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We provide sufficient conditions for weak synchronization/stabilization
by noise for order-preserving random dynamical systems on Polish spaces.
That is, under these conditions we prove the existence of a weak point attrac-
tor consisting of a single random point. This generalizes previous results in
two directions: First, we do not restrict to Banach spaces, and second, we do
not require the partial order to be admissible nor normal. As a second main
result and application, we prove weak synchronization by noise for stochastic
porous media equations with additive noise.

1. Introduction. In this work, we provide sufficient conditions for (weak)
synchronization by noise for strongly mixing, order-preserving random dynamical
systems2 (RDS) ϕ on partially ordered Polish spaces (E,d). Weak synchroniza-
tion by noise here means that there is a weak point attractor consisting of a single
random point and in this sense the random dynamics are asymptotically globally
stable. In particular, in this case

d
(
ϕt(ω, x), ϕt (ω, y)

) → 0 for t → ∞(1.1)

in probability, for all x, y ∈ E.
More precisely, assuming a concentration property for the corresponding in-

variant measure μ on intervals in E [cf. (1.3) below], we prove the existence of a
unique ϕ-invariant random point a : � → E, measurable with respect to the past
F0, such that

d
(
ϕt(ω, x), a(θtω)

) → 0 for t → ∞
in probability, for all x ∈ E. The method of proof is entirely new. Several examples
illustrating the generality of this result are presented in Section 4.
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As a second main result, we prove weak synchronization by noise for stochastic
porous media equations of the type

dXt = (
�X

[m]
t + Xt

)
dt + dWt,(1.2)

with zero Dirichlet boundary conditions on bounded, smooth domains O ⊆ R
d ,

d ≤ 4, m > 1 and W being a trace-class Wiener process satisfying an appropri-
ate non-degeneracy condition. Here, we use the convention u[m] := |u|m−1u. This
solves a problem left open in [25]. In contrast, the attractor for the deterministic
porous medium equation

dXt = (
�X

[m]
t + Xt

)
dt

has infinite fractal dimension (cf. [23]). We prove that this infinite dimensional
attractor collapses into a zero-dimensional random attractor if sufficiently non-
degenerate noise is added.

Our results on order-preserving RDS generalize those of [16] in two main di-
rections: First, we do not require the underlying space E to be embedded in a
(partially ordered) Banach space. Second, we completely remove the assumptions
on the partial order to be “admissible” and normal. More precisely, in [16] it is
required that the RDS ϕ is defined on an admissible subset E of a real, separable
Banach space V . Admissibility here means, in particular, that for each compact set
K ⊆ E there are a, b ∈ V such that K ⊆ intE([a, b] ∩ E). In infinite dimensions,
this is a restrictive condition since intervals [a, b] may have empty interior and,
even worse, compact sets are not necessarily included in intervals (e.g., consider
Lp spaces). Therefore, in applications to SPDE one typically has to choose E to
be the set of continuous functions, thus restricting to SPDE for which spatial con-
tinuity of solutions can be shown. This often leads to stringent restrictions on the
spatial dimension or to assumptions on the spatial regularity of the noise. In this
paper, we replace the assumption of admissibility by a support assumption on the
invariant measure μ, that is, we assume that for each ε > 0 there is an interval
[f,g] ⊆ E such that

μ
([f,g]) ≥ 1 − ε.(1.3)

The advantage is that the invariant measure μ often has support on smaller spaces
than all of E, and thus in applications this support condition can be seen to be
satisfied even though admissibility is not.

In order to have admissibility of a partial order, or more generally (1.3), one
wants intervals [f,g] to be “large”. On the other hand, normality of a partial order
(in Banach spaces E say) requires the existence of a constant C > 0 such that
diam([f,g]) ≤ C‖f − g‖E for all intervals [f,g]. Hence, in order for a partial
order to be normal intervals may not be “too large”. In this sense, admissibility [or
(1.3) resp.] and normality are conflicting assumptions limiting the applicability to
SPDE, which explains the relevance of removing the normality assumption.
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In particular, these generalizations are crucial in their application to weak syn-
chronization by noise for (1.2). This was left as an open problem in [25], since the
usual partial order “≤” on E := H−1 = (H 1

0 )∗ is not admissible. In addition, er-
godicity for (1.2) is known only in cases of non-degenerate noise, for which there
is in general no hope to prove spatial continuity of solutions. Moreover, also (1.3)
is unclear for the usual partial order “≤”. The main idea here is to introduce an
alternative, non-standard partial order “�” on H−1, for which (1.3) can be proven.
Indeed, intervals with respect to “�” can be seen to be much larger than those
corresponding to “≤”. On the downside, this causes “�” to be not normal (cf.
the discussion above). In conclusion, the non-standard partial order “�” is neither
normal nor admissible, thus requiring the full generality of our first main result.

Let us now briefly comment on the existing literature; for more details, we refer
to [24]. Synchronization by noise for order-preserving RDS has been analyzed, for
example, in [3, 15, 16] and was first applied to prove synchronization for stochas-
tic reaction-diffusion systems on thin two-layer domains in [8]. Methods based
on local stability have been introduced in [5] and large deviation techniques have
been employed in [37, 38, 48]. Synchronization by noise for SPDE has been in-
vestigated, for example, in [4, 9, 11, 25]. For the related effect of synchronization
in master-slave systems, we refer to [17] and the references therein. For synchro-
nization for discrete time RDS, see [28, 29, 31, 39] and the references therein.
Applications of synchronization by noise are to be found, for example, in theoret-
ical physics [31, 42, 44, 45], climate dynamics [14, 21, 26], neurophysiology [47]
and numerics [34].

Concerning the terminology of synchronization by noise, different and some-
what inconsistent terminology has been used in the literature. In some instances,
the effect that deterministic invariant points may become stable due to the inclu-
sion of noise has been referred to as stabilization by noise (e.g., [4, 9–11, 33]).
In these examples, the deterministic and stochastic systems share the same deter-
ministic invariant points. The property that each two trajectories of a noisy system
converge to one another, that is, (1.1) holds, has been named synchronization by
noise in several recent publications (e.g., [28, 39]). This property is closely related
and a simple consequence of the results obtained in this work. We therefore use
the notion of synchronization by noise, noting, however, that there would be good
reason to refer to the effects observed here as stabilization by noise.

The outline of the paper is as follows: In Section 2, we prove synchronization by
noise for general order-preserving RDS, and in Section 3 for stochastic porous me-
dia equations. Further applications to stochastic differential inclusions and SPDE
with two reflecting walls are presented in Section 4.

1.1. Notation. For a set A ⊆ E we let diamE(A) := supa,b∈A d(a, b), Ac de-
notes its complement and Bδ(A) := {x ∈ E : d(x,A) = infa∈A d(x, a) < δ}. For
simplicity, we often suppress the notation of E and write diam(A) instead. A sub-
set X ⊆ E is said to be admissible, if X is a Polish space in E and for every
compact set K ⊆ X there are a, b ∈ E, a ≤ b such that K ⊆ intX([a, b] ∩ X).
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We let (�,F,P) be a probability space. For a random variable v : � → E we
let L(v) := v∗P be its law. For f,g ∈ E with f ≤ g, we define [f,g]E,≤ := {x ∈
E : f ≤ x ≤ g}. If the partial order “≤” or underlying space E are clear from the
context, we write [f,g]≤, [f,g]E or [f,g] instead. For a sequence of sets An, we
set {An i.o.} := {x ∈ ⋃

n∈N An : x ∈ An for infinitely many n ∈ N}.

