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CUTOFF FOR NONBACKTRACKING RANDOM WALKS ON
SPARSE RANDOM GRAPHS

BY ANNA BEN-HAMOU AND JUSTIN SALEZ

University of Paris Diderot, LPMA

A finite ergodic Markov chain exhibits cutoff if its distance to stationar-
ity remains close to 1 over a certain number of iterations and then abruptly
drops to near 0 on a much shorter time scale. Discovered in the context of
card shuffling (Aldous–Diaconis, 1986), this phenomenon is now believed to
be rather typical among fast mixing Markov chains. Yet, establishing it rigor-
ously often requires a challengingly detailed understanding of the underlying
chain. Here, we consider nonbacktracking random walks on random graphs
with a given degree sequence. Under a general sparsity condition, we estab-
lish the cutoff phenomenon, determine its precise window and prove that the
cutoff profile approaches a remarkably simple, universal shape.

1. Introduction.

1.1. Setting. Given a finite set V and a function deg : V → {2,3, . . .} such that

N := ∑
v∈V

deg(v)(1.1)

is even, we construct a graph G with vertex set V and degrees (deg(v))v∈V as
follows. We form a set X by “attaching” deg(v) half-edges to each vertex v ∈ V :

X := {
(v, i) : v ∈ V,1 ≤ i ≤ deg(v)

}
.

We then simply choose a pairing π on X (i.e., an involution without fixed points),
and interpret every pair of matched half-edges {x,π(x)} as an edge between the
corresponding vertices; loops and multiple edges are allowed (see Figure 1).

The nonbacktracking random walk (NBRW) on the graph G = G(π) is a
discrete-time Markov chain with state space X and transition matrix

P(x, y) =
⎧⎪⎨
⎪⎩

1

deg(π(x))
, if y is a neighbour of π(x),

0, otherwise.

In this definition and throughout the paper, two half-edges x = (u, i) and y =
(v, j) are called neighbours if u = v and i �= j , and we let deg(x) := deg(u) − 1
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FIG. 1. A set of half-edges X , a pairing π and the resulting graph G.

denote the number of neighbours of the half-edge x = (u, i). In words, the chain
moves at every step from the current state x to a uniformly chosen neighbour of
π(x) (see Figure 2).

Note that the matrix P is symmetric with respect to π : for all x, y ∈ X ,

P
(
π(y),π(x)

) = P(x, y).(1.2)

In particular, P is doubly stochastic: the uniform law on X is invariant for the
chain. The worst-case total-variation distance to equilibrium at time t ∈ N is

D(t) := max
x∈X Dx(t) where Dx(t) := 1

2

∑
y∈X

∣∣∣∣P t(x, y) − 1

N

∣∣∣∣.(1.3)

This quantity is nonincreasing in t , and the number of transitions that have to be
made before it falls below a given threshold 0 < ε < 1 is the mixing time:

tMIX(ε) := inf
{
t ∈ N : D(t) < ε

}
.

1.2. Result. The present paper is concerned with the typical profile of the
function t �→ D(t) under the so-called configuration model (see, e.g., [35]), that
is, when the pairing π is chosen uniformly at random among the (N − 1)!! possi-
ble pairings on X . In order to study large-size asymptotics, we let the vertex set V

and degree function deg : V → N depend on an implicit parameter n ∈ N, which
we omit from the notation for convenience. The same convention applies to all
related quantities, such as N or X . All asymptotic statements are understood as

FIG. 2. The nonbacktracking moves from x (in red).
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n → ∞. Our interest is in the sparse regime, where the number N of half-edges
diverges at a much faster rate than the maximum degree. Specifically, we assume
that

� := max
v∈V

deg(v) = No(1).(1.4)

As the behaviour of the NBRW at degree-2 vertices is deterministic, we assume that

min
v∈V

deg(v) ≥ 3.(1.5)

Remarkably enough, the asymptotics in this regime depends on the degrees
through two simple statistics: the mean logarithmic degree of an half-edge,

μ := 1

N

∑
v∈V

deg(v) log
(
deg(v) − 1

)
,(1.6)

and the corresponding variance

σ 2 := 1

N

∑
v∈V

deg(v)
{
log

(
deg(v) − 1

) − μ
}2

.(1.7)

We will also need some control on the third absolute moment:

� := 1

N

∑
v∈V

deg(v)
∣∣log

(
deg(v) − 1

) − μ
∣∣3.(1.8)

It might help the reader to think of μ,σ and � as being fixed, or bounded away
from 0 and ∞. However, we only impose the following (much weaker) condition:

σ 2

μ3 	 (log logN)2

logN
and

σ 3

�
√

μ
	 1√

logN
.(1.9)

Our main result states that on most graphs with degrees (deg(v))v∈V , the NBRW

exhibits a remarkable behaviour, visible on Figure 3 and known as a cutoff : the
distance to equilibrium remains close to 1 for a rather long time, roughly

t� := logN

μ
,(1.10)

and then abruptly drops to nearly 0 over a much shorter time scale,1 of order

ω� :=
√

σ 2 logN

μ3 .(1.11)

Moreover, the cutoff shape inside this window approaches a surprisingly simple
function 	 : R → [0,1], namely the tail distribution of the standard normal:

	(λ) := 1

2π

∫ ∞
λ

e− u2
2 du.

