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We propose a lag functional linear model to predict a response using
multiple functional predictors observed at discrete grids with noise. Two pro-
cedures are proposed to estimate the regression parameter functions: (1) an
approach that ensures smoothness for each value of time using generalized
cross-validation; and (2) a global smoothing approach using a restricted max-
imum likelihood framework. Numerical studies are presented to analyze pre-
dictive accuracy in many realistic scenarios. The methods are employed to
estimate a magnetic resonance imaging (MRI)-based measure of tissue dam-
age (the magnetization transfer ratio, or MTR) in multiple sclerosis (MS) le-
sions, a disease that causes damage to the myelin sheaths around axons in the
central nervous system. Our method of estimation of MTR within lesions is
useful retrospectively in research applications where MTR was not acquired,
as well as in clinical practice settings where acquiring MTR is not currently
part of the standard of care. The model facilitates the use of commonly ac-
quired imaging modalities to estimate MTR within lesions, and outperforms
cross-sectional models that do not account for temporal patterns of lesion
development and repair.

1. Introduction. Multiple sclerosis (MS) is an inflammatory disease of the
central nervous system in which the myelin sheaths around the axons of the neu-
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rons in the brain and spinal cord are damaged. Focal areas of tissue damage in
the brain and spinal cord are known as “lesions.” These lesions appear in various
locations in the brain at different time points. Magnetic resonance imaging (MRI)
is sensitive to these lesions and is the most important tool used by clinicians to
diagnose and monitor the disease. One benchmark diagnostic criterion that is ob-
served via MRI is the number of white matter lesions [McDonald et al. (2001),
Polman et al. (2005)]. Conventional MRI modalities that are used in routine clin-
ical practice to observe lesions are T1-weighted (T1w), T2-weighted (T2w) and
T2-weighted fluid attenuated inversion recovery (FLAIR) images. However, it has
been argued that rudimentary measures of lesion burden, including the number
and volume of lesions, only moderately correlate with disability [Barkhof (2002),
Brex et al. (2002), Hawkins et al. (1990), Schmierer et al. (2004)]. Therefore, much
research in the field has centered on investigating the use of images that quantify
tissue damage (e.g., white matter) and are believed to correlate with disability, such
as magnetization transfer ratio (MTR) maps, which are sensitive to the degree of
demyelination as well as lesion remyelination. Axons of the neurons in the white
matter of the brain are insulated with a myelin sheath, which increases the speed
at which impulses propagate along the axon. Demyelinating diseases, such as MS,
destroy this layer of myelin, in a process called demyelination. Remyelination is
the process of creating new myelin sheaths along these axons.

Here, we estimate MTR within lesions after lesion incidence using only the
T1w and FLAIR images. MTR is not typically acquired in clinical settings, yet it
would be a valuable addition to the typically acquired images and is believed to
contain information about the disease process in MS [Chen et al. (2007, 2008)].
While MTR is not typically collected in clinical practice, the FLAIR and T1w
volumes are routinely collected. Prediction of MTR in lesions will be useful in
research applications where MTR was not acquired, as well as in clinical practice
settings where acquiring MTR is not currently part of the standard of care. In
practice, MTR is also an imaging sequence known to contain much noise [Reich
et al. (2015)]. Predicting MTR within lesions with the longitudinal information
in the FLAIR and T1w volume could therefore potentially provide a less noisy
measurement of the MTR.

We propose a voxel-level model that uses sparsely sampled functional measure-
ments of the T1w and FLAIR images over a fixed window of time to predict MTR
within lesions. The model yields improvement over cross-sectional models that do
not account for temporal patterns of early lesion evolution. This will ultimately
allow researchers to study the effect of treatments on tissue damage in patients
with MS.

We analyze data that were obtained from a group of 53 MS patients at the Na-
tional Institute of Neurological Disorders and Stroke (NINDS). Each patient was
scanned between 9 and 38 times over a period of 5.5 years. In this longitudinal
study, the number of visits varies for each patient; MTR maps, T1w, and FLAIR
images were acquired at each of the visits. For our analysis, the voxels in all of the
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images are temporally registered to obtain voxel-level intensity trajectories over
time. The images are also segmented to obtain the set of voxel trajectories that
correspond to areas of white matter containing MS lesions. Our objective is to
relate current MTR intensity in a given voxel (within a lesion) to the T1w and
FLAIR intensities in the same voxel observed over time. The observed voxel-level
trajectories are discrete observations arising from a continuous process over time.
Therefore, to predict MTR, we employ a function-on-function regression frame-
work.

We propose a model for prediction of the functional response (MTR) beginning
6 months after lesion incidence, using the prior six months of the observed intrale-
sional functional predictors (T1w and FLAIR) at the voxel level. As documented
by Van Den Elskamp et al. (2008), MTR values may decrease subtly in areas of
future lesion formation within a six-month period. Current methods in the func-
tional data analysis literature do not model the relationship between a functional
response and more than one functional predictor when it is assumed that only the
recent past of the predictors affect the current value of the response. We develop
a model that is able to use only the intensity of the T1w and FLAIR images ob-
served in the previous six months of historical data to predict MTR at the current
time point.

Functional data analysis has been a very active research area due to a surge of
applications; see Besse and Ramsay (1986), Ferraty, Vieu and Viguier-Pla (2007),
Horváth and Kokoszka (2012), Ramsay and Silverman (2005), Rice and Silverman
(1991), to name a few. In particular, function-on-function regression has attracted
increasing interest, starting with the functional linear model introduced in Ramsay
and Silverman (2005) for which Scheipl and Greven (2015) address identifiabil-
ity issues. Meyer et al. (2015) proposes a multilevel, wavelet-based, Bayesian
function-on-function regression framework. Additionally, Scheipl, Staicu and
Greven (2015) proposed a framework that incorporates additive regression models
in penalized function-on-function regression. Recently, Ivanescu et al. (2015) de-
veloped a penalized regression method for association models between functional
responses and multiple functional predictors, where the current response is allowed
to depend on the entire trajectory of the predictor. Until recently, the work related
to function-on-function regression has been able to account for only one functional
predictor; see He et al. (2010), Ramsay and Dalzell (1991), Ramsay and Silverman
(2005), Wu, Fan and Müller (2010), Yao, Müller and Wang (2005b). For a com-
plete review of the current literature in this area, see Morris (2015).

Motivated by the medical application, we focus on the scientific problem of esti-
mating the functional response at a specific time point using only a fixed window of
history of the functional predictors. To address this problem when there is only one
covariate, Malfait and Ramsay (2003) introduced the Historical Functional Linear
Model (HFLM). In their model, they represent the coefficient function using a tri-
angular basis function that is estimated using information from the predictor, and
estimate a coefficient function at each observation point. Harezlak et al. (2007)
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present a penalized approach that allows for varying lags for the HFLM. Kim,
Şentürk and Li (2011) propose a least-squares approach to fitting this model by
estimating the coefficient function at each timepoint known as the Recent HFLM.
However, their methods do not account for more than one predictor.