2. Order preserving random dynamical systems. Let (E,d) be a Polish
space with partial order “≤” such that

M := {
(x, y) ∈ E × E : x ≤ y

}
(2.1)

is closed in E × E (cf., e.g., [35], page 128, [30]). Equivalently, from xn, yn ∈ E

with xn ≤ yn and xn → x, yn → y it follows x ≤ y.

DEFINITION 2.1. We say that the partial order of E is normal if there is a
function h :R+ →R+ ∪ {+∞} satisfying limt↓0 h(t) = 0 such that

diam
([f,g]) ≤ h

(
d(f, g)

)
,(2.2)

for each f ≤ g, where [f,g] = {x ∈ E : f ≤ x ≤ g}.

The notion of a normal partial order introduced above extends the well-known
notion of a normal partial order on a Banach space. Indeed, first recall that a partial
order on a Banach space (E,‖ ·‖E) is said to be normal if there is a constant C > 0
such that for all 0 ≤ f ≤ g one has ‖f ‖E ≤ C‖g‖E (cf., e.g., [1, 15, 16, 32]). This
is easily seen to be equivalent to the existence of some constant C̃ > 0 such that

diam
([f,g]) ≤ C̃‖f − g‖E(2.3)

for all f ≤ g, and thus (2.2) is satisfied. Conversely, assume that (2.2) holds and
choose α > 0 such that h(α) < ∞. Take f,g ∈ E such that f ≤ g, f �= g. Then

diam
([f,g]) = 1

α
‖f −g‖E diam

([
α

‖f − g‖E

f,
α

‖f − g‖E

g

])
≤ h(α)

α
‖f −g‖E,

so we obtain (2.3) with C̃ = h(α)
α

. Hence, the two concepts of normality coincide
on a partially ordered Banach space.

REMARK 2.2. A partial order “≤” is normal if and only if for each δ > 0 there
is an ε > 0 such that for all f ≤ g with d(f, g) ≤ ε we have d(a, b) ≤ δ, for all
a, b ∈ [f,g].

PROOF. We only have to show that the condition in the statement implies nor-
mality. To see this, for ε > 0 set

h(ε) := sup
{
diam

([f,g]) : f,g ∈ E,f ≤ g, d(f, g) ≤ ε
}
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and h(0) := 0. Then h(ε) : R+ → R+ ∪ {∞} is non-decreasing and for all f,g ∈
E,f ≤ g we have diam([f,g]) ≤ h(d(f, g)). Let δ > 0. By assumption, there is
an ε > 0 such that for all f ≤ g with d(f, g) ≤ ε we have d(a, b) ≤ δ, for all a, b ∈
[f,g]. Thus, diam([f,g]) ≤ δ and, hence, h(ε) ≤ δ, which yields limε↓0 h(ε) = 0.

�

The generalization of the concept of normality of a partial order to Polish spaces
will turn out to be crucial, the key point being the following proposition.

PROPOSITION 2.3. Let K ⊆ E be a compact set. Then (K,d) is a Polish
space with normal partial order “≤”.

PROOF. Assume that “≤” is not normal. Then there is a δ > 0 such that for all
ε > 0 there are f ε ≤ gε with d(f ε, gε) ≤ ε, f ε, gε ∈ K and aε, bε ∈ [f ε, gε] ⊆ K

such that d(aε, bε) ≥ δ. By compactness of K , we may choose a sequence εn →
0 such that f εn, gεn, aεn, bεn → f,g, a, b, respectively. Since d(f ε, gε) ≤ ε, we
have f = g. Moreover, since aε, bε ∈ [f ε, gε] we have a = b = f since M in
(2.1) is closed. In particular, aεn, bεn → a in contradiction to d(aε, bε) ≥ δ. By
Remark 2.2, this proves normality of “≤”. �

The following proposition generalizes [16], Proposition 1, which required E to
be embedded into a partially ordered Banach space V , by removing this embedding
condition. Note that the proof in [16] relies on the linear structure of E and thus
the proof given here is significantly different.

PROPOSITION 2.4. Let Xt,Yt be two stochastic processes taking values in E,
satisfying Xt(ω) ≤ Yt (ω) for all t ∈ R+, ω ∈ �. Further, assume that the laws
L(Xt),L(Yt ) converge weakly∗ to μ for t → ∞. Then

d(Xt , Yt ) → 0 for t → ∞,

in probability.

PROOF. Step 1: Consider the joint distribution

πt = L(Xt , Yt ).

Since L(Xt),L(Yt ) converge weakly∗ to μ, {πt }t≥t0 is tight for some t0 ≥ 0. More-
over, πt(M) = 1, where M is given in (2.1). Hence, we may extract a subsequence
(tn) → ∞ such that

πtn ⇀ π weakly∗

and π(M) = 1 (since M is closed). Moreover, both marginals of π are equal to μ.
Step 2: We now prove that π is necessarily concentrated on the diagonal.
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Assume the contrary. Then there exist a < b such that (a, b) is in the support of
π . Since Mc is open, there exists an open neighborhood U of (b, a) contained in
Mc and we may assume that U is a rectangle, that is, U = Ub × Ua for Ua,Ub ⊆
E being open sets. Then U ′ := Ua × Ub is an open neighborhood of (a, b) and
π(U ′) > 0 by definition of the support of π . We can find compact subsets Ka ⊆ Ua

and Kb ⊆ Ub such that π(Ka × Kb) > 0. Now we define

A := {x ∈ E : x ≥ v for some v ∈ Kb}.
The set A is closed, since M is closed and Kb is compact. Therefore, A is Borel.
Moreover, by definition, A is an increasing set in the sense that x ∈ A and y ≥ x

implies y ∈ A. Furthermore, A and Ka are disjoint. Indeed, if x ∈ A ∩ Ka , then
x ∈ A implies that there exists some v ∈ Kb such that x ≥ v but (x, v) ∈ Ka × Kb

implies x < v which is a contradiction. We further note that the indicator function
f of A is measurable and non-decreasing, that is, x ≤ y implies f (x) ≤ f (y),
since A is an increasing set. We conclude that for (X,Y ) being a random variable
with law π we have

Ef (X) = Ef (X)1Ka×Kb
(X,Y ) +Ef (X)1(Ka×Kb)

c(X,Y )

≤ Ef (X)1Ka×Kb
(X,Y ) +Ef (Y )1(Ka×Kb)

c(X,Y ),

since π is concentrated on M . Moreover,

Ef (Y )1Ka×Kb
(X,Y ) > 0 = Ef (X)1Ka×Kb

(X,Y )

since π(Ka × Kb) > 0 and A ⊇ Kb. Hence,

Ef (X) < Ef (Y )

in contradiction to L(X) = L(Y ).
Step 3: Since π is concentrated on the diagonal and has marginals μ, π is the

image measure of μ under the map x �→ (x, x). In particular, the whole sequence
πt converges to π . Thus,