It is remarkable that this limit shape does not depend at all on the precise degrees.

1The fact that ω� � t� follows from condition (1.4).
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FIG. 3. Distance to stationarity along time for the NBRW on a random graph with 106 degree
3-vertices and 106 degree 4-vertices.

THEOREM 1.1 (Cutoff for the NBRW on sparse graphs). For every 0 < ε < 1,

tMIX(ε) − t�

ω�

P−→ 	−1(ε).

Equivalently, for t = t� + λω� + o(w�) with λ ∈ R fixed, we have D(t)
P−→ 	(λ).

1.3. Comments. It is interesting to compare this with the d-regular case (i.e.,
deg : V → N constant equal to d) studied by Lubetzky and Sly [27]: by a remark-
ably precise path counting argument, they establish cutoff within constantly many
steps around t� = logN/ log(d − 1). To appreciate the effect of heterogeneous de-
grees, recall that μ and σ are the mean and variance of logD, where D is the
degree of a uniformly sampled half-edge. Now, by Jensen’s inequality,

t� ≥ logN

logE[D] ,

and the less concentrated D, the larger the gap. The right-hand side is a well-known
characteristic length in G, namely the typical inter-point distance (see, e.g., [36]).
One notable effect of heterogeneous degrees is thus that the mixing time becomes
significantly larger than the natural graph distance. A heuristic explanation is as
follows: in the regular case, all paths of length t between two points are equally
likely for the NBRW, and mixing occurs as soon as t is large enough for many
such paths to exist. In the nonregular case, however, different paths have very
different weights, and most of them actually have a negligible chance of being
seen by the walk. Consequently, one has to make t larger in order to see paths
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with a “reasonable” weight. Even more remarkable is the impact of heterogeneous
degrees on the cutoff width ω�, which satisfies ω� 	 log logN against ω� = �(1)

in the regular case. Finally, the Gaussian limit shape 	 itself is specific to the
nonregular case and is directly related to the fluctuations of degrees along a typical
trajectory of the NBRW.

REMARK 1.1 (Simple graphs). A classical result by Janson [23] asserts that
the graph produced by the configuration model is simple (no loops or multiple
edges) with probability asymptotically bounded away from 0, as long as

(1.12)
∑
v∈V

deg(v)2 = O(N).

Moreover, conditionally on being simple, it is uniformly distributed over all simple
graphs with degrees (deg(v))v∈V . Thus, every property which holds w.h.p. under
the configuration model also holds w.h.p. for the uniform simple graph model. In
particular, under (1.12), the conclusion of Theorem 1.1 extends to simple graphs.

REMARK 1.2 (i.i.d. degrees). A common setting consists in generating an in-
finite i.i.d. degree sequence (deg(v))v∈N from some fixed degree distribution Q

and then restricting it to the index set V = {1, . . . , n} for each n ≥ 1. Let D denote
a random integer with distribution Q. Assuming that

P(D ≤ 2) = 0, Var(D) > 0 and E
[
eθD]

< ∞ for some θ > 0,

ensures that the conditions (1.4), (1.5) and (1.9) hold almost surely. Thus, Theo-
rem 1.1 applies with the parameters μ,σ and N now being random. But the latter
clearly concentrate around their deterministic counterparts, in the following sense:

N = nE[D] + OP

(
n

1
2
)
,

μ = μ� + OP

(
n− 1

2
)

with μ� = E
[
D log(D − 1)

]
/E[D],

σ = σ� + OP

(
n− 1

2
)

with σ 2
� = E

[
D

{
log(D − 1) − μ�

}2]
/E[D].

Those error terms are small enough to allow one to substitute n,μ�, σ� for N,μ,σ

without affecting the convergence stated in Theorem 1.1.

1.4. Related work. The first instances of the cutoff phenomenon were discov-
ered in the early 1980s by Diaconis and Shahshahani [15] and Aldous [2], in the
context of card shuffling: given a certain procedure for shuffling a deck of cards,
there exists a quite precise number of shuffles slightly below which the deck is far
from being mixed, and slightly above which it is almost completely mixed. The
term cutoff and the general formalization appeared shortly after, in the seminal
paper by Aldous and Diaconis [3]. Since then, this remarkable behaviour has been
identified in a variety of other contexts; see, for example, Diaconis [14], Chen and
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Saloff-Coste [10], or the survey by Saloff-Coste [34] for random walks on finite
groups.