In this paper we study function-on-function regression where the response and
predictors are functions defined on the same domain, multiple functional predic-
tors are considered, and the response depends solely on a fixed window of the
functional predictors. To estimate the regression parameter functions, we propose
two methods: (1) a semi-local smoothing approach; and (2) a global smoothing
approach.

We introduce the modeling framework in Section 2. Two estimation procedures
are presented in Sections 2.1 and 2.2. Medically relevant extensions to sparse and
noisy predictors are discussed in Section 2.3. We evaluate the proposed methods
in a simulation experiment in Section 3. In Section 4, the proposed estimation
approaches are then applied for predicting MTR trajectories using the recent past
of T1w and FLAIR voxel-level intensities.

2. Methodology. Suppose we observe data, [Yij , tij : i ∈ {1, . . . , n} and j ∈
{1, . . . ,m0i}], [X1ij , r1ij : i ∈ {1, . . . , n} and j ∈ {1, . . . ,m1i}] and [X2ij , r2ij : i ∈
{1, . . . , n} and j ∈ {1, . . . ,m2i}], where tij , r1ij , r2ij ∈ T , a bounded and closed
interval. For example, Yij corresponds to the MTR measurement at voxel i at
time tij . In our data, there are n voxels under consideration and m0i observations
for voxel i. The variables X1ij and X2ij correspond to the smooth T1w and FLAIR
intensities for voxel i at times r1ij and r2ij , respectively. Our data analysis relies
on the working assumption that the measurements are independent across voxels.
Additionally, we assume the voxels in the scans of patients are properly registered
over time. Throughout the rest of this section we consider r1ij = tij and r2ij = tij ,
and make use of r1ij and r2ij again in Section 3 where we present simulations.

Let X1ij = X1i (tij ) and X2ij = X2i (tij ), and assume that X1i (·) and X2i (·) are
independent and square-integrable random smooth functions over T . Without loss
of generality, let us assume E[X1i (t)] = E[X2i (t)] = 0. Assume that the predictor
functions are observed on a dense grid of points and without noise, and the re-
sponse is observed on a dense and equidistant grid of points tij = tj ; more realistic
sampling designs and scenarios will be considered in Section 2.3. We assume the
fixed-lag HFLM with multiple covariates for the response Yij ,

Yij = fi(tj ) + εi(tj ),

fi(tj ) = β0(tj ) +
∫ �1

0
β1(s, tj )X1i (tj − s) ds(2.1)

+
∫ �2

0
β2(s, tj )X2i (tj − s) ds,

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, β0 : T → R and β1, β2 : [0,�] × T → R

are continuous functions, and εi(·) is an independent (across i) measurement error
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with zero-mean and covariance σ 2
ε . εi(·) is also assumed to be independent of

X1i (·) and X2i (·).
This model (2.1) is used throughout the paper. For intuition, notice that fi(tj ) =

β0(tj )+ ∫ tj
tj−�1

β1(tj − s, tj )X1i (s) ds + ∫ tj
tj−�2

β2(tj − s, tj )X2i (s) ds. The model
assumes that, given the entire predictor trajectories, the response is affected by the
predictor values over only recent time windows of length �1 and �2, respectively;
these lag parameters are chosen based on scientific knowledge. For simplicity of
illustration, we let � = �1 = �2. The time-varying coefficient functions, β1(·, ·)
and β2(·, ·), weigh the predictor values over the � lag-window, and quantify the
effect of the predictors on the current response. While historical functional linear
models have been presented in the current literature [Kim, Şentürk and Li (2011),
Malfait and Ramsay (2003)] they have not accounted for multiple covariates as
model (2.1) does.

We discuss two approaches for estimating the model parameters β0(·), β1(·, ·)
and β2(·, ·). The first approach considers a pointwise (PW) estimation procedure
for each observed time point tij . The second approach considers a basis function
expansion using prespecified bases for each model parameter and conceptually
controls the smoothness over T globally (GB). The two approaches are detailed in
the next two sections.

2.1. PW model representation.

Model assumption. As is common in the nonparametric regression literature,
we assume that smooth coefficient functions can be represented using a basis
function expansion. Specifically, let {Bs1,k(s)}k and {Bs2,k(s)}k be two prespec-
ified functional bases on [0,�]. Then β1(s, t) is assumed to be represented as
a tensor product of the form β1(s, t) =∑K1

k=1 Bs1,k(s)α1k(t), where K1 is large
enough to capture the flexibility of the model and the α1k(t)’s are unknown time-
varying coefficient functions defined on T . We use a similar basis expansion for
β2(s, t) = ∑K2

k=1 Bs2,k(s)α2k(t), where α2k(t)’s are unknown functions defined
on T .

Without loss of generality, we assume that K1 = K2 = K . Although many
choices for basis functions are possible, we use B-spline functions of degree 4
with 6 equally spaced interior knots over [0,�], which correspond to K = 10, as
the sets {Bs1,k(s)}k and {Bs2,k(s)}k . B-splines are determined by the degree of the
polynomial, and the number and location of the knots. The degree usually does
not have a strong effect on the model performance [Wood (2006)]. Typically the
knots are placed at equally spaced locations or equally spaced quantile locations.
Furthermore, it is common practice to use a large number of basis functions and
use a smoothness parameter to determine the smoothness of the fit [Ruppert, Wand
and Carroll (2003)]. The value of K in our application was selected empirically.
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Substituting the expressions for the coefficient functions into equation (2.1) yields

fi(tj ) = β0(tj ) +
K∑

k=1

α1k(tj )

∫ �

0
X1i (tj − s)Bs1,k(s) ds

(2.2)

+
K∑

k=1

α2k(tj )

∫ �

0
X2i (tj − s)Bs2,k(s) ds.

Furthermore, by denoting X̃1k,i(tj ) = ∫�
0 X1i (tj − s)Bs1,k(s) ds and X̃2k,i simi-

larly, equation (2.2) reduces to

(2.3) fi(tj ) = β0(tj ) +
K∑

k=1

X̃1k,i(tj )α1k(tj ) +
K∑

k=1

X̃2k,i(tj )α2k(tj ).

Fitting. This representation captures the dependence between the precom-
puted covariates (X̃1k,i and X̃2k,i) and the response using a varying-coefficient
model. Nevertheless, when the functional predictors are observed at sparse sam-
pling points for each i and possibly contaminated with error, these derived quan-
tities may not be directly computable. In this section, we develop an estimation
procedure of the HFLM model that depends on the continuous second moments
of the additive predictors. It does not require direct computation of X̃pk,i(t) and
accounts for the correlation between the functional predictors. A working indepen-
dence assumption over time for the error process εi(·) is assumed for fitting. This
representation of the function-on-function regression model will allow us to obtain
smooth pointwise estimates for the coefficient functions. A similar approach was
considered by Kim, Şentürk and Li (2011) for the recent history functional linear
model with one functional predictor. Here we present estimation of the coefficient
functions and prediction of the response for the dense case; and extensions to more
realistic settings are considered in Section 2.3.