E
[
d(Xt , Yt ) ∧ 1

] → 0,

for t → ∞, and thus

P
[
d(Xt , Yt ) > ε

] ≤ 1

ε
E

[
d(Xt , Yt ) ∧ 1

] → 0,

for t → ∞ and all ε ∈ (0,1]. �

To motivate the following lemma, we recall that if ϕ is a white noise RDS with
associated Markovian semigroup Ptf (x) := Ef (ϕt (·, x)) having μ as an invariant
probability measure, then there exists a ϕ-invariant random probability measure
π·, the so-called statistical equilibrium, obtained from μ via

πω = lim
k→∞ϕtk (θ−tkω)∗μ, P-a.s.,
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where tk is an arbitrary sequence with tk → ∞ and one has Eπ· = μ. If ϕ is not a
white noise RDS then this construction fails and it is an open question in the liter-
ature how to define the statistical equilibrium, or to construct any ϕ-invariant ran-
dom probability measure in this case. This is the purpose of the following lemma.

LEMMA 2.5. Let ϕ be a weakly mixing RDS with limit distribution μ, that
is, for μ-a.a. x ∈ E we have L(ϕt (·, x)) ⇀ μ weakly∗. Then there exists an F0-
measurable, ϕ-invariant random probability measure π· satisfying Eπ· = μ.

PROOF. We consider the random measures

πt
ω := 1

t

∫ t

0
ϕr(θ−rω)∗μdr

and their averages

μt := 1

t
E

∫ t

0
ϕr(θ−r ·)∗μdr.

Since ϕ is weakly mixing, we have

μt(f ) = 1

t

∫ t

0

∫
E
Ef

(
ϕr(θ−r ·, x)

)
dμ(x) dr

→ μ(f ) for t → ∞,

for each bounded, continuous f : E → R. Hence, there is a t0 ≥ 0 such that for
each ε > 0 there is a compact set Kε such that

Eπt
ω

(
Kε) = μt (Kε) ≥ 1 − ε,

for all t ≥ t0. Consequently, the random measures πt· are tight (cf. [19], Defi-
nition 4.2), and thus (cf. [19], Theorem 4.4) there is a sequence tn → ∞ and a
random measure π· such that

πtn· ⇀ π· weakly∗ for n → ∞,

that is, for each random continuous function, that is each f : � × E → R such
that ω �→ f (ω,x) is measurable for each x ∈ E, x �→ f (ω,x) is continuous and
bounded for each ω ∈ � and ‖f (·, ·)‖L1(�;Cb(E)) < ∞, we have

E

∫
E

f (ω,x) dπtn
ω (x) → E

∫
E

f (ω,x) dπω(x) for n → ∞.

In particular, choosing f independent of ω yields

μtn(f ) = E

∫
E

f (x) dπtn
ω (x) → E

∫
E

f (x) dπω(x) for n → ∞,

and thus Eπ· = μ.
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It remains to prove that π is ϕ-invariant. We note that for all random continuous
functions f and all t ≥ 0

E

∫
E

f (ω,x) dϕt (ω)∗πω(x)

= E

∫
E

f
(
ω,ϕt (ω, x)

)
dπω(x)

= lim
n→∞

1

tn

∫ tn

0
E

∫
E

f
(
ω,ϕt (ω, x)

)
dϕr(θ−rω)∗μ(x)dr

= lim
n→∞

1

tn

∫ tn

0
E

∫
E

f
(
ω,ϕt

(
ω,ϕr(θ−rω, x)

))
dμ(x) dr

= lim
n→∞

1

tn

∫ tn

0
E

∫
E

f
(
ω,ϕt+r (θ−rω, x)

)
dμ(x) dr

= lim
n→∞

1

tn

∫ tn+t

0
E

∫
E

f
(
ω,ϕr(θ−r+tω, x)

)
dμ(x) dr

= lim
n→∞

1

tn

∫ tn

0
E

∫
E

f (θ−tω, x) dϕr(θ−rω)∗μ(x)dr

= E

∫
E

f (θ−tω, x) dπω(x)

= E

∫
E

f (ω,x) dπθtω(x),

and thus

ϕt(ω)∗πω = πθtω, P-a.s. �

THEOREM 2.6. Let ϕ be an order-preserving, strongly mixing3 RDS on E

with limit distribution μ. Assume that for all ε > 0 there exist f ≤ g in E such that

μ
([f,g]) ≥ 1 − ε.(2.4)

Then weak synchronization holds, that is, there is a ϕ-invariant random variable
a ∈ F0 such that

d
(
ϕt(θ−tω, x), a(ω)

) → 0 for t → ∞,(2.5)

in probability, for all x ∈ E.

PROOF. The proof proceeds in several steps. In the first two steps, we prove
very weak synchronization, that is, the existence of a ϕ-invariant random variable
a ∈ F0 such that μ(·) = Eδa(·). In the last three steps, we deduce (2.5).

3See the Appendix for the definition.
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In the following, let π· be a ϕ-invariant random measure associated to μ by
Lemma 2.5.

Step 1: In this step, we prove that for each ε > 0, δ > 0 we can find F0-
measurable random sets A(ω) such that diam(A(ω)) ≤ δ and

P
(
πω

(
A(ω)

) ≥ 1 − ε
) ≥ 1 − ε.

Let ε > 0, δ > 0 and f,g ∈ E such that μ([f,g]) ≥ 1 − ε2. By Markov’s in-
equality,

P
(
πω

([f,g]) ≥ 1 − ε
) = 1 − P

(
πω

([f,g]c) > ε
)

(2.6)
≥ 1 − ε.

For simplicity, we set

Xt(ω) := ϕt(θ−tω, f ), Yt (ω) := ϕt(θ−tω, g).

By strong mixing, the laws L(Xt),L(Yt ) are uniformly tight for t ≥ t0. Hence, we
may choose a compact set K ⊆ E such that μ(K) ≥ 1 − ε2 and

P(Xt , Yt ∈ K) ≥ 1 − ε ∀t ≥ t0.(2.7)

Again, by Markov’s inequality we have that

P
(
πω(K) ≥ 1 − ε

) ≥ 1 − ε.

Since ϕ is order-preserving, we have[
Xt(ω),Yt (ω)

] = [
ϕt(θ−tω, f ),ϕt (θ−tω, g)

]
⊇ ϕt(θ−tω, ·)[f,g].

Using ϕ-invariance of π· we obtain

πω

([
Xt(ω),Yt (ω)

]) = ϕt(θ−tω, ·)∗πθ−tω

([
Xt(ω),Yt (ω)

])
≥ ϕt(θ−tω, ·)∗πθ−tω

(
ϕt(θ−tω, ·)[f,g])

≥ πθ−tω

([f,g]), P-a.s.

and thus, by (2.6),

P
(
πω

([
Xt(ω),Yt (ω)

]) ≥ 1 − ε
) ≥ P

(
πθ−tω

([f,g]) ≥ 1 − ε
)

(2.8)
≥ 1 − ε.

