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Cohort studies in air pollution epidemiology aim to establish associations
between health outcomes and air pollution exposures. Statistical analysis of
such associations is complicated by the multivariate nature of the pollutant
exposure data as well as the spatial misalignment that arises from the fact
that exposure data are collected at regulatory monitoring network locations
distinct from cohort locations. We present a novel clustering approach for
addressing this challenge. Specifically, we present a method that uses geo-
graphic covariate information to cluster multi-pollutant observations and pre-
dict cluster membership at cohort locations. Our predictive k-means proce-
dure identifies centers using a mixture model and is followed by multiclass
spatial prediction. In simulations, we demonstrate that predictive k-means can
reduce misclassification error by over 50% compared to ordinary k-means,
with minimal loss in cluster representativeness. The improved prediction ac-
curacy results in large gains of 30% or more in power for detecting effect
modification by cluster in a simulated health analysis. In an analysis of the
NIEHS Sister Study cohort using predictive k-means, we find that the as-
sociation between systolic blood pressure (SBP) and long-term fine particu-
late matter (PM2.5) exposure varies significantly between different clusters of
PM2.5 component profiles. Our cluster-based analysis shows that, for subjects
assigned to a cluster located in the Midwestern U.S., a 10 μg/m3 difference
in exposure is associated with 4.37 mmHg (95% CI, 2.38, 6.35) higher SBP.

1. Introduction. Cohort studies provide a valuable platform for investigating
health effects of long-term air pollution exposure by leveraging fine-scale spatial
contrasts in exposure between subjects [Dominici, Sheppard and Clyde (2003),
Künzli, Medina and Kaiser (2001), Wilson et al. (2005)]. These studies facilitate a
level of precision in exposure assignment that is not available in traditional anal-
yses based upon aggregated data from administrative districts. However, cohort-
specific exposure monitoring is rarely done at more than a small subset of subject
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locations for a short period of time, if at all [Cohen et al. (2009)]. Instead, pollu-
tant concentrations measured at locations in regulatory monitoring networks, not
at cohort locations, are used. This spatial misalignment between monitor and sub-
ject locations is often addressed through a two-stage modeling approach. First,
an exposure prediction model is developed using the regulatory monitoring data,
and predictions are made at cohort subject locations [e.g., Brauer et al. (2003),
Keller et al. (2015)]. These predicted exposures are then used in regression anal-
yses, where their association with health outcomes is estimated [e.g., Adar et al.
(2010)].

Fine particulate matter (particles with aerodynamic diameter less than 2.5 μm;
PM2.5) is a mixture of many components whose chemical composition varies
widely due to sources, meteorology and other factors [Bell et al. (2007)]. Vari-
ations in PM2.5 composition can modify the association between total PM2.5 mass
and health effects [Brook et al. (2010), Franklin, Koutrakis and Schwartz (2008),
Zanobetti et al. (2009)], and analysis that distinguishes between different compo-
nent profiles can improve our understanding of exposures’ health effects [Brauer
(2010)].

Multi-pollutant exposures such as PM2.5 component concentrations present
challenges to the two-stage modeling approach for addressing spatial misalign-
ment. Multidimensional prediction requires ignoring correlation between pollu-
tants or making strong assumptions about correlation structure that may be difficult
to verify with limited monitoring data. Interpreting coefficient estimates for simul-
taneous exposures to multiple pollutants presents challenges of generalizability.
Reducing the dimension of a multi-pollutant exposure prior to prediction provides
an attractive means to address these challenges in prediction and interpretation.
Dimension reduction methods simplify the complex structure of multi-pollutant
exposures by reducing them to a smaller set of low-dimensional observations that
retain most of the characteristics of the original data but that can be predicted more
reliably.

Clustering methods are a class of dimension reduction methods that partition
multi-pollutant observations into a prespecified number of clusters. For multi-
dimensional observations of PM2.5 components, this amounts to assigning each
observation to a representative component profile. Oakes, Baxter and Long (2014)
highlight clustering as a promising approach for understanding multi-pollutant
health effects. The “k-means” algorithm is a popular clustering method that iden-
tifies clusters that minimize the distance between each observation and the center
of its assigned cluster. Recent work has applied clustering methods (including k-
means) to time series of PM2.5 observations to find groups of days with similar
component profiles in daily averages [Austin et al. (2012)] and groups of locations
with similar profiles in long-term averages [Austin et al. (2013)]. These clusters
were used for analyzing exposures by city [Kioumourtzoglou et al. (2015)], but
have not been used for cohort subject locations. For cohort studies with spatially
misaligned monitoring data, the lack of monitoring observations means we cannot
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directly cluster cohort locations using component profiles. One option is then to
use k-means to cluster monitoring data and to subsequently predict cluster mem-
bership at subject locations. However, this can work poorly when membership in
the clusters identified by k-means is not predictable using available geographic
covariates. Modifying the k-means procedure to account for the covariates used
in the subsequent prediction model provides a promising approach for efficient
prediction of cluster membership at subject locations.

In this paper, we present a method for clustering multi-pollutant exposures in
the context of cohort studies with spatially misaligned data and apply it to an anal-
ysis of PM2.5 component exposure in a national cohort. Section 2 presents the
motivating analysis of total PM2.5 and systolic blood pressure in the Sister Study
cohort. Section 3 describes an approach for clustering multi-pollutant data in a
cohort study using a combination of existing methods. In Section 4, we introduce
our new method for defining clusters that improves predictive accuracy at cohort
locations. Section 5 details simulations illustrating this method, and in Section 6
we apply the method to the Sister Study cohort. We conclude in Section 7 with a
discussion.