Fix tj , and define α1kj = α1k(tj ) and α2kj = α2k(tj ). Notice that β0(tj ) =
E[Yij ], and thus β0(·) can be estimated by smoothing Yij ’s and using a working
independence assumption. By an abuse of notation, in the rest of the subsection,
let Yij denote Yij − β̂0(tj ), where β̂0(·) is a smooth estimator of β0(·). We estimate
α1kj ’s and α2kj ’s by minimizing the following penalized criterion:

(2.4)
∑
i

{
Yij − fi(tj )

}2 + λ1
∑
k

α2
1kj + λ2

∑
k

α2
2kj ,

where λ1 > 0 and λ2 > 0 are the regularization parameters. Let
αpj = [αp1j · · ·αpKj ]� for p = 1,2. Then the minimizer is

(2.5)
[
α̂1j

α̂2j

]
=
(
Z�

j Zj +
[
λ1IK 0

0 λ2IK

])−1 (
Z�

j

(
Yj − μY (tj )

))
,
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where IK is the K × K identity matrix, Yj is the vector of all observations at time
tj , μY (t) = E[Y(t)], and

(2.6) Zj =

⎡⎢⎢⎣
X̃11,1(tj ) · · · X̃1K,1(tj ) X̃21,1(tj ) · · · X̃2K,1(tj )

...
...

...
...

X̃11,n(tj ) · · · X̃1K,n(tj ) X̃21,n(tj ) · · · X̃2K,n(tj )

⎤⎥⎥⎦ .

For fixed tj , the analytic solution (2.5) is the solution in a ridge regression
framework for fixed values of the tuning parameters λ1 and λ2. In our case, α1kj ’s
and α2kj ’s represent the evaluations of smooth functions α1k(t) and α2k(t) at times
t = tj . However, selecting optimal values of λ1 and λ2 for each t could lead to high
variability of the tuning parameters over t . One approach to accommodate this sit-
uation is to assume that the tuning parameters are constant across t .

The parameter functions α1k(t) and α2k(t) can be estimated using the prob-
ability limits of the standardized block submatrices, Z�

j Zj and Z�
j Yj , that are

included in expression (2.5). Specifically, for arbitrary t ,

(2.7)
[
α̂1(t)

α̂2(t)

]
=
⎛⎜⎝[Ĝ11(t) Ĝ12(t)

Ĝ21(t) Ĝ22(t)

]
+
⎡⎢⎣

λ1

n
IK 0

0
λ2

n
IK

⎤⎥⎦
⎞⎟⎠

−1 [
Ĝ1Y (t)

Ĝ2Y (t)

]
,

where ĜpY (t) = [ĜpY1(t) · · · ĜpYK(t)]� is a vector, ĜpY l(t) is an estimator
of GpYl(t) = cov(X̃pl,i(t), Yi(t)), Ĝpq(t) = [Ĝ

X̃pl,X̃qk
(t)]kl is a K × K ma-

trix, and Ĝ
X̃pl,X̃qk

(t) is an estimator of G
X̃pl,X̃qk

(t) = cov(X̃pl,i(t), X̃qk,i(t)) for
p,q ∈ {1,2}. Although the model framework and estimation are discussed for two
functional predictors, it is straightforward to extend it to accommodate three or
more functional predictors.

To obtain the necessary quantities, observe that

cov
(
X̃pl,i(t), X̃qk,i(t)

)
=
∫ �

0

∫ �

0
E
[
Xpi(t − s1)Xqi(t − s2)

]
Bsp,l(s1)Bsq,k(s2) ds1 ds2(2.8)

=
∫ �

0

∫ �

0
GXpXq (t − s1, t − s2)Bsp,l(s1)Bsq,k(s2) ds1 ds2,

where GXpXq (s1, s2) is the covariance between Xpi(s1) and Xqi(s2). Similarly,

we also have that cov(X̃pl,i(t), Y (t)) = ∫�
0 GXpY (t − s, t)Bsp,l(s) ds, where

GXpY (s1, s2) is the covariance between Xpi(s1) and Yi(s2).
To use expression (2.7), we first need to obtain estimates of G11(t), G12(t),

G21(t), G22(t), G1Y (t) and G2Y (t). Once estimates of α1(t) and α2(t) are avail-
able, estimates for the coefficient functions are given by β̂1(s, t) =∑K1

k=1 Bs1,k(s)α̂1kj (t) and similarly for β̂2(s, t). We note that this estimation is
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restricted to the class of regression parameter functions that can be expanded us-
ing Bs1,k(s) and Bs2,k(s) for k ∈ {1, . . . ,K}. It follows that the response for the
ith voxel can be predicted at any time point t by

(2.9) Ŷi(t) =
∫ �1

0
β̂1(s, t)X1i (t − s) ds +

∫ �2

0
β̂2(s, t)X2i(t − s) ds.

Selection of the smoothing parameters λ1 and λ2 is very important. To ensure
that the regularization parameters are the same for all tj , these parameters can be
selected using cross-validation (CV) to minimize an error-based criterion that we
call the Normalized Prediction Error,

(2.10) NPE(λ1,λ2) = 1

n

n∑
i=1

{
1

m

[
m∑

j=1

|Ŷij − Yij |
]/[ 1

m

m∑
j=1

|Yij |
]}

;

a similar criterion is used in Kim, Şentürk and Li (2011). The algorithm for fitting
of the model using the PW approach is included in the Supplementary Material
[Pomann et al. (2016)].

2.2. GB model representation.

Model assumption. In this section, we propose the BG method, which takes
a global smoothing approach to estimate the regression coefficient functions of
the HFLM. This method estimates all the parameter functions β0(·), β1(·, ·) and
β2(·, ·) simultaneously. To do this, we assume an expansion of the coefficient
functions of the form β0(t) =∑M0

l=1 Bt0,l(t)b0l , β1(s, t) =∑M1
l=1 B1,l(s, t)b1l , and

β2(s, t) =∑M2
l=1 B2,l(s, t)b2l , where M0, M1 and M2 are large enough constants to

capture the variability of the coefficient functions. The discussion on the choice of
K in the PW approach is applicable for M0, M1 and M2. {Bt0,l(·)}, {B1,l(·, ·)} and
{B2,l(·, ·)} are preselected basis functions; and b0l , b1l and b2l are unknown basis
coefficients. For this study, the bivariate thin plate regression splines (TPRS) are
selected as the sets {Bp,l(·, ·)} with M1 = M2 = 30, and one-dimensional TPRS
are chosen as the set {Bt0,l(·)} with M0 = 10. These basis functions are commonly
used in the literature, and they are the default choices for the package mgcv [Wood
(2006, 2011)] in R that is used in our study. As in the PW approach, other choices
of basis functions could also be used with this framework.