Interacting particle systems in statistical mechanics provide a rich class of dy-
namics displaying cutoff. One emblematic example is the stochastic Ising model at
high enough temperature, for which the cutoff phenomenon has been established
successively on the complete graph (Levin, Luczak and Peres [25]), on lattices
(Ding, Lubetzky and Peres [16], Lubetzky and Sly [28]), and finally on any se-
quence of graphs (Lubetzky and Sly [29]). Other examples include the Potts model
(Cuff et al. [13]), the East process (Ganguly, Lubetzky and Martinelli [20]) or the
Simple Exclusion process on the cycle (Lacoin [24]).

The problem of singling out abstract conditions under which the cutoff phe-
nomenon occurs, without necessarily pinpointing its precise location, has drawn
considerable attention. In 2004, Peres [31] proposed a simple spectral criterion
for reversible chains, known as the product condition. Although counter-examples
have quickly been constructed (see Levin, Peres and Wilmer [26], Chapter 18, and
Chen and Saloff-Coste [10], Section 6), the condition is widely believed to be suf-
ficient for “most” chains. This has already been verified for birth-and-death chains
(Ding, Lubetzky and Peres [17]) and, more generally, for random walks on trees
(Basu, Hermon and Peres [5]). The latter result relies on a promising characteri-
zation of cutoff in terms of the concentration of hitting times of “worst” (in some
sense) sets. See also Oliveira [30], Peres and Sousi [32], Griffiths et al. [21] and
Hermon [22].

Many natural families of Markov chains are now believed to exhibit cutoff. Yet,
establishing this phenomenon rigorously requires a very detailed understanding
of the underlying chain, and often constitutes a challenging task even in situa-
tions with a high degree of symmetry. The historical case of random walks on the
symmetric group, for example, is still far from being completely understood: see
Saloff-Coste [34] for a list of open problems, and Berestycki and Sengul [7] for a
recent proof of one of them.

Understanding the mixing properties of random walks on sparse random graphs
constitutes an important theoretical problem, with applications in a wide variety
of contexts (see, e.g., the survey by Cooper [11]). A classical result of Broder and
Shamir [8] states that random d-regular graphs with d fixed are expanders with
high probability (see also Friedman [19]). In particular, the simple random walk
(SRW) on such graphs satisfies the product condition, and should therefore exhibit
cutoff. This long-standing conjecture was confirmed only recently in an impressive
work by Lubetzky and Sly [27], who also determined the precise cutoff window
and profile. Their result is actually derived from the analysis of the NBRW itself, via
a clever transfer argument. Interestingly, the mixing time of the SRW is d/(d − 2)

times larger than that of the NBRW. This confirms the practical advantage of NBRW

over SRW for efficient network sampling and exploration, and complements a well-
known spectral comparison for regular expanders due to Alon et al. [4], as well as
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a recent result by Cooper and Frieze [12] on the cover time of random regular
graphs. For other ways of speeding up random walks, see Cooper [11].

In the nonregular case, however, the tight correspondence between the SRW

and the NBRW breaks down, and there seems to be no direct way of transferring
our main result to the SRW. We note that the latter should exhibit cutoff since
the product condition holds, as can be seen from the fact that the conductance of
sparse random graphs with a given degree sequence is bounded away from 0 (see
Abdullah, Cooper and Frieze [1]). Confirming this is a challenging open problem.
In particular, it would be interesting to see whether the NBRW still mixes faster
than the SRW.

REMARK 1.3. After completing this work, we learned that the cutoff phe-
nomenon for the SRW on random graphs with given degrees (starting from a
typical vertex) has finally been established by Berestycki et al. [6]. Their pa-
per also contains a weaker version of our result on the NBRW, namely that
tMIX(ε) = t� + OP(

√
logN) (under a more restrictive assumption on �).

2. Proof outline. The proof of Theorem 1.1 is divided into two (unequal)
halves: for

t = t� + λw� + o(w�),(2.1)

with λ ∈ R fixed, we show that

min
x∈X E

[
Dx(t)

] ≥ 	(λ) − o(1),(2.2)

max
x∈X Dx(t) ≤ 	(λ) + oP(1).(2.3)

Note that this actually shows that the maximization over all possible states in (1.3)
is irrelevant. The lower bound (2.2) is proved in Section 3. The difficult part is the
upper bound (2.3), due to the worst-case maximization: our approximations for a
given initial state x ∈ X need to be valid with probability 1 − o(1/N), so that we
may then take union bound. Our starting point is the key identity

P t (x,π(y)
) = ∑

(u,v)∈X×X
P t/2(x, u)P t/2(y, v)1{π(u)=v},(2.4)

which follows from the symmetry (1.2). As a first approximation, let us assume
that the balls of radius t/2 around x and y consist of disjoint trees, as in Figure 4.