2. PM2.5 and SBP in the Sister Study. The National Institute of Environ-
mental Health Sciences (NIEHS) Sister Study cohort comprises 50,884 women
with a sister with breast cancer from across the United States enrolled between
2003 and 2009. In a cross-sectional analysis of the Sister Study cohort, Chan et al.
(2015) found that a difference of 10 μg/m3 in annual average PM2.5 was asso-
ciated with 1.4 mmHg higher systolic blood pressure (SBP) [95% CI: 0.6, 2.3;
p < 0.001]. Chan et al. (2015) used predictions of 2006 annual average ambi-
ent PM2.5 exposures from a universal kriging (UK) model fit to monitoring data
from the EPA Air Quality System (AQS) [Sampson et al. (2013)]. The UK model
has two components: a regression on geographic covariates for the mean combined
with spatial smoothing via a Gaussian Process. The geographic covariates included
measures of land-cover, road network characteristics, vegetative index, population
density and distance to various geographic features, which Sampson et al. (2013)
reduced in dimension using partial least squares. An exponential covariance struc-
ture was used for smoothing in the Gaussian Process.

During baseline home visits, blood pressure measurements were taken, along
with anthropometric measurements and phlebotomy. Residential history of sub-
jects is available for assigning long-term exposures based upon participant loca-
tions. In their health model, Chan et al. (2015) performed linear regression of SBP
on PM2.5, adjusting for age, race, SES status (household income, education, mari-
tal status, working more than 20 hours per week outside the home, perceived stress
score and SES Z-score), rural-urban continuum code, geographic location (via spa-
tial regression splines), cardiovascular risk factors (BMI, waist-hip-ratio, smoking
status, alcohol use, history of diabetes and hypercholesterolemia) and blood pres-
sure medication use.
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In order to better understand how the observed PM2.5 effect varies by PM2.5
composition, we will reanalyze the Sister Study cohort in Section 6 to investigate
whether the association between PM2.5 and SBP is modified by clustering subjects
using component profiles of PM2.5.

3. Clustering spatially misaligned data. In this section we consider clus-
tering PM2.5 component observations into K component profiles, in the presence
of spatial misalignment between the monitor and subject locations by combining
existing methods for unsupervised clustering and spatial prediction.

Ideally we would like to observe the matrix X ∈ R
n×p of annual average mass

fractions at n cohort locations for p components of PM2.5, which we refer to as
component species. However, we can only observe the matrix X∗ ∈ R

n∗×p of an-
nual average mass fractions at n∗ AQS monitoring locations. (Throughout this pa-
per we use an asterisk to denote values at monitor locations, while values without
an asterisk correspond to cohort locations.) Geographic covariates such as distance
to primary roadways and land use categorizations are available at both monitoring
and cohort locations. Let R∗ ∈ R

n∗×d and R ∈R
n×d be matrices containing values

of d geographic covariates (which may include spatial splines) at monitoring and
cohort locations, respectively. Let U∗ ∈ R

n∗×K denote an assignment matrix for
monitoring locations, with each row having a 1 in a single entry and zeros in all
other entries. If U∗

ik = 1, observation i is assigned to cluster k. Denote by U the set
of matrices of this form.

For a two-stage exposure-health analysis, we first cluster the mass fraction ob-
servations to reduce dimension and identify representative component profiles.
Then only cluster labels (assignments) need to be predicted at cohort locations,
not full exposure vectors. The procedure can be broken down into the following
steps:

Step 1: Cluster monitoring data
(a) Create cluster centers M = [

μ1 · · · μK

]
from the monitoring data X∗.

(b) Make cluster assignments U∗ at monitor locations s∗ by assigning each
location to the cluster with the closest center.

Step 2: Predict cluster membership
(a) Train a classification model for predicting cluster assignments using covari-

ates R∗ and cluster assignments U∗ at monitoring locations.
(b) Predict cluster assignments Û at cohort locations using this classification

model and covariates R.

Cluster assignments from Step 2(b) can be used as effect modifiers of the associa-
tion between health outcomes and total PM2.5 mass, which we assume has already
been predicted at subject locations. By separating the procedure into two steps
(clustering and prediction), we allow for flexibility in the choice of a prediction
model, recognizing that different methods may perform better in certain scenarios.
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In the following subsections we describe the procedure in more detail. In Sec-
tion 4 we present an alternative to k-means clustering for Step 1(a), which leads to
improved performance in Step 2 and increased power to detect effect modification
in a health analysis.

3.1. Step 1: Clustering monitoring data. The widely used k-means algorithm
provides a straightforward way to simultaneously define cluster centers for the
mass fraction data [Step 1(a)] and make cluster assignments at monitor locations
[Step 1(b)]. The k-means solution is a reduction, indexed by the assignment matrix
U∗, of multivariate data (X∗) into K clusters, each identified by its center (or rep-
resentative vector) μk , that minimizes the within-cluster Sum-of-Squares (wSS∗):

(1) wSS∗ = 1

n∗
∥∥X∗ − U∗MT∥∥2

F ,

where M = [
μ1 · · · μK

]
. The center for the kth cluster is the mean of the vec-

tors assigned to that cluster: μk = 1
N∗

k

∑
i:U∗

ik=1 x∗
i , where N∗

k = ∑n∗
i=1 U∗

ik is the

number of observations in the kth cluster. Implementations of the k-means algo-
rithm, often that of Hartigan and Wong (1979), exist in many statistical packages,
which makes this approach easy to implement using existing software.

3.2. Step 2: Predicting cluster membership. The classification model chosen
for Step 2 can be any multiclass prediction method. Here we focus on multinomial
logistic regression, although we also consider other methods such as support vector
machines (SVMs) in the simulations and particulate matter analysis.