Similar to Section 2.1, the conditional mean, fi(tj ), can be represented as

(2.11) fi(tj ) =
M0∑
l=1

B0t,l(tj )b0l +
M1∑
l=1

X̌1l,i (tj )b1l +
M2∑
l=1

X̌2l,i (tj )b2l ,

where X̌1l,i (tj ) = ∫�
0 X1i (tj −s)B1,l(s, tj ) ds and X̌2l,i (tj ) is defined analogously.

This representation is inspired by Ivanescu et al. (2015), which presents a penal-
ized function-on-function regression framework that uses the entire range for the
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predictor functions. Equation (2.11) looks similar to equation (2.3); the main dif-
ference is that the unknown coefficients, b0k , b1k and b2k are not time varying.
This modeling approach ensures smoothness of the regression parameter functions
β1(s, t) and β2(s, t) over both s and t .

Fitting. The coefficient vectors, b0 = [b01 · · ·b0M0]�, b1 = [b11 · · ·b1M1]� and
b2 = [b21 · · ·b2M2]�, are estimated by minimizing the following penalized crite-
rion:

(2.12)
∑
i,j

{
Yi(tj ) − fi(tj )

}2 + λ0P0(b0) + λ1P1(b1) + λ2P2(b2),

where λ0, λ1 and λ2 are smoothing parameters and P0, P1 and P2 are the penalty
terms [Ivanescu et al. (2015), Wood (2011)]. In particular, the integral of the
square of the second derivative is a common measure for smoothness, in which
case P0(b0) = ∫T {β ′′

0 (t)}2 dt = b�
0 S0b0 and Pp(bp) = ∫T ∫�

0 [{∂2βp(s, t)/∂s2}2 +
{∂2βp(s, t)/∂s ∂t}2 + {∂2βp(s, t)/∂t2}2]ds dt = b�

p Spbp , where S0 and Sp are
penalty matrices specified by the choice of basis functions for p = 0,1,2 [Wood
(2006)]. A working independence assumption over time for the error process εi(·)
is assumed for fitting.

Selection of the optimal regularization parameters can be done via generalized
cross-validation (GCV). However, empirical evidence suggests that GCV leads to
undersmoothing [Reiss and Ogden (2009), Wood (2011)]. Instead, the problem can
be posed as a mixed model of the form Xf bf + Zbr , where bf contains the fixed
effect parameters and br is a random effect vector [Wood (2006, 2011)]. In this
context, λ0, λ1 and λ2 represent variance components of the random effect covari-
ance structure. This framework allows us to use a restricted maximum likelihood
(REML) to estimate λ0, λ1 and λ2 [Reiss and Ogden (2009), Wood (2006, 2011)].
This approach is also more robust to nonindependent error assumptions [Ivanescu
et al. (2015), Krivobokova and Kauermann (2007)]. The algorithm for fitting of the
model using the GB approach is included in the Supplementary Material [Pomann
et al. (2016)].

Predictions of the functional response can be obtained using the same methodol-
ogy presented for the PW method. In particular, given that β̂0(t) =∑M0

l=1 Bt0,l(t)b̂0l

and β̂1(s, t) = ∑M1
l=1 B1,l(s, t)b̂1l with a similar expression for β̂2(s, t), then

Ŷi(t) = β̂0(t) + ∫�1
0 β̂1(s, t)X1i (t − s) ds + ∫�2

0 β̂2(s, t)X2i (t − s) ds.

2.3. Noisy and sparsely observed data. The estimation approach presented
above is applicable to smooth predictors observed on a fine grid of time points.
However, the response MTR and both covariates T1w and FLAIR are observed
at few time points for each voxel. Additionally, the measurements are contam-
inated with noise. To accommodate this situation, let Wpi(t) = Xpi(t) + εpi(t)

for p = 1,2, where εpi(·) is a zero mean white noise process with variance σ 2
p .
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Assuming the same sampling design for the functional covariates, we distinguish
4 different scenarios according to whether the response is sparse or dense, and
whether the functional predictors are sparse or dense. Namely, the scenarios are
as follows: sparse/sparse, dense/sparse, sparse/dense and dense/dense. In the fol-
lowing we discuss in detail the case sparse/sparse which is the most relevant for
our application; the remaining cases are detailed in the Supplementary Material
[Pomann et al. (2016)].

PW method. This approach requires smooth estimators of GX1X1(s1, s2),
GX2X2(s1, s2), GX1X2(s1, s2), GX1Y (s1, s2) and GX2Y (s1, s2), which can be ob-
tained using functional principal component analysis (FPCA). Mercer’s the-
orem yields the spectral decomposition of the covariance GXpXp(s1, s2) =∑∞

l=1 ωplψpl(s1)ψpl(s2) in terms of non-negative eigenvalues ωp1 ≥ ωp2 ≥ · · · ≥
0 and orthogonal eigenfunctions ψpl(t) with

∫
T ψpl(t)ψpl′(t) dt = 1(l = l′),

where 1(l = l′) is the indicator function which equals 1 when l = l′ and 0 oth-
erwise [Bosq (2000)]. Given that E[Xpi(t)] = 0, the above decomposition of
the covariance implies that Xpi(t) can be represented via the Karhunen–Loève
(KL) expansion as Xpi(t) =∑∞

l=1 ζpl,iψpl(t), where ζpl,i = ∫T Xpi(t)ψpl(t) dt

are commonly called the functional principal component (FPC) scores and are
uncorrelated random variables with zero mean and variance equal to ωpl . For
practical and theoretical reasons, the KL expansion is often truncated [Di et al.
(2009), Hall, Müller and Wang (2006), Yao, Müller and Wang (2005a)]; let X

L1
1i =∑L1

l=1 ζ1l,iψ1l(t) and X
L2
2i =∑L2

l=1 ζ2l,iψ2l(t) be the truncated KL expansions of
X1(t) and X2(t), respectively, for finite L1 and L2. The spectral decomposition
of the smooth estimates of GX1X1(s1, s2) and GX2X2(s1, s2) yields the pairs of
estimated eigenfunctions and eigenvalues {ψ̂1l , ω̂1l}l and {ψ̂2l , ω̂2l}l , respectively.
Then one can obtain consistent estimators of the scores ζ̂1l,i = ∫T X1i (t)ψ̂1l dt and
ζ̂2l,i = ∫T X2i (t)ψ̂2l dt [Hall, Müller and Wang (2006), Zhang and Chen (2007)].