Hence,

P
(
πω

([
Xt(ω),Yt (ω)

] ∩ K
) ≥ 1 − 2ε and Xt(ω),Yt (ω) ∈ K

) ≥ 1 − 3ε,

for all t ≥ t0.
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By Proposition 2.3, there is a function hK : R+ → R+ ∪ {∞} with
limt↓0 hK(t) = 0 such that

diam
([f,g] ∩ K

) ≤ hK

(
d(f, g)

)
,

for all f,g ∈ K . Hence, for ω ∈ {Xt,Yt ∈ K} we have

diam
([

Xt(ω),Yt (ω)
] ∩ K

) ≤ hK

(
d
(
Xt(ω),Yt (ω)

))
.

By Proposition 2.4, we have d(Xt , Yt ) → 0 for t → ∞ in probability. Hence, with

At(ω) := [
Xt(ω),Yt (ω)

] ∩ K

we have

P
(
diam

(
At(ω)

) ≤ δ,πω

(
At(ω)

) ≥ 1 − 2ε
) ≥ 1 − 4ε,(2.9)

for all t ≥ t0 = t0(ε, δ). This completes the proof of step one.
Step 2: We show next that πω is a random Dirac measure P-a.s.
Let An be as in step one with ε, δ = 2−n and let

B(ω) := ⋃
n≥0

⋂
m≥n

Am(ω).

Then B(ω) is an F0-measurable random set. For x, y ∈ B(ω), we have x, y ∈⋂
m≥n Am(ω) for all n large enough. Since

diam
( ⋂

m≥n

Am(ω)

)
= 0

this implies x = y. Hence, B(ω) consists of at most one (random) point. Moreover,

Eπω

(
B(ω)

) = lim
n→∞Eπω

( ⋂
m≥n

Am(ω)

)

= 1 − lim
n→∞Eπω

( ⋃
m≥n

(
Am(ω)

)c)

≥ 1 − lim
n→∞

∑
m≥n

2−m+1

= 1.

In particular, B(ω) = {a(ω)} for some F0-measurable random variable a : � → E.
In conclusion,

πω = δa(ω), P-a.s.(2.10)

and ϕ-invariance of a follows from ϕ-invariance of πω.
Step 3: Let h ∈ [x, y] for some x ≤ y such that μ([x, y]) > 0. We show that

then

d
(
a(ω),ϕt (θ−tω,h)

) → 0 for t → ∞
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in probability.
Let δ > 0 be arbitrary, fix. Since μ([x, y]) > 0, for each ε > 0 small enough

and each f ≤ g with μ([f,g]) ≥ 1 − ε2 we have that [x, y] ∩ [f,g] �=∅. Fix such
ε > 0 and f ≤ g. Further, let Xt(ω),Yt (ω),K and At(ω) be defined as in step one.

Using Proposition 2.4, this yields

d
(
ϕt(θ−tω,h), ϕt (θ−tω, f )

) → 0 for t → ∞(2.11)

in probability. From (2.7), (2.9) and (2.10), we obtain that

P
(
d
(
a(ω),ϕt (θ−tω, f )

) ≤ δ
)

≥ P
(
diam

(
At(ω)

) ≤ δ, a(ω) ∈ At(ω)
) − P(Xt /∈ K)

= P
(
diam

(
At(ω)

) ≤ δ,πω

(
At(ω)

) ≥ 1 − 2ε
) − P(Xt /∈ K)

≥ 1 − 5ε,

for all t ≥ t0 = t0(ε, δ). Thus, due to (2.11),

P
(
d
(
a(ω),ϕt (θ−tω,h)

) ≤ δ
) ≥ 1 − 6ε,

for all t ≥ t0 = t0(ε, δ), which completes the proof of step 3.
Step 4: We prove that for each f ≤ g with μ([f,g]) > 0, δ > 0 and each com-

pact set K ⊆ E we have that

lim
t→∞P

([Xt,Yt ] ∩ K ⊆ Bδ(a)
) = 1,

where Xt(ω) = ϕt (θ−tω, f ), Yt (ω) = ϕt(θ−tω, g).
By strong mixing, for each ε > 0 we may choose a compact set Kε such that

K ⊆ Kε and

P(Xt , Yt ∈ Kε) ≥ 1 − ε

4
∀t ≥ t0.

By Proposition 2.4,

d(Xt , Yt ) → 0 for t → ∞
in probability. As in step one, we obtain that

P

(
diam

([Xt,Yt ] ∩ Kε

) ≤ δ

2

)
≥ 1 − ε

2
,

for all t ≥ t0(ε, δ). Since, by step three we have d(Xt , a) → 0 in probability, this
implies that

P
([Xt,Yt ] ∩ K ⊆ Bδ(a)

) ≥ P
([Xt,Yt ] ∩ Kε ⊆ Bδ(a)

)
≥ 1 − ε,

for all t ≥ t0(ε, δ), which completes the proof of step four.
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Step 5: We prove that for each x ∈ E we have

d
(
ϕt(θ−tω, x), a(ω)

) → 0 for t → ∞
in probability.

Fix δ > 0, x ∈ E. By strong mixing we may choose K ⊆ E compact such that

P
(
ϕt(·, x) ∈ K

) ≥ 1 − ε ∀t ≥ t0

and μ(K) ≥ 1 − ε. Furthermore, let f ≤ g such that μ([f,g]) ≥ 1 − ε. By step
four, we can choose t > 0 such that

P
([Xt,Yt ] ∩ K ⊆ Bδ(a)

) ≥ 1 − ε.

Hence, P([f,g] ∩ ϕ−1
t (θ−tω)K ⊆ ϕ−1

t (θ−tω)Bδ(a(ω))) ≥ 1 − ε, and thus

P
([f,g] ⊆ J (ω) := ϕ−1

t (θ−tω)
(
Bδ

(
a(ω)

) ∪ Kc)) ≥ 1 − ε.

Since J (ω) is an open set, there is a positive random variable b such that J (ω) ⊇
Bb(ω)([f,g]∩K) with probability at least 1−2ε. Thus, choosing a constant β > 0
small enough we can ensure that J (ω) ⊇ Bβ([f,g] ∩ K) with probability at least
1 − 3ε.

By strong mixing,

P
(
ϕu(θ−(u+t)ω, x) ∈ Bβ

([f,g] ∩ K
)) ≥ 1 − 3ε,

for u sufficiently large, and thus

P
(
ϕu+t (θ−(u+t)ω, x) ∈ Kc ∪ Bδ

(
a(ω)

)) ≥ 1 − 6ε.

Due to the choice of K , we have

P
(
ϕu+t (θ−(u+t)ω, x) ∈ Kc) ≤ ε,

for all u ≥ u0. Therefore,

lim inf
u→∞ P

(
ϕu+t (θ−(u+t)ω, x) ∈ Bδ

(
a(ω)

)) ≥ 1 − 7ε.