For multinomial logistic regression, let Zi ∈ {1, . . . ,K} denote the assignment
of observation i to one of K classes (here, clusters from Step 1). The multinomial
logistic regression model postulates that

log
P(Zi = k)

P (Zi = K)
= rT

i γ k for k = 1, . . . ,K − 1,

(2)

P(Zi = K) = 1 −
K−1∑
i=1

P(Zi = k),

where � = (γ 1, . . . ,γ K−1) is a matrix of regression coefficients and rT
i is a row

of R. The system (2) defines a generalized linear model, and maximum likeli-
hood estimates of � can be computed using a standard iteratively reweighted least
squares algorithm. Rewriting (2) as the softmax function

(3) P(Zi = k;�, r i) = exp(rT
i γ k)

1 + ∑K−1
k′=1 exp(rT

i γ k′)

and plugging in the maximum likelihood estimates �̂ = (γ̂ 1, . . . , γ̂ K−1) yields
classification probabilities for each observation. The matrix Û of predicted cluster
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membership is created by assigning each observation to the cluster with the largest
classification probability:

(4) ûik =
{

1, if P(Zi = k; �̂, r i ) > P
(
Zi = k′; �̂, r i

)
for k′ �= k,

0, otherwise.

3.3. Evaluating predictive error. The performance of the clustering procedure
can be evaluated by the mean squared prediction error (MSPE) across cohort lo-
cations, MSPE = 1

n
‖X − ÛMT‖2

F , which gives the sum of squared distances be-
tween observations X and the centers of the clusters to which each observation
is predicted to belong (ÛMT). MSPE can be broken down into two components:
representativeness of the cluster centers and accuracy of predicted cluster mem-
bership.

Similar to representativeness at monitor locations, which is quantified by wSS∗
as defined in (1), cluster representativeness at cohort locations is computed as
wSS = 1

n
‖X − UMT‖2

F . The matrix U = arg minŨ∈U ‖X − ŨM‖2
F contains as-

signment to the nearest cluster (which may not be the cluster to which a location
was predicted to belong).

The accuracy of predicted cluster membership is quantified using two metrics,
classification accuracy (Acc) and mean squared misclassification error (MSME).
Classification accuracy is the proportion of locations correctly classified: Acc =
1
n

∑K
k=1

∑
i:U ik=1 1(Û ik = 1). The straightforward interpretation of Acc makes it

an attractive metric. However, Acc does not account for the magnitude of misclas-
sification. MSME provides this information by averaging the squared distances
between the closest cluster centers UMT and the predicted cluster centers ÛMT;
that is, MSME = 1

n
‖UMT − ÛMT‖2

F .
All of these measures require knowing the (typically unavailable) cohort ob-

servations X, but in applications can be estimated via cross-validation. Because
wSS and MSME are on the same scale, we can directly compare them to assess the
trade-off between representativeness and prediction accuracy, analogous to trading
off between bias and variance to achieve lower mean squared error in parameter
estimation.

4. Covariate-adaptive clustering of spatially misaligned data. The k-
means algorithm clusters multi-pollutant observations at monitored locations, but
does not account for the need to predict cluster membership at cohort locations
(Step 2), which is required for spatially misaligned data. There is no reason to
expect that membership in clusters identified by k-means using pollutant observa-
tions at monitoring locations will be accurately predicted at subject locations using
geographic covariates. If cluster membership cannot be predicted well at subject
locations, then the identified clusters are of little use for epidemiological analysis.

To address this problem, we propose incorporating the geographic covariates
that will be used for predicting cluster membership into the procedure for defining
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cluster centers. We first use a soft-assignment procedure, described in Section 4.1,
that yields cluster centers. We then make hard assignments to clusters by minimiz-
ing the distance between observations and their assigned cluster center in the same
manner as k-means. We refer to this clustering procedure as predictive k-means.

4.1. Defining cluster centers for predictive k-means. Let Z∗
i be a latent ran-

dom variable that takes on values k = 1, . . . ,K and represents cluster membership.
We relate this variable to the covariates r∗

i via a multinomial logistic regression
model. Let qk(r

∗
i ,�) denote P(Z∗

i = k;�, r∗
i ), with the latter defined as the soft-

max function in (3). Conditional on the value of Z∗
i , assume that the observation

x∗
i is normally distributed as (x∗

i |Z∗
i = k) ∼ Np(μk, σ

2I ). This model implies the
following log-likelihood function:

�
(
�,M, σ 2|X∗;R∗) =

n∑
i=1

log

(
K∑

k=1

qk

(
r∗

i ,�
)(

2πσ 2)−p/2

(5)

× exp
(
− 1

2σ 2

∥∥x∗
i − μk

∥∥2
))

.

The log-likelihood in (5) corresponds to a one-level mixture of experts problem
[Jordan and Jacobs (1994)]. Mixture of experts models use set classification mod-
els (the “experts”) that are combined via a “gating” network that uses soft as-
signment to select between experts. By incorporating hierarchical levels of gating
networks, mixture of experts models can be quite flexible. Following the approach
of Jordan and Jacobs (1994), we solve (5) using the EM algorithm with iterative
updates to μ̂k , σ̂ 2 and �̂. Details of the algorithm are provided in the Supplemental
Material [Keller et al. (2017)].

Using this approach, the cluster centers μk (columns of M) depend upon the
covariates R∗ via a multinomial logistic regression model for cluster assignment.
The incorporation of prediction covariates into the cluster centers improves the
accuracy of predicting cluster membership at cohort locations.