Since the response is observed on a sparse grid of points, bivariate kernel
smoothing [Yao, Müller and Wang (2005a)] or spline-based smoothing [Wood
(2006)] can be used to estimate the covariance functions. In our implementation,
we make use of B-spline-based smoothing techniques [Crainiceanu, Staicu and
Di (2009), Di et al. (2009)]. To account for the measurement error, the diagonal
elements are left out when smoothing is carried out. The resulting covariance esti-
mator is adjusted to be symmetric and positive semidefinite. Then the variance of
the noise, σ 2

1 and σ 2
2 , can be estimated based on the difference between the empiri-

cal pointwise variance of the corresponding observed predictors and the estimated
pointwise variance ĜX1X1(s1, s2), ĜX2X2(s1, s2) [Staniswalis and Lee (1998)]. In
this setting, the conditional expectation formula should be employed to estimat-
ing the scores, ζ̂1l,i = Ê[ζ1l,i |W1i] = η̂1lψ̂

�
1l (ĜX1,X1 + σ̂ 2

1 Im1i×m1i
)−1W1i [Yao,

Müller and Wang (2005a)]. Here W1i is a vector of length m1i containing the ob-
served values of the first predictor function, ψ̂�

1l is a vector of length m1i with the
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j th entry equal to ψ̂1l(tij ), ĜX1,X1 is a m1i × m1i -dimensional matrix with the
(j, j ′)th entry equal to ĜX1,X1(tij , tij ′), and Im1i×m1i

is the m1i ×m1i identity ma-
trix. ζ̂2l,i can be estimated similarly. Yao, Müller and Wang (2005a) showed that,
under the assumption that the predictors and their errors are jointly Gaussian, this
equation yields the empirical best linear unbiased predictor of the scores.

In this case, there is an alternative approach to predict the response trajectory.

Specifically, let Xpi(t) =∑Lp

l=1 ζpl,iψpl(t) be the KL expansion for the covariate
functions. Then by substituting this into equation (2.2) we obtain

Ŷi(t) = β̂0(t) +
K∑

k=1

α̂1k(t)

∫ �

0

L1∑
l=1

ζ̂1l,i ψ̂1l(t − s)Bs1,k(s) ds

+
K∑

k=1

α̂2k(t)

∫ �

0

L2∑
l=1

ζ̂2l,i ψ̂2l(t − s)Bs2,k(s) ds(2.13)

= β̂0(t) +
L1∑
l=1

ζ̂1l,i P̂1l(t) +
L2∑
l=1

ζ̂2l,i P̂2l(t),

where α̂1k(t) and α̂2k(t) are the estimators of α1k(t) and α2k(t), respectively,
P̂1l(t) =∑K

k=1 α̂1k(t)
∫�

0 ψ̂1l(t − s)Bs1,k(s) ds and P̂2l(t) is defined similarly.

GB method. Densely sampled covariate functions are needed for the GB
method; hence, smooth estimators for the covariates can be obtained using
the predicted scores, eigenfunctions and KL expansion; that is, X̂pi(t) =∑Lp

l=1 ζ̂pl,iψ̂pl(t). The methodology can be applied by using the predicted func-
tional covariates in place of the true smooth functions.

3. Simulation studies. This section presents results from an extensive sim-
ulation study used to evaluate the predictive performance of the two proposed
methods, PW and GB. We consider two settings for data generated as in model
(2.1): (I) the response and functional predictors are observed densely so that m0i ,
m1i and m2i are large and the predictors are observed without measurement error;
and (II) the functional predictors and response are observed on a sparse grid of
points so that m0i , m1i and m2i are small and the predictors are observed with
measurement error.

We first generate the response and predictor functions on a dense and equally
spaced grid of points, tij ∈ T = {j/99 : j = 0,1,2, . . . ,99}. In setting (I), we gen-
erate observed data, {tij , Yij ,W1ij ,W2ij }j , where Yij is the response function and
W1ij = X1i (tij ) and W2ij = X2i (tij ) are the predictor functions measured without
error. We define the predictors, X1i (t) =∑2

k=1 uik1 sin(kπt) + uik2 cos(kπt) and

X2i (t) =∑3
k=1 vik cos(2kπt) for uik1, uik2 and vik1

i.i.d.∼ N(0,1/k4). We use re-

gression parameter functions β0(t) = e−(t−.5)2
, β1(s, t) = cos(2πt) cos(πs) and
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β2(s, t) = cos(πt) cos(πs). We take � = 0.4 so that β1, β2 : [0,0.4] × [0,1] →
[0,1] and β0 : [0,1] → [0,1]. Illustrations of the simulated data and predictions
are included in the Supplementary Material [Pomann et al. (2016)].

The response for voxel i ∈ 1, . . . , n is generated from model (2.1) via numer-
ical integration for each tij ∈ T . The measurement error in model (2.1) is taken
to be εi(t) = εa,i(t) + εg,i(t), where εg,i(t) is a zero-mean i.i.d. normal random
variable with variance σ 2

ε /2, and εa,i(t) is a zero-mean AR(1) process with co-
variance structure given by �(tj , tj ′) = (σ 2

ε /2)ρ
|tj−tj ′ | with ρ = 0.5. It follows

that var(εi(t)) = σ 2
ε . Note that an AR(1) process is considered in the simulation

study to analyze the effect of nonindependent (over time) noise structure in the fit-
ting process. We simulate data under a framework similar to Ivanescu et al. (2015)
and McLean et al. (2014) by using a version of the empirical signal to noise ratio
(eSNRε), which we define as eSNRε = [∑i,j {E(Yij ) −∑i E(Yij )/n}2/{σ 2

ε (n −
1)m}]. The value of σ 2

ε is chosen by specifying the eSNRε for each Monte Carlo
(MC) replication. In this section, we present results for eSNRε = 5. It was observed
that the predictive error decreases (increases) as eSNRε is increased (decreased).
Results for eSNRε = 1 as well as for responses generated with a white noise error
process are included in the Supplementary Material [Pomann et al. (2016)].

In setting (II) the response and predictors are first generated as in setting (I).
Then, to generate the sparse data, we evaluate the functions at points rik ∈ Ri for
a randomly sampled subset Ri ⊂ T of size mi . To determine the number of obser-

vations for each voxel, we take mi
i.i.d.∼ Uniform on {10,11, . . . ,15}. This level of

sparsity is consistent with the 13.6 average number of samples observed per curves
in the real data (see the Data Analysis Details section in the Supplementary Mate-
rial [Pomann et al. (2016)]). To generate the predictors that are observed with error,
we take W1ik = X1i (rij )+ε1ik and W2ik = X2i (rij )+ε2ik , where ε1ik ∼ N(0,0.1)

and ε2ik ∼ N(0,0.05). The latter error variances were selected to correspond to a
signal-to-noise ratio of 5.

The main simulation factors of interest are the number of observations and the
lag parameter used for fitting the model. We present results for n ∈ {20,50,100}.
To understand how the model performs when the lag parameter is misspecified,
we let �F be the lag parameter used for fitting the model and present results for
�F ∈ {0.4,0.6}. As expected, when �F < �, both estimation methods have poor
predictive accuracy and results in increased bias. Intuitively, this case corresponds
to fitting a misspecified model, as it enforces the two regression parameters to be
null on domains where they are not. Namely, β1(s, t) = 0 and β2(s, t) = 0 are
enforced for s ∈ [�F ,�].