This is made rigorous by a particular exposure process described in Section 4.
Then the weight w(u) := P t/2(x, u) [resp., w(v) := P t/2(y, v)] can be unambigu-
ously written as the inverse product of degrees along the unique path from x to u

(resp., y to v). A second approximation consists in eliminating those paths whose
weight exceeds some threshold θ > 0 (the correct choice turns out to be θ ≈ 1

N
):

P t (x,π(y)
) ≈ ∑

u,v

w(u)w(v)1(w(u)w(v)≤θ)1(π(u)=v).
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FIG. 4. The tree-approximation.

Conditionally on the two trees of height t/2, this is a weighted sum of weakly de-
pendent Bernoulli variables, and the large-weight truncation should prevent it from
deviating largely from its expectation. We make this argument rigorous in Sec-
tion 5, using Stein’s method of exchangeable pairs. Provided the exposure process
did not reveal too many pairs of matched half-edges, the conditional expectation
of 1(π(u)=v) remains close to 1/N , and we obtain the new approximation

NP t (x,π(y)
) ≈ ∑

u,v

w(u)w(v)1(w(u)w(v)≤θ).

Now, the right-hand side corresponds to the quenched probability that the prod-
uct of weights seen by two independent NBRWs of length t/2, one starting from x

and the other from y, does not exceed θ . The last step consists in approximating
those trajectories by independent uniform samples X�

1, . . . ,X
�
t from X :

∑
u,v

w(u)w(v)1w(u)w(v)≤θ ≈ P

[
1

deg(X�
1)

· · · 1

deg(X�
t )

≤ θ

]

≈ P

[∑t
k=1(μ − log deg(X�

k))

σ
√

t
≤ μt + log θ

σ
√

t

]

≈ 1 − 	(λ),

by the central limit theorem (recall that θ ≈ 1/N and t ≈ t� +λω�). Consequently,

Dx(t) = ∑
y

(
1

N
− P t (x,π(y)

))
+

≈ 	(λ),

as desired. This argument is made rigorous in Sections 6, 7 and 8.
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3. The lower bound. Fix t ≥ 1, two states x, y ∈ X , and a parameter θ ∈
(0,1). Let P t

θ (x, y) denote the contribution to P t(x, y) from paths having weight
less than θ . Note that P t

θ (x, y) < P t(x, y) if and only if some path of length t from
x to y has weight larger than θ , implying in particular that P t(x, y) > θ . Thus,

1

N
− P t

θ (x, y) ≤
(

1

N
− P t(x, y)

)
+

+ 1

N
1P t (x,y)>θ .

Summing over all y ∈ X and observing that there cannot be more than 1/θ half-
edges y ∈X satisfying P t(x, y) > θ , we obtain

1 − ∑
y∈X

P t
θ (x, y) ≤ Dx(t) + 1

θN
.

Now, the left-hand side is the quenched probability (i.e., conditional on the pair-
ing π ) that a NBRW {Xk}0≤k≤t on G(π) starting at x satisfies

∏t
k=1

1
deg(Xk)

> θ .
Taking expectation w.r.t. the pairing, we arrive at

P

(
t∏

k=1

1

deg(Xk)
> θ

)
≤ E

[
Dx(t)

] + 1

θN
,(3.1)

where the average is now taken over both the NBRW and the pairing (annealed law).
A useful property of the uniform pairing is that it can be constructed sequentially,
the pairs being revealed along the way, as we need them. We exploit this degree of
freedom to generate the walk {Xk}k≥0 and the pairing simultaneously, as follows.
Initially, all half-edges are unpaired and X0 = x; then at each time k ≥ 1:

(i) if Xk−1 is unpaired, we pair it with a uniformly chosen other unpaired half-
edge; otherwise, π(Xk−1) is already defined and no new pair is formed.

(ii) in both cases, we let Xk be a uniformly chosen neighbour of π(Xk−1).

The sequence {Xk}k≥0 is then exactly distributed according to the annealed law.
Now, if we sample uniformly from X instead of restricting the random choice
made at (i) to unpaired half-edges, then the uniform neighbour chosen at step
(ii) also has the uniform law on X . This creates a coupling between the process
{Xk}k≥1 and a sequence {X�

k}k≥1 of i.i.d. samples from X , valid until the first
time T where the uniformly chosen half-edge or its uniformly chosen neighbour
is already paired. As there are less than 2k paired half-edges by step k, a crude
union-bound yields

P(T ≤ t) ≤ 2t2

N
.

Consequently,∣∣∣∣∣P
(

t∏
k=1

1

deg(Xk)
> θ

)
− P

(
t∏

k=1

1

deg(X�
k)

> θ

)∣∣∣∣∣ ≤ 2t2

N
.(3.2)
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On the other hand, since {X�
1, . . . ,X

�
t } are i.i.d., Berry–Esseen’s inequality implies∣∣∣∣∣P

(
t∏

k=1

1

deg(X�
k)

> θ

)
− 	

(
μt + log θ

σ
√

t

)∣∣∣∣∣ ≤ �

σ 3
√

t
.(3.3)

We may now combine (3.1), (3.2), (3.3) to obtain

E
[
Dx(t)

] ≥ 	

(
μt + log θ

σ
√

t

)
− 1

θN
− 2t2

N
− �

σ 3
√

t
.