The parameter estimates �̂ provide “working” cluster assignments for monitor
locations. This suggests an alternative approach for prediction in which the cluster
membership at cohort locations is predicted using qk(r i , �̂) instead of building a
separate classification model (Step 2). Such an approach, however, does not use op-
timal assignments (conditional on identified cluster centers) at monitor locations.
In the simulations and PM2.5 analysis, we compare this approach to multinomial
logistic regression and classification using an SVM.

4.2. The role of the variance. The parameter σ 2 implicitly controls the trade-
off between representativeness and predictive accuracy. As σ 2 → 0, the optimiza-
tion problem of maximizing the log-likelihood (5) reduces to the k-means opti-
mization problem, assuming all qk are nonzero [Bishop (2006), Chapter 9]. For
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predictive k-means, we restrict σ 2 to be positive, but small values of σ 2 allow for
increased representativeness (smaller wSS) while larger values of σ 2 allow for im-
proved predictive accuracy (smaller MSPE and MSME) at the cost of decreasing
representativeness.

Here we estimate σ 2 using maximum likelihood, as described in Section 4.1.
An alternative approach is to select σ 2 using cross-validation (CV). The predictive
k-means procedure (selection of cluster centers, assignment of monitors to clus-
ters, fitting of classification model and prediction of cluster membership) could
be repeated on CV data sets for various fixed values of σ 2 and then the value of
σ 2 that yielded the smallest cross-validated value of MSPE selected for use in the
primary analysis. However, this can be computationally impractical in situations
where CV is already being used for model selection. For that reason, we do not
select σ 2 by CV in the analysis of PM2.5 components in Section 6, but we provide
an example of this approach in the simulations.

5. Simulations. We conducted two sets of simulations to demonstrate the
clustering approaches presented here. The first set illustrates the differences be-
tween the clusters from predictive k-means and standard k-means procedures in a
two-dimensional setting that allows for easy visualization of the centers. The sec-
ond set demonstrates the methods in a higher-dimensional setting and includes a
simulated health analysis to elucidate benefits in power achieved by using clusters
from predictive k-means.

5.1. Two-dimensional exposures. For the first simulation set, we consider two-
dimensional exposures (X1, X2) and three independent covariates (R1, R2 and
W ). Only R1 ∼ N(0,1) and R2 ∼ N(0,1) are observed, while W ∼ Bernoulli(0.5)

is unobserved. The covariates determine membership in one of four underlying
clusters (denoted by Z ∈ {1,2,3,4}), constructed so that two clusters cannot be
distinguished using the observed covariates:

Z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if R1 < 0 and W = 1, for all R2,

2, if R1 < 0 and W = 0, for all R2,

3, if R1 > 0 and R2 > 0, for all W,

4, if R1 > 0 and R2 < 0 for all W.

Conditional on cluster membership, the exposures X1 and X2 are normally dis-
tributed: (X1|Z = k) ∼ N(μk1,1) and (X2|Z = k) ∼ N(μk2,1), where μ1 =
(−4,1), μ2 = (−4,−1), μ3 = (4,1) and μ4 = (4,−1). By design, observations
from clusters 1 and 2 cannot be distinguished using the observed covariates avail-
able for prediction.

For a set of 1000 replications, each with a sample size of n = 1000, cluster
centers were identified using the k-means and predictive k-means procedures de-
scribed in Sections 3 and 4. The iterative optimization algorithms for both methods
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FIG. 1. Cluster centers from Simulation 1. Figures (a) and (c) are the centers identified by regular
k-means when K = 3 and K = 4, respectively. Figures (b) and (d) are the centers identified by
predictive k-means when K = 3 and K = 4, respectively. Each point in the clouds is a cluster center
from a single replication; the outlined diamonds denote the latent cluster centers.

are not guaranteed to find global optima [Jordan and Jacobs (1994)], and so 50 dif-
ferent starting values were used for optimization. For each replication, a second
sample of 1000 observations was drawn from the same data-generating mecha-
nism and underlying cluster membership at these test locations predicted using
multinomial logistic regression with covariates R1 and R2. This simulation was
done twice, once identifying K = 3 clusters and once identifying K = 4 clusters.

When K = 3, we are selecting a number of clusters less than the number in
the data-generating model. This scenario is plausible in applications when the un-
derlying data-generating mechanism is not fully known. We see in Figure 1(a)
that k-means correctly identified two cluster centers (either μ1 and μ2 or μ3 and
μ4) and would estimate the center of the third cluster as approximately (4,0) or
(−4,0), respectively. Because k-means does not incorporate R1 or R2 into the
cluster centers, the estimated centers are evenly split between these two possibil-
ities. On the other hand, Figure 1(b) shows that the predictive k-means procedure
estimated centers in approximately the same location for all replications: (4,1),
(4,−1), and (−4,0). The first two clusters correspond to μ3 and μ4, while the
third center estimated by predictive k-means is directly between μ1 and μ2, which
are indistinguishable by the prediction covariates R1 and R2.
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Measures of representativeness and predictive accuracy are reported in Ta-
ble B.1 of the Supplemental Material [Keller et al. (2017)]. The classification ac-
curacy of k-means is 0.83, and predictive k-means improves upon this by eight
percentage points (0.91). While wSS is less than 1% higher for predictive k-means
than for regular k-means, misclassification error (MSME) drops by more than 50%
(0.54 for predictive k-means compared to 1.13 for regular k-means).

When K = 4, we are selecting the same number of clusters as in the data-
generating mechanism. In this scenario, predictive k-means also provides mea-
surable improvement in predictive accuracy, as MSME drops by almost 25% (from
2.02 to 1.53) with little loss in representativeness (wSS increases by 2%). Predic-
tive k-means achieves this trade-off by selecting centers corresponding to clus-
ters 1 and 2 [Figure 1(d)] that are closer to one another than the centers identified
by k-means [Figure 1(c)]. This reduces prediction error when cluster membership
is incorrectly predicted.