To fit the model, the predictors are first standardized to have a zero mean func-
tion and pointwise variance equal to 1. For the model using the PW method, we
consider the bases sets {Bs1,k} and {Bs2,k} to be the set of K = 10 B-spline ba-
sis functions of degree 4 with 6 interior knots over [0,�F ]. This value of K

was selected empirically. We use one tuning parameter λ that is selected using
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a grid search over Iλ = [0.0001,0.01] and cross-validation. The range was de-
termined empirically. Using a larger range and two tuning parameters produced
similar results. To obtain the smooth covariance and cross-covariance functions,
ĜX1X1(s1, s2), ĜX2X2(s1, s2), ĜX1X2(s1, s2), ĜX1Y (s1, s2) and ĜX2Y (s1, s2), we
use bivariate smoothing, via tensor products of 20 univariate cubic regression
splines with 15 equally spaced interior knots. The positive semidefiniteness of the
covariance functions is ensured by truncating the eigenvalues to be positive.

For the GB method, the functions Bp,k(s, t) are chosen to be 30 thin plate spline
basis functions with 30 knots equally spaced. The penalty for equation (2.12) is
taken to be Pl(bl) = b�

l Slbl , where Sl is chosen to be the thin plate spline penalty
[Wood (2006)]. In setting (II), the reconstructed trajectories are estimated using
FPCA with 20 basis functions to smooth the covariance and cross-covariance func-
tions; the percent variance explained is set to 99%. The smooth predictor trajec-
tories are sampled over a grid of 100 equally spaced observation points on [0,1].
To obtain the necessary smooth estimates, we use fpca.sc function of the package
refund [Di et al. (2009), Goldsmith, Greven and Crainiceanu (2012), Staniswalis
and Lee (1998), Yao, Müller and Wang (2005b)]. To obtain predictions, we use the
gam function of the mgcv package [Wood (2006, 2011)].

The computational cost and empirical performance of the PW method depends
directly on the range of values Iλ used to search for the optimal regularization pa-
rameter. Since the estimation of regression parameters for the PW method uses
only the smooth covariance and cross-covariance estimates at each time tij , it
is more computationally efficient than the GB method which uses large matrices
that grow linearly with

∑n
i=1 mi ; see the Supplementary Material [Pomann et al.

(2016)] for algorithms that outline the implementation details.

3.1. Simulation results. To evaluate model performance, we present the rel-
ative mean square error (reMSE) for Y(t) as reMSE(Y ) = (

∑
i

∫ T
� {Ŷi(t) −

fi(t)}2 dt)/(
∑

i

∫ T
� {fi(t)}2 dt). Since our main objective is prediction, we report

the mean and standard error of the reMSE(Y ) values over 500 Monte Carlo (MC)
replications. We compare the resulting prediction errors by evaluating improve-
ment of quantity “A” over “B,” defined to be [(B − A)/B] · 100%. The discussion
in this section focuses on the comparison of the reMSE(Y ) values found in the last
column of the tables provided.

First we describe and compare the results for the two estimation methods under
the dense setting. Table 1 reports the simulation results for the PW and the GB
methods under setting (I). On average, the GB method yields an improvement of
92% over the PW method in reMSE of prediction for this setting. For both the
PW and GB methods, the case �F = � has smaller prediction errors than the case
when �F ≥ �. As expected, the prediction error decreases in both cases as the
sample size increases. For the PW method, n = 50 yields an average improvement
of 47% over the case of n = 20, and for n = 100 we observe an improvement
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TABLE 1
Prediction Error—Setting (I), Average Error Variance = 0.012

n � �F reMSE(Y ) (SE)—PW Method reMSE(Y ) (SE)—GB Method

20 0.4 0.4 5.1e–3 (5.9e–3) 5.2e–4 (1.6e–4)
20 0.4 0.6 6.5e–3 (1.1e–2) 6.5e–4 (2.3e–4)
50 0.4 0.4 2.9e–3 (4.6e–3) 2.3e–4 (6.4e–5)
50 0.4 0.6 3.2e–3 (2.8e–3) 2.9e–4 (8.4e–5)

100 0.4 0.4 1.8e–3 (1.4e–3) 1.2e–4 (3.2e–5)
100 0.4 0.6 2.1e–3 (2.0e–3) 1.5e–4 (4.3e–5)

over the case when n = 50. Using the GB method with n = 50 yields an average
improvement of 56% over the case when n = 20, and a clear improvement as the
sample size increases.

Next, we compare performance under the dense and sparse settings for each
of the estimation methods. As expected, the performance of both approaches is
affected by the sparse sampling design of the functional covariates and response.
For the PW method, prediction errors in setting (I) are on average 70% smaller
than in setting (II). Similarly, for the GB method the prediction errors in setting (I)
are on average 95% smaller than in setting (II).

Last, we describe and compare the results for the two estimation methods under
the sparse setting (II) (see Table 2). On average, in these datasets, the GB method
yields an improvement of 55% over the PW method. For PW , we observe that the
case when �F = � has smaller prediction errors than the case when �F ≥ �.
For GB, on average, having �F = � yields a slight improvement over having
�F ≥ �. As expected, the prediction error decreases in both cases as the sample
size increases.

4. Prediction of Magnetization Transfer Ratio within lesions of MS pa-
tients. Recall that the data consist of MTR maps and T1w and FLAIR images
obtained for 53 MS patients who were imaged as part of a natural history study at

TABLE 2
Prediction Error—Setting (II), Average Error Variance = 0.012

n � �F reMSE(Y ) (SE)—PW Method reMSE(Y ) (SE)—GB Method

20 0.4 0.4 1.6e–2 (2.4e–2) 7.1e–3 (1.9e–2)
20 0.4 0.6 2.2e–2 (7.7e–2) 9.0e–3 (6.1e–2)
50 0.4 0.4 9.6e–3 (4.3e–3) 4.2e–3 (3.2e–3)
50 0.4 0.6 1.0e–2 (4.6e–3) 4.0e–3 (2.4e–3)

100 0.4 0.4 6.7e–3 (4.3e–3) 3.6e–3 (5.7e–3)
100 0.4 0.6 7.1e–3 (3.1e–3) 3.2e–3 (3.9e–3)
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the National Institute of Neurological Disorders and Stroke. Time to each observed
scan is measured from the first scan after lesion incidence. With this definition of
observation times, each patient had between 9 and 38 observed scans with the max-
imum time ranging from 20 weeks to 5.5 years. Our objective is to predict MTR at
voxels within lesions using the T1w and FLAIR measurements acquired within the
previous six months. This is important as MTR is not typically acquired in clinical
settings, yet it would be a valuable addition to the typically acquired images and
is believed to contain information about the disease process in MS [Chen et al.
(2007, 2008)]. Predicting the MTR in MS lesions from the T1w and FLAIR in-
formation will provide information within lesions, without needing to acquire the
MTR volume. This information will be of use in research for retrospective analy-
sis where the MTR is not available as well as in clinical practice in settings where
the MTR is not acquired. For this model, the window is chosen to be six months
because it has been reported that MTR values may decrease subtly in areas of fu-
ture lesion formation within a six-month period [Van Den Elskamp et al. (2008)].
Previously, Mejia et al. (2016) proposed a cross-sectional model to predict quan-
titative T1 maps, which estimate T1 relaxation times as a function of T1-weighted,
T2-weighted, PD-weighted and FLAIR images; and Suttner et al. (2015) applied
this method to predict DTI measures. To the best of our knowledge, this is the only
other work in the literature that has been presented to estimate images of quan-
titative MR values. Jog et al. (2013a) do attempt to estimate average quantitative
tissue properties, but not the quantitative images themselves. In addition, work has
been done to predict standard nonquantitative clinical images using cross-sectional
models [Jog et al. (2013b); Roy, Carass and Prince (2011, 2013)].