Since δ > 0 and ε > 0 are arbitrary, the proof is complete. �

REMARK 2.7. 1. Following the same arguments as in the proof of Theo-
rem 2.6, one may in fact prove weak synchronization assuming only the following
weaker condition than (2.4): Assume that there exists a countable index set I and
intervals [fi, gi], i ∈ I in E with

μ

(⋃
i∈I

[fi, gi]
)

= 1

and for each pair i, j ∈ I there exists some n ∈ N and indices i = i1, i2, . . . , in = j

such that [fik , gik ] ∩ [fik+1, gik+1] �=∅ for every k ∈ {1, . . . , n − 1}.
2. If ϕ is a white noise RDS, then the proof of Theorem 2.6 can be simplified.

Namely, once it has been shown that the statistical equilibrium πω is a random
Dirac measure (step 2 in the proof of Theorem 2.6) then [24], Proposition 2.18,
can be applied to obtain weak synchronization.
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The following example demonstrates that the assumptions of Theorem 2.6 in-
deed only guarantee weak synchronization and not synchronization.

EXAMPLE 2.8. Consider the SDE

dXt = Xt(1 − Xt) dWt

on the one-dimensional torus. Then the associated RDS is strongly mixing with
invariant measure μ = δ0 and the trivial partial order (x ≤ y implies x = y) is pre-
served. By Theorem 2.6, {0} is a weak minimal point attractor and weak synchro-
nization holds. However, the weak attractor (which trivially exists) is the whole
torus and thus synchronization does not hold.

3. Stochastic porous media equations. We consider the stochastic porous
medium equation

dXt = (
�X

[m]
t + Xt

)
dt + dWt,(3.1)

with zero Dirichlet boundary conditions on a bounded, smooth domain O ⊆ R
d ,

d ≤ 4, m > 1 and W being a trace-class Wiener process on H−1 := (H 1
0 )∗ with

covariance operator Q ∈ L(H−1). For simplicity, we use u[m] := |u|m−1u and we
set V = Lm+1(O).

We first recall that the attractor for the deterministic porous medium equation

dXt = (
�X

[m]
t + Xt

)
dt,

has infinite fractal dimension (cf. [23]). In this section, we will show that weak
synchronization by noise occurs if Q is non-degenerate (in a sense to be made pre-
cise below). In particular, the infinite dimensional deterministic attractor collapses
into a zero dimensional random attractor if enough noise is added.

In [7, 25], a continuous RDS ϕ corresponding to (3.1) has been constructed
on H−1, which is easily seen to be a white-noise RDS. We shall assume that the
corresponding Markovian semigroup Ptf (x) := Ef (ϕt (·, x)) is strongly mixing.

REMARK 3.1. Sufficient conditions for ϕ corresponding to (3.1) to be
strongly mixing have been given, for example, in [36]. More precisely, in [36]
strong mixing was shown under the following non-degeneracy assumption for the
noise: Q1/2 is injective and

‖u‖m+1
V ≥ c‖u‖σ

Q1/2‖u‖m+1−σ

H−1 ∀u ∈ V,(3.2)

for some σ ≥ 2, σ > m − 1, c > 0, where

‖u‖Q1/2 :=
{‖y‖H−1, Q1/2y = u,

∞, otherwise.
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From [49], Corollary 1.3, we recall the following example: Let d = 1, Qei = q2
i ei

with
∑∞

i=1
q2
i

λi
< ∞ and ei , λi the eigenvectors and eigenvalues of −� with domain

(H 1
0 ∩H 2)(O). If infi q2

i > 0 then (3.2) holds for any non-negative σ ∈ (m−1,m+
1].

If the semigroup Pt is strongly mixing with invariant measure μ then μ is con-
centrated on V . Indeed: By Itô’s formula, we have that

‖Xt‖2
H−1 +

∫ t

0
‖Xr‖m+1

V dr = ‖x0‖2
H−1 + t tr(Q),

and hence

1

t

∫ t

0
Pr

(‖ · ‖m+1
V

)
(x0) dr ≤ 1

t
‖x0‖2

H−1 + tr(Q).

Strong mixing thus implies that μ is supported on V , that is, μ(V ) = 1.
The usual partial order on H−1 is defined by: For x, y ∈ H−1 set

x ≤ y iff (y − x)(h) ≥ 0 ∀ non-negative h ∈ H 1
0 .

It is not difficult to see that ϕ is “≤”-order-preserving (cf. Lemma 3.3 below).
However, it is unclear how to check (2.4), since bounded sets in V are not neces-
sarily contained in intervals [f,g]≤. Because of this, synchronization by noise for
(3.1) was left as an open problem in [25].

The key idea here is to introduce an alternative partial order “�” on H−1, that is
also preserved by ϕ and that is better adapted to the topology of V , in the sense that
bounded sets in V are contained in intervals [f,g]�: For x, y ∈ H−1, we define

x � y iff (−�)−1x ≤H 1
0

(−�)−1y,

where the partial order “≤H 1
0
” on H 1

0 is defined by: x ≤H 1
0

y iff x(ξ) ≤ y(ξ) for
a.a. ξ ∈ O.

To the best of the authors’ knowledge, this partial order on H−1 has not been
previously introduced in the study of the porous medium equation. However, in
[22] porous media equations of the type

∂tu = �β(u) + f

with zero Dirichlet boundary conditions and β a continuous, non-decreasing real
function satisfying β(0) = 0 have been studied by means of the “dual” problem

∂tv = −β(−�v) + (−�)−1f,(3.3)

obtained by setting v = (−�)−1u. In [22] a comparison principle for solutions
to (3.3) was shown, which corresponds, roughly speaking, to u being “�” order-
preserving on H−1.
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REMARK 3.2. The partial order “�” is not normal on H−1.

PROOF. We restrict to the case O = (0,2π + 2). Arbitrary open, smooth do-
mains O ⊆ R

d can be treated similarly and by scaling.
We define

f̃ n(x) :=
⎧⎨
⎩

x, x ∈ [0,1],
1 + sin

(
n(x − 1)

)
, x ∈ [1,2π + 1],

2π + 2 − x, x ∈ [2π + 1,2π + 2],
and

g̃(x) :=
{

2x, x ∈ [0, π + 1],
4π + 4 − 2x, x ∈ [π + 1,2π + 2].

Then f̃ n, g̃ ∈ H 1
0 (0,2π + 2), 0 ≤ f̃ n ≤ g̃ and ‖f̃ n‖2

H 1
0 (0,2π+2)

∼ n2. Since f̃ n ∈
[0, g̃]H 1

0
we observe diamH 1

0
([0, g̃]H 1

0
) ≥ ‖f̃ n‖H 1

0
∼ n. Thus,

diamH 1
0

([0, g̃]H 1
0

) = ∞.

We note that

[0, g]� = {
h ∈ H−1 : 0 � h � g

}
= {

h ∈ H−1 : 0 ≤ (−�)−1h ≤ (−�)−1g
}

= (−�)
{
h̃ ∈ H 1

0 : 0 ≤ h̃ ≤ (−�)−1g
}

= (−�)
[
0, (−�)−1g

]
H 1

0
.

Consequently,

diamH−1
([0, g]�) = sup

x,y∈[0,g]�
‖x − y‖H−1

= sup
x,y∈[0,(−�)−1g]

H1
0

∥∥(−�)x − (−�)y
∥∥
H−1

= sup
x,y∈[0,(−�)−1g]

H1
0

‖x − y‖H 1
0

= diamH 1
0

([
0, (−�)−1g

]
H 1

0

)
.