These simulations demonstrate how when informative covariates (R1, R2) are
allowed to influence cluster centers we can get substantial improvements in pre-
dictive accuracy with little loss in representativeness. This simulation was repeated
using uninformative covariates [i.i.d. N(0,1) random variables independent of all
other covariates and the outcome] in the predictive k-means procedure and to pre-
dict cluster membership in the test set. The results from this simulation, also pre-
sented in Table B.1 of the Supplemental Material [Keller et al. (2017)], show that
predictive k-means performs essentially the same as k-means when the covariates
do not provide useful information.

5.2. Multi-pollutant spatial exposures. For the second set of simulations, we
simulated long-term average observations for p = 15 pollutants at 7333 AQS mon-
itor locations throughout the contiguous United States.

We first assigned each location to belong to one of three latent spatial clus-
ters and one of three latent nonspatial clusters, with membership denoted by
Ai ∈ {1,2,3} and Bi ∈ {1,2,3}, respectively. To assign Ai , a correlated spatial sur-
face was simulated according to the model z ∼ N(x̃L + ỹL,0.25V ), where x̃L

i and
ỹL
i are normalized versions of the Lambert coordinates xL

i and yL
i . The matrix V

has exponential covariance structure: Vij = exp(−‖(xL
i , yL

i ) − (xL
j , yL

j )‖2/400).
This surface was partitioned into tertiles to give the values Ai . Membership in the
nonspatial clusters (Bi) was assigned using i.i.d. draws from a uniform distribu-
tion.

Conditional on latent cluster membership, the pollutant observations xi at each
location were simulated from a log-normal distribution:(

xij |Ai = k,Bi = k′) ∼ LN
(
log(4 + ajk + bjk′) − 0.125,0.25

)
for j = 1, . . . , p. The component means E[xij |Ai = k,Bi = k′] = 4 + ajk + bjk

are combinations of coefficients determined from spatial and nonspatial cluster
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memberships. Each ajk (for j = 1, . . . , p and k = 1, . . . ,K) is an independent ob-
servation from the normal distribution N(0, σ 2

A). Similarly, bjk ∼ N(0, σ 2
B). We

considered two settings for (σ 2
A,σ 2

B): (1,2), which induces greater separation be-
tween clusters in the nonspatial partition than between clusters in the spatial par-
tition, and (2.5,0.5), which results in greater separation between clusters in the
spatial partition. In the latter scenario we expect both k-means and predictive k-
means to find similar cluster centers since the greatest between-cluster separation
is among clusters that depend upon spatial covariates. The component concentra-
tions were converted to mass fractions by dividing by total particulate matter, that
is, x̃ij = xij /PMi , where PMi = ∑p

j=1 xij .
For each of 500 replications, 200 locations were randomly selected as “mon-

itors” and the remaining locations served as “cohort” locations. Cluster centers
were estimated from the mass fractions x̃ij at “monitor” locations via regular
k-means and predictive k-means, using a matrix of thin-plate regression splines
(TPRS) with 15 degrees of freedom (df) as R∗. We present results for estimating
the mixture model variance parameter σ 2 via maximum-likelihood and via CV.
Cluster membership at “cohort” locations was predicted using multinomial logis-
tic regression (MLR), an SVM and the working coefficients from the mixture of
experts model.

Predicted cluster assignments were then used as interaction variables in a linear
regression analysis of the association between SBP and PM. Blood pressure mea-
surements for each “cohort” location were simulated as yi = 115 + ∑p

j=1 xijβj +
εi , where εi ∼ N(0, σ 2

SBP). The values of βj were chosen so that the variability
in the SBP–PM association was the same among the latent spatial and nonspa-
tial clusters. For each set of predicted cluster assignments Û , we fit the linear
model E[yi |PMi , Ûi] = β0 + β02IÛi=2 + β03IÛi=3 + β1PMi + β12PMiIÛi=2 +
β13PMiIÛi=3. A Wald test of the null hypothesis H0 : β12 = β13 = 0 was per-
formed to determine whether there were between-cluster differences in the associ-
ation between SBP and PM.

When (σ 2
A,σ 2

B) = (1,2), overall prediction error was lowest for predictive k-
means with σ 2 selected by CV and MLR used as the classifier (MSPE = 15.03).
Misclassification error (MSME) was more than 50% smaller for predictive k-
means compared to regular k-means (1.72 compared to 4.18) and classification
accuracy was 15 percentage points higher (see Table 1). The clusters identified by
predictive k-means were only slightly less representative (wSS of 13.57 and 13.69)
than those identified by k-means (13.38).

The power for detecting a between-cluster difference (at the α = 0.05 level)
in health effect is plotted in Figure 2 for varying values of σSBP. In the setting
(σ 2

A,σ 2
B) = (1,2), all three prediction methods gave similar results for predictive

k-means with σ 2 selected by maximum likelihood, while MLR performed best
for clusters from regular k-means and predictive k-means with σ 2 chosen by CV.
The highest power was obtained by predictive k-means with σ 2 selected by CV
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TABLE 1
Measures of representativeness (wSS) and predictive accuracy (MSPE, MSME, Acc) for

Simulation 2. Cluster centers were identified by k-means and predictive k-means using either
maximum likelihood (EM) or cross-validation (CV) for selecting σ 2. Predictions were made using

multinomial logistic regression (MLR), support vector machines (SVM) and the working coefficients
from the Mixture of Experts algorithm (ME-Working)