It is common practice to use cross-sectional linear models to make other voxel-
level predictions [Pomann et al. (2015), Sweeney et al. (2013a, 2013b)]. There-
fore, we evaluate the performance of the proposed approaches against two cross-
sectional models that do not take temporal dependence of the data into account.
Section 4.1 discusses the preprocessing of the data, and Section 4.2 presents im-
plementation details and results for this analysis.

4.1. Data processing. Details about the data acquisition, preprocessing, image
registration and normalization are provided in Sweeney et al. (2015). After image
preprocessing, we temporally align the voxel trajectories by aligning the voxels
to the time point when it first is identified as belonging to a new or enlarging le-
sion. We identify this time of incidence for each voxel using the Subtraction-Based
Logistic Inference for Modeling and Estimation (SuBLIME) procedure [Sweeney
et al. (2013a)]. For each voxel, we obtain the time marker that corresponds to the
time when the voxel is first identified as being part of a lesion (“time zero”). We
then measure all following time points as the time difference in weeks from this
marker. The alignment is appropriate because our goal is to predict MTR in the
time window after the lesion develops; see the Supplementary Material [Pomann
et al. (2016)] for more details.
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4.2. Model implementation and results. After normalization and spatio-
temporal registration, we measure time in weeks, and let Yij be the MTR at voxel i

in the brain of a subject at week tij ∈ [0,190]. Similarly, we let the predictors W1ij

and W2ij be the normalized T1w and FLAIR intensities, respectively, of voxel i at
time tij , which are assumed to be observed with noise. We consider these two pre-
dictors as they are commonly acquired images as part of clinical MRI studies. We
omit times after 190 weeks, as there are too few observations beyond this point.
After �F = 26 weeks (approximately six months), lesion evolution is approxi-
mately stable [Meier, Weiner and Guttmann (2007)], which justifies our choice for
lag window.

Figure 1 presents images for a lesion for one of the patients with MS in our
study. From top to bottom, the FLAIR, T1w and MTR images are displayed for
this patient obtained over time in weeks from left to right (indicated below in white
text). Time zero corresponds to lesion incidence for each voxel. The lesion is the
hypointense region in the center of the image on the T1w and MTR images and
the hyperintense on the FLAIR. Figure 2(a), (b) and (a) present the corresponding
T1w, FLAIR and MTR voxel-level trajectories for this image.

In order to determine the benefit of the HFLM model for predicting MTR, we
compare its performance against a cross-sectional model (CS),

(4.1) Yij = β0 + β1W1ij + β2W2ij + εij .

Additionally, we compare the performance against a cross-sectional nonlinear
model (CSNL),

(4.2) Yij = β0 + g1[W1ij ] + g2[W2ij ] + εij ,

where g1(·) and g2(·) are unknown nonlinear functions. These models do not ac-
count for any temporal dependencies that may be present in the data. To fit the
cross-sectional models, the predictors are standardized to have a mean zero and
standard deviation of one. Predictions for the CSNL model are obtained using the
gam function of the mgcv package in R with 10 thin plate basis functions with 10
equally spaced knots.

FIG. 1. From top to bottom, axial slices of an MS lesion in the FLAIR (A), T1w (B) and MTR (C)
sequences. This MS patient is imaged over time in weeks from left to right. Time zero corresponds to
lesion incidence, and the lesion on each sequence is denoted at time zero with a red arrow. On the
MTR and T1w images the lesion is the hypointense region; on the FLAIR the lesion is hyperintense.
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FIG. 2. (a) Normalized T1w voxel intensities for a subset of the lesion voxels in the same patient as
in Figure 1; (b) corresponding smoothed T1w voxel intensities using 20 basis functions to smooth all
of the data; (c) corresponding FLAIR voxel intensities; (d) corresponding smoothed FLAIR voxel in-
tensities using 20 basis functions to smooth all of the data. The red and blue curves are two particular
curves.

To fit the HFLM models, the predictors are first standardized to have a zero
mean function and pointwise variance equal to 1. Prediction is performed only for
voxels in lesions at times after the corresponding lesion incidence. The analysis
is performed on the logit transform of the MTR trajectories since the response
values lie in the range [0,1]. The same analysis is also conducted on the raw
data which yields comparable results (see the Supplementary Material [Pomann
et al. (2016)]). There are some zero values in the response but no values of 1,
and most of the MTR values are concentrated between 0.2 and 0.5. Hence, in
order to avoid division by zero, we shift the data by 0.01 when performing the
logit transformation; that is, for our analysis we define logit(y) = log(

(y+0.01)
1−(y+0.01)

)

and logit−1(α) = eα

eα+1 − 0.01. When using the logit option in the implementa-
tion, the response data is transformed before fitting the model. Then predictions
are transformed back to the probabilities using the logit−1 function. All analysis is
conducted using R version 2.15.1.

For the PW method, the basis set {Bs1,k(s)}Kk=1 and {Bs2,k(s)}Kk=1 are taken to
be the set of K = 10 B-spline basis functions of degree 4 with 6 interior knots
over [0,26]. The value of K was selected empirically. Similar results were ob-
served for K = 20. We use one tuning parameter, λ, that is selected using GCV
over [0.1,100]. To obtain the smooth covariance and cross-covariance functions,
ĜX1X1(s1, s2), ĜX2X2(s1, s2), ĜX1X2(s1, s2), ĜX1Y (s1, s2) and ĜX2Y (s1, s2), we
use bivariate smoothing, via tensor products of univariate bases. The positive
semidefiniteness of the covariance and cross-covariance functions is ensured by
truncating the eigenvalues to be positive. The results are based on using the tensor
product of 20 univariate cubic regression splines with 15 equally spaced interior
knots.
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For the GB method, the functions Bp,k(s, t) are chosen to be 30 thin plate
spline basis functions with 30 knots equally spaced. The penalty for equation
(2.12) is taken to be Pl(bl) = b�

l Slbl , where Sl is obtained by using the thin
plate spline penalty [Wood (2006)]. The reconstructed trajectories are estimated
for tij ∈ [0,190] using FPCA with 20 basis functions to smooth the covariance
and cross-covariance functions and the percent variance explained set to 99%. To
obtain the necessary smooth estimates, we use the fpca.sc function of the pack-
age refund. To obtain predictions, we use the bam function of the mgcv package
[Wood (2006, 2011)].