Hence, for g = −�g̃ we obtain diamH−1([0, g]�) = ∞. In particular, � is not
normal on H−1. �

We next prove that “�” is preserved by ϕ:
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LEMMA 3.3. Let x � y, x, y ∈ H−1, then

ϕt(ω, x) � ϕt(ω, y),(3.4)

for all t ∈ R+,ω ∈ �. Moreover, if x ≤ y, x, y ∈ H−1, then

ϕt(ω, x) ≤ ϕt(ω, y),(3.5)

for all t ∈ R+,ω ∈ �.

PROOF. We first prove (3.4): For the proof, it is enough to consider a fixed,
arbitrary interval [0, T ] ⊆ R+. We first briefly recall the construction of ϕ given in
[25]: In [25], Theorem 3.2(iii), first a strictly stationary solution Z to

dZ = �Z[m] dt + dWt

is constructed, satisfying Zt(ω) = Z0(θtω) for all ω ∈ �, t ∈ R and Z·(ω) ∈
Lm+1

loc (R,V ) ∩ C(R;H−1) for all ω ∈ �. Then it is shown that the transformed
equation (informally arising by the transformation Y := X − Z)

d

dt
Yt = �(Yt + Zt)

[m] + Yt + Zt − �Z
[m]
t ,

(3.6)
Y0 = x − Z0

has a unique solution Y for each fixed ω ∈ �. In the following, we let ω ∈ � be
arbitrary, fixed and suppress the ω-dependency in the notation. The RDS ϕ is then
defined by

ϕt(ω, x) := Yt (ω) + Zt(ω), t ∈R+,ω ∈ �,x ∈ H−1.

For the proof of (3.4), it is thus enough to consider Y .
Let J ε := (1 − ε�)−1 be the resolvent of −� on H−1. Since J ε and (−�)−1

commute, J ε is “�”-order-preserving. Moreover, J ε : H−1 → H 1
0 and J ε : H 1

0 ∩
Hm → H 1

0 ∩ Hm+2 for all m ∈ N. We further note ‖J εx‖H−1 ≤ ‖x‖H−1 . By it-
erating J ε , for each l ∈ N we may thus construct linear operators Gε,l : H−1 →
H 2l−1 ∩ H 1

0 . Note Gε,lx → x in H−1 for ε → 0 and each fixed l ∈ N.
We further consider an approximation Zn smooth in time and space, such that

Zn → Z in Lm+1([0, T ];V ) ∩ C([0, T ];H−1) and the corresponding unique so-
lution Yn to

d

dt
Y n

t = �
(
Yn

t + Zn
t

)[m] + Yn
t + Zn

t − �
(
Zn

t

)[m]
,

Y n
0 = G1/n,lY0,

where l is chosen large enough to justify the following arguments. We then define
the transformation un := Yn + Zn and observe that un is the unique solution to

d

dt
un

t = �
(
un

t

)[m] + un + �
(
Zn

t

)[m] − d

dt
Zn

t ,

(3.7)
un

0 = Yn
0 + Zn

0 = G1/n,lx − G1/n,lZ0 + Zn
0 .
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Since �(Zn
t )[m] − d

dt
Zn

t is smooth, we may apply [22], Lemma 1, cf. also Corol-

lary 1, to obtain u
1,n
t � u

2,n
t , where u

1,n
t and u

2,n
t correspond to the solutions to

(3.7) with initial conditions G1/n,lx − G1/n,lZ0 + Zn
0 and G1/n,ly − G1/n,lZ0 +

Zn
0 , respectively, and thus also

Y
1,n
t � Y

2,n
t ∀t ≥ 0.(3.8)

The idea behind [22], Lemma 1, is to consider the “dual” problem obtained by
setting vn := (−�)−1un which solves the fully non-linear PDE

d

dt
vn
t = (

�vn
t

)[m] + vn − (
Zn

t

)[m] − (−�)−1 d

dt
Zn

t .

In [22] it is then shown that this “dual” problem satisfies a comparison principle.
We next need to prove convergence of the chosen approximation. Using stan-

dard bounds for the porous medium operator �u[m] on the Gelfand triple V ⊆
H−1 ⊆ V ∗ (cf., e.g., [43], Example 4.1.11), we observe

d

dt

∥∥Yn
t

∥∥2
H−1 = V ∗

〈
�

(
Yn

t + Zn
t

)[m] + Yn
t + Zn

t , Y n
t

〉
V − V ∗

〈
�

(
Zn

t

)[m]
, Y n

t

〉
V

≤ −∥∥Yn
t + Zn

t

∥∥m+1
m+1 + ∥∥Yn

t

∥∥2
H−1 + V ∗

〈
Zn

t , Y n
t

〉
V

+ ∥∥�(
Yn

t + Zn
t

)[m]∥∥
V ∗

∥∥Zn
t

∥∥
V

− ∥∥�(
Zn

t

)[m]∥∥
V ∗

∥∥Yn
t

∥∥
V

≤ −c
∥∥Yn

t

∥∥m+1
V + C

∥∥Zn
t

∥∥m+1
V + C

∥∥Yn
t

∥∥2
H−1

+ C
∥∥Zn

t

∥∥2
H−1 + C

∥∥Zn
t

∥∥m+1
V

+ Cε

∥∥Zn
t

∥∥m+1
V + ε

∥∥Yn
t

∥∥m+1
V

= −(c − ε)
∥∥Yn

t

∥∥m+1
V + C

∥∥Yn
t

∥∥2
H−1 + C

∥∥Zn
t

∥∥2
H−1 + Cε

∥∥Zn
t

∥∥m+1
V ,

for some constants c,C,Cε > 0 and all ε > 0. Choosing ε small enough and using
Gronwall’s lemma yields

sup
t∈[0,T ]

∥∥Yn
t

∥∥2
H−1 + c

∫ T

0

∥∥Yn
t

∥∥m+1
V dt ≤ C,

for some uniform constants c,C > 0. Hence, also d
dt

Y n
t ∈ Lm+1([0, T ];V ∗) with

uniform bounds and by the Aubin–Lions compactness lemma we obtain the exis-
tence of a subsequence (again denoted by Yn) such that

Yn → Ỹ in C
([0, T ];H−1)

,

Y n ⇀ Ỹ in Lm+1([0, T ];V )
.
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It is then not difficult to identify Ỹ as a variational solution to (3.6) and uniqueness
implies Ỹ = Y . Since the partial order “�” is closed on H−1, from (3.8) we obtain
Y 1

t � Y 2
t which implies the claim.

To prove (3.5), we may proceed analogously. Indeed, following [6] and [22],
equation (4), we obtain u

1,n
t ≤ u

2,n
t and thus also Y

1,n
t ≤ Y

2,n
t for all t ≥ 0, re-

placing (3.8) above. This implies (3.5) following the same arguments as for (3.4).
�

THEOREM 3.4. Assume that the RDS ϕ associated to (3.1) is strongly mixing.
Then ϕ has a singleton weak point attractor A, that is, weak synchronization holds.
Moreover, A attracts all sets K ⊆ H−1 contained in “≤”-intervals, that is, all
K ⊆ [f,g]≤ for some f,g ∈ H−1.