(σ 2
A,σ 2

B) Clustering method Prediction method MSPE wSS MSME Acc

(1,2) k-means MLR 16.80 13.38 4.18 0.45
SVM 17.09 13.38 4.43 0.42

Predictive k-means MLR 15.43 13.57 2.45 0.58
with σ̂ 2 selected by EM SVM 15.75 13.57 2.47 0.54

ME-Working 15.68 13.57 2.63 0.55
Predictive k-means MLR 15.03 13.69 1.72 0.60

with σ̂ 2 selected by CV SVM 15.27 13.69 1.86 0.57
ME-Working 15.17 13.69 1.81 0.58

(2.5,0.5) k-means MLR 14.12 12.97 1.92 0.75
SVM 14.31 12.97 2.07 0.72

Predictive k-means MLR 13.79 12.90 1.46 0.79
with σ̂ 2 selected by EM SVM 13.89 12.90 1.54 0.78

ME-Working 14.01 12.90 1.65 0.76
Predictive k-means MLR 13.75 12.90 1.37 0.80

with σ̂ 2 selected by CV SVM 13.88 12.90 1.48 0.78
ME-Working 13.85 12.90 1.44 0.78

(0.76 at σSBP = 4), followed by predictive k-means with σ 2 chosen by maximum
likelihood (0.60) and regular k-means (0.42). When true (oracle) cluster assign-
ments were used, the power from regular k-means clusters (0.90) exceeded that
from predictive k-means clusters with σ 2 chosen by maximum likelihood (0.78).
This demonstrates that the benefits in power for predictive k-means are due to the
improved predictive accuracy despite the slight loss in representativeness.

When (σ 2
A,σ 2

B) = (2.5,0.5), representativeness was essentially the same for
both methods (12.97 for k-means, 12.90 for predictive k-means). Although overall
prediction error was only slightly smaller for predictive k-means, prediction ac-
curacy was 4 percentage points higher and misclassification error approximately
25% lower for predictive k-means (1.46 and 1.37 versus 1.92). The power for
detecting effect modification was essentially the same for all clustering and clas-
sification methods, with the exception of low power when the SVM approach and
the mixture of experts working coefficients were used for predictive k-means with
σ 2 chosen by CV (see Figure 2). These results show that predictive k-means and k-
means have comparable performance in settings where they are identifying similar
cluster centers.
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FIG. 2. Power for detecting a between-cluster difference in SBP–PM association from Simula-
tion 2. Clusters identified by k-means (KM) and predictive k-means with σ 2 chosen by maximum
likelihood (PKM-MaxLik) or cross-validation (PKM-CV). Cluster membership was predicted us-
ing multinomial logistic regression (MLR), SVM, working coefficients from the mixture of experts
model (ME-Working) or oracle assignment using true exposure values. The rows correspond to
(σ 2

A,σ 2
B) = (1,2) and (σ 2

A,σ 2
B) = (2.5,0.5).

6. PM2.5 components and NIEHS Sister Study. To expand upon the analy-
sis of Chan et al. (2015), we investigated the relationship between SBP and long-
term exposure to PM2.5, grouping subjects by predicted membership in clusters
with different component profiles. Our analysis included 47,206 cohort subjects
with complete covariate information.

We obtained data for 130 AQS monitoring locations that in 2010 measured mass
concentration for twenty-two PM2.5 component species (elemental carbon [EC],
organic carbon [OC], NO−

3 , SO2−
4 , Al, As, Br, Cd, Ca, Co, Cr, Cu, Fe, K, Mn,

Na, S, Si, Se, Ni, V and Zn) in addition to measurements of PM2.5 mass made
in accordance with the Federal Reference Methods. Annual averages were com-
puted by averaging all available daily observations from each monitoring location
having at least 41 measurements in the calendar year with a maximum gap of 45
days between observations. We converted mass concentrations to mass fractions
by dividing the annual average of each species at a monitoring location by the
annual average PM2.5 concentration at that location. To make the distribution of
mass fractions within each component more symmetric, we log-transformed the
mass fractions.

We applied the predictive k-means method to this monitoring data, selecting the
number of clusters and the covariates by 10-fold cross-validation. Because of the
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TABLE 2
Measures of clustering performance from 10-fold cross-validation of the PM2.5 component data

when K = 8 and the covariates are 2 PCA components and TPRS with 10 df

Clustering method Prediction method MSPE wSS MSME Acc

k-means Multinom Logit 20.10 14.46 8.96 0.67
SVM 18.95 14.46 7.06 0.68

Predictive k-means Multinom Logit 21.28 14.88 9.90 0.62
with σ̂ 2 selected by EM SVM 18.33 14.88 5.97 0.70

ME-Working 24.33 14.88 13.00 0.61

limited number of observations (n∗ = 130), we only investigated K ≤ 10. Using
a matrix of more than 200 geographic covariates at monitor locations, we com-
puted the first three scores from a principal component analysis (PCA). We con-
sidered models with either 2 or 3 PCA scores and TPRS with either 5 or 10 df, with
the same covariates used for determining cluster centers and in the classification
model. The smallest cross-validation MSPE was for the model with K = 8 clusters
and a combination of 2 PCA scores and 10 df TPRS as the covariates. Table 2 pro-
vides CV performance metrics for different prediction methods, and Table C.1 in
the Supplemental Material [Keller et al. (2017)] provides metrics for other choices
of K . A support vector machine (SVM) was used as the classification model be-
cause it resulted in better cross-validated predictive accuracy (MSPE = 18.33) than
multinomial logistic regression (21.28) or using the working coefficients from the
mixture-of-experts model (24.33). For comparison, we applied regular k-means to
the component data using the same prediction covariates. Cross-validated MSME
was slightly worse for regular k-means (18.95), and MSME was notably higher
(7.06) compared to predictive k-means (5.97).