With t as in (2.1) and θ = (logN)/N , the right-hand side is 	(λ) + o(1), thanks
to our assumptions on μ,σ,�. This establishes the lower bound (2.2).

4. The upper-bound. Following Lubetzky and Sly [27], we call x ∈X a root
(written x ∈ R) if the (directed) ball of radius r centered at x (denoted by Bx) is a
tree, where

r :=
⌊

logN

10 log�
∧ log logN

⌋
.(4.1)

Note that 1 � r � ω� by assumptions (1.4) and (1.9). The first proposition be-
low shows that we may restrict our attention to paths between roots. The second
proposition provides a good control on such paths.

PROPOSITION 4.1 (Roots are quickly reached).

max
x∈X P r(x,X \R)

P−→ 0.

PROPOSITION 4.2 (Roots are well inter-connected). For t as in (2.1),

min
x∈R min

y∈R\Bx

P t (x,π(y)
) ≥ 1 − 	(λ) − oP(1)

N
.

Let us first see how those results imply the upper-bound (2.3). Observe that

D(t + r) ≤ max
x∈X P r(x,X \R) + max

x∈R Dx(t).

The first term is oP(1) by Proposition 4.1. For the second one, we write

Dx(t) = ∑
y∈R\Bx

(
1

N
− P t (x,π(y)

))
+

+ ∑
y∈Bx∪(X\R)

(
1

N
− P t (x,π(y)

))
+
.

Proposition 4.2 ensures that the first sum is bounded by 	(λ) + oP(1) uniformly
in x ∈ R. To see that the second sum is oP(1) uniformly in x ∈ R, it suffices to
bound its summands by 1/N and observe that |Bx | ≤ �r = o(N) by (4.1), while

|X \R| = ∑
x∈X

P r(x,X \R) = oP(N).
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(The first equality because P is doubly stochastic, the second by Proposition 4.1.)

PROOF OF PROPOSITION 4.1. Define R := � logN
5 log�

� and fix x ∈ X . The ball of
radius R around x can be generated sequentially, its half-edges being paired one af-
ter the other with uniformly chosen other unpaired half-edges, until the whole ball

has been paired. Observe that at most k = �((�−1)R−1)
�−2 pairs are formed. More-

over, for each of them, the number of unpaired half-edges having an already paired
neighbour is at most �(� − 1)R and hence the conditional chance of hitting such

a half-edge (thereby creating a cycle) is at most p = �(�−1)R−1
N−2k−1 . Thus, the proba-

bility that more than one cycle is found is at most

(kp)2 = O

(
(� − 1)4R

N2

)
= o

(
1

N

)
.

Summing over all x ∈ X (union bound), we obtain that with high probability, no
ball of radius R in G(π) contains more than one cycle.

To conclude the proof, we now fix a pairing π with the above property, and we
prove that the NBRW on G(π) starting from any x ∈ X satisfies

P(Xt is not a root) ≤ 21−t ,(4.2)

for all t ≤ R − r . The claim is trivial if the ball of radius R around x is acyclic.
Otherwise, it contains a single cycle C, by assumption. Write d(x,C) for the min-
imum length of a nonbacktracking path from x to some z ∈ C. The nonback-
tracking property ensures that if d(Xt ,C) < d(Xt+1,C) for some t < R − r , then
Xt+1,Xt+2, . . . ,XR−r are all roots. Indeed, as soon as the NBRW makes a step
away from C on one of the disjoint trees rooted to C, it can only go further away
from it. By (1.5), the conditional chance that d(Xt+1,C) = d(Xt ,C) + 1 given the
past is at least 1/2 [unless d(Xt ,C) = 1, which can only happen once]. This shows
(4.2). We then specialize to t = r . �

The remainder of the paper is devoted to the proof of Proposition 4.2. By union
bound, it is enough to fix two distinct half-edges x, y ∈ X and establish that, for
every ε > 0,

P

(
x ∈ R, y ∈ R \Bx,P

t (x,π(y)
) ≤ 1 − 	(λ) − ε

N

)
= o

(
1

N2

)
.(4.3)

To do so, we shall analyse a special procedure that generates a uniform pairing
on X together with a two-tree forest F keeping track of certain paths from x and
from y. Initially, all half-edges are unpaired and F is reduced to its two ancestors,
x and y. We then iterate the following three steps:

1. An unpaired half-edge z ∈ F is selected according to some rule (see below).
2. z is paired with a uniformly chosen other unpaired half-edge z′.
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3. If neither z′ nor any of its neighbours was already in F, then all neighbours of
z′ become children of z in the forest F.