PROOF. As noted above ϕ is a “�”-order-preserving, white noise RDS on
H−1 and the invariant measure μ is concentrated on V . It remains to check (2.4)
with respect to the partial order “�”.

We first observe that W 2,m+1 ↪→ C0 if 2 − d
m+1 > 0, or equivalently 2(m +

1) > d , which is satisfied since m > 1, d ≤ 4. Recall μ(V ) = 1. We now consider
μ̃ := (−�)−1∗ μ on W 2,m+1, that is, the push-forward of μ under (−�)−1, and
observe

μ̃
(
W 2,m+1) = 1.

Hence, we can find f̃n = (−�)−1fn ≤ (−�)−1gn = g̃n with fn, gn ∈ V such that
μ̃([f̃n, g̃n]W 2,m+1) ≥ 1 − 2−n. Thus,

μ
([fn, gn]H−1;�

) ≥ μ
([fn, gn]Lm+1;�

)
= μ̃

([
(−�)−1fn, (−�)−1gn

]
W 2,m+1

)
≥ 1 − 2−n.

Theorem 2.6 completes the proof of weak synchronization.
Let now K ⊆ [f,g]≤. Since “≤” is a normal partial order on H−1 we have

diam
([f,g]≤) ≤ h

(‖f − g‖H−1
)
.

Since A is a singleton weak point attractor, this implies

diam
([

ϕt(·, f ), ϕt (·, g)
]
≤

) → 0

and thus diam(ϕt (·,K)) → 0 in probability, which completes the proof. �

We note that in general it is not true that ϕt(ω, x) takes values in V if x ∈ V .
In order to show such an invariance property additional regularity of W would be
required. In contrast, the invariant measure μ is always supported on V as long
as W is a trace-class Wiener process in H . At this point, the generalization put
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forward in Theorem 2.6 is crucial, since condition (2.4) only requires μ to be
“nicely” supported, rather than the partial order “�” to be admissible, as it had to
be assumed in [16]. Since � is neither admissible nor normal, the results from [16]
cannot be used in the case of stochastic porous media equations.

4. Further examples.

4.1. Stochastic differential equations driven by fractional Brownian motion.
We consider one-dimensional stochastic differential equations of the type

dXx
t = b

(
Xx

t

)
dt + dBH

t ,
(4.1)

Xx
0 = x ∈ R,

where BH is a two-sided fractional Brownian motion with Hurst index H ∈ (0,1).
For example, BH can be constructed by

BH
t = αH

∫ 0

−∞
(−r)H/2(dWr+t − dWr),(4.2)

where W is a one-dimensional Brownian motion and αH is an appropriately cho-
sen constant (cf., e.g., [27]). From (4.2), we can read-off that fractional Brownian
motion has strictly stationary increments, in the sense that

BH
t+s(ω) − BH

t (ω) = BH
t (θsω),(4.3)

where θ is the usual Wiener shift.
We further assume that there are constants c > 0,C,N ≥ 0 such that(

b(x) − b(y)
)
(x − y) ≤ min

(
C − c|x − y|2,C|x − y|2)

,

for all x, y ∈ R and ∣∣b(x)
∣∣ + ∣∣b′(x)

∣∣ ≤ C
(
1 + |x|)N,

for all x ∈ R. If H ≥ 1
2 we further assume that b′ is globally bounded.

In order to construct the associated RDS, one considers the transformation Yx
t =

Xx
t − BH

t satisfying

dY x
t = b

(
Yx

t + BH
t

)
dt,

Y x
0 = x ∈ R,

which is easily seen to have a unique solution. Thus, in view of (4.3),

ϕt(ω, x) := Yx
t (ω) + BH

t (ω)

defines a continuous RDS. By uniqueness of solutions ϕ is order-preserving on R.
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Following the setup put forward in [27], the stochastic dynamical system4 ϕ̃

associated to (4.1) is a weak solution to (4.1). Since also ϕ is a weak solution,
by weak uniqueness we have L(ϕ̃t (·, x)) = L(ϕt (·, x)). Moreover, by [27], Theo-
rem 6.1, there is a probability measure μ on R such that

L
(
ϕ̃t (·, x)

) → μ for t → ∞
in total variation norm. Hence, ϕ is strongly mixing. We conclude with the follow-
ing.

EXAMPLE 4.1. The RDS ϕ associated to (4.1) satisfies weak synchronization.

4.2. Stochastic differential inclusions and reflected diffusions. We consider
stochastic differential inclusions of the type

dXx
t + ∂η

(
Xx

t

)
dt � b

(
Xx

t

)
dt + dWt,

(4.4)
Xx

0 = x ∈ R
d,

where ∂η is the sub-differential of a convex, lower semicontinuous (lsc), proper
function η : Rd → R ∪ {+∞} with domain dom(η), W is a standard Brownian
motion on R

d and b is globally Lipschitz continuous. We assume that

int
(
D(∂η)

) �=∅.

By [12], for each x ∈ D(∂η) = dom(η) there exists a unique solution Xx ∈
C([0, T ];Rd) to (4.4) taking values in D(∂η). Since the construction in [12] is
path-wise, that is, existence and uniqueness for (4.4) is proven for W replaced by
an arbitrary continuous path starting at 0,

ϕt(ω, x) := Xx
t (ω), t ∈R+,ω ∈ �,x ∈ R

d,

defines a continuous RDS on E := D(∂η). We note that in general D(∂η) is a
proper subset of Rd , indeed.

EXAMPLE 4.2 (Reflected diffusions). Let D ⊆ R
d be a non-empty, closed,

convex set in R
d . Let

η(x) = ID(x) =
{

0, if x ∈ D,

+∞, otherwise.

Then (4.4) corresponds to

dXt = b(Xt) dt + dWt,

with normal reflection on ∂D.

4For the notion of a stochastic dynamical system, cf. [27].
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If dom(η) is a bounded set and b ∈ C2(Rd) with bounded derivatives, then ϕ is
strongly mixing by [13].

In order to apply Theorem 2.6, we need ϕ to be order-preserving. Therefore, we
shall restrict to d = 1 henceforth. Uniqueness of solutions to (4.4) implies that for
x, y ∈ D(∂η) with x ≤ y we have

Xx
t (ω) ≤ X

y
t (ω) ∀t ∈ R+,ω ∈ �.

Thus, ϕ is order-preserving. We note that in general x �→ ϕt(x,ω) is not one-to-
one. In particular, the strong order x < y is not necessarily preserved under ϕ.

An application of Theorem 2.6 yields the following.

EXAMPLE 4.3. Assume that η :R →R is a convex, lsc, proper function with
bounded domain and b ∈ C2(R) with bounded derivatives. Then the RDS ϕ corre-
sponding to (4.4) satisfies weak synchronization.