The cluster centers identified by predictive k-means are plotted in Figure 3.
Many of the monitor locations in the Midwest and Mid-Atlantic regions were as-
signed to Cluster 1 (n∗ = 32), which has above average mass fractions of SO2−

4
and NO−

3 , suggestive of high ambient ammonia levels from agricultural emissions
favoring particulate over gaseous NO−

3 [U.S. EPA (2003)]. Cluster 2 (n∗ = 26)
included monitors from New England, the southeastern coast and parts of the up-
per Midwest, and had higher fractions of Cd, V and Ni, which are associated with
ship emissions [Thurston et al. (2013)] and residual oil burning in New York City
[Peltier et al. (2009)]. Monitors in the Southeast were mostly assigned to Cluster 3
(n∗ = 27) and had a component profile notable for its relatively low fraction of
particulate nitrate (NO−

3 ) relative to sulfate (SO2−
4 ), a pattern that has previously

been attributed to high amounts of acidic sulfate and low levels of ammonia in
the region [Blanchard and Hidy (2003)]. The California monitors were grouped
into Cluster 4 (n∗ = 8), which also had low sulfur fractions and large fractions
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FIG. 3. Cluster centers identified by predictive k-means in the 2010 annual average PM2.5 compo-
nent data. Species mass fractions were log transformed and then standardized so that values shown
represent relative composition. Components are ordered by decreasing mass concentration.

of sodium and nitrate particles, likely from marine aerosols and agricultural emis-
sions, respectively. Cluster 5 (n∗ = 8) included monitors from the Pacific North-
west and Southwest, with high fractions of almost all pollutants except sulfate.
Cluster 6 (n∗ = 20) had high fractions of Fe, Zn and Mn, which are indicative of
emissions from steel furnaces and other metal processing [Thurston et al. (2013)],
and the monitors assigned to this cluster were all near industrial plants of some
kind. Cluster 7 (n∗ = 8) had high fractions of the crustal elements Si, Ca, K and
Al, indicative of the surface soil composition in the Western U.S. [Shacklette and
Boerngen (1984)]. The eighth cluster was a single site outside of Pittsburgh, PA,
which has been previously noted for nonattainment of air quality standards due to
nearby industrial sources [U.S. EPA (2006)].

Predicted assignments to the predictive k-means clusters at Sister Study cohort
locations are mapped in Figure 4(b). Predicted membership at cohort locations
tended to follow the same general spatial patterns as monitor assignments, with
some differences in the Mountain West and Mid-Atlantic regions. A majority of
subjects were predicted to belong to Cluster 1 (n = 12,828), Cluster 2 (n = 13,926)
or Cluster 3 (n = 9915).

Using a linear model for SBP with the same confounders as Chan et al. (2015)
(see Section 2), we estimated the association between SBP and long-term PM2.5
exposure, stratifying exposure by cluster. We used predictions of 2010 annual av-
erage PM2.5 concentrations from a universal kriging model following the same ap-
proach as Sampson et al. (2013). The association coefficient estimates are provided
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FIG. 4. (a) Assigned predictive k-means cluster membership at AQS monitor locations. (b) Pre-
dicted cluster membership at Sister Study cohort locations (jittered to protect confidentiality).

in Table 3. The estimated difference in SBP associated with a 10 μg/m3 difference
in PM2.5 overall (without clustering) was 1.81 mmHg, which is higher than, but
still contained within the confidence interval for, the estimate obtained by Chan
et al. (2015) for 2006 annual average exposure. When estimating cluster-specific
associations, Cluster 1 had a much stronger association (4.37 mmHg higher SBP
for each 10 μg/m3 difference in PM2.5, 95% Confidence Interval [CI]: 2.38, 6.35)
than the estimate that pools all subjects together. The point estimates for Clusters
3 and 4 were also higher (2.91 and 3.51, respectively) than the unclustered esti-
mate. Although the point estimates for Clusters 5 and 6 were quite large (3.07 and
5.60, respectively), their confidence intervals were quite large and include 0. In
Clusters 2 and 7, there was no evidence of an association between PM2.5 and SBP.
A Wald test for effect modification showed that the differences between clusters
were statistically significant (p = 0.020). As a sensitivity analysis, we explored

TABLE 3
Estimated difference in SBP (in mmHg) associated with a 10 μg/m3 difference in annual ambient

PM2.5 exposure. Cohort is partitioned by membership in clusters from predictive k-means

Exposure n Est. 95% CI p-value

Overall PM2.5 47,206 1.81 (0.74, 2.88) <0.001
PM2.5 by Cluster 0.015a

Cluster 1 12,828 4.37 (2.38, 6.35) 0.000016
Cluster 2 13,926 0.77 (−1.19, 2.74) 0.44
Cluster 3 9915 2.91 (0.19, 5.62) 0.036
Cluster 4 4033 3.51 (0.68, 6.34) 0.015
Cluster 5 4057 3.07 (−1.07, 7.21) 0.15
Cluster 6 1029 5.60 (−0.71, 11.9) 0.08
Cluster 7 1418 −2.11 (−6.55, 2.33) 0.35

ap-value for a Wald test for a difference between cluster coefficient estimates.
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adjusting for finer scale spatial variation and allowing the coefficients for the co-
variates in the health model to vary by PM2.5 cluster assignment, however, this did
not substantively change the results (data not shown).