The exploration stage stops when no unpaired half-edge is compatible with the
selection rule. We then complete the pairing π by matching all the remaining un-
paired half-edges uniformly at random: this is the completion stage.

The condition in step 3 ensures that F remains a forest: any z ∈ F determines
a unique sequence (z0, . . . , zh) in F such that z0 ∈ {x, y}, zi is a child of zi−1 for
each 1 ≤ i ≤ h, and zh = z. We shall naturally refer to h and z0 as the height and
ancestor of z, respectively. We also define the weight of z as

w(z) :=
h∏

i=1

1

deg(zi)
.

Note that this quantity is the quenched probability that the sequence (z0, . . . , zh)

is realized by a NBRW on G starting from z0. In particular,

w(z) ≤ P h(z0, z).(4.4)

Our rule for step 1 consists in selecting a half-edge with maximal weight2 among
all unpaired z ∈ F with height h(z) < t/2 and weight w(z) > wMIN, where

wMIN := N− 2
3 .

The role of this parameter is to limit the number of pairs formed at the exploration
stage; see (8.1) below. As outlined in Section 2, we shall be interested in

W := ∑
(u,v)∈Hx×Hy

w(u)w(v)1{w(u)w(v)≤θ},

where Hx (resp., Hy) denotes the set of unpaired half-edges with height t
2 and

ancestor x (resp., y) in F at the end of the exploration stage, and where

θ := 1

N(logN)2 .(4.5)

Write W for the quantity obtained by replacing ≤ with > in W, so that

W+W = ∑
(u,v)∈Hx×Hy

w(u)w(v) ≥ ∑
z∈Hx∪Hy

w(z) − 1,

thanks to the inequality ab ≥ a + b − 1 for a, b ∈ [0,1]. Now, let U denote the set
of unpaired half-edges in F. By construction, at the end of the exploration stage,
each z ∈ U must have height t/2 or weight less than wMIN, so that∑

z∈Hx∪Hy

w(z) ≥ ∑
z∈U

w(z) − ∑
z∈F

w(z)1{w(z)<wMIN}.

Therefore, (4.3) is a consequence of the following four technical lemmas.

2For definiteness, let us say that we use the lexicographic order on X to break ties.
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LEMMA 4.3. For every ε > 0,

P

(
P t (x,π(y)

) ≤ W− ε

N

)
= o

(
1

N2

)
.

LEMMA 4.4. For every ε > 0,

P

(∑
z∈F

w(z)1{w(z)<wMIN} > ε

)
= o

(
1

N2

)
.

LEMMA 4.5. For every ε > 0,

P
(
W > 	(λ) + ε

) = o

(
1

N2

)
.

LEMMA 4.6. For every ε > 0,

P

(
x ∈ R, y ∈ R \Bx,

∑
z∈U

w(z) < 2 − ε

)
= o

(
1

N2

)
.

5. Proof of Lemma 4.3. Combining the representation (2.4) with the obser-
vation (4.4) yields

P t (x,π(y)
) ≥ ∑

(u,v)∈Hx×Hy

w(u)w(v)1{w(u)w(v)≤θ}1{π(u)=v}.

The right-hand side can be interpreted as the weight of the uniform pairing chosen
at the completion stage, provided we define the weight of a pair (u, v) as

w(u)w(v)1{u∈Hx}1{v∈Hy}1{w(u)w(v)≤θ}.(5.1)

With this interpretation, Lemma 4.3 becomes a special case of the following con-
centration inequality [which we apply conditionally on the exploration stage, with
I being the set of half-edges that did not get paired, and weights given by (5.1)].

LEMMA 5.1. Let I be an even set, {wi,j }(i,j)∈I×I an array of nonnegative
weights, and π a uniform random pairing on I . Then for all a > 0,

P

(∑
i∈I

wi,π(i) ≤ m − a

)
≤ exp

{
− a2

4θm

}
,

where m = 1
|I|−1

∑
i∈I

∑
j �=i wi,j and θ = maxi �=j (wi,j + wj,i).

Note that in our case, m = W
|I|−1 . Lemma 4.3 follows easily by taking a = ε

|I|−1
and observing that |I| − 1 ≤ N and W ≤ 1.

PROOF OF LEMMA 5.1. We exploit the following concentration result for
Stein pairs due to Chatterjee [9] (see also Ross [33], Theorem 7.4): let Y,Y ′ be
bounded variables satisfying:



CUTOFF FOR NONBACKTRACKING RANDOM WALKS 1765

(i) (Y,Y ′) d= (Y ′, Y );
(ii) E[Y ′ − Y |Y ] = −λY ;

(iii) E[(Y ′ − Y)2|Y ] ≤ λ(bY + c),

for some constants λ ∈ (0,1) and b, c ≥ 0. Then for all a > 0,

P(Y ≤ −a) ≤ exp
{
−a2

c

}
and P(Y ≥ a) ≤ exp

{
− a2

ab + c

}
.