4.3. SPDE with two reflecting walls. We consider the following SPDE with
two reflecting walls:

dXt = ∂2
xXt dt + f (Xt) dt + dWt on S1,

X0 = x ∈ C
(
S1)

,(4.5)

h1 ≤ Xt ≤ h2 ∀t ∈ [0, T ],
where S1 is the one-dimensional sphere, dWt denotes space–time white noise on
S1 × [0, T ] and h1, h2 ∈ C(S1) satisfy h1 < h2, hi ∈ H 2(S1), i = 1,2. We further
assume that f is Lipschitz continuous and set

E := {
h ∈ C

(
S1) : h1 ≤ h ≤ h2}

.

In order to construct an associated RDS, we consider the Ornstein–Uhlenbeck
process Z corresponding to

dZt = ∂2
xZt dt + dWt,

given by Zt = ∫ t
0 e∂2

x (t−s) dWs and the transformed PDE

∂tYt = ∂2
xYt + f (Yt+Zt),

Y0 = x ∈ C
(
S1)

,(4.6)

h1 − Zt ≤ Yt ≤ h2 − Zt ∀t ∈ [0, T ].
Well-posedness of (4.6) can be shown as in [41] for every x ∈ E. Uniqueness for
(4.6) then implies that

ϕt(ω, x) := Yt (ω) + Zt(ω)



1346 F. FLANDOLI, B. GESS AND M. SCHEUTZOW

defines a continuous RDS on E. Moreover, following [41], Lemma 2.6, we have
comparison, that is, if x, y ∈ E with x ≤ y then ϕt(ω, x) ≤ ϕt(ω, y). Hence, ϕ is
order-preserving on E. It remains to observe that by the coupling argument used
in [50], Theorem 3.1, ϕ is strongly mixing. An application of Theorem 2.6 yields
the following.

EXAMPLE 4.4. The RDS ϕ corresponding to (4.5) satisfies weak synchro-
nization.

APPENDIX: BACKGROUND ON RANDOM DYNAMICAL SYSTEMS

Let (E,d) be a Polish space, that is, a topological space homeomorphic to a
complete, separable metric space, endowed with Borel σ -algebra E . Further, let
(�,F,P, θ) be a metric dynamical system, that is, (�,F,P) is a probability space
(not necessarily complete) and θ := (θt )t∈R is a group of jointly measurable maps
on (�,F,P) that leaves P invariant.

We say that a map ϕ :R+ ×�×E → E is a perfect cocycle if ϕ is measurable,
ϕ0(ω, x) = x and ϕt+s(ω, x) = ϕt(θsω,ϕs(ω, x)) for all x ∈ E, t, s ≥ 0, ω ∈ �.
We will assume that ϕs(ω, ·) is continuous for each s ≥ 0 and ω ∈ �. The col-
lection (�,F,P, θ, ϕ) is then said to be a random dynamical system (RDS); see
[2] for a comprehensive treatment. Given an RDS (�,F,P, θ, ϕ), we define the
skew-product flow � on � × E by �t(ω,x) = (θtω,ϕt (ω, x)).

Let E be a Polish space with closed partial order “≤” [cf. (2.1)] and
(�,F,P, θ, ϕ) an RDS on E. Then ϕ is said to be “≤”-order-preserving if
ϕt(ω, x) ≤ ϕt(ω, y) for all x, y ∈ E, x ≤ y and all t ≥ 0, ω ∈ �.

Given an RDS ϕ, we define the two-parameter filtration F = (Fs,t )−∞<s≤t<∞
of sub-σ algebras of F given by Fs,t = σ {ϕh(θsω) : h ∈ [0, t − s]}. It follows
that θ−1

r (Fs,t ) = Fs+r,t+r for all r, s, t . For each t ∈ R, let Ft be the smallest σ -
algebra containing all Fs,t , s ≤ t and let Ft,∞ be the smallest σ -algebra containing
all Ft,u, t ≤ u. If Fs,t and Fu,v are independent for all s ≤ t ≤ u ≤ v, we call
(�,F,F,P, θ, ϕ) a white noise (filtered) random dynamical system.

An invariant measure for an RDS ϕ is a probability measure on � × E with
marginal P on � that is invariant under �t for t ≥ 0. For each probability measure
π on � × E with marginal P on �, there is a unique disintegration ω �→ πω and a
random probability measure πω is an invariant measure for ϕ iff ϕt(ω)∗πω = πθtω

for all t ≥ 0, almost all ω ∈ � (where the P-zero set may depend on t). Here,
ϕt(ω)∗πω denotes the push-forward of πω under ϕt(ω). An invariant measure πω

is said to be a Markov measure, if ω �→ πω is measurable with respect to the past
F0. In case of a white noise RDS ϕ we may define the associated Markovian
semigroup by

Ptf (x) := Ef
(
ϕt(·, x)

)
,
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for f being measurable, bounded. There is a one-to-one correspondence between
invariant measures for Pt and Markov invariant measures for ϕ (cf. [18]): If μ is
Pt -invariant, then for every sequence tk → ∞ the weak∗ limit

πω := lim
k→∞ϕtk (θ−tkω)∗μ(A.1)

exists P-a.s. and it is a Markov invariant measure for ϕ. In addition, π· does not
depend on the chosen sequence tk , P-a.s.; vice versa, μ := Eπω defines an invariant
measure for Pt .

A Markovian semigroup Pt with ergodic measure μ is said to be strongly mixing
if

Ptf (x) →
∫
E

f (y) dμ(y) for t → ∞
for each continuous, bounded f and all x ∈ E. Similarly, we say that an RDS
ϕ (not necessarily a white noise RDS) is strongly mixing if the laws of ϕt(·, x)

converge weakly∗ to a probability measure μ for t → ∞ for all x ∈ E.

DEFINITION A.1. A family {D(ω)}ω∈� of non-empty subsets of E is said to
be:

1. a random closed (resp., compact) set if it is P-a.s. closed (resp., compact)
and ω �→ d(x,D(ω)) is F -measurable for each x ∈ E. In this case, we also call
D, F -measurable.

2. ϕ-invariant, if for all t ≥ 0

ϕt

(
ω,D(ω)

) = D(θtω),

for almost all ω ∈ �.

Next, we recall the definition of a pullback attractor and a weak (random) at-
tractor (cf. [20, 40]).

DEFINITION A.2. Let (�,F,P, θ, ϕ) be an RDS. A random, compact set A

is called a pullback attractor, if:

1. A is ϕ-invariant, and
2. for every compact set B in E, we have

lim
t→∞ sup

x∈B

d
(
ϕt(θ−tω, x),A(ω)

) = 0 almost surely.

The map A is called a weak attractor, if it satisfies the properties above with almost
sure convergence replaced by convergence in probability in (2). It is called a (weak)
point attractor, if it satisfies the properties above with compact sets B replaced by
single points in (2).

A (weak) point attractor is said to be minimal if it is contained in each (weak)
point attractor.
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Clearly, every pullback attractor is a weak attractor but the converse is not true
(see, e.g., [46] for examples). Weak attractors are unique (cf. [24], Lemma 1.3).

DEFINITION A.3. Let (�,F,P, θ, ϕ) be an RDS. We say that (weak) syn-
chronization occurs, if there exists a weak (point) attractor consisting of a single
random point P-a.e.
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