For comparison, we used regular k-means to cluster the PM2.5 component data
and predicted cluster membership at cohort locations using the same prediction co-
variates. The clustering results and a table of association estimates are provided in
Supplemental Material Section D [Keller et al. (2017)]. The cluster centers (Figure
E.1) are quite similar to those from predictive k-means, and the map of k-means
cluster assignments at subject locations (Figure E.2) looks visually similar to that
from predictive k-means. However, there are some notable differences in the es-
timated health effects. The estimate for k-means Cluster 1 is attenuated by more
than 30% compared to the predictive k-means analysis. Only 267 subjects were
predicted to belong to k-means Cluster 6 (compared to 1209 assigned to predictive
k-means Cluster 6), resulting in a highly variable estimate. For Cluster 3, the k-
means analysis estimates an attenuated effect, while the predictive k-means cluster
yields a similar, but larger and statistically significant association.

As a further sensitivity analysis, Section C of the Supplemental Material [Keller
et al. (2017)] presents results for analysis for different numbers of clusters. In
general, we see that, under other choices of K , the strongest significant health
effects are still estimated in subjects residing in the Midwest, South and California.

7. Discussion. We have presented a novel approach for clustering multivariate
environmental exposures and predicting cluster assignments in cohort studies of
health outcomes. The motivating application is air pollution epidemiology, where
multi-pollutant exposure data are available from regulatory monitoring networks,
but these monitors do not measure exposure at cohort locations. We first demon-
strated how dimension reduction could be performed through the existing method
of k-means clustering followed by spatial prediction. However, the clusters identi-
fied by k-means may not be predictable at subject locations, which makes them of
limited use for epidemiological analysis. To address this, we introduced the predic-
tive k-means method, which incorporates prediction covariates into the estimation
of cluster centers.

Through simulations, we demonstrate that clusters from predictive k-means pro-
vide substantial gains in prediction accuracy compared to the k-means approach.
The simulations did not provide strong evidence to favor one of the three classifi-
cation approaches compared (multinomial logistic regression, working coefficients
from the mixture of experts model and an SVM), however, the SVM clearly out-
performed the alternatives in the analysis of the PM2.5 component data. In addi-
tion to improved predictive accuracy, the simulations demonstrated that predictive
k-means clusters yield higher power for detecting effect modification by cluster
membership.

The mixture model (4.1) that is the foundation of the predictive k-means method
includes several assumptions about the data that are not required to hold for the
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method to show benefit. In particular, the model assumes multivariate normality,
independence between pollutants and constant variance across clusters. However,
we emphasize that we employ this mixture model as a tool for constructing cluster
centers for analysis, and do not assume that this parametric mixture model can fully
represent the complicated processes that generate the particular matter components
under study. Furthermore, we violated each of these assumptions in the design of
Simulation 2 and still demonstrated benefit from predictive k-means. A potential
extension of predictive k-means for future work is to allow the cluster variance
parameter (σ 2) to vary between clusters rather than assuming a constant value for
the entire data set.

As with any cluster analysis, the choice of the number of clusters is important.
In our analysis of the PM2.5 component data, we chose K = 8 based upon a cross-
validation analysis. We restricted the candidate choices to K ≤ 10 due to the need
to have enough monitors assigned to each cluster so that a prediction model could
be developed. The results of Simulation 1 suggest that the benefits of predictive
k-means remain even when the chosen number of clusters does not match the un-
derlying data generation mechanism.

A challenge for the predictive k-means approach is adequately accounting for
uncertainty in cluster assignments in the health model. The health estimates pre-
sented here condition on cluster assignment and do not incorporate further uncer-
tainty. When multinomial logistic regression is used as the prediction method, clus-
ter assignment probabilities are available for propagation, conditional on cluster
centers. This could be approached as a categorical extension of the multi-pollutant
measurement error approaches of Bergen and Szpiro (2015). But when an SVM is
used for classification, as in the data analysis here, no probabilistic uncertainties
for the assignment are available. Accounting for uncertainty in predicted cluster
assignment at the same time as determining the cluster centers is more difficult.
Even for fixed K , choosing different covariates for the predictive k-means model
can result in different clusters, which makes interpretation of the clusters across
models unclear. A direction for addressing this problem is the post-selection infer-
ence approaches of Berk, Brown and Zhao (2010) and Lee et al. (2016).

We found a significant association in the NIEHS Sister Study between SBP and
2010 long-term ambient PM2.5 exposure that was higher than previous estimates
based upon 2006 exposure when ignoring PM2.5 composition [Chan et al. (2015)].
Although all baseline measurements on Sister Study participants were complete
prior to 2010, we used 2010 measurements due to changes in the collection of
PM2.5 speciation data during prior years. Using clusters identified by predictive
k-means, we found that this association varied significantly by PM2.5 composi-
tion and was strongest among subjects predicted to belong to Clusters 1 and 3,
which included most subjects living in the Midwest and Southeast. These results
are consistent with the findings of Thurston et al. (2013), who found that PM2.5
exposure dominated by secondary aerosols was significantly associated with mor-
tality. The strength of the estimated effects in clusters with component profiles
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notable for secondary aerosols may be due in part to the available speciation data
since the relatively small number of monitors means that the component data, and
the clusters derived from them, capture regional variation better than small-scale
(within-city and near-source) variability.

By incorporating covariate information into cluster centers, the predictive k-
means procedure performs dimension reduction appropriate for spatially mis-
aligned data. This method provides a useful tool for understanding how differences
in exposure composition are associated with health effects.
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Supplemental material for “Covariate-adaptive clustering of exposures for
air pollution epidemiology cohorts” (DOI: 10.1214/16-AOAS992SUPP; .pdf).
The Supplemental Material document contains details of the algorithm for select-
ing predictive k-means cluster centers, additional results from the simulations, sen-
sitivity results from the PM2.5 analysis that use different numbers of clusters, and
the results from applying k-means clustering to the PM2.5 data.
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