We shall only use the first inequality. Consider the centered variable

Y := ∑
i∈I

wi,π(i) − m,

and let Y ′ be the corresponding quantity for the pairing π ′ obtained from π by
performing a random switch: two indices i, j are sampled uniformly at random
from I without replacement, and the pairs {i, π(i)}, {j,π(j)} are replaced with
the pairs {i, j}, {π(i),π(j)}. This changes the weight by exactly

�i,j := wi,j + wj,i + wπ(i),π(j) + wπ(j),π(i) − wi,π(i)
(5.2)

− wπ(i),i − wj,π(j) − wπ(j),j .

It is not hard to see that (π,π ′) d= (π ′, π), so that (i) holds. Moreover,

E
[
Y ′ − Y |π] = 1

|I|(|I| − 1)

∑
i∈I

∑
j �=i

�i,j

= 4

|I|(|I| − 1)

∑
i∈I

∑
j �=i

wi,j − 4

|I|
∑
i∈I

wi,π(i)

= − 4

|I|Y.

Regarding the square �2
i,j = |�i,j‖�i,j |, we may bound the first copy of |�i,j | by

2θ and the second by changing all minus signs to plus signs in (5.2), yielding

E
[(

Y ′ − Y
)2|π] = 1

|I|(|I| − 1)

∑
i∈I

∑
j �=i

�2
i,j

≤ 8θ

|I|(|I| − 1)

∑
i∈I

∑
j �=i

wi,j + 8θ

|I|
∑
i∈I

wi,π(i)

= 8θ

|I|(2m + Y).

Note that taking conditional expectation with respect to Y does not affect the right-
hand side. Thus, (ii) and (iii) hold with λ = 4

|I| , b = 2θ and c = 4mθ . �
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6. Proof of Lemma 4.4. We may fix z0 ∈ {x, y} and restrict our attention to
the halved sum

Z := ∑
z∈F

w(z)1{w(z)<wMIN}1{z has ancestor z0}.

Consider m = �logN� independent NBRWs on G(π) starting at z0, each being
killed as soon as its weight falls below wMIN, and write A for the event that their
trajectories form a tree of height less than t/2. Clearly, P(A|π) ≥ Zm. Taking
expectation and using Markov inequality, we deduce that

P(Z > ε) ≤ P(A)

εm
,

where the average is now taken over both the walks and the pairing. Recalling that
m = �logN�, it is more than enough to establish that P(A) = (o(1))m. To do so,
we generate the m killed NBRWs one after the other, revealing the underlying pairs
along the way, as described in Section 3. Given that the first  − 1 walks form a
tree of height less than t/2, the conditional chance that the th walk also fulfils the
requirement is o(1), uniformly in 1 ≤  ≤ m. Indeed,

• either its weight falls below η = (1/logN)2 before it ever leaves the graph
spanned by the first − 1 trajectories and reaches an unpaired half-edge: thanks
to the tree structure, there are at most  − 1 < m possible trajectories to follow,
each having weight at most η, so the chance is less than

mη = o(1).

• or the remainder of its trajectory after the first unpaired half-edge has weight
less than �wMIN/η: this part consists of at most t/2 half-edges which can be
coupled with uniform samples from X for a total-variation cost of mt2/N , as in
Section 3. Thus, the conditional chance is at most

mt2

N
+ P

( t/2∏
k=1

deg
(
X�

k

) ≥ η

�wMIN

)
= o(1),

by Chebychev’s inequality, since log(
η

�wMIN
) − μt

2 	 σ
√

t
2 .

7. Proof of Lemma 4.5. Set m = �(logN)2�. On G(π), let X(1), . . . ,X(m)

and Y (1), . . . , Y (m) be 2m independent NBRWs of length t/2 starting at x and y,
respectively. Let B denote the event that their trajectories form two disjoint trees
and that for all 1 ≤ k ≤ m,

t/2∏
=1

1

deg(X
(k)
 )

t/2∏
=1

1

deg(Y
(k)
 )

> θ.
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Then clearly, P(B|π) ≥ W
m

. Averaging w.r.t. the pairing π , we see that

P
(
W > 	(λ) + ε

) ≤ P(B)

(	(λ) + ε)m
.

Thus, it is enough to establish that P(B) ≤ (	(λ) + o(1))m. We do so by gen-
erating the 2m walks X(1), Y (1), . . . ,X(m), Y (m) one after the other along with the
underlying pairing, as above. Given that X(1), Y (1), . . . ,X(−1), Y (−1) already sat-
isfy the desired property, the conditional chance that X(), Y () also does is at most
	(λ) + o(1), uniformly in 1 ≤  ≤ m. Indeed,

• either one of the two walks attains length s = �4 log logN� before leaving the
graph spanned by the first 2( − 1) trajectories and reaching an unpaired half-
edge: thanks to the tree structure, there are at most  − 1 < m possible trajec-
tories to follow for each walk, each having weight at most 2−s by (1.5), so the
conditional chance is at most

2m2−s = o(1).