Using this smoothing procedure, we are able to capture the natural variation in
the predictor functions. To see this, we display a subset of voxels in the brain of a
patient in this study; Figure 2(a) and (c) display the observed voxel-level predictor
trajectories of the T1w and FLAIR images, respectively, and Figure 2(b) and (d)
show the respective smoothed trajectories. The voxel-level trajectories in these
figures correspond to the voxels in the lesion displayed on the observed images in
Figure 1.

Since the true underlying MTR functions are unknown, we perform a 10-fold
cross-validation of the data based on subject ID. The subject IDs are first randomly
sorted, and then the corresponding voxel observations are split into groups. The
first three groups consist of six subjects, and the other seven groups consist of five
subjects. The validation was designed in this manner in order to produce a more
realistic scenario in which imaging information is observed from entire subjects
and prediction is also done for all voxels in the scan of a subject. Histograms of the
number of voxels and observations per subject are included in the Supplementary
Material [Pomann et al. (2016)].

We evaluate prediction by comparing the integrated mean squared error (MSE)
of the models. We also compare this prediction error with the empirical mea-
surement error of the MTR voxel-level trajectories. To do this, for each cross-
validation step, we compute MSE/s2

0 such that s2
0 = [∑n

i=1
∑mi

j=1{Yi(tij ) −
Ỹi(tij )}2]/[∑n

i=1 mi], where mi is the number of time samples per curve, and n

is the total number of observed voxels, and Ỹi(tij ) are the smoothed response tra-
jectories without noise. A ratio of 1 indicates that the prediction is as good as
smoothing the observed data. The smooth trajectories are obtained by using the
fpca.sc function in the refund package in R with 20 basis functions to smooth
the covariance and 99% variance explained to obtain the number of eigenfunctions
used to reconstruct the data.

Figure 3(a) and (b) display the observed and smoothed MTR voxel-level tra-
jectories, respectively, for the voxels in the lesion of Figure 1. For these same
voxel-level trajectories, Figure 3(c) and (d) present the predicted response trajec-
tories from using the PW and GB methods. Due to the lag window being fixed at
six months, the estimation is restricted to t > 26 weeks. We see that the predictions
obtained using our model are similar to the smoothed MTR trajectories.
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FIG. 3. (a) MTR voxel intensities for a subset of the lesion voxels in the same patient as in Figure 1;
(b) smoothed MTR voxel intensities using 20 basis functions to smooth all of the data; (c) predicted
MTR voxel intensities using the GB method; (d) predicted MTR voxel intensities using the PW method.
The values for the predicted MTR are not available for the first 26 weeks since this is the window
used for prediction. The red and blue curves are two particular curves.

Table 3 displays the prediction error results for the different approaches. The
HFLM model consistently has higher predictive accuracy than the corresponding
cross-sectional models. Both estimation approaches for the HFLM model perform
comparably. This model yields a 61% improvement over the CS model and a 48%
improvement over the CSNL model. These improvements indicate the importance
of accounting for temporal dependence over the previous six months when pre-
dicting MTR. Similar results were observed for the average in-sample error.

This analysis was repeated for a lag window of 3 and 9 months, and it was ob-
served that the error between the different window sizes was the same up to the
third significant digit for both methods. It may be of future interest to explore the
model with interactions as well as other commonly acquired predictors such as
proton density volumes or T2w images. This analysis can provide further insight

TABLE 3
Prediction error from 10-fold cross-validation on MTR data with T1w and FLAIR predictors.

Integrated mean squared error (MSE) along with the average MSE/s2
0 , where s2

0 is the
estimated measurement error in the observed MTR voxel trajectories for all models

and estimation approaches. The last two columns show the improvement for
each approach over the CS and CSNL models

Model MSE[SE] · (103) MSE/s2
0 Imp. over CS Imp. over CSNL

CS 12.7 [3.4] 4.1 0% −32%
CSNL 9.6 [2.7] 3.1 31% 0%
HFLM (GB) 5.0 [2.1] 1.6 61% 48%
HFLM (PW) 4.9 [2.1] 1.6 61% 49%
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regarding which commonly acquired images can be used to predict MTR and ana-
lyze tissue damage. Observe that using both predictors in the HFLM model yields
a 9% improvement over the model with only one predictor (see the Supplemen-
tary Material [Pomann et al. (2016)]). However, when using the cross-sectional
models, this relationship is not maintained; each of the two-predictor models does
not perform as well as the corresponding model with only the T1w intensities
used as a predictor. The models with only FLAIR intensities used as a predictor
consistently do worse than all of the corresponding cross-sectional two-predictor
models. These results confirm the qualitative assessment that the T1w image on its
own contains detailed information about tissue damage. Furthermore, adding the
FLAIR intensities to any of the cross-sectional models does not improve predictive
power.

5. Conclusion. We propose using the HFLM to estimate the current value of
MTR in lesions using only the previous six months of both the T1w and FLAIR
voxel intensities. We provide two methods to estimate the regression parameter
functions: the PW method, a pointwise least squares approach; and the GB method,
a global penalized functional regression approach. The PW method directly ac-
counts for the covariance of the predictor functions by using a pointwise least
squares approach to estimate the regression parameters. Additionally, in the case
of sparse data, this method does not require the estimation of smooth trajectories
as the GB method does. However, the GB method has a few advantages over the
PW method. First, the performance of the PW method depends on the choice of the
range of λ values for cross-validation. It was observed experimentally that if this
range were not properly selected, then high out-of-sample prediction errors would
be observed. Second, the PW method does not guarantee smoothness across time
since estimated coefficients and predictions are performed at each time value. Fi-
nally, the PW method assumes that the β functions can be modeled as a sum of
tensor products of basis functions, whereas the GB method makes use of general
bivariate basis functions.

Our findings from the study suggest that the MRI signal within lesions depends
on the local recent history of the signal at that location. Thus, the proposed model
can facilitate the study of tissue damage in lesions of patients with MS. Further-
more, estimation of MTR using the HFLM model with the recent six months of
both the T1w and FLAIR voxel trajectories outperforms cross-sectional models
that do not take temporal dependence of the voxel-level trajectories into account.
Future work will explore the use of this HFLM model to predict other quantitative
imaging modalities and its application to other tissue classes. Estimability should
be investigated further when making inference about the β coefficients is of inter-
est.

The estimation of MTR in lesions using the traditional clinical FLAIR and
T1w sequences has implications for both research and clinical practice. Estimat-
ing MTR within lesions with these sequences will provide additional information
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about lesions without needing to acquire MTR. As MTR has not been a traditional
imaging modality, most retrospective data will not have MTR measured. Estimat-
ing the MTR in lesions may allow us to answer important research questions in
large historical databases of MRI images. The proposed methods facilitate the es-
timation of MTR within lesions, providing additional information to clinicians to
make treatment decisions in patients with MS.
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SUPPLEMENTARY MATERIAL

Algorithms and additional results (DOI: 10.1214/16-AOAS981SUPP; .zip).
In this file, we include a sample sourcecode for estimation of the HFLM model,
implementation details of the PW and GB approaches, figures for the simulated
dense and sparse data, and additional results.
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