further have

Xε
T −t = Xε

T −
∫ t

0
b̃ε

(
Xε

T −s

)
ds − ∑

0<s<t

σ̂
(
Xε

T −s,�LT −s

)
1�δ

ε
(�LT −s)

(A.5)= Xε
T −

∫ t

0
b̃ε

(
Xε

T −s

)
ds − ∑

0<s<t

σ̂
(
Xε

T −s,�L̂T
s

)
1�δ

ε

(
�L̂T

s

)
,

where σ̂ (x, z) is defined by (A.2). In particular,

Xε
T −t+ = Xε

T −
∫ t

0
b̃ε

(
Xε

T −s

)
ds −

∫ t

0

∫
�δ

ε

σ̂
(
Xε

T −s, z
)
N̂(ds,dz)

= Xε
T −

∫ t

0
b̂ε

(
Xε

T −s

)
ds −

∫ t

0

∫
�δ

ε

σ̂
(
Xε

T −s, z
) ˜̂
N(ds,dz),
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where b̂ε(x) is defined by (A.4). On the other hand, let X̂
T ,ε
t (x) = X̂

T ,ε
t solve the

following SDE:

X̂
T ,ε
t = x −

∫ t

0
b̂ε

(
X̂T ,ε

s

)
ds −

∫ t

0

∫
�δ

ε

σ̂
(
X̂

T ,ε
s− , z

) ˜̂
NT (ds,dz).

By the uniqueness of solutions to random ODEs, we have

Xε
T −t+(x) = X̂

T ,ε
t

(
Xε

T (x)
) ∀x ∈ R

d, a.s.

In particular,

x = X̂
T ,ε
T

(
Xε

T (x)
) ∀x ∈R

d, a.s.(A.8)

By Lemmas A.2, A.1 and taking limits for (A.8), we obtain

x = X̂T
T

(
XT (x)

) ∀x ∈ R
d, a.s.

The proof is complete. �

Now we can give

PROOF OF LEMMA 4.4. By equation (A.6) and a standard calculation, we
have for any p ≥ 2,

sup
T ∈[0,1]

sup
x∈Rd

E
∣∣∇X̂T

T (x)
∣∣p < ∞,

which, together with (A.7), implies that

sup
T ∈[0,1]

sup
x∈Rd

E
(
det
(∇X−1

T (x)
))

< ∞.

The desired estimate (4.15) then follows by the change of variables and the above
estimate. �

A.2. A criterion for the existence of density.

LEMMA A.4. Let T be a bounded linear operator in Cb(R
d). Assume that for

some θ ∈ (0,1) and any ϕ ∈ C∞
b (Rd),

∥∥T �
θ
2 ϕ
∥∥∞ ≤ Cθ‖ϕ‖∞.(A.9)

Then there exists a measurable function ρ(x, y) with ρ(x, ·) ∈ (L1 ∩ Lp)(Rd) for
some p > 1 and such that for any ϕ ∈ C0(R

d),

T ϕ(x) =
∫
Rd

ϕ(y)ρ(x, y)dy.(A.10)
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PROOF. By Riesz’s representation theorem, there exists a family of finite
signed measures μx(dy) such that x 	→ μx(dy) is weakly continuous and for any
ϕ ∈ C0(R

d),

T ϕ(x) =
∫
Rd

ϕ(y)μx(dy).(A.11)

Let � be a nonnegative symmetric smooth function with compact support and∫
Rd �(y)dy = 1. Let �ε(y) := ε−d�(ε−1y) be a family of mollifies. For R > 0,

let χR :Rd → [0,1] be a smooth cutoff function with

χR(x) = 1, |x| ≤ R, χR(x) = 0, |x| ≥ 2R.

For ϕ ∈ L∞(Rd), set

ϕδ(x) := ϕ ∗ �δ(x), ϕR
δ,ε(x) := (ϕδχR) ∗ �ε(x)

and

με
x(z) :=

∫
Rd

�ε(y − z)μx(dy).

It is easy to see that με
x ∈⋂k W

k,1(Rd) and �
θ
2 ϕR

δ,ε ∈ C0(R
d). Thus, by (A.11) we

have

T �
θ
2 ϕR

δ,ε(x) =
∫
Rd

(
�

θ
2 (ϕδχR)

) ∗ �ε(y)μx(dy)

=
∫
Rd

�
θ
2 (ϕδχR)(z)με

x(z)dz =
∫
Rd

ϕδχR(z)�
θ
2 με

x(z)dz,

which yields by (A.9) that∣∣∣∣
∫
Rd

ϕδχR(z)�
θ
2 με

x(z)dz

∣∣∣∣≤ Cθ

∥∥ϕR
δ,ε

∥∥≤ Cθ‖ϕ‖∞.

Letting R → ∞ and δ → 0, by the dominated convergence theorem, we obtain
that for all ϕ ∈ L∞(Rd),∣∣∣∣

∫
Rd

ϕ(z)�
θ
2 με

x(z)dz

∣∣∣∣≤ Cθ‖ϕ‖∞,

which gives

sup
x∈Rd

sup
ε∈(0,1)

∥∥�θ
2 με

x

∥∥
1 ≤ Cθ .

Moreover, we also have

sup
x∈Rd

sup
ε∈(0,1)

∥∥με
x

∥∥
1 ≤ sup

‖ϕ‖∞≤1
‖T ϕ‖∞.

By Sobolev’s embedding theorem, there is a p > 1 such that

sup
x∈Rd

sup
ε∈(0,1)

∥∥με
x

∥∥
p < ∞.
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Since Lp(Rd) is weakly compact, for each fixed x ∈ R
d , there is a subsequence

εk → 0 and ρ(x, ·) ∈ (L1 ∩ Lp)(Rd) such that for any ϕ ∈ C0(R
d) ⊂ L

p
p−1 (Rd),

T ϕεk
(x) =

∫
Rd

μεk
x (z)ϕ(z)dz

k→∞→
∫
Rd

ρ(x, z)ϕ(z)dz.(A.12)

On the other hand, for any ϕ ∈ C0(R
d),

‖T ϕε − T ϕ‖∞ ≤ C‖ϕε − ϕ‖∞
ε→0→ 0,

which together with (A.12) yields (A.10). �
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