• or at least t − 2s unpaired half-edges are encountered, and the product of their
degrees falls below 1

θ
with conditional probability at most

4mt2

N
+ P

(
t−2s∏
k=1

deg
(
X�

k

)
<

1

θ

)
= 	(λ) + o(1),

by the same coupling as above and Berry–Essen’s inequality (3.3).

8. Proof of Lemma 4.6. Let τ denote the (random) number of pairs formed
during the exploration stage. For k ≥ 0, we let Uk denote the set of unpaired half-
edges in the forest after k ∧ τ pairs have been formed, and we consider the random
variable

Wk := ∑
z∈Uk

w(z).

Initially W0 = 2, and this quantity either stays constant or decreases at each stage,
depending on whether the condition appearing in step 3 is satisfied or not. More
precisely, denoting by zk (resp., z′

k) the half-edge selected at step 1 (resp., chosen
at step 2) of the kth pair, we have for all k ≥ 1,

Wk = Wk−1 − 1{k≤τ }
(
w(zk)1{z′

k∈U+
k−1} + w

(
z′
k

)
1{z′

k∈Uk−1}
)
,

where U
+
k−1 is Uk−1 together with the unpaired neighbours of x and y. Now, let

{Gk}k≥0 be the natural filtration associated with the exploration stage. Note that τ
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is a stopping time, that w(zk) is Gk−1-measurable, and that the conditional law of
z′
k given Gk−1 is uniform on X \ {z1, . . . , zk, z

′
1, . . . , z

′
k−1}. Thus,

E[Wk − Wk−1|Gk−1] = −1{k≤τ }
w(zk)(|U+

k−1| − 2) + Wk−1

N − 2k + 1
,

E
[
(Wk − Wk−1)

2|Gk−1
]

= 1{k≤τ }
w(zk)

2(|U+
k−1| − 4) + 2w(zk)Wk−1 + ∑

z∈Uk−1
w(z)2

N − 2k + 1
.

To bound those quantities, observe that each half-edge in Uk−1 has weight at least
w(zk)

�
because its parent has been selected at an earlier iteration and our selection

rule ensures that the quantity w(zk) is nonincreasing with k. Consequently,

|Uk−1|w(zk)

�
≤ ∑

z∈Uk−1

w(z) ≤ 2.

Combining this with the bound |U+
k−1| ≤ |Uk−1| + 2�, we arrive at

E[Wk − Wk−1|Gk−1] ≥ −1{k≤τ }
4�

N − 2k + 1
,

E
[
(Wk − Wk−1)

2|Gk−1
] ≤ 1{k≤τ }

4�w(zk) + 2

N − 2k + 1
.

Now recall that w(zk) ≥ wMIN and h(zk) < t
2 as per our selection rule, implying

wMINτ ≤ ∑
k≥1

w(zk)1{τ≥k} ≤ ∑
z∈F

w(z)1{h(z)< t
2 } ≤ t.(8.1)

The right-most inequality follows from the fact that the total weight at a given
height in F is at most 2 (the total weight being preserved from a parent to its
children, if any). We conclude that

τ∑
k=1

E[Wk − Wk−1|Gk−1] ≥ − 4�t

wMINN − 2t
:= −m,

τ∑
k=1

E
[
(Wk − Wk−1)

2|Gk−1
] ≤ 4�twMIN + 2t

NwMIN − 2t
:= v.

Now, fix ε > 0 and consider the martingale {Mk}k≥0 defined by M0 = 0 and

Mk :=
k∑

i=1

{
(Wi−1 − Wi) ∧ ε −E

[
(Wi−1 − Wi) ∧ ε|Gi−1

]}
.

Then the increments of {Mk}k≥0 are bounded by ε by construction, and the above
computation guarantees that almost-surely,

τ∑
k=1

E
[
(Mk − Mk−1)

2|Gk−1
] ≤ v = N− 1

3 +o(1).
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Thus, the martingale version of Bennett’s inequality due to Freedman [18] yields

P(Mτ > 7ε) ≤
(

ev

v + 7ε2

)7
= N− 7

3 +o(1).(8.2)

But on the event {x ∈ R, y ∈ R \ Bx}, all paths from the set {x, y} to itself must
have length at least r , and since r → ∞, we must have asymptotically

{x ∈ R, y ∈ R \Bx} ⊆
{
max

k
(Wk−1 − Wk) ≤ ε

}
⊆ {W0 − Wτ ≤ Mτ + m}.

With (8.2), this proves Lemma 4.6 since W0 −Wτ = 2−∑
z∈U w(z) and m = o(1).
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